
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions

Ahmed M. Alaa 1 Mihaela van der Schaar 1 2

Abstract
Deep learning models achieve high predictive ac-
curacy across a broad spectrum of tasks, but rigor-
ously quantifying their predictive uncertainty re-
mains challenging. Usable estimates of predictive
uncertainty should (1) cover the true prediction
targets with high probability, and (2) discriminate
between high- and low-confidence prediction in-
stances. Existing methods for uncertainty quantifi-
cation are based predominantly on Bayesian neu-
ral networks; these may fall short of (1) and (2) —
i.e., Bayesian credible intervals do not guarantee
frequentist coverage, and approximate posterior
inference undermines discriminative accuracy. In
this paper, we develop the discriminative jackknife
(DJ), a frequentist procedure that utilizes influ-
ence functions of a model’s loss functional to con-
struct a jackknife (or leave-one-out) estimator of
predictive confidence intervals. The DJ satisfies
(1) and (2), is applicable to a wide range of deep
learning models, is easy to implement, and can be
applied in a post-hoc fashion without interfering
with model training or compromising its accu-
racy. Experiments demonstrate that DJ performs
competitively compared to existing Bayesian and
non-Bayesian regression baselines.

1. Introduction
Deep learning models have achieved state-of-the-art per-
formance on a variety of learning tasks, and are becoming
increasingly popular in various application domains (LeCun
et al., 2015). A key question often asked of such models is
“Can we trust this particular model prediction?” This ques-
tion is highly relevant in high-stakes applications wherein
predictions are used to inform critical decision-making —
examples of such applications include: medical decision

1UCLA 2Cambridge University. Correspondence to: Ahmed
M. Alaa <ahmedmalaa@ucla.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

support (Alaa & van der Schaar, 2017), autonomous ve-
hicles, and financial forecasts (Amodei et al., 2016). De-
spite their impressive accuracy, rigorously quantifying un-
certainty in deep learning models is a challenging and yet
an unresolved problem (Gal, 2016; Ovadia et al., 2019).

Actionable estimates of predictive uncertainty are ones that
(1) cover the true prediction targets with a high probability,
and (2) discriminate between high- and low-confidence pre-
dictions. (Figure 1 depicts a pictorial visualization for these
coverage and discrimination requirements.) The coverage
requirement is especially relevant in applications where pre-
dictive uncertainty is incorporated in a decision-theoretic
framework (e.g., administering medical treatments (Dusen-
berry et al., 2019), or estimating value functions in model-
free reinforcement learning (White & White, 2010)). The
second requirement, discrimination, is crucial for auditing
model reliability (Schulam & Saria, 2019), detecting dataset
shifts and out-of-distribution samples (Barber et al., 2019a),
and actively collecting new training examples for which the
model is not confident (Cohn et al., 1996).

Existing methods for uncertainty estimation are based pre-
dominantly on Bayesian neural networks (BNNs), whereby
predictive uncertainty is evaluated via posterior credible in-
tervals (Welling & Teh, 2011; Hernández-Lobato & Adams,
2015; Ritter et al., 2018; Maddox et al., 2019). However,
BNNs require significant modifications to the training proce-
dure, and exact Bayesian inference is computationally pro-
hibitive in practice. Approximate dropout-based inference
schemes (e.g., Monte Carlo dropout (Gal & Ghahramani,
2016) and variational dropout (Kingma et al., 2015)) have
been recently proposed as computationally efficient alterna-
tives. However, Bayesian inference in dropout-based models
has been shown to be ill-posed, since the induced posterior
distributions in such models do not concentrate asymptoti-
cally (Osband, 2016; Hron et al., 2017), which jeopardizes
both the coverage and discrimination performance of the
resulting credible intervals. Moreover, even with exact in-
ference, Bayesian credible intervals do not guarantee fre-
quentist coverage (Bayarri & Berger, 2004). Non-Bayesian
alternatives have been recently developed based on ad-hoc
ensemble designs (Lakshminarayanan et al., 2017) — but
formal and rigorous frequentist methods are still lacking.

ar
X

iv
:2

00
7.

13
48

1v
1

 [c
s.L

G
]

29
 Ju

n
20

20

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Model Input Model Input Model Input

M
o

d
el

 O
u

tp
u

t

M
o

d
el

 O
u

tp
u

t

M
o

d
el

 O
u

tp
u

t

Accurate coverage, no discrimination No coverage, accurate discrimination Accurate coverage and discrimination

Figure 1. Pictorial depiction for coverage and discrimination in uncertainty estimates. Red dots correspond to training data and dot-
ted black line corresponds to the target function. Confidence intervals are visualized as shaded blue regions, where dotted blue lines are the
upper and lower confidence limits. The left panel shows a confidence interval that perfectly covers the data points, but does not discriminate
high-confidence predictions (regions with dense training data) and low-confidence ones (regions with scarce training data). The middle
panel shows a confidence interval with a width proportional to the density of training data (which determines model uncertainty), but does
not cover any data point. The right panel shows a confidence interval that satisfies both coverage and discrimination requirements.

Summary of contributions. In this paper, we develop a
formal procedure for constructing frequentist (pointwise)
confidence intervals on the predictions of a broad class of
deep learning models. Our method — which we call the
discriminative jackknife (DJ) — is inspired by the classic
jackknife leave-one-out (LOO) re-sampling procedure for
estimating variability in statistical models (Miller, 1974;
Efron, 1992). In order to ensure both frequentist coverage
and discrimination, DJ constructs feature-dependent confi-
dence intervals using the LOO local prediction variance at
the input feature, and adjusts the interval width (for a given
coverage probability) using the model’s average LOO error
residuals. Whereas the classic jackknife satisfies neither the
coverage nor the discrimination requirements (Barber et al.,
2019b), DJ satisfies both (i.e., DJ generates predictive confi-
dence intervals resembling those in the rightmost panel of
Figure 1 with high probability).

Central to our DJ procedure is the use of influence functions
— a key concept in robust statistics and variational calculus
(Cook & Weisberg, 1982; Efron, 1992) — in order to esti-
mate the parameters of models trained on LOO versions of
the training data, without exhaustively re-training the model
for each held-out data point. That is, using the von Mises
expansion (Fernholz, 2012) — a variant of Taylor series
expansion for statistical functionals — we represent the
(counter-factual) model parameters that would have been
learned on LOO versions of the training data set in terms of
an infinite series of higher-order influence functions (HOIFs)
for the model parameters trained on the complete data. To
compute the second-order von Mises expansion, we derive
an approximate formula for evaluating second-order influ-
ence functions that extends on the formula for first-order
influence in (Koh & Liang, 2017). We also propose a gen-
eral procedure for computing HOIFs by recursively com-

puting hessian-vector products between the Hessian and
higher-order gradients of the model loss, without the need
for explicitly inverting the Hessian matrix.

Comprehensive experimental evaluation demonstrates that
the DJ performs competitively compared to both Bayesian
and non-Bayesian methods with respect to both the coverage
and discrimination criteria. Because of the post-hoc nature
of the DJ, it is capable of improving coverage and discrimi-
nation without any modifications to the underlying predic-
tive model. However, since computing influence functions
entails at least linear complexity in both the number of train-
ing data points and the number of model parameters, a key
limitation of our method is scalability. We identify compu-
tationally efficient methods for approximating HOIFs as an
interesting direction for future research.

