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Payment channel networks (PCNs) are viewed as one of the most promising scalability solutions for cryptocur-

rencies today [28]. Roughly, PCNs are networks where each node represents a user and each directed, weighted

edge represents funds escrowed on a blockchain; these funds can be transacted only between the endpoints of

the edge. Users efficiently transmit funds from node A to B by relaying them over a path connecting A to B, as

long as each edge in the path contains enough balance (escrowed funds) to support the transaction. Whenever

a transaction succeeds, the edge weights are updated accordingly. In deployed PCNs, channel balances (i.e.,

edge weights) are not revealed to users for privacy reasons; users know only the initial weights at time 0.

Hence, when routing transactions, users typically first guess a path, then check if it supports the transaction.

This guess-and-check process dramatically reduces the success rate of transactions. At the other extreme,

knowing full channel balances can give substantial improvements in transaction success rate at the expense

of privacy. In this work, we ask whether a network can reveal noisy channel balances to trade off privacy

for utility. We show fundamental limits on such a tradeoff, and propose noise mechanisms that achieve the

fundamental limit for a general class of graph topologies. Our results suggest that in practice, PCNs should

operate either in the low-privacy or low-utility regime; it is not possible to get large gains in utility by giving

up a little privacy, or large gains in privacy by sacrificing a little utility.
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1 INTRODUCTION
As the adoption of cryptocurrencies grows to unprecedented levels [4], the scalability limitations

of these technologies have become apparent. For example, Bitcoin today can process up to seven

transactions per second with a confirmation latency of hours [13, 39]. For comparison, the Visa

network can process tens of thousands of transactions per second with a confirmation latency of
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seconds [35]. This gap raises questions about whether cryptocurrencies are fundamentally able to

support as much traffic as traditional, centralized solutions.

In response to these challenges, several cryptocurrencies have turned to a class of scalability

solutions called payment channel networks (PCNs) [28]. The core idea is that instead of committing

every transaction to the blockchain, a separate overlay network (the PCN) is maintained, in which

each node represents a user, and each edge represents pre-allocated funds that can be efficiently

and quickly transacted between the two endpoints of the edge under a mutual agreement. Critically,

those transactions on the PCN are committed to the blockchain only in periodic batches, which

reduces the frequency with which users must call the (slow, inefficient) blockchain consensus

mechanism. Users can send money to non-adjacent nodes on the PCN by relaying money through

intermediate nodes on the graph. PCNs are viewed in the blockchain community as one of the

most promising scalability solutions today [16, 34], and several major cryptocurrencies are staking

their long-term scaling plans on PCNs. Prominent examples include Bitcoin’s Lightning network

[28] and Ethereum’s Raiden network [2].

Despite this excitement, there remain several technical challenges. Principal among them is a

privacy-preserving routing problem: each time users wish to route a transaction, they must find

a path through the PCN with enough pre-allocated funds to route the transaction. However, in

today’s PCNs, edge balances are not publicly revealed for privacy reasons, making it difficult to find

such a route reliably. The goal of this paper is to study privacy-utility tradeoffs that arise in such a

PCN transaction routing. Before defining the problem more precisely, we begin with a brief primer.

1.1 Payment Channel Networks (PCNs)
A payment channel is a transaction between two parties that escrows currency for use only between

those two parties for some amount of time. For example, Alice and Bob could escrow 4 and 2 tokens,

respectively, for the next week. The escrow transaction is committed to the blockchain to finalize

it. Once the channel is finalized, Alice and Bob can send escrowed funds back and forth by digitally

signing the previous state of the channel and the new updated transaction. For example, Alice can

send 3 of her 4 tokens to Bob, so that the new channel state is (Alice=1, Bob=5). Once the parties

decide to close the channel, they can commit its final state through another blockchain transaction.

Cryptographic and incentive-based protections prevent users from stealing funds in a channel, e.g.,

by committing an outdated state. Maintaining a payment channel has an opportunity cost because

users must lock up their funds while the channel is active, and they are not actually paid until

the channel is closed. Hence, it is not practical to expect users to maintain a channel with every

individual with whom they may ever need to transact.

A payment channel network (PCN) gets around this problem by setting up a graph of bidirectional

payment channels. The key idea is that if Alice wants to transact with Charlie, but is only connected

to him via Bob, then Bob can act as a relay for Alice’s money, passing it along to Charlie. Again,

cryptographic protections are used to ensure that Bob does not steal Alice’s relayed money, but he

does receive a small fee as payment for his cooperation. Notice that if Alice wants to send r tokens
to any node in the network, she must first find a directed path to that node with at least r tokens on
every (directed) edge. For example, in Figure 1, suppose Alice wants to send r = 3 tokens to Charlie.

She has two paths available: A → B → C and A → D → E → C . However, the edge E → C
has only 2 tokens to send in that direction, so it cannot support Alice’s transaction. Hence, this

transaction fails. Suppose Alice instead sends her transaction over the first path,A → B → C . After
her transaction is processed, each of the channels moves r = 3 tokens (plus a small processing fee)

from one side of the channel to the other. Note that one could also packet-switch transactions, so

Alice sends part of her transaction over multiple paths. In today’s PCNs, this functionality is not yet
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Fig. 1. Payment channel network. Alice wants to send 3 tokens to Charlie. Transaction fees are omitted for
simplicity.

implemented [1]; however, such routing schemes can give significant performance enhancements

[10, 18, 27, 32]. Packet-switched routing is beyond our scope.

Our work studies the act of finding a path from source to destination with sufficient balance

to support a transaction. If the full graph and edge weights were known, finding such a path

would be straightforward (albeit computationally-intensive). However, if users were given access to

instantaneous channel balances of the whole network, any passive observer could trivially see that,

for instance, r tokens flowed along a path from Alice to Charlie. This is a serious breach of privacy.

Today’s PCNs do not reveal instantaneous balance information in an attempt to prevent observers

from inferring other users’ transaction patterns. Instead, users are given access only to the graph

topology, and the sum of balances in either direction on each channel, which remains constant for

the duration of the channel. Because of this design decision, PCN users are forced to guess if a given

path has enough balance to support a particular transaction by attempting to send their transaction

over that path. If it fails, the user tries another path until the transaction either completes or

times out; upon a timeout, the user can instead process her transaction on the blockchain, which

is comparatively slow and expensive. This guess-and-check routing approach uses unnecessary

resources and severely limits the success rates of today’s PCNs [37]. Every time a user tries to route

over a path that will ultimately fail, it temporarily ties up funds along that path, which cannot

be used by other transactions. Moreover, since users are forced to guess channel balances, they

are more likely to not find any valid path prior to transaction timeout. Our goal in this work is

to understand whether privacy must always come at such a high cost. In particular, we consider

whether a system could reveal noisy channel balances in an effort to gracefully trade off privacy

for utility.

1.2 Contributions
We make four main contributions:

• We theoretically model the routing problem in PCNs and define distribution-free metrics for pri-

vacy and utility. In particular, we relate the success rate of a scheme, or the fraction of successfully

routed transactions, to a simplified but analytically tractable quantity we call utility.
• We show a restrictive, so-called diagonal upper bound on the privacy-utility tradeoff for these

metrics over general graphs and a significant class of shortest-path transaction routing strategies.

We show that the diagonal bound is tight by designing noise mechanisms that achieve it.

• The diagonal bound is a somewhat negative result, suggesting that a good tradeoff is not pos-

sible. However, we show that by relaxing certain assumptions (e.g., the shortest-path routing

assumption), we can break the diagonal barrier. Indeed, one can design noise mechanisms that

asymptotically achieve a perfect privacy-utility tradeoff. However, this comes at the cost of

increasingly long paths, i.e., increasingly expensive routing fees.
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• We demonstrate through simulation that even if one were to consider an average-case utility

metric (fraction of successful transactions, or success rate) rather than a worst-case one, the

privacy-success rate tradeoff is still not favorable for shortest-path routing.

Overall, our simulations suggest that trading off privacy for utility does not give significant gains

unless the system operates either in a low-privacy regime or low-utility regime; today’s PCNs

operate in the low-utility regime.

In sum, our results suggest that PCNs may not be able to provide utility and privacy simultane-

ously. Moreover, our theoretical analysis is conducted under an adversarial model that (a) is passive,

and (b) does not exploit temporal correlations in transaction patterns. Hence, actual privacy threats

are likely even more dire than our results indicate. PCN system designers may therefore need to

make an explicit choice regarding whether the value of PCNs comes mainly from their potential

for improving performance or privacy, and choose an operating point accordingly.

2 MODEL
We model the PCN as a graph G(V, E), where V denotes the participating nodes with n = |V|,
and E the set of edges, or payment channels, in the PCN. Each edge (u,v) ∈ E is associated with

two weights, buv and bvu , which denote the balances from u to v and from v to u, respectively. The
capacity of the channel, denoted asCuv = buv+bvu , is assumed to be a constant; this models a setting

where the channel remains open for the entire duration of the experiment. Recall that our goal is

to release noisy channel balances, so the true balances may not be equal to the publicly-released

channel balances, which we denote by
˜buv and

˜bvu , respectively.
We assume an arbitrary sequence of transactions x1,x2, . . . enters the system sequentially. Each

transaction xi has an associated source s(xi ), destination d(xi ), amount r (xi ), and timestamp t(xi ),
where t(xi ) < t(xi+1) for all i . Each transaction is processed instantaneously at its time-of-arrival

timestamp. That is, we do not account for concurrent transactions. For a path P on the graph,

we use s(P) and d(P) to denote its source and destination, respectively. At transaction x ’s time

of arrival, t(x), the source s(x) chooses a path P from the network with source s(P) = s(x) and
destination d(P) = d(x), such that P appears to have enough balance according to the publicly

visible balances. That is, ∀(u,v) ∈ P , ˜buv ≥ r (x). Recall that channel balances are noisy, so a path

that appears to have enough balance may not in reality.

If the path chosen for transaction x does not have enough balance (i.e., ∃(u,v) ∈ P : buv < r (x)),
the transaction fails. In this case, both the visible channel balances

˜buv and the true channel

balances buv remain unchanged. If the path chosen for transaction x has enough balance (i.e.,

∀(u,v) ∈ P ,buv ≥ r (x)), the transaction succeeds, and ∀(u,v) ∈ P , the true channel balance is
updated as buv = buv − r (x) and bvu = bvu + r (x). The visible channel balances, on the other hand,

are updated according to a noise mechanism (or mechanism). The noise mechanism is probabilistic

and chosen by the system designer; given an input path P , it outputs a random set of edges Q ⊆ P

such that ∀(u,v) ∈ Q , the public balance ˜buv is updated to the true new balance, buv . We denote

this conditional probability distribution by D [Q |P].
Notice two things about this model: first, we never update public balances on edges that were

not involved in a transaction, i.e., edges that are not elements of path P . This modeling choice

was made in part for analytical tractability and in part for practicality; since nodes anyway must

communicate with all relays in P , it is easy to include an instruction for the noisy balance update.

