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Abstract
Modern neural networks have proven to be pow-
erful function approximators, providing state-of-
the-art performance in a multitude of applications.
They however fall short in their ability to quan-
tify confidence in their predictions — this is cru-
cial in high-stakes applications that involve crit-
ical decision-making. Bayesian neural networks
(BNNs) aim at solving this problem by placing a
prior distribution over the network’s parameters,
thereby inducing a posterior distribution that en-
capsulates predictive uncertainty. While existing
variants of BNNs based on Monte Carlo dropout
produce reliable (albeit approximate) uncertainty
estimates over in-distribution data, they tend to
exhibit over-confidence in predictions made on
target data whose feature distribution differs from
the training data, i.e., the covariate shift setup. In
this paper, we develop an approximate Bayesian
inference scheme based on posterior regularisa-
tion, wherein unlabelled target data are used as
“pseudo-labels” of model confidence that are used
to regularise the model’s loss on labelled source
data. We show that this approach significantly im-
proves the accuracy of uncertainty quantification
on covariate-shifted data sets, with minimal modi-
fication to the underlying model architecture. We
demonstrate the utility of our method in the con-
text of transferring prognostic models of prostate
cancer across globally diverse populations.

1. Introduction
Modern neural networks have achieved the state of the art
predictive performance in a wide variety of applications.
They are especially useful in areas where a large quan-
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tity of labelled i.i.d data are available (Krizhevsky et al.,
2012). However, neural networks fall short in their ability to
quantify their confidence in the predictions, which leads to
difficulties to apply them to mission critical domains. The
immediate problem is that neural networks may issue erro-
neous predictions with high confidence (Ovadia et al., 2019).
These over-confident predictions would mislead rather than
inform human experts’ decisions and can lead to severe
consequences in high-stakes applications.

In practice, the task of quantifying predictive uncertainty is
even more challenging because the training and testing data
are typically not i.i.d due to the impact of exogenous factors
over time or the inconsistency in data collection. This sit-
uation is known as covariate shift (Shimodaira, 2000) and
various research has indicated that this may cause neural
networks to display unexpected behaviour (Ovadia et al.,
2019). In the extreme case, they may confidently produce
nonsensical predictions for out-of-distribution adversarial
examples (Madry et al., 2017). While in this work we do
not consider the scenario of a targeted adversarial attack,
we would like the network to return a high uncertainty pre-
diction if a test point falls far from any of the training data.
We motivate the need for work in the area with a concrete
example; consider the case of trying to predict the mortality
rate for a group of patients with prostate cancer in a country
where we have no labels due to tight privacy regulations on
medical data. We have access though to labelled examples
from another country which we could use to train the model,
the problem being that the populations of each country may
differ in their distribution so a model purely trained on the
labelled data may perform poorly on the unlabelled data
both in terms of accuracy and uncertainty estimation. This
type of problem is common in the medical setting and errors
here are especially damaging since model predictions may
have a direct impact on the treatment a patient receives.

Bayesian neural networks (BNNs) (Neal, 2012) aim to solve
the uncertainty quantification problem by learning neural
networks via Bayesian inference, a principled way to rea-
son under uncertainty. BNNs encapsulate the prediction
uncertainty in the posterior predictive distribution, which
is typically intractable and has to be approximated (Graves,
2011; Blundell et al., 2015). While existing approximation
methods are able to produce reliable uncertainty estimates
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Figure 1. High-level depiction of our approach. We first gen-
erate our augmented data set with pseudo-labels before feeding
forward to make predictions and then back-propagating both errors
through the network.

over in-distribution data, it has been shown that they tend to
be over-confident under covariate shift.

In this paper, we propose Transductive Dropout, a method
leveraging information from the unlabelled target data to
find a better approximation to the posterior. We make the fol-
lowing observation: a point being in the target data is an in-
dication that the model should output higher uncertainty be-
cause the target distribution is not well-represented by train-
ing data due to covariate shift. Therefore, we use whether
the data come from training or target set as a “pseudo-label”
of model confidence. This naturally leads to a posterior regu-
larisation term which we incorporate into the variational ap-
proximation objective. Our regulariser can be easily applied
to many of the current network architectures and inference
schemes — here, we demonstrate its usefulness in Monte
Carlo Dropout, showing that it much more appropriately
quantifies its uncertainty under covariate shift. Empirical
evaluations demonstrate that our method performs compet-
itively compared to Bayesian and frequentist approaches
in the task of prostate cancer mortality prediction across
globally diverse populations.

2. Related Work
2.1. Overview of Related Methods

Utilising unlabelled data to improve uncertainty estimate
under covariate shift is a previously less explored area in
the literature. Here we highlight some of the key methods
in the surrounding fields to contextualise our work.