2. Preliminaries
2.1. Learning Setup

We consider a standard supervised learning setup with (x, y)
being a feature-label pair, where the feature x belongs to a d-
dimensional feature space X ⊆ Rd, and y ∈ Y . A model is
trained to predict y using a datasetDn , {(xi, yi)}ni=1 of n
examples, which are drawn i.i.d from a distribution P. Let
f(x; θ) : X → Y be the prediction model, where θ ∈ Θ
are the model parameters, and Θ is the parameter space.
The trained parameters θ̂ ∈ Θ are obtained by solving the
optimization problem θ̂ = arg minθ∈Θ L(Dn, θ), for a loss

L(Dn, θ) ,
1

n

n∑
i=1

`(yi, f(xi; θ)), (1)

where we fold in any regularization terms into `(.). We do
not pose any assumptions on the specific architecture under-

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

lying the model f(x; θ); it can be any neural network vari-
ant, such as feed-forward or convolutional network.

2.2. Uncertainty Quantification

The predictions issued by the (trained) model are given by
f(x; θ̂); our main goal is to obtain an estimate of uncertainty
in the model’s prediction, expressed through the pointwise
confidence interval C(x; θ̂), formally defined as follows:

C(x; θ̂) , [f−(x; θ̂), f+(x; θ̂)], ∀x ∈ X . (2)

The degree of uncertainty in the model’s prediction (for a
data point with feature x) is quantified by the interval width
W (.) of the confidence interval C(x; θ̂), given by

W (C(x; θ̂)) , f+(x; θ̂)− f−(x; θ̂). (3)

Wider intervals imply less confidence, and vice versa. For
C(x; θ̂) to be usable, it has to satisfy the following:

(i) Frequentist coverage. This is satisfied if the confidence
interval C(x; θ̂) covers the true target y with a prespecified
coverage probability of (1− α), for α ∈ (0, 1), i.e.,

P
{
y ∈ C(x; θ̂)

}
≥ 1− α,

where the probability is taken with respect to a (new) test
point (x, y) as well as with respect to the training data Dn
(Lawless & Fredette, 2005; Barber et al., 2019b).

(ii) Discrimination. This requirement is met when C(x; θ̂) is
wider for test points with less accurate predictions (Leonard
et al., 1992), i.e., for the test points x,x′ ∈ X , we have

E
[
W (C(x; θ̂))

]
≥ E

[
W (C(x′; θ̂))

]
⇔

E
[
`(y, f(x; θ̂))

]
≥ E

[
`(y′, f(x′; θ̂))

]
,

where the expectation E[.] is taken with respect to the ran-
domness of Dn. In the next Section, we develop a post-hoc
frequentist procedure for estimating Ĉ(x; θ̂) that satisfies
both of the requirements in (i) and (ii).

3. The Discriminative Jackknife
Before presenting our discriminative jackknife (DJ) proce-
dure, we start with a brief recap of the classical jackknife.
The jackknife quantifies predictive uncertainty in terms of
the (average) prediction error, which is estimated with a
leave-one-out (LOO) construction found by systematically
leaving out each sample in Dn, and evaluating the error of
the re-trained model on the held-out sample, i.e., for a target
coverage of (1− α), the naïve jackknife is (Efron, 1992):

ĈJα(x; θ̂) = f(x; θ̂) ± Q̂+
α (R), (4)

withR = {r1, . . . , rn}, where ri = | yi−f(xi; θ̂−i) | is the
error residual on the i-th data point, θ̂−i are the parameters

of the model re-trained on the dataset Dn \ {(xi, yi)} (with
the i-th point removed), and Q̂+

α is the (1 − α) empirical
quantile of the setR = {r1, . . . , rn}, defined as

Q̂+
α (R) , the d(1− α) (n+ 1)e-th smallest value inR,

where Q̂−α (R) = Q̂+
1−α(−R). Albeit intuitive, the naïve

jackknife is not guaranteed to achieve the target coverage
(Barber et al., 2019b). More crucially, the interval width
W (ĈJα(x; θ̂)) is a constant (independent of x), which ren-
ders discrimination impossible, i.e., naïve jackknife would
result in intervals resembling the leftmost panel in Figure 1.

3.1. Exact Construction of the DJ Confidence Intervals

We construct a generic ameliorated jackknife, the DJ, which
addresses the shortcomings of naïve jackknife. We first de-
fine some notation. Let the set V(x) be defined as:

V(x) = { vi(x) | ∀i, 1 ≤ i ≤ n } , (5)

where vi(x) = f(x; θ̂)− f(x; θ̂−i). Our DJ procedure es-
timates the predictive confidence interval for a given test
point x through the following steps:

ĈDJα (x; θ̂) = [f−(x; θ̂), f+(x; θ̂)],

fγ(x; θ̂) = Gα,γ(R,V(x)), γ ∈ {−1,+1},

R ⇒ Marginal Error,V(x)⇒ Local Variability, (6)

where Gα,γ is a quantile function applied on the elements of
the sets of marginal prediction errorsR and local prediction
variability V . The marginal prediction error terms use the
LOO residuals to estimate the model’s generalization error,
and the prediction variability term quantifies the extent to
which each training data point impacts the value of the pre-
diction at test point x. The prediction error is constant, i.e.,
does not depend on x, hence it only contributes to coverage
but does not contribute to discrimination. On the contrary,
the local variability term depends on x, hence it fully deter-
mines the discrimination performance. The function Gα,γ
can be constructed in a variety of ways; here we follow the
Jackknife+ construct in (Barber et al., 2019b)

Gα,γ(R,V(x)) = Q̂γα({f(x; θ̂)− vi(x) + γ · ri}i) (7)

Figure 2 illustrates the construction of the DJ confidence
intervals in (6). The confidence intervals are chosen so that
the boundaries of the average error and local variability are
exceeded by d(n+ 1)(1−α)e out of the n LOO samples —
these are marked with a star. For the average prediction error
term, the width of the resulting boundary is the same for any
test data point x ∈ X . For the local prediction variability
term, the width of the boundary depends on x, and should be
wider for less confident predictions, for which the model is
vulnerable to the deletion of individual training points.

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Marginal prediction error Local prediction variability

.

.

.

.

.

.

Figure 2. Illustration of the discriminative jackknife. Confi-
dence intervals are constructed using the empirical quantiles of
the LOO residuals (left) and input-dependent prediction variability
(right). Here, we depict the (sorted) elements ofR and V — ele-
ments marked with stars designate the boundaries of the (1− α)
quantiles used to compute the DJ confidence intervals in (6).