Reaching other nodes would require additional communication that may not be practical. Second,

note that if an edge is updated, it is only updated to its true balance—never a noisy version of its

balance. One could additionally impose the condition that after choosing a subset Q , the noise
mechanism updates the balances inQ by different amounts (not necessarily equal to r (x)); however,
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as we will discuss in Section 2.1, our privacy metric only considers adversaries who aim to identify

the source or destination of a transaction—not the amount. If an adversary observes any update on

an edge, it knows that edge was involved in the transaction; knowing the exact amount does not

give any more information about the source or destination. Hence, to maximize utility, we might

as well reveal the full balance update.

2.1 Privacy Metric
Our adversary is an honest-but-curious user that passively observes the network and tries to infer

the source and destination of the first transaction x to pass through the system; the adversary

does not try to guess the transaction amount r (x). We make this modeling choice for simplicity

and because transaction patterns often matter more than transaction amounts; for instance, the

fact that one sends money to an abortion clinic or to a political organization can be more telling

than the actual amount transferred. We assume that the initial public balances are all identical

to the real balances, i.e., ∀(u,v) ∈ E, buv = ˜buv at time 0, and all the balances in the PCN are

sufficient to support x ; hence, this metric is equivalent to considering an arbitrary transaction x
but giving the adversary knowledge of the true balances shortly before t(x). More precisely, once x
has been processed, the adversary guesses one node v ∈ V with probability A[v |Q], where A is a

randomized adversarial strategy. If v ∈ ∂P , where ∂P ≜ {s(P),d(P)}, i.e., if the adversary guesses

the source or destination correctly, it wins. To avoid making assumptions about the transaction or

PCN distribution, we consider a worst-case metric over both. As shown in (2.1), privacy is defined

as the minimax probability that the adversary makes a wrong estimate:

Π(D) = 1 − sup

A

min

P ∈P

∑
v ∈∂P,Q ⊆P

D [Q |P]A [v |Q]

= 1 − sup

A

min

P ∈P

∑
Q ⊆P
D [Q |P]A [∂P |Q] , (2.1)

where P denotes the set of paths in G. For convenience, we let A[∂P |Q] denote ∑v ∈∂P A[v |Q].
Notice that A[·|Q] is a probability distribution with event spaceV , i.e. the supremum over A is

taken in the space

A =
{
A

�����∀u ∈ V, P ∈ P,Q ⊆ P : A[u |Q] ≥ 0,
∑
v ∈V
A[v |Q] = 1

}
.

So constraint A ∈ A is an intersection of linear constraints. In addition, the objective of (2.1)

is the minimum of finite number of affine functions of A. Hence, the optimization problem in

(2.1) is equivalent to an LP. Because A is compact, the supremum of the optimization problem is

attained. However, solving this optimization is intractable in general, due to the optimization over

all the paths in the PCN. We will show that under certain restrictions, a solution can be computed

efficiently.

2.2 Utility Metric
The performance of a PCN is commonly measured by its success rate, or the fraction of transactions

it successfully processes [24, 30, 32]. However, expected success rate is a complicated function that

depends on transaction workloads, graph topology, and initial balances. Since we wish to avoid

making assumptions on these characteristics, we instead consider a simpler notion of utility: how

representative are the observed balances of the true underlying balances? Specifically, given the

true balance of a link, we consider the probability that the observed balance is equal to the true

balance, which we will refer to as the truthful probability. In general, this probability for a given
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PCN still depends on the transaction workload, as well as parameters like the path length. Hence,

we consider a worst-case transaction workload that minimizes the truthful probability.

To this end, we define the quantity in (2.2) below as the utility of mechanism D. It equals the
minimum probability, over all paths and edges in paths, of a public edge balance equaling the true

edge balance after a transaction passes through it:

U (D) = min

P ∈P
min

ε ∈P

∑
Q :Q ∋ε,Q ⊆P

D [Q |P] (2.2)

In the proposition below, we show how this notion of utility is related to the truthful probability.

Proposition 2.1. The truthful probability of any edge given any value of the true balance is lower
bounded by the utilityU (D).

Proof. We focus on a particular edge ε ∈ E. Assume at the current state, the true and public

balances of ε are Bε , B̃ε , respectively. Define event

Eε ≜ there exists a previous transaction going through ε .

If ¬Eε happens, then P[Bε = B̃ε |¬Eε ] = 1, since both balances are identical to their initial states,

at which time all public balances are truthful.

If Eε happens, we focus on the state when the last transaction T−1 on path P ′
involving ε was

about to be launched. At this state, we assume the true and public balances of ε are bε and ˜bε , while
they have been Bε and B̃ε since T−1 was launched, respectively. By definition of utility,

U (D) ≤
∑

Q :Q ∋ε,Q ⊆P ′
D [Q |P ′] = P[B̃ε = Bε |Eε ,T−1].

Since T−1 could be arbitrary, P[B̃ε = Bε |Eε ] ≥ U (D).
To summarize, P[Bε = B̃ε ] ≥ U (D) holds for all ε ∈ E regardless of previous workload on the

network. □

From the proof of Proposition 2.1, we can also see thatU (D) is equal to the truthful probability

of an edge ε in the following scenario: a transaction happens along a path P ′
that contains ε , and

ε and P ′
are the minimizers in the definition ofU (D). Therefore,U (D) characterizes the truthful

probability in a worst-case sense. For this reason, we will focus onU (D) as our utility metric.

A natural question is how this utility metric relates to the success rate of a PCN. The answer is

complicated, depending on a number of factors. However, we show in Section 5 that under certain

workloads and network conditions, our utility metric and the success rate of a PCN appear to be

monotonically related. Hence, maximizing utility is as good as maximizing success rate.

3 FUNDAMENTAL LIMITS
As system designers, we want the the privacy and utility metrics defined in (2.1) and (2.2) to be

high, i.e., close to 1. In this section, we show that for an important class of routing algorithms,

this is not possible; additionally, we provide a tight upper bound on the tradeoff between these

quantities for general graph topologies.

Let us begin by considering two extreme points. First, consider a setting with perfect utility,

U (D) = 1. To achieve perfect utility, on every path, the balance of every edge must be truthfully

updated. Hence, if the adversary simply guesses the source of the observed updated path, it always

wins, so we have no privacy: Π(D) = 0.

Next, consider a case with no utility,U (D) = 0. This implies that for every path, noise mechanism

D always hides the balance update on at least one edge from the true path. Regardless of the noise

mechanism, the adversary can always pick a node uniformly at random. Since there are n nodes, it
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Fig. 2. Example of a path from A to E and a corresponding path trace, the set of edges A → B and C → D.

guesses the source or destination with probability 2/n, so Π(D) ≤ 1 − 2

n , ∀D. Hence, we have an
upper bound on the privacy metric at the two extremes of the utility spectrum.

The more challenging and interesting case arises when 0 < U (D) < 1. We first define a path trace,
which intuitively describes a (possibly disjoint) set of edges that are elements of a path between

two endpoints. This set of edges must include the first and last hop of the path, adjacent to the two

endpoints (Figure 2).

Definition 3.1. Given two nodes x and y on an arbitrary undirected graph (V, E) with set of

available paths P, a set of oriented edges Q is a path trace from x to y, if and only if

(1) x has an incident edge in Q with x being the source;

(2) y has an incident edge in Q with y being the destination;

(3) there exists a path P ∈ P, P ⊇ Q from x to y.

We say x is a source of Q , and y is a destination of Q .

In other words, a path trace is what the adversary sees after the noise mechanism updates a

subset of edges in a given path. A path trace is always a subset of an available path in P. Our

first main result, Theorem 3.2, states that if P includes only shortest paths between nodes, then

the privacy metric is upper bounded by a linear relation that we call the diagonal bound. Notice
that shortest-path routing is extremely common. First, today’s PCNs like the Lightning network

implement shortest-path routing by default [1]. Second, since intermediate relays in PCNs extract

transaction fees, shortest-path routing can be thought of as a proxy for cheapest routing, which

users are incentivized to use. Hence this result applies to the vast majority of routes used in practice.

Theorem 3.2 (The Diagonal Bound). On a network (V, E,P) with n = |V| ≥ 2, if P includes
only shortest paths, then for any noise mechanism D, its privacy Π(D) and utilityU (D) satisfy

Π(D) ≤
(
1 − 2

n

)
[1 −U (D)]. (3.1)

Notice that this bound, plotted in Figure 3, does not make assumptions about the structure of

the underlying graph. Intuitively, the result holds because for any observed path trace taken from a

shortest path between two nodes on an arbitrary graph, the adversary can uniquely identify its

source and destination. For example, consider Figure 4 (left). On a tree, even if the noise mechanism

reveals only a subset of edges in a path, the adversary can trivially reconstruct the interior path

exactly. From this reconstruction, the endpoints are clear. Notice that in a path trace, we know

the orientation of each edge because a truthfully-updated channel will always reveal the direction

of money flow. In Figure 4 (right), we see that on a grid graph, the adversary cannot always

reconstruct the exact path, as there may be multiple shortest paths consistent with the path trace.
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Fig. 3. The diagonal upper bound of Theorem 3.2, and the achievable tradeoff for the all-or-nothing scheme.
The all-or-nothing curve is slightly displaced from the upper bound for greater visibility.

For instance, the adversary cannot tell if B → C → E or B → D → E was the true path. However,

the adversary can uniquely determine the set of endpoints of the trace: A and E. Any other choice

(e.g, A and D) that passes through the full set of path trace edges has a strictly longer path length.

This observation is true for general graphs, allowing the adversary to use the source or destination

of the path trace as its estimate of the source or destination of the original path. This in turn causes

the privacy metric for a noise mechanism to be governed primarily by its behavior near the source

and destination, giving rise to the diagonal bound.

We next prove that the bound in Theorem 3.2 is tight. The proof of the upper bound implies that

hiding edges in the interior of a path does not improve privacy if one or both of the endpoints

of the path are revealed. In other words, an adversary cannot always determine the sequence of

edges between the endpoints of a path trace, but it can identify the endpoints of the trace. Because
there is no privacy benefit to hiding interior edges of a path, we should maximize utility (for a

Fig. 4. Examples of a path and a path trace on a 3-regular tree (left) and a grid graph (right), assuming
shortest-path routing. For a tree, given any path trace, we can always uniquely determine the path that
generated the path trace (up to the endpoints of the path trace). On a grid graph (indeed, on general graphs),
we can uniquely determine the endpoints of the path trace, but not necessarily the full path.
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given privacy level) by revealing all interior edges. This motivates the so-called all-or-nothing noise

mechanism.