Bayesian Uncertainty Estimate for Neural Networks
Bayesian methodology has been applied to quantify the
predictive uncertainty of neural networks leading to a large
family of methods known as Bayesian Neural Networks
(BNN). BNN learns a posterior distribution over parameters
that encapsulates the model uncertainty. Due the complexity
of deep neural networks, the exact posterior is usually in-

tractable. Hence, much of the research in BNN literature is
devoted to finding better approximate inference algorithms
for the posterior. Popular approximate Bayesian approaches
include dropout-based variational inference (Gal & Ghahra-
mani, 2016; Kingma et al., 2015) and Stochastic Variational
Bayesian Inference (Blundell et al., 2015; Graves, 2011;
Louizos & Welling, 2017). These methods are known to
achieve reliable uncertainty estimate in i.i.d scenario. How-
ever, recent research has cast doubt about the validity of
these uncertainty estimates under covariate shift (Ovadia
et al., 2019). Moreover, the above methods do not make use
of any unlabelled data for training or inference.

Semi-Supervised Learning Semi-supervised learning
(SSL) covers the broad field of learning from both labelled
and unlabelled data (Zhu & Goldberg, 2009). It s generally
separated into two with most of the work covering inductive
SSL which aims to use the unlabelled data to learn a general
mapping from the features to the outcome. Many recent
works encourage the model to generalise better by using a
regularisation term computed on the unlabelled data Berth-
elot et al. (2019). This includes entropy minimisation which
encourages the model to produce confident predictions on
unlabelled data (Grandvalet & Bengio, 2005; Lee, 2013;
Jean et al., 2018) and consistency regularisation which en-
sures the predictions for slightly perturbed data stay similar
(Sajjadi et al., 2016). The other split covers transductive
SSL where the aim is to make predictions over only the un-
labelled points given with no need to generalise further. As
we will show later, the proposed Transductive Dropout fits
more into this framework, using the unlabelled data as a reg-
ulariser in order to induce a better variational approximation
to the intractable posterior distribution.

However, our work is significantly different from traditional
SSL in several ways. First, we note that most existing
works in SSL focus entirely on using unlabelled data to
improve predictive performance (e.g. accuracy), but much
less thoughts have been given to improving the uncertainty
estimate for those predictions, which is the focus of this
paper. Furthermore, our work explicitly addresses the issue
of covariate shift between source and target data whereas
traditional SSL often assumes that they are i.i.d. In addition,
most of the recent work in SSL considers problems like
image classification and natural language processing where
the methods can leverage the complicated dependencies in
the features - we don’t consider this a focus and develop a
method that works appropriately for tabular data as well.

Unsupervised Domain Adaptation Unsupervised do-
main adaptation (UDA) is the task of training models to
achieve better performance on a target domain, with access
to only unlabelled data in the target domain and labelled data
from a (different) source domain. Kouw & Loog (2019) con-
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tains a detailed review of popular UDA methods. As with
SSL, existing works on UDA centre around improving pre-
dictive performance rather than producing well-calibrated
uncertainty estimates. Our work contributes to the UDA
literature by proposing a method to improve the uncertainty
estimates on the predictions made in the target domain.

Transfer Learning In the setting of transfer learning (Tor-
rey & Shavlik, 2010) the task does involve a change in distri-
bution over features but typically also involves some amount
of labels on the target set (known as one-shot or few-shot
learning). This has led to a lot of work that uses the training
set to learn a useful prior for a second model that can be
trained on the labelled data in the target set (Raina et al.,
2006; Karbalayghareh et al., 2018). Given the complete
lack of labels in our target data set this is inapplicable for
our problem.

3. Preliminaries
3.1. Notation and Problem Setup

Let x ∈ Rd be a d-dimensional feature vector, and y ∈ Y
be the prediction target; where Y = R for regression targets,
and Y = {1, . . . ,K} for K-class classification targets. We
are presented with two sources of training data: a labelled
data set DL, and an unlabelled data set DU . The labelled
data set comprises a collection of n feature-label pairs, i.e.,
DL = {(xi, yi)}ni=1, whereas the unlabelled set comprises
a collection of m feature instances DU = {xj}mj=1.

We assume that DL = {(xi, yi)}ni=1 consists of i.i.d sam-
ples of features and labels drawn from the distribution

(xi, yi) ∼ p(x)× p(y|x), ∀i ∈ {1, . . . , n},

where both p(x) and p(y|x) are unknown, and could only be
accessed empirically throughDL. Throughout the paper, we
will refer to p(x) as the feature distribution — feature in-
stances in the unlabelled data set are assumed to be drawn
from a shifted feature distribution as follows:

xj ∼ p′(x), ∀j ∈ {1, . . . ,m},

where p′(x) 6= p(x), whereas the unobserved labels in the
data set DU , i.e., the blue dots in Figure 2 corresponding
to {yj}mj=1, are generated from the same conditional dis-
tribution yj ∼ p(y|xj). Note that even though the feature
distributions p′(x) and p(x) differ, the conditional p(y|x)
is invariant across the two data sets. This situation is com-
monly known as covariate shift (Shimodaira, 2000). We
denote the entirety of observed data D = {DL ∪ DU}.