For the confidence interval’s construction in (6), it follows
that the DJ interval width can be bounded above by

W (ĈDJα (x; θ̂)) ≤ 2 Q̂α(R) +
∑
γ

|Q̂γα(V(x))|. (8)

The marginal error and local variability terms in (8) jointly
capture two types of uncertainty: epistemic and aleatoric
uncertainties (Gal, 2016). Epistemic uncertainty measures
how well the model fits the data, and is reducible as the size
of training data n increases. On the contrary, aleatoric uncer-
tainty is the irreducible variance arising from the inherent
sources of ambiguity in the data, such as label noise or hid-
den features (Malinin & Gales, 2018). Consistency of the DJ
confidence estimates requires that W (ĈDJα (x; θ̂))→ 0, i.e.,
the interval width vanishes, as the size of the training data
increases (n → ∞). It follows from (8) that if there is no
aleatoric uncertainty, and if the underlying model is stable
(i.e., limn→∞ vi = 0) and consistent (i.e., limn→∞ ri = 0),
then the interval width W (ĈDJα (x; θ̂)) vanishes as n grows
asymptotically (more training data is collected).

3.2. Efficient Implementation via Influence Functions

Exact computation of the DJ confidence intervals via (6)
requires re-training the model n times in order to collect
the “perturbed” LOO parameters {θ̂−i}ni=1. This exhaus-
tive procedure is infeasible for large datasets and complex
models. To scale up the DJ, we use influence functions — a
classic tool from robust statistics (Huber & Ronchetti, 1981;
Hampel et al., 2011) — in order to recover the parameters
{θ̂−i}ni=1 on the basis of the trained model f(x; θ̂), without
the need for explicit re-training. Through this implementa-
tion, the DJ can be applied in a post-hoc fashion, requiring
only knowledge of the model loss gradients.

Influence functions enable efficient computation of the ef-

fect of a training data point (xi, yi) on θ̂. This is achieved by
evaluating the change in θ̂ if (xi, yi) was up-weighted1 by
some small ε, resulting in a new parameter

θ̂i,ε , arg min
θ∈Θ

L(Dn, θ) + ε · `(yi, f(xi; θ)).

The rate of change in θ̂ due to an infinitesimal perturbation ε
in data point i is give by the (first-order) influence function

I(1)
θ (xi, yi) =

∂ θ̂i,ε
∂ ε

∣∣∣
ε=0

. (9)

Note that the model parameter θ̂ is a statistical functional
of the data distribution P. Perturbing the i-th training point
is equivalent to perturbing P to create a new distribution
Pi,ε = (1 − ε)P + ε∆(xi, yi), where ∆(xi, yi) denotes
the Dirac distribution in the point (xi, yi). In this sense,
the influence function in (9) operationalizes the concept of
derivatives to statistical functionals, i.e., the derivative of
the parameters θ̂ with respect to the data distribution P.

By recognizing that influence functions are the “derivatives”
of θ̂ with respect to P, we can use a Taylor-type expansion
to represent the counter-factual model parameter θ̂i,ε (that
would have been learned from a dataset with the i-th data
point up-weighted) in terms of the parameter θ̂ (learned
from the complete Dn) as follows (Robins et al., 2008):

θ̂i,ε = θ̂ + ε · I(1)
θ (xi, yi) +

ε2

2!
· I(2)
θ (xi, yi) + . . . (10)

where I(k)
θ (xi, yi) is the k-th order influence function, de-

fined as I(k)
θ (xi, yi) = ∂k θ̂i,ε/∂ ε

k |ε=0. The expansion in
(10), known as the von Mises expansion (Fernholz, 2012),
is a distributional analog of the Taylor expansion for statis-
tical functionals. If all of the higher-order influence func-
tions (HOIFs) in (10) exist, then we can recover θ̂i,ε with-
out re-training the model on the perturbed training dataset.
Since exact reconstruction of θ̂i,ε requires an infinite num-
ber of HOIFs, we can only approximate θ̂i,ε by including a
finite number of HOIF terms from the von Mises expansion.

The LOO model parameters {θ̂−i}ni=1, required for the con-
struction of the DJ confidence intervals, can be obtained by
setting ε = −1/n, i.e., θ̂−i = θ̂i,−1

n
, since removing a train-

ing point is equivalent to up-weighting it by−1/n in the loss
function L(Dn; θ). Thus, by setting ε = −1/n and select-
ing a prespecified number of HOIF terms m for obtaining
the approximate LOO parameters θ̂(m)

−i , the DJ confidence
intervals can be computed using the steps in Algorithm 1.

3.3. Computing Influence Functions

The recent work on model interpretability in (Koh & Liang,
2017) has studied the usage of influence functions to quan-

1A detailed technical background on influence functions and
its connection with the jackknife is provided in Appendix A.

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

tify the impact of individual data points on model training.
There, first-order influence was computed, using a classical
result in (Cook & Weisberg, 1982), as follows:

I(1)
θ (x, y) = −H−1

θ · ∇θ `(y, f(x, θ)), (11)

where Hθ , ∇2
θ

∑
i `(yi, f(xi, θ)) is the Hessian of the

loss function, which is assumed to be positive definite. We
derive an approximate expression for the second order influ-
ence function in terms of the first order influence as follows:

I(2)
θ (x, y) ≈ −2H−1

θ · I
(1)
θ (x, y) ·∇2

θ `(y, f(x, θ)). (12)

In general, it can be shown that HOIFs can be recursively
represented in terms of lower-order influence and loss gradi-
ents as (Giordano et al., 2019; Debruyne et al., 2008)

I(k+1)
θ = −H−1

θ

(k∑
m=1

gm
(
{I(j)
θ ,∇jθ `θ}

m
j=1

))
, (13)

for some functions {gm}m. Here, we used short-hand nota-
tion for influence functions and loss gradients, dropping the
dependency on (x, y). HOIFs exist if `(.) is differentiable
and locally convex in the neighborhood of θ, andHθ � 0. In
practice, we found that the second order terms are sufficient
for obtaining an accurate estimate of the re-trained model
parameters. The derivation of the second-order influence
function in (12) is provided in Appendix B.

Computing HOIFs. On the positive side, (13) shows that
we need to compute the inverse Hessian H−1

θ only once for
all HOIFs. However, for a model with p parameters, this
is still a bottleneck operation with O(p3) complexity. To
address this hurdle, we capitalize on the recursive structure
of (13) and the hessian-vector products approach in (Pearl-
mutter, 1994) to efficiently compute HOIFs as follows. To
evaluate the (k + 1)-th order influence given our estimate
of k-th influence Ĩk, we execute the following steps:

(Step 1) Compute the k-th order loss gradient∇kθ`θ.

(Step 2) Evaluate w =
∑k
m=1 gm

(
{Ĩ(j)
θ ,∇jθ `θ}mj=1

)
.

(Step 3) Sample t data points {(xsi , ysi)}ti=1 from Dn.

(Step 4) Initialize H̃−1
0,θw = w, and recursively compute:

H̃−1
j,θw = w + (I−∇2

θ`θ) · H̃−1
j−1,θw,

for j ∈ {0, . . . , t}, where H̃−1
j,θ ,

∑j
i=o(I− H̃θ)

i, and H̃θ

is the stochastic estimate of the Hessian computed over the
sampled t data points in {(xsi , ysi)}ti=1.

(Step 5) Return Ĩk+1 = Ĩk − H̃−1
t,θ w.

As shown through the steps above, the recursive nature of
HOIFs allow us to reuse much of the computations involved

Algorithm 1 The Discriminative Jackknife

1: Input: Learned parameter θ̂, influence order m,
2: coverage α, training data Dn, test point x.
3: Output: DJ confidence interval ĈDJα (x; θ̂,m).