Definition 3.3. For a transaction routed over path P , the all-or-nothing noise mechanism DN
either truthfully updates balance on every edge of P with probabilityU (DN), or updates nothing
with probability 1 −U (DN).

We define a reachable network as follows:

Definition 3.4. A network (V, E,P) is reachable, if for any pair of nodes (u,v) ∈ V2
withu , v ,

there exists a path P ∈ P that goes from u to v , or from v to u.

Note that reachable networks are more restrictive than the notion from the literature of strongly
connected networks, because we limit the set of usable paths to P.

Lemma 3.5. On a reachable network,

sup

A[· |�]
min

P ∈P
A[∂P |�] = 2

n
. (3.2)

Proof. Because A[·|�] is a probability distribution, for any strategy A, there exist 2 nodes u1,u2
such that

A[u1 |�] + A[u2 |�] ≤
2

n
.

By assumption that the network is reachable, there exists a path Pu connecting u1,u2. Hence,

min

P ∈P
A[∂P |�] ≤ A[∂Pu |�] ≤

2

n
, ∀A.

In the meantime, the adversary who guesses each node uniformly could make the inequality

above tight, which proves (3.2). □

On a reachable network, the below theorem characterizes the privacy-utility tradeoff for the

all-or-nothing noise mechanism.

Theorem 3.6. On a reachable network, the privacy-utility tradeoff of the all-or-nothing noise
mechanism is characterized by

Π(DN) =
(
1 − 2

n

)
[1 −U (DN)]. (3.3)

Although this result holds for all reachable networks, regardless of routing policy, it also implies

that the upper bound in Theorem 3.2 is tight for shortest-path routing over reachable networks.

Proof. When the entire path is updated, the adversary A0 may directly pick an endpoint of the

observed path as its estimate. Hence,

sup

A

min

P ′∈P
A[∂P ′ |P ′] = A0[∂P |P] = 1, ∀P ∈ P .

By our privacy definition,

Π(DN) = 1 − sup

A

min

P ∈P

∑
Q ⊆P
DN[Q |P]A[∂P |Q]

= 1 − sup

A

min

P ∈P
{[1 −U (D)]A[∂P |�] +U (D)A[∂P |P]}

= [1 −U (D)]
(
1 − sup

A

min

P ∈P
A[∂P |�]

)
Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 29. Publication date: June 2020.
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= [1 −U (D)]
(
1 − 2

n

)
. (*)

Obtained by Lemma 3.5, (*) justifies the original claim. □

The results of this section are not encouraging; they imply that a perfect privacy-utility tradeoff

is impossible as long as nodes use shortest-path routing. Since there is a monetary cost associated

with taking longer paths, most users are likely to default to shortest-path routing. Nonetheless,

some users do care about privacy and may be willing to pay for it [3, 5]. The next section explores

various techniques for breaking the diagonal bound, and the costs associated with doing so.

4 BREAKING THE DIAGONAL BARRIER
The goal of this section is to break the diagonal barrier imposed by Theorem 3.2 by relaxing two

key assumptions: one related to adding uncertainty to the candidate endpoint set, and the other

related to adding uncertainty to the set of candidate paths. More precisely, Theorem 3.2 makes two

main assumptions: (i) utility U (D) is computed as a minimum over all network edges, as in the

definition (2.2), and (ii) all transactions are routed using a shortest path between the source and

destination. We will relax the first assumption to introduce endpoint uncertainty, and the second

to introduce path uncertainty.

Assumption (i): Definition (2.2) of utility may not be appropriate when the PCN includes endpoint

nodes with degree one, or clients that connect to “gateway" routers. This could happen, for example,

if PCNs evolve so that merchants run the majority of router nodes, which maintain several well-

funded channels, and end users connect to merchants only for their own transactions, i.e., without

participating in transaction relaying. As an extreme example, consider a star network, which is a

tree of depth one. Any routing of a transaction requires at most two edges, whose balances are

already known to the nodes directly involved in the transaction, i.e., the sender and the receiver.

Because the sender and receiver already know the balances on their adjacent edges, they could

transmit this information out of band, so hiding the balance of any edge does not decrease success

rate, but provides perfect privacy against an external observer. In Section 4.1, we show how to

improve the privacy-utility tradeoff by allowing the source and destination to exchange their

adjacent true balances prior to transacting.

Assumption (ii): The second assumption might not hold if users are willing to route transactions

over paths longer than the shortest path(s). At the cost of incurring more fees, such longer routing

can intuitively achieve better privacy-utility tradeoff. Although the gains are difficult to quantify in

general, we precisely quantify them for a special network topology in Section 4.2.

4.1 Endpoint Uncertainty
In real-world PCNs, users know the true balances (or weights) on their directly adjacent channels

(or edges). For example, when a user Alice tries to transact with neighboring user Bob, Alice

and Bob already know each other’s true balances. Therefore, for any direct transaction among

neighbors, success rate is not sacrificed even if the balances are kept private. In an extension of

this idea, consider a PCN model with users and servers; users make transactions among themselves,

whereas servers relay them. Servers are connected in a network structure (VS , ES ), whereas each
user node is connected to one server node. LetVU , EU denote the set of user nodes and user-server

channels, respectively. Then there exist functions J : VU → VS and K : VU → EU , where for
a user node v ∈ VU , J (v) is the server to which v is connected, and K(v) is its unique incident
channel, which connects v and J (v). Furthermore, let (nS ,nU ) = (|VS | , |VU |). The public balances
on the user-server channels are never updated, while those on the inter-server channels are updated

with a privatizing noise mechanism of our choice.
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Under the following assumption that the set P of available paths are not too restricted, we

show that just privatizing the inter-server channels is sufficient to achieve improved privacy-utility

tradeoff.

Assumption 1. For any oriented path P ∈ P from x to y,
• if x < VS , then P − {(x , J (x))} ∈ P;
• if x ∈ VS , then ∀v : J (v) = x , we have {(v,x)} ∪ P ∈ P);
• if y < VS , then P − {(J (y),y)} ∈ P;
• if y ∈ VS , then ∀v : J (v) = y, we have {(y,v)} ∪ P ∈ P).

Assumption 1 states that if an oriented path from server x ′
to server y ′ is observed, the adversary

cannot obtain more information from P about the source or destination. For example, he only

learns that the source can be server x ′
itself or one of its incident users.

Proposition 4.1. Suppose we have a user-server network (VS ∪VU , ES ∪ EU ), and the set P of
available paths satisfy Assumption 1, the server sub-network (VS , ES ) is reachable under P, and all
the transactions are routed via the shortest paths. When the channels on the server network (VS , ES )
have balances governed by the all-or-nothing noise mechanism DN with utilityU (DN) = α , and the
channels on the user network (VU , EU ) are completely hidden, the privacy metric Π(DN) is

Π(DN) =
(
1 − 2

nS + nU

)
(1 − α) + µ

µ + 1
α , (4.1)

where µ is a lower bound on the number of users attached to any server node.

Compared with all-or-nothing noise on a full PCN (Theorem 3.6), the privacy level of the user-

server model is higher by µU (D)/(1 + µ). Figure 7, left panel, plots the gains achievable from

Theorem 4.1 under all-or-nothing noise. As the number of users per server increases, we get

improved tradeoffs, eventually achieving maximum privacy with no utility loss in the limit as

µ,nS ,nU → ∞. Intuitively, the adversary cannot distinguish between sources or destinations

connected to the first and last server nodes. Since the adjacent user nodes as well as the last server

node can all be the real destination of money flow, the adversary’s best strategy is to guess uniformly

at random. Hence the gain in privacy comes from the increased uncertainty at the end nodes, which

does not sacrifice the success rate of routing transactions. This observation can be generalized to

each user having multiple connections to servers, as long as the users do not relay transactions.

Moreover, preliminary evidence suggests that user-server models may naturally emerge in practice;

thus far, we have seen the emergence of routing hubs on the Lightning network, complemented by

many users with few channels (Figure 17).

Proposition 4.1 holds when each user is allowed to be connected to only one server. In this case,

the size of server sub-network is limited, since nS ≤ n/(µ + 1). We can easily extend this result to

the case where each user node is allowed to share channels with multiple server nodes, but users

do not relay transactions. For example, in Figure 5, the light-green user is allowed to maintain

two channels with two different servers. In this case, the network structure will be much more

compact, and its privacy is only slightly worse than (4.1), as seen in the following:

Proposition 4.2. Assume the assumptions of Proposition 4.1 except that each user may connect to
multiple servers (but not relay transactions). The privacy metric Π(DN) of the all-or-nothing noise DN
satisfies

Π(DN) ≥
(
1 − 2

nS + nU

)
(1 − α) + µ

µ + 2
α , (4.2)

where µ is a lower bound on the number of user nodes attached to any server node.
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Fig. 5. The user-server model consists of server nodes that route transactions, and user nodes who make
transactions, but do not relay other nodes’ transactions.

This suggests that in practice, user endpoints can improve their privacy by not updating their

balances without losing any utility, as long as they have an out-of-band channel of communication

with the recipient of a transaction. This may not always be feasible, e.g., in cases where the sender

or recipient wishes to remain anonymous.

4.2 Path Uncertainty
The previous subsection showed how a special class of networks can be exploited to increase

user privacy by introducing uncertainty regarding the endpoints of a path under all-or-nothing

noise. In this section, we explore techniques for obfuscating the transaction path itself. When users

are allowed to use longer paths, the noise mechanism can hide edges so that path traces do not

reveal the source/destination pair. This is not true under the shortest path routing as illustrated in

Section 3. For the rest of this section, we consider the special case of a complete graph. Although
complete graphs are not realistic for deployed PCNs, they provide a method for analyzing the

privacy definition LP in (2.1), as well as inspiration for noise mechanisms that can break the diagonal

barrier in Sec. 3.

Definition 4.3. Given the edges on a directed path P , let the odd edges include the 1st, 3rd, 5th, ...

edges and the even group include the 2nd, 4th, 6th, ... edges. The alternating noise mechanism
DT is defined as follows:

• At utility α ∈ [0, 0.5], DT either updates the balances of the odd edges with probability α , updates
balances of the even edges with same probability, or updates nothing with probability 1 − 2α .

• At utility α ∈ (0.5, 1], DT either updates the balances of the odd edges with probability 1 − α ,
updates balances of the even edges with same probability, or updates nothing with probability

2α − 1.

To preserve symmetry, P is assumed to be the set of all simple paths of fixed length L. Note that
it may be computationally infeasible to find a simple path of given length that satisfies a balance

constraint in practice. Intuitively, we expect alternating noise to have good privacy; even when the

adversary knows the path length L, each revealed edge could be the first or last edge, and the graph

topology gives no way to differentiate between edges. For example, in Figure 6, the adversary is

able to discern that the even edges were revealed since L = 5 and only two edges are revealed.