3.2. Learning from (and for) unlabelled data

Our key objective is to use the (source) labelled data set DL
to train a model that would be applied to the (target) unla-

belled data set DU . However, since the feature distributions
in DL and DU mismatch, we cannot expect a model trained
on DL to perfectly generalise to DU . Thus, we aim at train-
ing the model to learn which prediction instances can be
confidently transferred fromDL toDU , and which cannot be
confidently generalised across the two distributions. To this
end, we train the model to score its uncertainty on predic-
tions issued for all feature instances in D = {DL ∪ DU}.

We take a Bayesian approach to uncertainty estimation. That
is, for a model with parameter θ and a test point x∗ ∼ p′(x),
the Bayesian posterior distribution over y∗ is

p(y∗|x∗,D)︸ ︷︷ ︸
Total uncertainty

=

∫
p(y∗|x∗,θ)︸ ︷︷ ︸

Data
uncertainty

p(θ|D)︸ ︷︷ ︸
Model

uncertainty

dθ. (1)

The posterior decomposition in (1) comprises two types of
uncertainty (Malinin & Gales, 2018): data uncertainty, also
referred to as aleatoric uncertainty, is the variance of the true
conditional distribution p(y|x), reflecting the inherent ambi-
guity or noise in the true labels y (Gal et al., 2017). The sec-
ond type of uncertainty, model uncertainty, pertains to the
model’s epistemic uncertainty created by the lack of training
examples in the vicinity of the test feature x∗. Since the
conditional p(y|x) is invariant across the source and target
distributions, it is the model uncertainty that we focus on.

3.3. Standard approximate Bayesian is not enough...

A true Bayesian model (with appropriate priors) would com-
pletely capture model uncertainty in DU by simply training
the model on DL in a supervised fashion, while completely
ignoring the unlabelled data in DU (Sugiyama & Storkey,
2007). However, exact Bayesian inference in neural net-
works is generally intractable (and computationally expen-
sive), hence existing practical solutions to Bayesian mod-
elling rely on approximate inference schemes, for example
based on Monte Carlo dropout (MCDP) (Gal & Ghahramani,
2016).

While approximate inference via MCDP — with appropri-
ate hyper-parameter tuning — provides reliable uncertainty
estimates for in-distribution data (i.e., feature instances in
DL), it has been shown in Ovadia et al. (2019) that these
methods lead to miscalibrated estimates of uncertainty for
out-of-distribution data. In the next Section, we develop
an approximate Bayesian scheme that makes use of the un-
labelled data in DU to provide more accurate uncertainty
estimates on the predictions made for features instances
drawn from the shifted distribution p′(x).

4. Transductive Regularisation
How can we use our knowledge of the unlabelled data inDU
to improve the uncertainty estimates on predictions made for
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the target distribution p′(x)? In this Section, we develop an
approximate Bayesian method tailored to this task. Here, we
regard a neural network (NN) as a distribution p(y|x, θ) that
assigns a probability to each possible output y.

4.1. Variational inference with posterior regularisation

In a Bayesian framework, we specify a prior distribution
p(θ) on the NN parameters, and obtain the posterior p(θ|D)
via Bayes rule. In practice, the posteriors p(θ|D) and
p(y|x,D) in (1) are both intractable. To address this is-
sue, we use variational inference, whereby we use a surro-
gate distribution qφ(θ) parameterised by φ to approximate
p(θ|D). The parameter φ is obtained by minimising the
KL-divergence between p and q as follows (Graves, 2011):

φ∗ = arg min
φ

KL
[
qφ(θ) || p(θ|D)

]
. (2)

In practice the KL divergence is not minimised directly,
rather it is achieved my maximising the Evidence Lower
BOund (ELBO), which can be written as:

F(D, φ) = Eqφ
[

log p(D|θ)
]
− KL

[
qφ(θ) || p(θ)

]
, (3)

being seen as the balance of two terms. The objective being
to maximise the log-likelihood under the surrogate distribu-
tion (first term) while regularising the approximation to not
be too far from the prior (second term). Variational inference
also leads to an approximate posterior predictive distribu-
tion qφ(y|x,D), obtained by replacing p(θ|D) in (1) with
its variational counterpart qφ(θ). Note that the unlabelled
data in DU is ancillary to the optimisation problem in (2),
since mere evidence maximisation would render p(θ|DL)
as the only relevant conditional for finding the variational
parameter φ. Hence, the vanilla variational Bayes is insuffi-
cient in our setup as it cannot capitalise on our knowledge
of the unlabelled data in DU .