4: for i = 1 to n do
5: θ̂

(m)
−i ← θ̂ −

∑m
k=1(n−k/k!) · I(k)θ (xi, yi).

6: ri ←
∣∣ yi − f(xi; θ̂

(m)
−i)

∣∣.
7: vi(x)← f(x; θ̂)− f(x; θ̂

(m)
−i).

8: end for
9: f−(x; θ̂)← Q̂−

α ({f(x; θ̂)− vi(x) + γ · ri}i).

10: f+(x; θ̂)← Q̂+
α ({f(x; θ̂)− vi(x) + γ · ri}i).

11: Return ĈDJα,n(x; θ̂,m)← [f−(x; θ̂), f+(x; θ̂)].

in evaluating lower-order influence in computing higher-
order terms. The stochastic estimation process above is moti-
vated by the power series expansion of matrix inversion, and
converges if Hθ � 1, which can always be ensured via ap-
propriate scaling of the loss. We approximate the higher or-
der loss gradients in Step 1 using coordinate-wise gradients,
thus, for computing m HOIFs, the overall complexity of the
procedure above is linear in n, m and p, i.e., O(npm).

Despite the reduction in computational complexity, the pro-
posed approximate procedure still entails a linear complex-
ity in both the number of training data points n and the num-
ber of model parameters p. This computational bottleneck
limits our post-hoc procedure to relatively small networks,
hence we regard our method’s inability to scale as its key
limitation. Devising efficient methods for approximating the
Hessian is an interesting direction for future research.

3.4. Theoretical Guarantees

We conclude this Section by revisiting the design require-
ments in Section 2. In the following Theorem, we show that
the DJ provides a guarantee on the coverage condition.

Theorem 1. For any model f(x; θ̂), the coverage probabil-
ity achieved by the approximate DJ with m→∞ is

P
{
y ∈ ĈDJα (x; θ̂,∞)

}
≥ (1− 2α). �

Theorem 1 provides a strong, model-independent guarantee
on the frequentist coverage of the DJ confidence intervals.
In Section 5, we show through empirical evaluation that in
practice — even with second order influence terms only —
the DJ intervals will achieve the target (1 − α) coverage.
With further assumptions on the algorithmic stability of the
underlying model, it can also be shown that the exact DJ
satisfies the discrimination condition in Section 2.2 (See
Appendix C of the supplementary material).

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

4. Related Work
Post-hoc methods for uncertainty quantification have been
traditionally underexplored since existing approaches, such
as calibration via temperature scaling (Platt et al., 1999),
were known to under-perform compared to built-in methods
(Ovadia et al., 2019). However, recent works have revived
post-hoc approaches using ideas based on bootstrapping
(Schulam & Saria, 2019), jackknife resampling (Barber
et al., 2019b; Giordano et al., 2018) and cross-validation
(Vovk et al., 2018; Barber et al., 2019a). An overview of the
different classes of post-hoc and built-in methods proposed
in recent literature is provided in Table 1.

Table 1. Overview of existing uncertainty quantification methods.

Method Bayesian /
Frequentist

Post-hoc /
Built-in Coverage

Bayesian neural nets Bayesian Built-in None
Prob. backprop. Bayesian Built-in None
Monte Carlo dropout Bayesian Built-in None
Deep ensembles Frequentist Built-in None
RUE Frequentist Post-hoc None

DJ Frequentist Post-hoc 1− 2α

Bayesianism is the dominant approach to uncertainty quan-
tification in deep learning (Welling & Teh, 2011; Hernández-
Lobato & Adams, 2015; Ritter et al., 2018; Maddox et al.,
2019). A post-hoc application of Bayesian methods is not
possible since by their very nature, Bayesian models re-
quire specifying priors over model parameters, which leads
to major modifications in the inference algorithms. While
Bayesian models provide a formal framework for uncer-
tainty estimation, posterior credible intervals do not guaran-
tee frequentist coverage, and more crucially, the achieved
coverage can be very sensitive to hyper-parameter tuning
(Bayarri & Berger, 2004). Moreover, exact Bayesian infer-
ence is computationally prohibitive, and alternative approxi-
mations — e.g., (Gal & Ghahramani, 2016) — may induced
posterior distributions that do not concentrate asymptotically
(Osband, 2016; Hron et al., 2017).

Deep ensembles (Lakshminarayanan et al., 2017) are re-
garded as the most competitive (non-Bayesian) benchmark
for uncertainty estimation (Ovadia et al., 2019). This method
repeatedly re-trains the model on sub-samples of the data
(using adversarial training), and then estimates uncertainty
through the variance of the aggregate predictions. A simi-
lar bootstrapping approach developed in (Schulam & Saria,
2019), dubbed resampling uncertainty estimation (RUE),
uses the model’s Hessian and loss gradients to create an
ensemble without re-training. While these methods may per-
form favorably in terms of discrimination, they are likely to
undercover, since they only consider local variability terms
akin to those in (6). Additionally, ensemble methods do not
provide theoretical guarantees on their performance.

The (infinitesimal) jackknife method was previously used
for quantifying the predictive uncertainty in random forests
(Wager et al., 2014; Mentch & Hooker, 2016; Wager &
Athey, 2018). In these works, however, the developed jack-
knife estimators are bespoke to bagging predictors, and can-
not be straightforwardly extended to deep neural networks.
More recently, general-purpose jackknife estimators were
developed in (Barber et al., 2019b), where two exhaustive
leave-one-out procedures: the jackknife+ and the jackknife-
minmax where shown to have assumption-free worst-case
coverage guarantees of (1− 2α) and (1− α), respectively.
Our work improves on these results by alleviating the need
for exhaustive leave-one-out re-training.

5. Experiments
In this Section, we evaluate the DJ using synthetic and real
data, and compare its performance with various baselines.
Further experimental details are deferred to Appendix D.

Baselines. We compared our DJ method with 4 state of the
art baselines. These included 3 built-in Bayesian methods:
(1) Monte Carlo Dropout (MCDP) (Gal & Ghahramani,
2016), (2) Probabilistic backpropagation (PBP) (Hernández-
Lobato & Adams, 2015), and (3) Bayesian neural networks
with inference via stochastic gradient Langevin dynamics
(BNN-SGLD) (Welling & Teh, 2011). In addition, we con-
sidered deep ensembles (DE) (Lakshminarayanan et al.,
2017), which is deemed the most competitive built-in fre-
quentist method (Ovadia et al., 2019). For a target coverage
of (1 − α), uncertainty estimates were obtained by set-
ting posterior quantile functions to (1 − α) (for Bayesian
methods), or obtaining the (1 − α) percentile point of a
normal distribution (for frequentist methods). Details on the
implementation, hyper-parameter tuning and uncertainty
calibration of all baselines are provided in Appendix D.