Hence it must guess the source/destination uniformly from the nodes that are not part of the path

trace. If the odd edges had been revealed, then because the graph is complete, any ordering of the

edges would have been feasible. Hence, the adversary would need to guess one of the endpoints of
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Fig. 6. A path and path trace for the alternating noise mechanism; in this case, even edges were revealed.

the revealed edges uniformly at random. Combined, these cases give asymptotically perfect privacy

as L,n → ∞. The next theorem characterizes this tradeoff precisely.

Theorem 4.4. Suppose L ≥ 2 and the alternating scheme DT has utility α = U (DT) and privacy
Π(DT). If 2 | L, i.e. L is even, its privacy-utility tradeoff on a complete graph is characterized by

Π(DT) =


1 − 2

n
−
(

2

min {L,n − L} − 4

n

)
α , 0 ≤ α ≤ 1

2

;(
2 − 2

min {L,n − L}

)
(1 − α), 1

2

< α ≤ 1.
(4.3)

If 2 ∤ L, i.e. L is odd, its privacy-utility tradeoff is characterized by

Π(DT) =


1 − 2

n
−
(

2

L + 1
+

2

n − L + 1
− 4

n

)
α , 0 ≤ α ≤ 1

2

;(
2 − 2

L + 1
− 2

n − L + 1

)
(1 − α), 1

2

< α ≤ 1.
(4.4)

This tradeoff is plotted in Figure 7 (right) for two path lengths, L = 9 and L = 60. Notice that the

difference between these curves is small, even though the difference in path lengths is almost an

order of magnitude. Hence, using longer paths appears to have diminishing returns for alternating

noise.

Another natural mechanism which requires less coordination among the nodes in a path is the

i.i.d. noise mechanism.

Definition 4.5. The i.i.d. noise mechanism DI updates the balance of each edge independently

with constant probabilityU (DI). Mathematically, for a path P with length L,

DI[Q |P] = [U (DI)] |Q |[1 −U (DI)]L−|Q |, ∀Q ⊆ P .

This noise mechanism enjoys similar privacy gains as the alternating mechanism due to path

uncertainty. The main difference is that the number of candidate endpoints is now a random

variable. We characterize the utility/privacy tradeoff precisely below.

Theorem 4.6. Suppose (V, E) is a complete graph and P is the set of all simple paths of fixed
length L. The privacy Π(DI) of i.i.d. noise mechanism DI on a complete graph is lower bounded by

Π(DI) ≥ 1 − 2(1 − α)L
n

− 2

(L + 1)(1 − α)
[
1 − αL+1 − (1 − α)L+1

]
, (4.5)

where α = U (DI) is the utility.
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Fig. 7. Exploiting the structures of the networks, we can designmechanisms that overcome the diagonal bound
of Theorem 3.2 (shown in blue dashed line). Under the user-server model, we exploit endpoint uncertainty
and under the clique model, we exploit path uncertainty.

Figure 7 (right) plots the achievable bounds of Theorems 4.4 and 4.6, illustrating that neither

scheme strictly dominates the other. However, i.i.d. noise has a larger jump in performance as we

move from paths of length L = 9 to L = 60. Due to space constraints, the proofs of Theorems 4.4

and 4.6 can be found in Appendix A.

Takeaway Message. In this section, we show that the diagonal bound can be broken through two

techniques: adding endpoint uncertainty and adding path uncertainty. Our exploration of path

uncertainty in particular is limited to complete graphs due to the computational complexity of

evaluating privacy metric (2.1) on general graphs. Still, we conjecture that similar intuitions can be

applied to more complex, structured graphs; for instance, we relied on both the symmetry and the

well-connected nature of complete graphs in our analysis; some circulant graphs exhibit similar

properties. Hence, a takeaway message is that if one has the ability to choose a network structure,

noise mechanism, and routing policy, it is possible to achieve an improved privacy-utility tradeoff;

although there is no central entity controlling the graph topology, in practice system designers can

influence topology by implementing default peer selection rules in client software. However, these

benefits come at the cost of higher transaction fees due to the choice of routing through longer

paths.
1
On the other hand, the user-server model arises organically in current payment channels,

and is compatible with cost-effective, shortest-path routing.

5 RELATION BETWEEN OUR UTILITY METRIC AND SUCCESS RATE
A natural question is how to relate these results to the more intuitive (but more complicated to

compute) success rate metric in Section 2. In this section, we explore the relation between our utility

metric and success rate and observe that under some conditions, they are positively correlated.

Upon initial study, these two metrics actually appear to be uncorrelated due to an interesting

phenomenon we refer to as “deadlocks.” A channel is deadlocked when the public and true balances

concentrate at different ends of the channel such that it cannot support any more transactions.

For example, as shown in Figure 8, let Alice and Bob maintain a channel with capacity 2, where

Alice holds 2 tokens and Bob holds 0. If the public balance shows the opposite, i.e., Bob claims to

1
In general, a shorter path can cost more than a longer path because routers choose their own routing fees. Our model

ignores this distinction for simplicity and because on average, longer paths tend to cost more.
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Fig. 8. A deadlocked channel. No one else can send tokens through it in either direction.

hold 2 tokens and Alice 0, routers will try to send money only from Bob to Alice; this is impossible

because Bob actually has no balance. Since no transactions pass through the channel, it will remain

deadlocked forever, reducing the success rate over this channel to zero.

To demonstrate the deadlock effect, we show simulation results in the simplest setting, where

the PCN consists of only 2 nodes A,B and 1 channel. The channel has capacity 10 and initial

balance 5 on both ends. Each transaction, denoted by [value(sender → recipient)], is sampled from

a uniform distribution over {2(A → B), 2(B → A), 3(A → B), 3(B → A)}. The sender is assumed

not to know the true channel balance. Figure 9 plots the true balances vs the observed ones for 200

such independent channels as the number of transactionsT grows; a deadlocked channel will show

balances at the top-left and the bottom-right corners. Note that even at a high utility 0.9, almost all

of the parallel single-edge PCNs are deadlocked after 100,000 transactions. In contrast, at perfect

privacy (utility 0.0), no deadlock occurs because public channel balances remain forever at their

initial value, (5, 5).
Unfortunately, naive noise implementations can lead to severely deadlocked networks. To for-

mally quantify this effect, consider the following model: assume that each transaction (i.e., its

sender, recipient, and value) is independently sampled from some probability distribution. We fix

a specific routing scheme, e.g., randomized shortest path routing. Under these assumptions, the

process of transactions flowing through a PCN is a Markov chain. Each assignment of public and

true balances is a state, and each transaction triggers a state transition. In the theorem below, we

show that the steady-state success rate of this Markov chain is zero due to deadlocks. Intuitively, a

sufficient number of channels will almost surely be eventually deadlocked after a finite number of

transactions. These deadlocks block the entire PCN, resulting in a zero success rate.

Theorem 5.1 (deadlock). Suppose a PCN G(V, E) is given with arbitrary topology and non-
negative integer balances. Each transaction is independently sampled from an arbitrary distribution
with value at least ℓ ∈ Z++. The sender and recipient are selected symmetrically, and neither of them
knows the true balance of any channel. Assume a noise mechanism D is applied to the transaction
path, where the utility α ∈ (0, 1), and there exists an edge on the path, whose public balance is not
updated with probability at least β > 0. Then, if the number of transactionsT → ∞, the PCN’s success
rate is 0.

(Proof in Appendix A.6) Theorem 5.1 holds because long-term, every channel will become

deadlocked and hence unusable. In particular, this implies that success rate is uncorrelated with

utility. However, in practice, it is not true that route sources are unaware of balances of neighboring

channels, or that there are infinitely many transactions. Although the theorem no longer applies

without these assumptions, its insight regarding deadlocks helps to explain the counterintuitive

non-monotonicity of the utility-success rate curves in Figures 10 and 11: one would intuitively

expect success rate to increase when routers have access to more information. When utility is close

but not equal to 0, the first edges on routes are likely to turn into deadlocks, negatively impacting

success rate. If senders are aware of balances of neighboring channels, deadlocked channels can

become unlocked by being the first edge on a route. This prevents success rates from falling to 0,

but it is too small an effect to completely cancel the influence of deadlocks.
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Fig. 9. Scatter plot of true balance vs public balance on both ends of all channels in 200 parallel experiments.
Each point is plotted with a small deviation to demonstrate the number of overlapping points.

We consider two heuristic methods for alleviating deadlocks:

(1) Periodic Rebalancing. After everym global transactions (i.e., counted across the whole PCN), each

deadlocked channel resets its public balances evenly to (C
2
, C
2
), where C denotes channel capacity,

with probability 0.5. Otherwise, it remains deadlocked.

(2) Zero-valued Transactions. Introduce a new random process (e.g., Poisson) of 0-valued transactions,

whose endpoints are selected uniformly from the participating nodes. These 0-transactions are

subject to the same noise mechanism as regular transactions, and therefore update the public

balances with some probability. If the public balance on an edge is not updated to the true balance,

that edge’s balance is instead reset to (C
2
, C
2
).

Notice that neither of these heuristics affects the privacy guarantee or the utility of the noise

mechanism. Our privacy metric assumes a worst-case setting, where the initial public balances

before a transaction are the real balances, and our utility metric considers the public balance updates

from a single transaction. Hence, all the results from Sections 3 and 4 still apply. Nonetheless,

we are not suggesting these countermeasures are ready to be put to use. For example, Periodic

Rebalancing is difficult to deploy because in a decentralized distributed system, the nodes cannot

easily know how many transactions happened globally. But most importantly, both heuristics leak

balance information, introducing privacy drawbacks not captured by our metric. We leave analysis

of these drawbacks to future work.

Now, we wish to understand the effect of these heuristics on success rate for a given utility

and noise mechanism. Characterizing this theoretically is challenging, even for simple graphs like

complete graphs; as such, we turn to simulations, shown in Figure 10. Here, utility represents the

utility metric of all-or-nothing noise mechanism applied to the PCNs, which is defined in Section 3.

Success rate is estimated by the portion of successful transactions over the total number, 100,000.

At each utility point, these transactions are run on 50 parallel PCNs. Each channel is initialized

with 1 token on both sides, and each transaction is of value 1. We test 3 different random topologies:

1) Erdős-Rényi networks with 50 nodes and expected density log 50/50; 2) Erdős-Rényi networks
with 50 nodes and expected density 0.25; and 3) preferential attachment networks (Barabási-Albert

model). Initialized as a triangle, it has 47 new nodes inserted sequentially. Upon each insertion, the
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Fig. 10. Relations between our utility metric and success rate with and without deadlocks.

new node is attached to 2 existing nodes with probability proportional to the degree of existing

node. For simplicity, we denote the graph as BA(K3, 47, 2), where Kn denotes clique with n nodes.