To incorporate the unlabelled data in DU into our inference
machine, we resort to posterior regularisation (Zhu et al.,
2014). That is, instead of computing the variational posterior
that best matches the true posterior in KL distance, we add
a regulariser Ω to the objective in (2), i.e.,

φ∗ = arg min
φ

KL
[
qφ(θ) || p(θ|D)

]
+ Ω(qφ(θ|D)), (4)

in order to explicitly influence the learned variational poste-
rior so that it produces the desired uncertainty profiles, i.e.,
posterior variance, over the target feature distribution p′(x).

What do our sought-after uncertainty profiles look like?
In order to design the regulariser Ω, we first need to specify
the influences it needs to exert on the learned variational pos-
terior qφ. Let E[ q ] and V[ q ] denote the mean and variance
of a given distribution q, respectively. A “good” variational
posterior is one that matches the true posterior p(θ | D), and

induces the following uncertainty profile: for any pair of fea-
tures x,x′ ∼ p′(x) drawn from the target distribution, the
variational posterior satisfies the following condition:

V[ qφ(y|x,D) ] ≥ V[ qφ(y|x′,D) ]⇔ p(x′) ≥ p(x). (5)

That is, the variance of the variational posterior, which quan-
tifies the model’s uncertainty, should be smaller for target
test points that are close (in distribution) to the labelled data
inDL, and vice versa. The key idea behind our posterior reg-
ularisation approach is that the augmentation of labelled and
unlabelled data serve as “pseudo-labels” of model confi-
dence — by regarding the condition in (5) as an auxiliary
classification task wherein qφ predicts whether a feature x is
drawn from the source or target distributions, we can “train”
qφ to make this binary prediction via its variance. Building
on this insight, the rest of this Section builds a regulariser Ω
that enables qφ to discriminate source and target features.

4.2. Posterior regularisation via transductive dropout

As discussed above, we seek a variational posterior that best
fits the labelled data inDL, and discriminates source and tar-
get data. Before proceeding, we first define an augmented
data set D̃ = {(xk, yk, zk)}n+mk=1 , where

(xk, yk, zk) =

{
(xk, yk, 0), ∀ (xk, yk) ∈ DL,
(xk−n+1, ∗, 1), ∀ xk−n+1 ∈ DU ,

where ∗ corresponds to a missing value for the label y. In
addition, we define the monotonic function g : R+ →
[0, 1] as a map from positive real values to the unit inter-
val. Given the variational distribution qφ, our prediction
of whether the feature x comes from the source or target
distributions is

ẑφ(x) , g
(
V[ qφ(y|x,D) ]

)
, (6)

which follows directly from the condition in (5). Given (6),
we define the regulariser Ω in (4) as the cross-entropy loss
between predicted and true auxiliary variables, ẑ and z, i.e.,

Ω(qφ(θ | D̃))

=
n∑
k=1

log
(
1− ẑφ(xk)

)
+

n+m∑
k=n+1

log
(
ẑφ(xk)

)
. (7)

Thus, our variational posterior is obtained by plugging the
regulariser Ω(qφ(θ | D̃)) in (4) and solving for φ, with the
optional inclusion of a hyperparamter λ to control the level
of regularisation. The exact choice of g can as well be
controlled although from our experiments it made little dif-
ference, and we settled on g(x) = 1− 1

1+x . We note that this
regularisation scheme addresses the issue of over-confident
predictions on the target set without taking the naive ap-
proach of just increasing the variance everywhere — it is
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(a) Transductive dropout rates (b) MCDP with transductive regularisation 
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Figure 2. Pictorial depiction of transductive dropout inference. (a) Here, we depict an exemplary one-dimensional feature space, along
with the corresponding variational posterior qφ(y|x) and feature-dependent dropout rate p(x). Transductive dropout inference operates
by adapting the dropout rate so that it induces larger posterior variance for regions with dense concentration of unlabelled data, but low
density for labelled data (small p(x′) for some x′ ∼ p′(x)). (b) This panel shows an exemplary realisation of labelled and unlabelled
data sets for the same example in panel (a). Red dots are fully observed, whereas for blue ones, we only observe the locations but not the
outputs on the y-axis. The typical behaviour of the transductive dropout is to increase the dropout rates in regions where unlabelled data
are denser than labelled data, creating more variability in the Monte carlo samples of the network outputs. Here, exemplary instances of
test-time dropout applied to the network architecture for different values of the feature x are depicted.

balanced by the location of the source data set that will
lower the variance in our appropriately confident locations.
Since the regulariser above solves the transductive learning
problem of classifying source and target data in a way that
resembles semi-supervised learning (Rohrbach et al., 2013),
we call Ω a transductive regulariser. In what follows, we
propose a practical way to implement transductive regulari-
sation within the MCDP approximate inference framework.