Evaluation metrics. In all experiments, we used the mean
squared error (MSE) as the loss L(Dn, θ̂) for training the
model f(x; θ̂). To ensure fair comparisons, the hyperparam-
eters of the underlying neural network f(x; θ̂) were fixed
for all baselines. In each experiment, the uncertainty esti-
mate Ĉα(x; θ̂) is obtained from a training sample, and then
coverage and discrimination are evaluated on a test sample.
To evaluate empirical coverage probability, we compute
the fraction of test samples for which y resides in Ĉα(x; θ̂).
Discrimination was evaluated as follows. For each base-
line method, we evaluate the interval widthW (Ĉα(x; θ̂)) for
all test points. For a given error threshold E , we use the in-
terval width to detect whether the test prediction f(x; θ̂) is a
high-confidence, i.e., `(y, f(x; θ)) ≤ E , or low-confidence
prediction, i.e., `(y, f(x; θ)) > E . We use the area under the
precision-recall curve (AUPRC) — also known as the aver-
age precision score — in order to evaluate the accuracy of
this confidence classification task.

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
P

re
d

ic
ti

o
n

P

re
d

ic
ti

o
n

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. DJ confidence intervals in a one-dimensional feature space. (a) Uniform feature distribution with x̄ = 1 and no aleatoric
noise. (b) For a Uniform feature distribution with x̄ = 2 and noise variance σ2 = 0.5, the DJ confidence intervals are wider than those in
(a). The confidence intervals are of a fixed width for all x because the training points are uniformly distributed everywhere in the feature
space. (c) For a Uniform feature distribution with x̄ = 2 and noise variance σ2 = 1, the DJ confidence intervals are wider than (b) and
some of the training data points are not covered because of the high noise variance. (d) Uniform feature distribution with x̄ = 2 and noise
variance σ2 = 2. (e) Normal feature distribution with noise variance σ2 = 1 and target coverage (1 − α) = 0.5. (f) Normal feature
distribution with noise variance σ2 = 1 and target coverage (1− α) = 0.75. Because of the stricter coverage target, the DJ confidence
intervals are wider than those in (e). (g) Normal feature distribution with noise variance σ2 = 1 and target coverage (1 − α) = 0.95.
Because the normal feature distribution is associated with epistemic uncertainty, the width of the confidence interval is not uniform for the
different values of x. (h) DJ confidence intervals with first-order influence functions (m = 1) for the same setting in (g). Here, we can see
that the DJ confidence intervals exhibit a fixed width for all values of the feature x, and do not capture epistemic uncertainty as in (g).

5.1. Synthetic Data

We start off by illustrating the DJ confidence intervals using
data generated from the following synthetic model. In partic-
ular, we use the synthetic model introduced in (Hernández-
Lobato & Adams, 2015), defined as follows:

y = x3 + ε, (14)

where ε ∼ N (0, σ2), and σ2 is the noise variance. We con-
sider two possible feature distributions:

Uniform feature distribution : x ∼ U([−x̄, x̄]),

Normal feature distribution : x ∼ N (0, σ̄2
x). (15)

Under the uniform distribution, the model will be equally
uncertain about its predictions for any x since all feature
instances have the same amount of noise and frequency of
observations. In this case, the main source of uncertainty
is the aleatoric uncertainty resulting from the noise ε. On
the contrary, under the normal distribution, the model will
be more uncertain in predictions made for values of x that
deviate from 0. This is because most of the training data will
be concentrated around 0, leading to an increased epistemic
uncertainty for very large or very small values of x. In all ex-
periments, we fit a 2-layer feed-forward neural network with

100 hidden units and compute the DJ confidence intervals
using the post-hoc procedure in Algorithm 1.

Results. In Figure 3, we depict various samples of the DJ
confidence intervals for different feature distributions, target
coverage levels, and noise variances. In Figures 3 (a) to (d),
we show the confidence intervals issued by a model trained
under the uniform feature distribution: here, we can see that
the interval width does not vary significantly for the differ-
ent values of x, because the training points are uniformly
distributed everywhere in the feature space. Moreover, the
interval width increases as the noise variance increases.

In Figures 3 (e) to (h), we show the DJ confidence intervals
issued by a model trained under the normal feature distri-
bution. Here, we see that the interval width is narrowest
around x = 0, i.e., the point around which most training
points are concentrated. We also see that the inclusion of
the second-order influence terms enriches the shape of the
confidence intervals in a way that reflects the ground-truth
epistemic uncertainty (see Figures 3 (g) and (h)).

Finally, in Figure 4, we show the average width of the DJ
confidence intervals (averaged over 100 test points across 10
simulations) and the achieved coverage for a neural network
model trained using n = 100 training points with varying

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Noise variance

A
ve

ra
ge

 w
id

th
 o

f
C

Is

A
ch

ie
ve

d
 C

o
ve

ra
ge

Noise variance Log(Number of training samples)

A
ve

ra
ge

 w
id

th
 o

f
C

Is

Fixed Aleatoric Uncertainty

Decreasing Epistemic
Uncertainty

Figure 4. Average width of the DJ confidence intervals and achieved coverage at varying levels of aleatoric and epistemic uncertainty.

levels of ground-truth aleatoric uncertainty (i.e., varying
noise variance σ2). As we can see, the width of the confi-
dence intervals increase for larger noise variances (reflecting
higher levels of reported uncertainty) and for more strict
target coverage (1− α) (Figure 4, left). For all noise vari-
ances, the DJ confidence intervals manage to achieve the
target coverage levels (Figure 4, middle). By changing the
number of training points with a fixed noise variance, we
control for the amount of epistemic uncertainty: as we can
see in Figure 4 (right), the width of the confidence intervals
decrease as the training data increases, until it hits a floor
dictated by the inherent aleatoric uncertainty in the labels.

5.2. Real Data: Auditing Model Reliability

In this Section, we conduct a series of experiments on real-
world datasets in order to evaluate the accuracy of uncer-
tainty estimates issued by the DJ procedure. In particular, we
show how uncertainty estimates can be used to audit the
reliability of a model using experiments on 4 UCI bench-
mark datasets for regression: yacht hydrodynamics (Yacht),
Boston housing (Housing), energy efficiency (Energy) and
naval propulsion (Naval) (Dua & Graff, 2017).

In each experiment, we use 80% of the data for training and
20% for testing. We use a 2-layer neural network model with
100 hidden units, Tanh activation functions, MSE loss, and a
single set of learning hyper-parameters for all baselines
(1000 epochs with 100 samples per minibatch, and an Adam
optimizer with default settings). We set the target coverage
to (1− α) = 0.9. On each test set, we evaluate the model’s
MSE, achieved coverage rate and AUPRC in predicting
whether the model’s test error exceeds a threshold E that is
set to be 90% percentile of the empirical distribution over
test errors. Results are provided in Table 2.