Note that in these simulations, even without alleviating deadlocks, the success rate is not exactly

zero. This is partially because our simulations are limited in duration, and partially because nodes

are assumed to know the balances on their adjacent channels. Both of these properties violate the

assumptions in Theorem 5.1, but more realistically model a real PCN.

The solid curves and their error bars represent the means and the standard deviations of estimated

success rates over 50 parallel PCNs, respectively. The length of each error bar equals twice the

corresponding standard deviation. Figure 10 shows that both methods successfully alleviate the

effects of deadlocks, eliminating the drop in success rate due to deadlocks. After this correction,

our utility metric is monotonic in the success rate. Although this does not theoretically prove a

monotonic relation between utility and success rate in general, it does suggest that optimizing the

utility-privacy tradeoff as in Sections 3 and 4 is implicitly optimizing the relation between success

rate and privacy in practice. We explore this relation further in the next section.

6 SIMULATIONS
In the previous section, we have shown empirically that utility and success rate are monotonically

related when deadlocks are removed. We use this section to empirically investigate the tradeoff

between success rate and privacy in simulation. The purpose of these simulations is twofold: first,

we want to understand more carefully how the privacy-utility tradeoffs analyzed earlier translate

into a privacy-success rate tradeoff. Second, we want to understand the effects of network properties

not captured by our theoretical analysis, such as graph topology, transaction workload, and initial

capacity distribution.

Our simulator models the sequential processing of aworkload: a sequence of transactions, or tuples
consisting of a sender, a receiver, and a transaction value. To match behavior in real deployments,

each transaction is routed using shortest-path routing on the weighted graph, where routes are

determined from public balances. A transaction fails if either no route can be found, or if the user

tries a route whose true balances are insufficient to support the transaction. When a transaction

fails, we do not allow retries. In line with theorems 3.2 and 3.6, we use the all-or-nothing noise

schemeD = DN with optimal privacy-utility tradeoff (3.3). Hence, after each transaction, we update

all path balances with probabilityU (DN), drawn independently for each transaction. We compute

success rate by counting the fraction of successfully-processed transactions. Our theoretical results

suggest that one can trade some privacy for an equal amount of utility. The question is, when we
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sacrifice one unit of privacy for one of utility, does this translate into a gain of more than one unit

of success rate?

Privacy-success rate curves depend on many factors, including the choice of network, workload,

noise mechanism, and initial balance/capacity allocations. For each parameter setting, we generated

50 sets of networks and/or workloads in advance and ran each workload on its corresponding

network, with the appropriate noise mechanism. We plot the mean success rate and standard error

bars.

We looked into the effects of network structure, transaction value, workload size and network

size on performance. We focus on network structure in this section and defer the other factors to

Appendix B. We consider both synthetic and real network structures. For real network topologies,

we use a snapshot of the Lightning Network and its channel capacities measured on December

28, 2018. Its major connected component consists of 2,266 nodes and 15,392 channels, while channel

capacities vary from 1,100 to 16,777,216= 2
24

satoshis (1 satoshi = 10
−8

Bitcoin). For synthetic

structures, we use four different options with equal number of nodes and expected number of edges

to LND: 1) Erdős-Rényi graph with expected density 6.00 × 10
−3
. 2) BA(BA(K3, 113, 3), 2150, 7).

Recall that BA(init,n,m) denotes a random graph initialized as init, to which n new nodes are

added sequentially. On addition of each node, m new links to existing nodes are created. 3) A

star-like network based on the user-server model where the server network is BA(K140, 26, 137),
and each user is attached to a server with probability proportional to server’s degree. 4) An LND-

like network. It is initialized as BA(BA(K8, 75, 5), 965, 13), where degrees of nodes are relatively
high (≥ 5). Then, each low-degree node is inserted and attached to 1, 2, 3 or 4 high-degree nodes

uniformly at random. Eventually, it has equal number of nodes with degrees 1, 2, 3 and 4 to LND.

This network is chosen to support our hypothesis about connection between success rate and

number of low-degree nodes. We also explore the effects of varying network size in Appendix B.

In order to inspect the effects of topology, we set the capacity of every channel to be 1,000,

and uniformly allocated balances on both ends of each channel. For the transaction workload,

there is no canonical dataset available, so we uniformly and independently drew 2 nodes as the

sender and receiver of each transaction, with transaction values independently following a Pareto

distribution Ψ(1.16, 1000). We chose a Pareto distribution to make the transaction value distribution

heavy-tailed, and selected parameters corresponding to the Pareto principle. Ψ(β ,vm) has CDF

F (v) =
[
1 −

[
vm(β − 1)

βv

] β ]
· I

[
v ≥ vm(β − 1)

β

]
.

Random variableV ∼ Ψ(β ,vm) has mean E[V ] = vm . So our expected transaction value and channel

capacities equal 1,000 sat.

The privacy-success rate tradeoff curves with error bars are shown in Figure 11. The width of

error bars suggests a low standard error. Notice three trends:

Our first observation is the main takeaway message of this plot: given a privacy not close to
1, we have the success rate hierarchy User-Server < LND ≈ LND-like < ER ≈ BA, coin-
ciding with the reverse order of numbers of leaf nodes, which suggests a strong negative
correlation between them. This makes intuitive sense if we look into a specific leaf node in a

PCN. Let privacy be 0 (i.e., noise is not applied), and Alice be a leaf node in the PCN, who has no

tokens left on her only channel. We only consider transactions involving her, i.e., which she sends,

receives, or relays. As a leaf node, she can’t relay any transaction. Because she has no tokens, all of

her attempts to send tokens out will fail, unless another node sends tokens back to her, rebalancing

her channel. If she had a second channel, she would have more chances to successfully send tokens

out. In addition, she would be able to relay transactions, which makes more flexible her connectivity
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Fig. 11. Success rate-privacy curves on different network topologies. Success rate is the fraction of successful
transactions out of total 100,000, while “success rate in window” is the fraction out of 2,000 most recent
transactions.

to other nodes. This trend seems to remain when utility is not perfect, except when it’s close to

0 and deadlocks emerge with higher probability. Noticing the user-server model has the lowest

success rate curve, it is necessary for system designers to think of an addition trade-off between a

gain in privacy (as proved in Section 4.1) and a loss in success rate, if choice of topology is available.

Second, "success rate in window" on Figure 11(b) has only a slight difference from success rate

on Figure 11(a). Since the PCN is modelled as a Markov chain, both success rates will equal the

probability of success of a next random transaction, when the Markov chain reaches its stable state.

Naturally, the “success rate in window” taken from most recent 2,000 transactions could be an

estimator of success rate at some point in the future. So we may predict that the non-monotonicity

on Figure 11(b) will eventually appear on the success rate-privacy figure on Figure 11(a).

Third, on both sub-figures of Figure 11, if privacy is far enough away from 1, success rate

decreases as privacy increases; but on Figure 11(b), when privacy approaches 1, success rate may

increase along with privacy. This observation remains consistent with "original" curves in Figure 10.

However, noticing the "increase" phase is much less significant than in Figure 10, we may assume

deadlocks have much less effect on success rate of large-scale PCNs. Even without alleviation, a

monotonic relation between success rate and utility (or privacy, of all-or-nothing noise) can be

assumed.

Tradeoffs. Recall that one of our main goals was to understand if the one-to-one tradeoff of

privacy for utility extends to success rate. Figure 11 suggests that this is not the case. For example,

on the LND curve in Figure 11(a), if we start at today’s operating point of perfect privacy, one

must decrease privacy by 0.4 to gain 0.1 units of success rate. More generally, the curves in these

figures are convex with low curvature; sacrificing some amount of privacy gives disproportionately

small gains in success rate. This suggests that system designers must sacrifice significant amounts

of privacy to achieve meaningful improvements in success rate. In addition, it’s worth paying

attention to the non-monotonicity of “success rate in window” in Figure 11(b). With a sufficiently

large workload, one can always observe the decrease of success rate when privacy is sacrificed a

little from perfect level. Hence system designers should be wary of deploying a noise mechanism

that sacrifices only a little privacy; not only are the gains modest in theory, they can actually be

negative in practice, unless system designers deal with deadlocks.
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7 RELATED WORK
At a high level, our problem resembles privacy-preserving routing problems that have received

substantial attention over the years [6, 7, 9, 12, 14, 15, 17, 19, 26, 29, 36]; however, PCNs introduce

problem constraints that preclude the use of prior algorithms and analysis. For instance, early

systems for receiver-anonymous messaging transmitted messages to additional nodes to hide

the true destination [7, 19, 31]. This approach does not work in PCNs because messages are

literally money, so sending a payment to additional nodes multiplies the cost of the transaction

(the additional routing fees incurred by using longer paths are generally small in comparison).

In other work [12, 36], a message is routed to prevent an adversarial observer from guessing the

intended receiver prior to the message’s delivery. This problem formulation is incompatible with

PCNs, as all channel balances on the path are simultaneously updated only after a transaction has

cleared. Moreover, the main concern in PCNs is that an adversary can infer the endpoints of a path

after execution, not in an online setting. Finally, papers on source hiding in one-to-many broadcast

settings do not apply to the point-to-point routing of PCNs, which updates balances only on a

single path between two users [7, 14, 15].

Another relevant line ofwork analyzed the robustness of communication networks to adversarially-

chosen corrupted links [8, 20, 21]. Roughly, these formulations can be interpreted as computing the

worst-case success rate of a PCN following one or more adversarially-chosen transactions (though

they do not consider privacy at all). A key difference is that in [8, 20, 21], the adversary directly

corrupts a single edge at a time, whereas in a PCN, a transaction alters all the link balances in

its path, and successive transactions can amplify imbalance. This prevents the analysis in [20, 21]

from applying directly. However, this line of work suggests an interesting question: if one were to

add a single channel to a PCN to maximize throughput under worst-case workloads, what channel

should one add? This question is left for future work.

In parallel, PCNs have been increasingly studied by the academic community, typically focusing

either on privacy or on utility. To our knowledge, our work is the first to explicitly quantify tradeoffs

between privacy and utility in PCNs.

On the utility side, papers have primarily focused on improving the success rates of PCNs. This

is typically achieved through new routing mechanisms, which exploit ideas from the networking

literature, such as packet-switched routing, congestion control, and/or flow control [10, 32, 33]. Our

work differs in assuming source-routed transactions, both for analytical tractability and because

(almost) all existing implementations of PCNs today use source routing [2, 28]. Other recent utility

work has instead focused on related but orthogonal issues, such as ensuring liveness in PCNs

[25, 38] and rebalancing depleted channels [23].

On the privacy front, several papers have explored mechanisms for privacy-preserving PCN

transaction routing [24, 30]. There are two key differences between these papers and our work.