Transductive Dropout. We extend the MCDP approximate
inference scheme in (Gal & Ghahramani, 2016) by apply-
ing our posterior regularisation penalty, and allowing the
dropout rates to vary per data point, dependent on the feature
values. By enabling the dropout rates to be a function of x,
we provide more degrees-of-freedom to flexibly craft the
posterior variance V[qφ] so that it accurately discriminates
source and target data points.

Let p be the dropout rate of the underlying NN model. We pa-
rameterise p to be dependent on the feature value x as fol-
lows. Let vβ(.) be a neural network with a sigmoid output
layer and parameters β, i.e., vβ : Rd → [0, 1] maps feature
values to dropout rates so that p = vβ(x). This equates to
an approximate posterior distribution over the NN weights:

qφ(w) =
N∏
i=1

(1− vβ(x))
wi
mi vβ(x)

mi−wi
mi (8)

for wi ∈ {mi, 0}, 0 otherwise, where w = {wi}i is the
set of weights for the NN modelling the conditional dis-
tribution qφ(y|x,D). This leaves an optimisation objec-
tive (of the form in (4)) over the variational parameters
φ = {β,m}. Using the equivalence between KL minimisa-
tion and squared loss minimisation under dropout regulari-

sation, we can write the objective function in (4) as

R(φ) =
∑

xi∈DL

‖E[qφ(yi |xi)]‖22 + Ω(qφ(θ | D̃)), (9)

with the possibility of adding an L2 regulariser ‖φ‖22 as well.
As we can see, this objective incorporates both labelled and
unlabelled data: the data set DL contributes to the first
term, which is concerned with fitting the observed labels
drawn from the source distribution, whereas the second term,
which depends on the entire augmented data set D̃, makes
sure that the induced variational posterior is aware of the
mismatch between source and target feature distributions.
We can see that this scheme, as depicted in figure 1, acts
in a similar way to (3), primarily optimising the likelihood
of the data under the approximation while constrained by
a requlariser on the form of the distribution, only now the
regulariser induces more specific behaviour and makes use
of DU .

The regulariser in (9) can be computed in backpropagation
using sample estimates of the posterior variance as follows.
Let φ̃ be the current estimate of the variational parameters at
a given iteration of the gradient descent procedure. To evalu-
ate the model loss and gradients, we use the MCDP forward
pass to sample M outputs {ŷ1k, . . . , ŷMk } for every xk in D̃,
and compute a Monte Carlo sample estimate of the trans-
ductive regularisation term as follows:

Ω̂(qφ̃(θ | D̃)) = g

(
1

M

M∑
m=1

(ŷmk − ȳk)2

)
. (10)

Computations of the estimator in (10) only involve the for-
ward pass, and evaluating its gradients is straightforward.
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Key insights Figure 2 provides a pictorial depiction of our
transductive dropout inference procedure applied to an ex-
emplary, one-dimensional feature space. A key insight
is that transductive dropout inference learns to adapt the
dropout rate so that it induces larger posterior uncertainty
for regions with dense concentration of unlabelled data, but
low density for labelled data.

4.3. Limitations

With the target data included in the training regime, it would
seem that this method does not lend itself to online deploy-
ment where new test points come in over time. We note
though that retraining is not practically necessary every time
a new prediction needs to be made, indeed given an initial
collection of test points it would only be useful when we
encounter a significant amount of new data that is covariate
shifted further even than the original targets.

5. Experiments
5.1. Toy Dataset

In this section, we consider a toy 1-d regression example
to show how standard BNNs produce overconfident uncer-
tainty estimates under covariate-shift.

The features in the source and target data sets are generated
i.i.d. from p(x) = N(7, 4) and p′(x) = N(11, 4) respec-
tively. The labels are generated as y = f(x) + ε where
f(x) = sin x

2 + x
4 + x2

100 and ε is zero-centred Gaussian
noise with standard deviation 0.1. The source and target
data sets contain 50 data points each.

Figure 3 compares the fit of MCDP (left) and transductive
dropout (right). Both networks consist of two fully con-
nected hidden layers with 32 and 64 neurons per respective
layer with tanh activations. We see they produce similar
mean predictions near the labelled training points. How-
ever, MCDP starts to issue over-confident predictions as the
feature distribution shifts away from the training data. On
the other hand, transductive dropout learns to output larger
uncertainty in the areas of low density under p(x). In figure
4 we plot smoothed density estimates of the learnt dropout
rates for both source and target distribution points. In the
source distribution the learnt rates are all quite tight around
0.18, while in the target distribution there is a much bigger
spread reflective of the points’ distances from labelled data.