We observe that, by virtue of its post-hoc nature, the DJ pro-
cedure yields the best predictive performance (MSE) on
almost all baselines. This is because the DJ does not inter-
fere with the model training or compromise its accuracy, and
is only applied on an already trained model that is optimized
to minimize the MSE. The post-hoc nature of our method

Dataset

Method Yacht Housing Energy Kin8nm

DJ 0.87± 0.05 0.80± 0.04 0.77± 0.08 0.88± 0.01
(95.9%)∗ (99.8%)∗ (98.11%)∗ (93.77%)∗

26.55 33.87 11.06 0.00

MCDP 0.67± 0.06 0.86± 0.00 0.84± 0.03 0.83± 0.03
(100.0%)∗ (99.6%)∗ (100.0%)∗ (100.0%)

150.93 113.04 92.57 0.05

PBP 0.66± 0.06 0.85± 0.03 0.84± 0.04 0.82± 0.04
(70.4%) (5.0%) (10.1%) (89.9%)

22.21 221.11 201.73 0.62

DE 0.87± 0.04 0.62± 0.04 0.80± 0.09 0.82± 0.02
(0.0%) (19.4%) (23.6%) (21.83%)
327.74 61.82 21.53 0.03

BNN 0.81± 0.05 0.88± 0.00 0.89± 0.00
(82.3%) (89.0%) — (100.0%)
317.94 118.89 0.68

Table 2. Auditing predictive model reliability. AUPRC perfor-
mance (± 95% confidence intervals) of all baselines on the real-
world UCI regression datasets. In each cell, the first line contains
the AUPRC score, the second line contains the achieved (empiri-
cal) coverage and the third line lists the MSE loss. Coverage rates
marked with an asterisk achieve the desired 90% target rate. Blank
entries correspond to models with confidence intervals that perform
no better than random guessing with respect to the AUPRC.

does not compromise the accuracy of its uncertainty inter-
vals. Across all data sets, the DJ achieves the desired target
coverage, whereas other Bayesian methods (e.g., BNN and
PBP) tend to under-cover the true labels. Moreover, DJ pro-
vides high AUPRC scores on all data sets, and on data sets
were its AUPRC scores are lower than the other coverage-
achieving baselines (e.g., MCDP), it offers a much better
predictive accuracy in terms of the MSE.

6. Conclusion
Uncertainty quantification is a crucial requirement in various
high-stakes applications, wherein deep learning can inform
critical decision-making. In this paper, we introduced a rig-

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

orous frequentist procedure for quantifying the uncertainty
in predictions issued by deep learning models in a post-hoc
fashion. Our procedure, which is inspired by classical jack-
knife estimators, does not require any modifications in the
underlying deep learning model, and provides theoretical
guarantees on its achieved performance. Because of its post-
hoc and model-agnostic nature, this procedure can be ap-
plied to a wide variety of models ranging from feed-forward
networks to convolutional and recurrent networks. While our
focus was mainly on deep learning models, our procedure
can also be applied to general machine learning models.

A key ingredient of our procedure is the usage of influence
functions to reconstruct leave-one-out model parameters
without the need for explicit re-training. Influence func-
tions provide a powerful tool for constructing ensembles
of models in a post-hoc fashion that can be used to assess
model variability without the need for built-in designs for
uncertainty intervals. While we present an algorithm that
recursively computes influence functions with a complexity
that is linear in the number of model parameters and size
of training data, our procedure is still limited to relatively
small networks or small data sets. Developing methods for
fast computation of the Hessian matrix that would scale up
our method to more complex networks and larger data sets
is a valuable direction for future research.

Acknowledgments
The authors would like to thank the reviewers for their help-
ful comments. This work was supported by the US Office of
Naval Research (ONR) and the National Science Foundation
(NSF grants 1524417 and 1722516).

References
Alaa, A. M. and van der Schaar, M. Bayesian inference of

individualized treatment effects using multi-task gaussian
processes. In Advances in Neural Information Processing
Systems, pp. 3424–3432, 2017.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. Conformal prediction under covariate shift. arXiv
preprint arXiv:1904.06019, 2019a.

Barber, R. F., Candes, E. J., Ramdas, A., and Tibshirani,
R. J. Predictive inference with the jackknife+. arXiv
preprint arXiv:1905.02928, 2019b.

Bayarri, M. J. and Berger, J. O. The interplay of bayesian
and frequentist analysis. Statistical Science, pp. 58–80,
2004.

Bousquet, O. and Elisseeff, A. Stability and generalization.
Journal of machine learning research, 2(Mar):499–526,
2002.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. Active
learning with statistical models. Journal of artificial
intelligence research, 4:129–145, 1996.

Cook, R. D. and Weisberg, S. Residuals and influence in
regression. New York: Chapman and Hall, 1982.

Debruyne, M., Hubert, M., and Suykens, J. A. Model
selection in kernel based regression using the influence
function. Journal of Machine Learning Research, 9(Oct):
2377–2400, 2008.

Devroye, L. and Wagner, T. Distribution-free inequalities
for the deleted and holdout error estimates. IEEE Trans-
actions on Information Theory, 25(2):202–207, 1979.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dusenberry, M. W., Tran, D., Choi, E., Kemp, J., Nixon, J.,
Jerfel, G., Heller, K., and Dai, A. M. Analyzing the role
of model uncertainty for electronic health records. arXiv
preprint arXiv:1906.03842, 2019.

Efron, B. Jackknife-after-bootstrap standard errors and in-
fluence functions. Journal of the Royal Statistical Society:
Series B (Methodological), 54(1):83–111, 1992.

Fernholz, L. T. Von Mises calculus for statistical functionals,
volume 19. Springer Science & Business Media, 2012.

Gal, Y. Uncertainty in deep learning. PhD thesis, PhD
thesis, University of Cambridge, 2016.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In International Conference on Machine Learning
(ICML), pp. 1050–1059, 2016.

Giordano, R., Stephenson, W., Liu, R., Jordan, M. I., and
Broderick, T. A swiss army infinitesimal jackknife. arXiv
preprint arXiv:1806.00550, 2018.

Giordano, R., Jordan, M. I., and Broderick, T. A higher-
order swiss army infinitesimal jackknife. arXiv preprint
arXiv:1907.12116, 2019.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and
Stahel, W. A. Robust statistics: the approach based on
influence functions, volume 196. John Wiley & Sons,
2011.

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning
(ICML), pp. 1861–1869, 2015.

http://archive.ics.uci.edu/ml

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Hron, J., Matthews, A. G. d. G., and Ghahramani, Z. Vari-
ational gaussian dropout is not bayesian. arXiv preprint
arXiv:1711.02989, 2017.

Huber, P. J. and Ronchetti, E. M. Robust statistics john
wiley & sons. New York, 1(1), 1981.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. In Ad-
vances in Neural Information Processing Systems, pp.
2575–2583, 2015.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 1885–1894. JMLR. org, 2017.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Advances in Neural Information Process-
ing Systems (NeurIPS), pp. 6402–6413, 2017.

Lawless, J. and Fredette, M. Frequentist prediction intervals
and predictive distributions. Biometrika, 92(3):529–542,
2005.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436, 2015.

Leonard, J., Kramer, M. A., and Ungar, L. A neural network
architecture that computes its own reliability. Computers
& chemical engineering, 16(9):819–835, 1992.

Maddox, W., Garipov, T., Izmailov, P., Vetrov, D., and
Wilson, A. G. A simple baseline for bayesian uncertainty
in deep learning. arXiv preprint arXiv:1902.02476, 2019.

Malinin, A. and Gales, M. Predictive uncertainty estimation
via prior networks. In Advances in Neural Information
Processing Systems, pp. 7047–7058, 2018.

Mentch, L. and Hooker, G. Quantifying uncertainty in
random forests via confidence intervals and hypothesis
tests. The Journal of Machine Learning Research (JMLR),
17(1):841–881, 2016.

Miller, R. G. The jackknife-a review. Biometrika, 61(1):
1–15, 1974.