First, our adversary is a passive observer of the information publicly released to all participants,

whereas prior work like [9, 17, 24, 30] considers a corrupt relay node that is trying to learn the

destination of a transaction. Malavolta et al. [25] studied passive value privacy, or hiding the amount

of a transaction to a passive external observer; they also study active relationship anonymity, which
aims to hide the participants of a transaction to an active router. Our model is a combination of

these; it considers a passive observer that wants to infer the endpoints of a transaction. Hence, our

adversarial model is weaker than prior work in the sense that it sees less information than a router

node, but stronger in the sense that encrypting the destination of a transaction does not solve the

problem. Our results are already negative, so with a stronger active adversary, even worse tradeoffs

could emerge. Second, our privacy problem is fundamentally different from that addressed in prior

work. Because all network participants must be able to route transactions, encrypting transaction
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balances is not a viable solution; statistical noise is therefore more natural. The most closely related

work to ours ([25]) explicitly does not consider the problem of path selection, focusing instead on

how to execute transactions once a path is selected.

Notice that differential privacy (a common statistical privacy metric) is difficult to implement

in our setting [11]. For example, consider providing ε-local differential privacy on the source of a

transaction [22]. This would require that for any observed path trace Q and any pair of candidate

source nodes u,v ∈ V , it must hold that P[Q |s(P) = v] ≤ eεP[Q |s(P) = u]. To achieve this

condition, we would need to add noise to edges that are not involved in the transaction itself;

this adds significant overhead, both in terms of implementation and in terms of added noise. Like

differential privacy, our metric is worst-case; however, it does not require hiding the transaction

participants among all nodes in the graph.

8 DISCUSSION
In this paper, we have shown that for an important class of routing mechanisms (shortest-path

routing), it is not possible to obtain a good privacy-utility tradeoff by releasing noisy channel

balances in PCNs. The diagonal bound places an upper limit on the privacy-utility tradeoff obtainable

in practice, and it is tight for general graph topologies. Our theoretical results are backed by

simulations, which show that even if one considers a more complex end utility metric (i.e. success

rate), the tradeoff does not improve; in fact, it appears to worsen in some cases. For example, we

observe a new deadlocking phenomenon, by which channels end up severely imbalanced in one

direction, while the public balances are severely imbalanced in the other. These deadlocks are

impossible to revert for a transaction distribution with a minimum transaction value, such as the

Pareto distributions used in our simulations. In practice, the situation may not be so dire; small

transactions may be able to prevent the formation of total deadlocks. Another key observation is

that our privacy analysis considers a passive adversary. An active adversary, which is stronger,

could cause these tradeoffs to degrade.

Our findings suggest that network operators may not want to introduce noisy balance reporting

mechanisms to trade off privacy for utility. Starting from today’s operating point of perfect privacy,

a network would need to give up almost all privacy to obtain substantial gains in success rate. As

long as users use shortest-path routing, network operators may be better off choosing one extreme

operating point or the other: perfect utility or perfect privacy.

Despite these pessimistic conclusions, our analysis does not close the book on this issue. It may

be possible to obtain a more promising tradeoff by modeling the effects of concurrent transactions

and packet-switched routing, where transactions are split into smaller units and sent over different

paths. Packet-switched routing can cause transactions to flow over a much larger fraction of

network edges per transaction. This may have a similar effect to the long-path analysis in Section

4.2 of confusing the adversary regarding the endpoints of the transaction. Analyzing such routing

mechanisms is an important and interesting question for future work.
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APPENDIX
A PROOFS
We include proofs of the main results in this section.

A.1 Proof of Theorem 3.2
First, given that all routes are shortest paths, we prove the claim that there exists a unique pair of

source and destination nodes of any path trace Q ⊆ E. Let δ (u,v) denote the distance between any

pair of nodes u,v on the graph. Assume by contradiction that Q is a path trace from x to y, and
from z tow , where {x ,y} , {z,w}. By definition, there exist paths Pzw and Pxy , where

(1) The endpoints of Pzw are z andw ;

(2) The endpoints of Pxy are x and y;
(3) Q is a subset of both Pzw and Pxy .

As a result, both x and y are on path Pzw . Because Pzw is the shortest path connecting z andw ,

its segment connecting x and y is also the shortest path connecting x and y. Since {x ,y} is different
from {z,w}, we have δ (x ,y) < δ (z,w). By the same reasoning, we get δ (z,w) < δ (x ,y) from z,w
belonging to path Pxy , which is a contradiction. Therefore, any path trace Q ⊆ E with a source

has a unique source. So there exists a function s : 2E − {�} → V , mapping each path trace to its

source. Define s(�) < V .

To upper bound our privacy metric, we will analyze the privacy achievable by an adversary with

strategy AN, where

(1) If no edge is updated by the noise mechanism, the adversary guesses randomly, i.e.AN[v |�] =
1

n for all v ∈ V;

(2) If a set of edges Q , � is updated, the adversary estimates its source, i.e. AN[s(Q)|Q] = 1.

Let εs (P) denote the first edge of path P . By our privacy definition,

Π(D) = 1 − sup

A

min

P ∈P

∑
Q ⊆P
D [Q |P]A [∂P |Q]

≤ 1 −min

P ∈P

∑
Q ⊆P
D [Q |P]AN[∂P |Q]

= 1 −min

P ∈P


2D [�|P]

n
+

∑
Q :s(Q )=s(P ),Q ⊆P

D [Q |P]
 , (A.1)

where the last equality comes from splitting the adversary’s probability of success into random

guessing if no edges are updated, plus the probability of the noise mechanism revealing a path

trace that truthfully reveals the true source edge. Recall that A [∂P |Q] denotes the adversary’s
probability of guessing one of the endpoints of P upon observing path trace Q .

Because D[·|P] is a probability distribution, the following constraints hold.

D[�|P] +
∑

Q :s(Q )=s(P ),Q ⊆P
D[Q |P] ≤ 1;∑

Q :s(Q )=s(P ),Q ⊆P
D[Q |P] =

∑
Q :Q ∋εs (P ),Q ⊆P

D[Q |P] ≥ U (D),
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where the latter condition follows from the definition of utility. If we assume n ≥ 2, it follows that

for any P ,
2D [�|P]

n
+

∑
Q :s(Q )=s(P ),Q ⊆P

D [Q |P] ≥ 2

n
[1 −U (D)] +U (D).

By substituting it back to (A.1), we obtain

Π(D) ≤ 1 −U (D) − 2

n
[1 −U (D)],

which is equivalent to (3.1). □

A.2 Proof of Proposition 4.1
For path P ∈ P, let P̄ denote P excluding the user-server channels, if they exist. If the all-or-nothing

noise DN selects "nothing", then the adversary sees no update. Otherwise, the adversary will see P̄
instead of P in our original model analyzed in Section 3. By definition of privacy,

Π(DN) = 1 − sup

A

min

P

{
A[∂P |P̄]α + A[∂P |�] (1 − α)

}
= 1 − sup

A[· |P̄ ],A[· |�]
min

P

{
A[∂P |P̄]α + A[∂P |�] (1 − α)

}
(∗)
≤ 1 − sup

A[· |P̄ ],A[· |�]

[
α min

P
A[∂P |P̄] + (1 − α)min

P ′
A[∂P ′ |�]

]
= 1 − α sup

A[· |P̄ ]
min

P
A[∂P |P̄] − (1 − α) sup

A[· |�]
min

P ′
A[∂P ′ |�],

where the last line follows because A[·|P] and A[·|�] are independent. Because the network is

reachable, we may apply Lemma 3.5 and obtain

sup

A

min

P ′
A[∂P ′ |�] = 2

nS + nU
,

where the adversary reaches the supremum by choosing each node with equal probability when

it sees no balance update.

Now we compute supAminP A[∂P |P̄]. Since P̄ must be a path between server nodes, we let x ,y
denote them and define two sets

X ≜ {x} ∪ {v ∈ VU |J (v) = x} , Y ≜ {y} ∪ {v ∈ VU |J (v) = y} .
If x = y, then the transaction only goes through user-server channels and P̄ = �. The adversary

will see no update regardless of utility α , so random guessing with equal probability is the best

adversarial strategy. Now we assume x , y, and immediately X ∩ Y = �. The two endpoints of

P must lie in each of X and Y . Because A[·|P̄] is a probability distribution, for any A there exists

u ∈ X and v ∈ Y , where

A[u |P̄] + A[v |P̄] ≤ max

{
1

|X | ,
1

|Y |

}
.

By the properties of a user-server model, there exists a path Pu containing P̄ , and connecting u
and v . Hence, we have

sup

A

min

P
A[∂P ′ |P̄ ′] ≤ sup

A

A[∂Pu |P̄] ≤ max

{
1

|X | ,
1

|Y |

}
≤ 1

µ + 1
. (A.2)

Recall that AS was previously defined as AS[v |Q] = 1/(nS + nU ) for all v ∈ V , if Q = �. We

supplement this definition by defining it also in the caseQ , �. Recall that all-or-nothing noise DN

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 29. Publication date: June 2020.



29:26 Tang, et al.

is being used, and Q must be a shortest path on the server network (VS , ES ) from x ′
to y ′. Similar

to X and Y , we use the following notations.

X ′ = {x ′} ∪ {v ∈ VU |J (v) = x ′} , Y ′ = {y ′} ∪ {v ∈ VU |J (v) = y ′} .

Assume Z ′
is the set with fewer elements between X ′

and Y ′
. The strategy AS is defined as

followed.

AS[z |Q] =
{

1

|Z ′ | , if z ∈ Z ′,

0, otherwise.

It can be easily confirmed that AS can make every inequality in (A.2) tight, thus

sup

A

min

P
A[∂P |P̄] = 1

µ + 1
.

By substituting A = AS in both sides of (*), we also get an equality. Hence,

Π(DN) = 1 − 1

µ + 1
α − (1 − α) 2

nS + nU
,

which proves (4.1). □

A.3 Proof of Proposition 4.2
For path P ∈ P, let P̄ denote P excluding the user-server channels, if they exist. Furthermore, let

Q =
{
P̄
��P ∈ P

}
. By definition of privacy,

Π(DN)
= 1 − sup

A

min

P

{
A[∂P |P̄]α + A[∂P |�] (1 − α)

}
= 1 − sup

A[· |¬�],A[· |�]
min

P

{
A[∂P |P̄]α + A[∂P |�] (1 − α)

}
(∗)
≤ 1 − sup

A[· |¬�],A[· |�]

[
α min

P
A[∂P |P̄] + (1 − α)min

P ′
A[∂P ′ |�]

]
= 1 − α sup

A[· |¬�]
min

P
A[∂P |P̄] − (1 − α) sup

A

min

P ′
A[∂P ′ |�]

= 1 − α sup

A[· |¬�]
min

P
A[∂P |P̄] − 2

n
(1 − α)

= 1 − 2

n
(1 − α) − α min

Q ∈Q
sup

A[· |Q ]
min

P :P̄=Q
A[∂P |Q]. (**)

Note that by Lemma 3.5, supAminP ′ A[∂P ′ |�] = 2/n. Any adversarial strategy can achieve this

supremum by guessing uniformly at random when seeing no updates.