5.2. Prostate Cancer Mortality Prediction

Background Prostate cancer is the third most common
cancer in men, with half a million new cases each year
around the world (Quinn & Babb, 2002). It is far more
common among the elderly with around 75% of cases occur
in men aged over 65 years. Therefore, prostate cancer is

expected to bring increasing healthcare burden to countries
with ageing population (Hsing et al., 2000). The latest clin-
ical guideline for prostate cancer treatment recommends
watchful waiting or non-invasive treatment for early-stage
patients who have low mortality rate (Heidenreich et al.,
2011). Surgery (Radical Prostatectomy) is recommended
instead for high-risk patients whose health condition deteri-
orates rapidly. The patient’s survival outlook therefore plays
an important role in the treatment decisions. Hence, im-
proved accuracy and uncertainty quantification for mortality
prediction will help clinicians to design effective treatment
plans and improve patients’ life expectancy.

Dataset We consider the problem of predicting and es-
timating the uncertainty of the mortality rate for patients
with prostate cancer. Our training data consists of 240,486
patients enrolled in the American SEER program (SEER,
2019), while for our target data we consider a group of
10,086 patients enrolled in the British Prostate Cancer UK
program (UK, 2019). For both sets of patients we have
identical covariate data with information concerning the
age, PSA, and Gleason scores as well as what clinical stage
they’re at and which, if any, treatment they are receiving.
Note that while we have the same features for both sets this
is an area where we expect a level of covariate shift given
the different programs and the transition from American to
British patients. Indeed we do see this, without giving a
full break down of the summary statistics, patients in the
Prostate Cancer UK are in general older with higher Gleason
scores though not as far along in the clinical stages.

Benchmarks We compare our method against competi-
tive methods from the probabilistic deep learning literature
based on their prevalence and applicability. While we con-
sider this work quite different to semi-supervised learning,
which do not usually consider improving uncertainty esti-
mates, we also include MixMatch as a benchmark (Berthelot
et al., 2019). The methods we consider are:

1. MLP - Standard feed forward neural network to bench-
mark accuracy.

2. Dropout - Monte Carlo dropout with rate 0.5 (Gal &
Ghahramani, 2016; Srivastava et al., 2014)

3. Concrete Dropout - Dropout with the rate treated as an
additional variational parameter and is optimised with
respect to the ELBO (Gal et al., 2017).

4. Ensemble - Ensemble of feed forward MLPs (Laksh-
minarayanan et al., 2017) with K = 10 the number of
models in the ensemble.

5. MixMatch - We implement a version of the MixMatch
algorithm (Berthelot et al., 2019) where we perform
one round of label guessing and mixup and without
sharpening. As the base predictive model we use a MC
Dropout network.
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(a) MCDP (b) Transductive Dropout 

Figure 3. Comparison of uncertainty predictions (a) Here we show the 95% confidence intervals for MCDP, demonstrating that while
appropriate over the labelled data, they remain overconfident at the unlabelled data. (b) This panel shows the predictions for transductive
dropout - the mean prediction remaining equally as accurate while producing more uncertainty at the unlabelled locations
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Figure 4. Dropout rate distribution Smoothed density estimates
of the dropout rate distribution over the source and target sets.

6. Last Layer Approximations (LL) - Approximate infer-
ence for only the parameters of the last layer of the
network (Riquelme et al., 2018), using Dropout.

7. Transductive Dropout - No Regularisation (TDNR) -
We implement transductive dropout as described above
but without the addition of our variance regulariser to
show that the gains are not just down to the ability to
adapt the dropout rate to the input.

For all of the neural networks we consider the same archi-
tecture of two fully connected hidden layers of 128 units
each and tanh activation function. The initial weights are
randomly drawn from N(0, 0.1) and all networks are trained
using Adam (Kingma & Ba, 2015). Hyperparameter opti-
misation remains an open problem under covariate shift -
we used a validation set consisting of 10% of the labelled
data selected, not entirely randomly, but based on propensity
score matching in order to obtain a set more reflective of the
target data. With this, hyperparemeters were selected for all
model through grid search.

Evaluation metrics We consider five evaluation metrics
for a comprehensive understanding of the model perfor-
mance. First, we consider the prediction accuracy as mea-

sured by AUROC shown as “TEST PERF.” in table 1 (Be-
wick et al., 2004). Second, we consider the standard de-
viation of the posterior predictive distribution as a (unnor-
malised) predictor for whether or not the model will make
an error on a given input. The corresponding AUROC score
(“ERROR PRED”) measures the agreement between model
uncertainty and the chance to predict wrongly, and hence
reflects whether the model is well-calibrated. Third, we
present the average width of the 95% predictive interval as
a measure of general model confidence on unlabelled data
(“CI WIDTH”). Next, we show the standard deviation of the
predictive distribution on misclassified data (“MISCLAS-
SIFIED SD”). Finally, we show the increased number of
patients receiving treatment (INPT) using the associated un-
certainty in the model and a risk level of 15%. All quantities
related to the posterior distribution are estimated by MC
sampling.