Osband, I. Risk versus uncertainty in deep learning: Bayes,
bootstrap and the dangers of dropout. In NIPS Workshop
on Bayesian Deep Learning, 2016.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. arXiv
preprint arXiv:1906.02530, 2019.

Pearlmutter, B. A. Fast exact multiplication by the hessian.
Neural computation, 6(1):147–160, 1994.

Platt, J. et al. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood meth-
ods. Advances in large margin classifiers, 10(3):61–74,
1999.

Ritter, H., Botev, A., and Barber, D. A scalable laplace
approximation for neural networks. 2018.

Robins, J., Li, L., Tchetgen, E., van der Vaart, A., et al.
Higher order influence functions and minimax estimation
of nonlinear functionals. In Probability and statistics:
essays in honor of David A. Freedman, pp. 335–421.
Institute of Mathematical Statistics, 2008.

Schulam, P. and Saria, S. Can you trust this prediction?
auditing pointwise reliability after learning. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 1022–1031, 2019.

Vovk, V., Nouretdinov, I., Manokhin, V., and Gammerman,
A. Cross-conformal predictive distributions. In The Jour-
nal of Machine Learning Research (JMLR), pp. 37–51,
2018.

Wager, S. and Athey, S. Estimation and inference of hetero-
geneous treatment effects using random forests. Journal
of the American Statistical Association, 113(523):1228–
1242, 2018.

Wager, S., Hastie, T., and Efron, B. Confidence intervals
for random forests: The jackknife and the infinitesimal
jackknife. The Journal of Machine Learning Research
(JMLR), 15(1):1625–1651, 2014.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688, 2011.

White, M. and White, A. Interval estimation for
reinforcement-learning algorithms in continuous-state do-
mains. In Advances in Neural Information Processing
Systems, pp. 2433–2441, 2010.

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Appendix

A. Influence Functions: Background & Key Concepts
A.1. Formal Definition

Robust statistics is the branch of statistics concerned with the detection of outlying observations. An estimator is deemed
robust if it produces similar results as the majority of observations indicates, regardless of how a minority of other
observations is perturbed ((Huber & Ronchetti, 1981)). The influence function measures these effects in statistical functionals
by analyzing the behavior of a functional not only at the distribution of interest, but also in an entire neighborhood of
distributions around it. Lack of model robustness is a clear indicator of model uncertainty, and hence influence functions
arise naturally in our method as a (pointwise) surrogate measure of model uncertainty. In this section we formally define
influence functions and discuss its properties.

The pioneering works in ((Hampel et al., 2011)) and ((Huber & Ronchetti, 1981)) coined the notion of influence functions
to assess the robustness of statistical functionals to perturbations in the underlying distributions. Consider a statistical
functional T : P → R, defined on a probability space P , and a probability distribution P ∈ P . Consider distributions
of the form Pε,z = (1 − ε)P + ε∆z where ∆z denotes the Dirac distribution in the point z = (x, y), representing the
contaminated part of the data. For the functional T to be considered robust, T (Pε,z) should not be too far away from T (P)
for any possible z and any small ε. The limiting case of ε→ 0 defines the influence function. That is, Then the influence
function of T at P in the point z is defined as

I(z;P) = lim
ε→0

T (Pε,z)− T (P)

ε
,

∂

∂ε
T (Pε,z)

∣∣∣∣
ε=0

, (1)

The influence function measures the robustness of T by quantifying the effect on the estimator T when adding an
infinitesimally small amount of contamination at the point z. If the supremum of I(.) over z is bounded, then an
infinitesimally small amount of perturbation cannot cause arbitrary large changes in the estimate. Then small amounts of
perturbation cannot completely change the estimate which ensures the robustness of the estimator.

A.2. The von Mises Expansion

The von Mises expansion is a distributional analog of the Taylor expansion applied for a functional instead of a function.
For two distributions P and Q, the Von Mises expansion is ((Fernholz, 2012)):

T (Q) = T (P) +

∫
I(1)(z;P) d(Q− P) +

1

2

∫
I(2)(z;P) d(Q− P) + . . . , (2)

where I(k)(z;P) is the kth order influence function. By setting Q to be a perturbed version of P, i.e., Q = Pε, the von
Mises expansion at point z reduces to:

T (Pε,z) = T (P) + ε I(1)(z;P) +
ε2

2
I(2)(z;P) + . . . , (3)

and so the kth order influence function is operationalized through the derivative

I(k)(z;P) ,
∂

∂kε
T (Pε,z)

∣∣∣∣
ε=0

. (4)

A.3. Influence Function of Model Loss

Now we apply the mathematical definitions in Sections A.1 and A.2 to our learning setup. In our setting, the functional T (.)

corresponds to the (trained) model parameters θ̂ and the distribution P. In this case, influence functions of θ̂ computes how
much the model parameters would change if the underlying data distribution was perturbed infinitesimally.

I(1)
θ (z) =

∂ θ̂ε,z
∂ ε

∣∣∣∣∣
ε=0

, θ̂ε,z , arg min
θ∈Θ

1

n

n∑
i=1

`(zi; θ) + ε `(z; θ). (5)

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Recall that in the definition of the influence function Pε,z = (1− ε)P + ε∆z where ∆z denotes the Dirac distribution in the
point z = (x, y). Thus, the (first-order) influence function in (5) corresponds to perturbing a training data point z by an
infinitesimally small change ε and evaluating the corresponding change in the learned model parameters θ̂. More generally,
the kth order influence function of θ̂ is defined as follows:

I(k)
θ (z) =

∂k θ̂ε,z
∂ εk

∣∣∣∣∣
ε=0

. (6)

By applying the von Mises expansion, we can approximate the parameter of a model trained on the training dataset with
perturbed data point z as follows:

θ̂ε,z ≈ θ̂ + ε I(1)
θ (z) +

ε2

2
I(2)
θ (z) + . . . +

εm

m!
I(m)
θ (z), (7)

where m is the number of terms included in the truncated expansion. When m =∞, the exact parameter θ̂ε,z without the
need to re-train the model.

A.4. Connection to leave-one-out estimators

Our uncertainty estimator depends on perturbing the model parameters by removing a single training point at a time. Note
that removing a point z is the same as perturbing z by ε = −1

n , hence we obtain an (mth order) approximation of the
parameter change due to removing the point z as follows:

θ̂−z − θ̂ ≈
−1

n
I(1)
θ (z) +

1

2n2
I(2)
θ (z) + . . . +

(−1)m

nm ·m!
I(m)
θ (z), (8)

where θ̂−z is the model parameter learned by removing the data point z from the training data.