For a server node v , we define its cloud Cv as below.

Cv = {v} ∪ {u ∈ VU |(u,v) ∈ EU } .

Apparently, for all v ∈ ES , |Cv | ≥ µ + 1. Let x ,y ∈ VS where x , y. Since Cx and Cy are not

disjoint anymore, we define

Z = Cx ∩Cy , X = Cx − Z , Y = Cy − Z .

Apparently, X ,Y and Z are disjoint subsets with union Cx ∪Cy . In addition, x ∈ X , y ∈ Y . For
now, we assume |Z | ≥ 2, so that there exists a path whose both source and destination belong to Z .
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Because the network is reachable, there exists a pathQ on the server network (VS , ES ) connecting
x andy. In addition, for any x ′ ∈ Cx andy ′ ∈ Cy where x ′ , y ′, there exists a path P with endpoints

x ′,y ′, and containing Q . In this case, we have

min

P
AS[∂P |Q] = min {pX + pY ,pX + pZ ,pY + pZ , 2pZ } ,

where forW ∈ {X ,Y ,Z }, pW ≜ minv ∈W AS[v |Q]. Now obviously, the best adversary AS satisfies

for all x ′ ∈ X , y ′ ∈ Y , z ′ ∈ Z ,

(AS[x ′ |Q], AS[y ′ |Q], AS[z ′ |Q]) ≡ (pX , pY ,pZ ) .

Hence, to obtain AS[·|Q], we only need to determine the probabilities pX ,pY and pZ by solving

the following problem.

maximize min {pX + pY , pY + pZ , pZ + pX , 2pZ }
subject to |X | pX + |Y | pY + |Z | pZ = 1.

(A.3)

In order to deal with the minimum in the objective function, we discuss 4 cases.

Case 1: pZ ≤ pX ,pY . The objective function equals 2pZ , and

2pZ ≤ 2 (|X | pX + |Y | pY + |Z | pZ )
|X | + |Y | + |Z | =

2

|X | + |Y | + |Z | .

By taking pX = pY = pZ = 2/(|X | + |Y | + |Z |), the upper bound is attained. So in this case the

maximum equals 2/(|X | + |Y | + |Z |).

Case 2: pZ ≥ pX ,pY . The objective function equals pX + pY .

• If | |X | − |Y | | ≤ |Z |, we let t = (|Y | − |X | + |Z |) /(2 |Z |), which lies in [0, 1]. Then,

1 = |X | pX + |Y | pY + |Z | pZ
≥ (|X | + t |Z |)pX + [|Y | + (1 − t) |Z |]pY

=
|X | + |Y | + |Z |

2

(pX + pY ) .

So the maximum equals 2/(|X | + |Y | + |Z |), which is attained by taking pX = pY = pZ =
2/(|X | + |Y | + |Z |).

• If |Y | > |X | + |Z |, we have

1 = |X | pX + |Y | pY + |Z | pZ
≥ (|X | + |Z |)pX + (|X | + |Z |)pY .

The maximum equals 1/(|X | + |Z |), which is attained by taking pY = 0 and pX = pZ =
1/(|X | + |Z |).

• If |X | > |Y | + |Z |, analogously, the maximum equals 1/(|Y | + |Z |) with maximizers pX = 0

and pY = pZ = 1/(|Y | + |Z |).
To summarize, the maximum equals

max

{
2

|X | + |Y | + |Z | ,
1

|X | + |Z | ,
1

|Y | + |Z |

}
.
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Case 3: pX ≤ pZ ≤ pY . The objective function equals pX + pZ .

• If |X | > |Y | + |Z |,

1 = |X | pX + |Y | pY + |Z | pZ
≥ (|Y | + |Z |)pX + |Y | pZ + |Z | pZ .

This indicates maximum of pX + pZ equals 1/(|Y | + |Z |) by picking pX = 0 and pY = pZ =
1/(|Y | + |Z |).

• If |X | ≤ |Y | + |Z |,

1 = |X | pX + |Y | pY + |Z | pZ
≥ |X | pX + (|Y | + |Z |)pZ

≥ |X | + |Y | + |Z |
2

(pX + pZ ) .

The last line is obtained by using Chebyshev’s sum inequality, with conditions |X | ≤ |Y |+ |Z |
and pX ≤ pZ . So the maximum of pX + pZ equals 2/(|X | + |Y | + |Z |), which is attained at

pX = pY = pZ = 1/(|X | + |Y | + |Z |).
To summarize, the maximum equals

max

{
2

|X | + |Y | + |Z | ,
1

|Y | + |Z |

}
.

Case 4: pY ≤ pZ ≤ pX . Analogously, the maximum equals

max

{
2

|X | + |Y | + |Z | ,
1

|X | + |Z |

}
.

In general, the maximum may be simply expressed as below.

sup

A[· |Q ]
min

P
A[∂P |Q] = max

{
2

|X | + |Y | + |Z | ,
1

|X | + |Z | ,
1

|Y | + |Z |

}
. (A.4)

To attain it, the optimal adversarial strategy AS satisfies

(1) if | |X | − |Y | | ≤ |Z |, then for all v ∈ X ∪ Y ∪ Z , AS[v |Q] = 1/(|X | + |Y | + |Z |);
(2) if |X | > |Y | + |Z |, then for all x ′ ∈ X and v ∈ Y ∪ Z , AS[x ′ |Q] = 0, AS[v |Q] = 1/(|Y | + |Z |);
(3) if |Y | > |X | + |Z |, then for all y ′ ∈ Y and v ∈ X ∪ Z , AS[y ′ |Q] = 0, AS[v |Q] = 1/(|X | + |Z |).
It should be addressed that the above solution applies only when |Z | ≥ 2. For the case |Z | = 0,

we have Cx ∩Cy = � equivalently. Proof of Proposition 4.1 has shown that the maximum value

and the optimal strategy are actually compatible with (A.4). Hence, we only need to focus on the

case |Z | = 1. The analysis begins to fork at the problem formulation, because there will be no path

with both ends lying in set Z . So we need to modify (A.3) as followed.

maximize min {pX + pY , pY + pZ , pZ + pX }
subject to |X | pX + |Y | pY + |Z | pZ = 1.

(A.5)

After similar discussions, we can obtain the maximum

max

{
2

|X | + |Y | + |Z | ,
1

|X | + |Z | ,
1

|Y | + |Z | ,
1

|X | + |Y |

}
.

Because |Z | = 1 ≤ |X | , |Y |, both (A.4) and AS apply to this case. So we may regard them as a

general solution, without respect to the value of |Z |. Recalling µ is the minimum number of user
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nodes connected to any server,

max

{
2

|X | + |Y | + |Z | ,
1

|X | + |Z | ,
1

|Y | + |Z |

}
= max

{
2��Cx ∪Cy

�� , 1

|Cx |
,

1��Cy
��
}

≤ max

{
2

µ + 2
,

1

µ + 1
,

1

µ + 1

}
=

2

µ + 2
.

Now we go back to privacy. It’s easy to confirm that by substituting the supremum over A with

AS at both sides of (*), it turns into an equality. Following (**),

Π(DN) = 1 − 2

n
(1 − α) − α min

Q ∈Q
sup

A[· |Q ]
min

P :P̄=Q
A[∂P |Q]

≥ 1 − 2

n
(1 − α) − α min

Q ∈Q

2

µ + 2

=

(
1 − 2

n

)
(1 − α) + µ

µ + 2
α .

So the lower bound of privacy is justified. □

A.4 Proof of Theorem 4.4
Let ℓ = ⌊L/2⌋. Let P̄1 and P̄2 denote the "odd" group and "even" group of path P , respectively. We

define

Qi ≜
{
P̄i
��P ∈ P

}
, i ∈ {1, 2} ,

Z (v,Q) ≜
��{P ��v ∈ ∂P , Q ∈

{
P̄1, P̄2

}}�� .
The method to analyse Z (v,Q) depends on the parity of L.

Case 1: When 2 | L, we have Q1 = Q2 (because the graph is complete). For convenience and

consistency, we introduce some terminology that will be reused in the proof of Theorem 4.6. For

any path traceQ of P , it consists of several disconnected segments, where each segment consists of

one or more edges connected end to end (in the alternating noise scheme, each segment is only

one edge). Each segment has two end nodes and zero or more intermediate nodes. We call the end

nodes of a segment gray nodes, and the intermediate nodes are called white nodes. Again, in
the alternating noise scheme, there are no white nodes; we will use white nodes in the proof of

Theorem 4.6. The rest of the nodes in the network are called black nodes. Expressing these as

sets, we let дQ ,wQ and bQ denote the sets of gray, white and black nodes given path trace Q . An
example of segments and the aforementioned colors are shown in Figure 12.

For any path P under the alternating noise scheme, both P̄1 and P̄2 yield L = 2ℓ gray nodes and 1

black node. All nodes not on path P are always black nodes. If a gray node v is determined to be

one endpoint of P , then its status as a source or destination is determined too. In that case, the other

end must be a black node. So Z (v,Q) equals the number of ways to pick this black node, multiplied

by the number of ways to permute the remaining ℓ − 1 segments. If a black node v is determined to

be one end, it could be either a source or a destination. Then, Z (v,Q) equals the number of ways to

permute all ℓ segments, multiplied by 2, the number of ways to determine which end v is. That is,

Z (v,Q) =
{
(ℓ − 1)!(n − 2ℓ), v ∈ дQ ;
2ℓ!, v ∈ bQ .
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Case 2: When 2 ∤ L, the case is different because for all Q ∈ Q1, Q has ℓ + 1 edges, while for all
Q ∈ Q2, Q has ℓ edges. As a result, Q1 ∩ Q2 = �. For all Q ∈ Q1,

Z (v,Q) =
{
ℓ!, v ∈ дQ ;
0, v ∈ bQ .

For all Q ∈ Q2,

Z (v,Q) =
{
0, v ∈ дQ ;
2ℓ!(n − 2ℓ − 1), v ∈ bQ .

Define adversarial strategy AT as below. Note that AT[v |�] = 1/n for all v ∈ V . If balance

updates of the entire path P are visible, AT directly picks an end node of it, so for all P ∈ P,

AT[∂P |P] = 1.

(1) When 2 | L,

AT[v |Q] =


I[2L < n]

L
+
I[2L = n]

n
, v ∈ дQ ;

I[2L = n]
n

+
I[2L > n]
n − L

, v ∈ bQ .

(2) When 2 ∤ L,

AT[v |Q] =


I[Q ∈ Q1]
L + 1

, v ∈ дQ ;

I[Q ∈ Q2]
n − L + 1

, v ∈ bQ .