Main results First, we note that transductive dropout
yields an improvement in the AUROC on the mortality pre-
diction against the other benchmarks, demonstrating that our
improved uncertainty calibration does not come at the cost
of mean accuracy. Our focus though is on the calibration of
our uncertainty estimates. While ultimately it is impossible
to properly test how close uncertainty predictions are to
what would be the true uncertainty, we test by using the
posterior predictive variance to classify whether or not the
model will make a mistake. The intuition here is that if
the model is appropriately uncertain the variance will be
high when a mistake is likely and low when not, thus a high
performance on using variance as a predictor for when the
model will make a mistake should demonstrate appropriate
uncertainty estimates. Here we see that transductive dropout
significantly outperforms the other benchmarks, suggesting
that in general the high variance predictions are indeed as-
sociated with those that are more likely to be wrong. We
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Table 1. Area under the ROC curve for two tasks, first correctly predicting the mortality rate of patients in the test set and secondly
predicting whether for a given patient the model will make an error. We also report the average confidence interval (CI) length over test
predictions, the average standard deviation (SD) at miss-classified points, and the increased number of patients receiving treatment (INPT)
using the associated uncertainty in the model and a risk level of 15%.

METHOD TEST PERF. ERROR PRED. CI WIDTH MISCLASSIFIED SD INPT

MLP 0.720 ± 0.012 N/A N/A N/A N/A

MC DROPOUT 0.729 ± 0.016 0.730 ± 0.016 0.093 0.025 8

CONCRETE DROPOUT 0.791 ± 0.012 0.794 ± 0.012 0.151 0.066 76

ENSEMBLE 0.761 ± 0.014 0.782 ± 0.014 0.037 0.018 8

MIXMATCH 0.728 ± 0.016 0.726 ± 0.016 0.082 0.021 0

LL 0.723 ± 0.014 0.696 ± 0.014 0.073 0.028 22

TDNR 0.836 ± 0.010 0.808 ± 0.011 0.197 0.068 18

TRANSDUCTIVE DROPOUT 0.861 ± 0.009 0.857 ± 0.009 0.130 0.110 189

additionally focus on these predictions that each method
gets wrong and look at the average standard deviation at
each of these points. Here transductive dropout shows on
average it’s much less confident about its incorrect predic-
tions than the the other benchmarks, which is the preferred
behaviour. It is important to note that this is not at the ex-
pense of confidence over all predictions as we show that
both concrete dropout and TDNR both have on average
larger confidence intervals than transductive dropout.

Impact on patients Given our motivations we also
ground the performance of our method in how it could be
used in real world decision making on the treatments offered
to patients. There are many reasons treatment options may
not be offered to patients including cost and potential side
effects, as such there will usually be an associated risk level
which a patient must be above in order to receive treatment.
It’s thus very damaging to patients for a model to confi-
dently predict them to be low risk when they are indeed not.
In Table 1 we set a 15% threshold, and show how many
more patient would receive treatment if we consider cov-
erage of the 95% confidence interval on the patients risk,
with the assumption that these cases can be handed off to
a human expert who will correctly classify them. We see
that transductive dropout results in a large increase in previ-
ously patients misclassified as low risk receiving treatment
and we develop the impact on treatment options further in
Figure 5. Here we set a treatment risk threshold at 50%
and show how the size of any predicted confidence intervals
over a patients risk impacts the increased number of patients
correctly receiving treatment. Naturally for all methods as
the confidence interval grows the number of now correctly
treated patients increases but transductive dropout consis-
tently outperforms the other benchmarks as it is less often
confidently incorrect in its risk prediction.
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Figure 5. Improved patient outcome We show how many more
patients, for a risk threshold of 50%, correctly receive treatment as
the size of the confidence interval on the prediction of risk changes.

How does the covariate-shift affect uncertainty? Of in-
terest is to consider how the covariate shift has actually
impacted our models performance. To that end we consider
the feature distribution of those points misclassified by the
model to see how it compares to both source and target
sets. One of the most important factors affecting both the
treatment and survival of prostate cancer patient is the age
at diagnosis (Bechis et al., 2011). Studies have shown that
older patients tend to have worse survival outlook and are
more likely to receive surgery (Hall et al., 2005). In our
source data, the average age at diagnosis is 66 years old
moving up to 70 in the target set. Comparing to the dis-
tribution over ages for incorrectly predicted cases, where
the average is 74, we see that it is for the patients who are
considerably older than those usually seen in the training
data that the model is less sure about. We see a similar
story in their PSA scores (measurements of prostate specific
antigen in the patients blood). PSA score is known to be a
highly sensitive indicator for the risk level and severity of
prostate cancer, and it is widely adopted in cancer screening



Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift

and monitoring (Grimm et al., 2012). Again we see an in-
crease in the average from 14.8 to 18.4 from source to target
set but for those that are incorrectly classified the mean is
much higher at 28.6. The percentage of patients receiving
surgery in the incorrectly classified group is twice that of
those correctly classified, suggesting that our models are
least confident in areas which we might think are the most
at risk given domain knowledge - the more elderly with
high levels of PSA. The model struggles with them (is much
less confident) though as they are values which don’t have
high density in the training data, demonstrating that blind
application of a model to a covariate shifted data set may
easily yield surprisingly incorrect predictions. Fortunately
transductive dropout tends to return high uncertainty over
its predictions on this covariate shifted data such that the
practitioner can suitably inform any decisions to be taken as
a result of these predictions.