B. Derivation of Influence Functions
Recall that the LOO parameter θ̂i,ε is obtained by solving the optimization problem:

θ̂i,ε = arg min
θ∈Θ

L(D, θ) + ε · `(yi, f(xi; θ)). (9)

Let us first derive the first order influence function I(1)(xi, yi). Let us first define ∆i,ε , θ̂i,ε − θ̂. The first order influence
function is given by:

I(1)(xi, yi) =
∂θ̂i,ε
∂ε

=
∂∆i,ε

∂ε
. (10)

Note that, since θ̂i,ε is the minimizer of (9), then the perturbed loss has to satisfy the following (first order) optimality
condition:

∇θ {L(D, θ) + ε · `(yi, f(xi; θ))}
∣∣
θ=θ̂i,ε

= 0. (11)

Since limε→0 θ̂i,ε = θ̂, then we can write the following Taylor expansion:

∇θ
∞∑
k=0

∆k
i,ε

k!
· ∇kθ

{
L(D, θ̂) + ε · `(yi, f(xi; θ̂))

}
= 0. (12)

Now by dropping the o(‖∆i,ε‖) terms, we have:

∇θ
({
L(D, θ̂) + ε · `(yi, f(xi; θ̂))

}
+ ∆i,ε · ∇θ

{
L(D, θ̂) + ε · `(yi, f(xi; θ̂))

})
= 0. (13)

Since θ̂ is a indeed a minimizer of the loss function `(.), then we have ∇θ`(.) = 0. Thus, (13) reduces to the following
condition: {

ε · ∇θ `(yi, f(xi; θ̂))
}

+ ∆i,ε ·
{
∇2
θ L(D, θ̂) + ε · ∇2

θ `(yi, f(xi; θ̂))
}

= 0. (14)

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

By solving for∇θ, we have

∆i,ε = −
{
∇2
θ L(D, θ̂) + ε · ∇2

θ `(yi, f(xi; θ̂))
}−1

·
{
ε · ∇θ `(yi, f(xi; θ̂))

}
, (15)

which can be approximated by keeping only the O(ε) terms as follows:

∆i,ε = −
{
∇2
θ L(D, θ̂)

}−1

·
{
ε · ∇θ `(yi, f(xi; θ̂))

}
. (16)

Noting that∇2
θ L(D, θ̂) is the Hessian matrix Hθ̂, we have:

∆i,ε = −H−1

θ̂
·
{
ε · ∇θ `(yi, f(xi; θ̂))

}
. (17)

By taking the derivative with respect to ε, we arrive at the expression for first order influence functions:

I(1)(xi, yi) =
∆i,ε

ε

∣∣
ε=0

= −H−1

θ̂
· ∇θ `(yi, f(xi; θ̂)). (18)

Now let us examine the second order influence functions. In order to obtain I(2)(xi, yi), we need to differentiate (14) after
omitting the O(ε) once again as follows:{

2∆i,ε · ε · ∇2
θ `(yi, f(xi; θ̂))

}
+
{

∆2
i,ε · ∇2

θ L(D, θ̂) + ∆i,ε ·∆i,ε · ∇3
θ L(D, θ̂)

}
= 0. (19)

Where we have applied the chain rule to obtain the above. By substituting∇2
θ L(D, θ̂) = Hθ and dividing both sides of (19)

by ε2, we have {
2

∆i,ε

ε
· ∇2

θ `(yi, f(xi; θ̂))

}
+

{
∆2
i,ε

ε2
·Hθ +

(
∆i,ε

ε

)2

· ∇3
θ L(D, θ̂)

}
= 0. (20)

Thus, by re-arranging (19), we can obtain I(2)(xi, yi) in terms of I(1)(xi, yi) as follows:

I(2)(xi, yi) = −H−1
θ

((
I(1)(xi, yi)

)2

· ∇3
θ L(D, θ̂) + 2 I(1)(xi, yi) · ∇2

θ `(yi, f(xi; θ̂))

)
.

Similarly, we can obtain the kth order influence function, for any k > 1, by repeatedly differentiating equation (14) k times,
i.e.,

∂

∂εk

{
ε · ∇θ `(yi, f(xi; θ̂)) + ∆i,ε · ∇2

θ L(D, θ̂)
}

= 0. (21)

and solving for ∂∆k
i,ε/∂ε

k. By applying the higher-order chain rule to (21) (or equivalently, take the derivative of I(2)(xi, yi)
for k − 2 times), we recover the expressions in Definition 2 and Lemma 3 in (Giordano et al., 2019).

Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

C. Theorem 1
Theorem 1 follows from Theorem 1 in (Barber et al., 2019b) for m→∞ when all HOIFs exist.

Recall that the exact DJ interval width is bounded above by:

W (Ĉ(∞)
α,n (x; θ̂)) ≤ 2 Q̂α,n(Rn) + 2 Q̂α,n(Vn(x)). (22)

Since the term Q̂α,n(Rn) is constant for any x, discrimination boils down to the following condition:

E[Q̂α,n(Vn(x))] ≥ E[Q̂α,n(Vn(x′))]⇔ E[`(y, f(x; θ̂))] ≥ E[`(y′, f(x′; θ̂))]. (23)

Note that to prove the above, it suffices to prove the following:

E[vi(x)] ≥ E[vi(x
′)]⇔ E[`(y, f(x; θ̂))] ≥ E[`(y′, f(x′; θ̂))]. (24)

If the model is stable (based on the definition in (Bousquet & Elisseeff, 2002)), then a classical result by (Devroye & Wagner,
1979) states that:

E[|`(y, f(x; θ̂))− `n(y, f(x; θ̂))|2] ≈ E[|`(y, f(x; θ̂))− `(y, f(x; θ̂−i))|2] + Const., (25)

as n → ∞, where `n(.) is the empirical risk on the training sample, and the expectation above is taken over y |x. From
(25), we can see that an increase in the LOO risk `(y, f(x; θ̂−i)) implies an increase in the empirical risk `n(y, f(x; θ̂)),
and vice versa. Thus, for any two feature points x and x′, if v(x) is greater than v(x′), then on average, the empirical risk
at x is greater than that at x′.

D. Experimental Details
D.1. Implementation of Baselines

In what follows, we provide details for the implementation and hyper-parameter settings for all baseline methods involved in
Section 5.

Probabilistic backpropagation (PBP). We implemented the PBP method proposed in ((Hernández-Lobato &
Adams, 2015)) with inference via expectation propagation using the theano code provided by the authors in
(github.com/HIPS/Probabilistic-Backpropagation). Training was conducted via 1000 epochs.

Monte Carlo Dropout (MCDP). We implemented a Pytorch version of the MCDP method proposed in ((Gal &
Ghahramani, 2016)). In all experiments, we tuned the dropout probability using Bayesian optimization to optimize the
AUC-ROC performance on the training sample. We used 1000 samples at inference time to compute the mean and variance
of the predictions. The credible intervals were constructed as the (1−α) quantile function of a posterior Gaussian distribution
defined by the predicted mean and variance estimated through the Monte Carlo outputs. Similar to the other baselines, we
conducted training via 1000 epochs for the SGD algorithm.

Bayesian neural networks (BNN). We implemented BNNs with inference via stochastic gradient Langevin dynam-
ics (SGLD) ((Welling & Teh, 2011)). We initialized the prior weights and biases through a uniform distribution over
[−0.01, 0.01]. We run 1000 epochs of the SGLD inference procedure and collect the posterior distributions to construct the
credible intervals.

Deep ensembles (DE). We implemented a Pytorch version of the DE metho (without adversarial training)d proposed in
((Lakshminarayanan et al., 2017)). We used the number of ensemble members M = 5 as recommended in the recent study
in ((Ovadia et al., 2019)). Predictions of the different ensembles were averaged and the confidence interval was estimated as
1.645 multiplied by the empirical variance for a target coverage of 90%. We trained the model through 1000 epochs.