5.3. Additional Results

We focused here on an important real-world example prob-
lem, but with the aim of demonstrating generalisation, we
provide further benchmark results on some publicly avail-
able data sets from the UCI machine learning repository
(Dua & Graff, 2017) in appendix A.

6. Conclusions
In this paper we introduced transductive regularisation, a
method for using unlabelled data to calibrate the variance
of Bayesian neural networks by introducing the auxiliary
task of using the posterior predicted variance to discrimi-
nate between source and target distributions. We showed
that this amounts to performing posterior regularisation in
approximate Bayesian inference and results in more useful
uncertainty predictions. We examined an instantiation of
this framework within MCDP, transductive dropout, and
demonstrate its applicability in the real task of predicting
prostate cancer mortality, where it outperforms the tested
benchmarks and demonstrates a higher level of appropriate
uncertainty calibration.

Future Work The question of perfect calibration is
clearly not solved and there are several immediate directions
for further work that present themselves. First is an exten-
sion to frequentist probabilistic ensembles, this is not en-
tirely trivial since the capturing of model uncertainty comes
from averaging across elements of the ensemble making es-
timates during training more complicated to obtain. Second
would be an application in the active learning setting and
using targeted labelled data acquisition in order to appropri-
ately reduce the model uncertainty - the sub-network used
to predict the rate in transductive dropout could inform an
important part of an acquisition function.
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A. Additional Results
We provide some additional results in table 2 on publicly available data sets taken from the UCI machine learning repository.
Specifically we take three data sets: Breast Cancer, Iris, and Wine before slightly adapting them to more naturally fit the
covariate shifted setting. First we make them a binary classification problem by taking the class with the largest members as
positive and all others as negative. We then split the data into training and testing sets by projecting on to the first principal
component and sampling a 20% testing set weighted by this value.

For all of the neural networks we consider the same architecture of two fully connected hidden layers of 32 and 64 hidden
units each with tanh activation function. The initial weights are randomly drawn from N(0, 0.1) and all networks are trained
using Adam. We consider the prediction accuracy as measured by AUROC shown as “TEST PERF.” as well as the standard
deviation of the posterior predictive distribution as a (unnormalised) predictor for whether or not the model will make
an error on a given input. The corresponding AUROC score (“ERROR PRED”) measures the agreement between model
uncertainty and the chance to predict wrongly, and hence reflects whether the model is well-calibrated.

We see tranductive dropout always performs strongly on test performance, and though not always the best is certainly
competitive in all cases, demonstrating their doesn’t appear to be a toll on mean predicitive power. Further though we see
that transductive dropout does remain the best across the data sets on the task of error prediction, demonstrating better
uncertainty calibration, the focus of this work.

Table 2. For the three datasets we present the area under the ROC curve for two tasks, first correctly predicting the classification in the test
set and secondly predicting whether for a given test point the model will make an error.

METHOD BREAST CANCER IRIS WINE
TEST PERF. ERROR PRED. TEST PERF. ERROR PRED. TEST PERF. ERROR PRED.

MC DROPOUT 0.979 ± 0.012 0.662 ± 0.033 0.937 ± 0.044 0.063 ± 0.046 0.972 ± 0.026 0.775 ± 0.155

CONCRETE
DROPOUT 0.791 ± 0.006 0.794 ± 0.006 0.952 ± 0.038 0.847 ± 0.055 1.000 ± 0.000 0.915 ± 0.050

ENSEMBLE 0.978 ± 0.011 0.675 ± 0.007 0.960 ± 0.041 0.571 ± 0.115 0.993 ± 0.007 0.939 ± 0.037

MIXMATCH 0.986 ± 0.010 0.529 ± 0.046 0.242 ± 0.069 0.758 ± 0.069 0.889 ± 0.050 0.611 ± 0.105

LL 0.950 ± 0.033 0.329 ± 0.032 0.929 ± 0.064 0.071 ± 0.064 0.986 ± 0.013 0.575 ± 0.230

TDNR 0.979 ± 0.013 0.945 ± 0.026 0.940 ± 0.045 0.657 ± 0.105 1.000 ± 0.000 0.890 ± 0.055

TRANSDUCTIVE
DROPOUT 0.968 ± 0.017 0.975 ± 0.015 0.956 ± 0.045 0.877 ± 0.082 1.000 ± 0.000 0.951 ± 0.034