Based on calculations of Z (v,Q), it’s easy to confirm that

AT[·|Q] ∈ argsup

A[· |Q ]

∑
v ∈V
A[v |Q]Z (v,Q), ∀Q ∈ Q1 ∪ Q2.

Now we analyse privacy based on the following discussions.

(1) When α ≤ 1/2,
1 − Π(DT)
= sup

A

inf

P ∈P

{
αA[∂P |P̄1] + αA[∂P |P̄2] + (1 − 2α)A[∂P |�]

}
= α sup

A

inf

P ∈P

{
A[∂P |P̄1] + A[∂P |P̄2]

}
+
2 − 4α

n
(A.6)

(†)
≤ α

|P | supA

∑
P ∈P

{
A[∂P |P̄1] + A[∂P |P̄2]

}
+
2 − 4α

n

=
α

|P | supA

∑
Q ∈Q1∪Q2

∑
v ∈V
A[v |Q]Z (v,Q) + 2 − 4α

n
.

Note that (A.6) is obtained by Lemma 3.5, where AT[·|�] achieves the supremum. If we plug

A = AT into both sides of (†) by replacing the supremum, we get an equality. Hence, the left

side supremum of (†) is also achieved by AT. Therefore, we can calculate Π(DT) as followed.
(a) When 2 | L, let P ∈ P be arbitrary. In this case, both P̄1 and P̄2 have a gray end node and a

black end node. Hence,

Π(DT)

= 1 − α
(
AT[∂P |P̄1] + AT[∂P |P̄2]

)
− 2 − 4α

n
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= 1 +
4α − 2

n
− 2α

(
I[2L < n]

L
+ 2
I[2L = n]

n
+
I[2L > n]
n − L

)
= 1 − 2

n
−
(

2

min {L,n − L} − 4

n

)
α .

(b) When 2 ∤ L, let P ∈ P be arbitrary. Both end nodes are gray for P̄1 and black for P̄2. Hence,

Π(DT) = 1 − α
(
AT[∂P |P̄1] + AT[∂P |P̄2]

)
− 2 − 4α

n

= 1 +
4α − 2

n
− α

(
2I[P̄1 ∈ Q1]

L + 1
+
2I[P̄2 ∈ Q2]
n − L + 1

)
= 1 − 2

n
−
(

2

L + 1
+

2

n − L + 1
− 4

n

)
α .

(2) When α > 1/2, with probability (2α − 1), public balances of P are updated. Hence,

Π(DT)
= 1 − sup

A

min

P ∈P

{
(1 − α)AT[∂P |P̄1] + (1 − α)AT[∂P |P̄2]+
(2α − 1)AT[∂P |P]

}
= 1 − (2α − 1) − (1 − α) sup

A

min

P ∈P

{
AT[∂P |P̄1] + AT[∂P |P̄2]

}
.

Note that the supremum has been solved in the case α ≤ 1/2. So the results will be written

below directly.

(a) When 2 | L,

Π(DT) = (1 − α)
(
2 − 2

min {L,n − L}

)
.

(b) When 2 ∤ L,

Π(DT) = (1 − α)
(
2 − 2

L + 1
− 2

n − L + 1

)
.

The tradeoffs have been proved by the discussions above. □

A.5 Proof of Theorem 4.6
Let λ = L + 1 denote the number of nodes in the path. Define Q ≜ ⋃

P ∈P 2
P
, where 2

S
denotes the

class of subset of an arbitrary set S . Notice that the adversarial strategy A has only one constraint –

for every Q ∈ Q, A[·|Q] is a probability distribution over V , while A[·|Q1] is independent with
A[·|Q2] for Q1 , Q2. Hence, we can divide A into many separate distributions with a small sample

spaceV .

Beginning with definition of privacy, we use a trick of comparing minimum and mean.

Π(DI) = 1 − sup

A

min

P ∈P

∑
Q ⊆P
A[∂P |Q]DI[Q |P]

≥ 1 − sup

A

1

|P |
∑
P ∈P

∑
Q ⊆P
A[∂P |Q]DI[Q |P] (A.7)

= 1 − 1

|P | supA

∑
Q ∈Q

α |Q |(1 − α)L−|Q |
∑

P ∈P,P ⊃Q
A[∂P |Q]
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Fig. 12. A path and its path trace for i.i.d. noise. Gray nodes are the endpoints of a revealed segment; white
nodes are internal to a revealed segment; black nodes are not adjacent to any revealed edge.

≜ 1 −
∑
Q ∈Q

(n − λ)!α |Q |(1 − α)L−|Q |

n!
·

sup

A[· |Q ]

∑
v ∈V
A[v |Q]Z (v,Q).

(A.8)

(A.8) ended with substitution Z (v,Q) = |{P ∈ P|Q ⊆ P ,v ∈ ∂P}|. Since Q is a path trace of P ,
it consists of several disconnected segments, where each segment consists of one or more edges

connected end to end. Intuitively, a segment has two end nodes and zero or more intermediate

nodes. The end nodes of segments are called gray nodes, and the intermediate nodes are called

white nodes. The rest of the nodes in the network are called black nodes. Expressing these as

sets, we let дQ ,wQ and bQ denote the sets of gray, white and black nodes given path trace Q . An
example of segments and the aforementioned colors are shown in Figure 12.

The colors of nodes are decided byQ consisting of disconnected segments. AssumeQ has hQ ≥ 1

segments. Furthermore, let kQ denote the number of internal black nodes, i.e. the black nodes on
the original path. Relatively, external black nodes are the nodes out of the original path. Now the

number of white nodes equals λ − 2hQ − kQ and that of external black nodes equals n − λ. The
value of Z (v,Q) is discussed based on the color of v .

(1) If v is a white node, it could never be an end node of a path, so Z (v,Q) = 0 for all v ∈ wQ .

(2) If v is a gray node, we first deal with the case that v is a source node of some segment σ0,
where the other segments are denoted by σ1 through σhQ−1. Each original path with source

node v has a permutation of the rest L nodes, which is uniquely mapped to a combination of

the following options.

• Order of segments on the path. There are (hQ − 1)! ways to permute q1 through qn−1.
• Distribution of black nodes in the gaps between consecutive segments, or in the extension

of the last segment. There are

(
hQ + kQ − 1

kQ

)
different ways to distribute the slots for black

nodes.

• Permutation of black nodes filling into the slots. Without regard of the position of the slots,

there are (n − λ + kQ )!/(n − λ)! different permutations.

These options are independent of each other, so the multiplication rule applies. The analysis

for v being a destination node of a segment is identical. It follows that for all v ∈ дQ ,

Z (v,Q) =
(hQ + kQ − 1)!(n − λ + kQ )!

kQ !(n − λ)! . (A.9)
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(3) If v is a black node, we must assume kQ ≥ 1. We first deal with the case that v is a source

node of the path. Similarly we discuss the following options.

• Order of segments. There are hQ ! different orders.

• Distribution of the remaining kQ −1 slots for black nodes. There are
(
hQ + kQ − 1

kQ − 1

)
different

distributions.

• Permutation of black nodes filling into the slots. There are (n−λ+kQ −1)!/(n−λ)! different
permutations.

The analysis for v being a destination node is identical. Considering v could be both source

nodes and a destination nodes of different paths, for all v ∈ bQ ,

Z (v,Q) =


2(hQ + kQ − 1)!(n − λ + kQ − 1)!
(kQ − 1)!(n − λ)! , kQ ≥ 1;

0, kQ = 0.
(A.10)

Z (v,Q) depends only on the color of v , i.e. the set v belongs to. We may use Zд(Q) and Zb (Q) to
denote Z (v,Q) for an arbitrary v ∈ дQ and v ∈ bQ , respectively. Starting with the LP in (A.8),

sup

A[· |Q ]

∑
v ∈V
A[v |Q]Z (v,Q)

= sup

A[· |Q ]

Zд(Q)
∑
u ∈дQ

A[u |Q] + Zb (Q)
∑
v ∈bQ

A[v |Q]


= max

{
Zд(Q), Zb (Q)

}
=

(hQ + kQ − 1)!(n − λ + kQ )!
(n − λ)!kQ !

ψ (kQ ),

where

ψ (kQ ) =
{

1, kQ ≤ n − λ;
2kQ

n−λ+kQ , otherwise.

One of the maximizers AI of the LP could be written as

AI[v |Q] =


I[v ∈ дQ ]

2hQ
, kQ ≤ n − λ;

I[v ∈ bQ ]
n − λ + kQ

, otherwise.

Explicitly, when the adversary sees balance updates on path trace Q , it picks a color from gray

and black, and randomly chooses a node of that color. The choice of color depends on whether

kQ ≤ n−λ. Recall that kQ is the number of internal black nodes, and n−λ is the number of external

black nodes.

Let f (A, P) ≜ ∑
Q ⊆P A[∂P |Q]DI[Q |P]. Based on the symmetry of AI, it’s easy to confirm that

when substituting the supremum over A with AI in (A.7), it will make the inequality tight. Let U
denote the uniform distribution over P. Now we obtain

sup

A

min

P ∈P
f (A, P) ≤ sup

A

E
P∼U

f (A, P)

= E
P∼U

f (AI, P) = min

P ∈P
f (AI, P)

≤ sup

A

min

P ∈P
f (A, P).
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Hence, (A.7) is actually an equality, and

AI ∈ argsup

A

min

P ∈P

∑
Q ⊆P
A[∂P |Q]DI[Q |P].

This means AI is an optimal adversarial strategy for i.i.d. noise DI and current routing scheme.

The proof will be wrapped up with a final computation of Π(DI) based on the optimal AI. Since

minP ∈P f (AI, P) = EP∼U f (AI, P), for an arbitrary P ′ ∈ P,

min

P ∈P
f (AI, P) = f (AI, P

′).

Immediately,

Π(DI) = 1 −
∑
Q ⊆P ′

α |Q |(1 − α)L−|Q |AI[∂P ′ |Q]. (A.11)

Let vs and vd denote the source and destination of path P ′
, respectively. For a particular Q with

h ≥ 1 segments and k internal black nodes, we have |Q | = λ − h − k . Now we discuss the colors of

vs and vd , depending on Q .

(1) If both are black, then

AI[vs |Q] = AI[vd |Q] =
I[k > n − λ]
n − λ + k .

Because the path is given, the number of path traces with both black ends equals the number

of arrangements of slots for black nodes and white nodes. In this case, there are h + 1 gaps
for k − 2 black nodes, and h gaps for λ − 2h − k white nodes. Hence,��{Q ⊆ P

��vs ,vd ∈ bQ
}�� = (

h + k − 2

k − 2

) (
λ − h − k − 1

h − 1

)
.

(2) If vs is black and vd is gray, then

AI[vs |Q] =
I[k > n − λ]
n − λ + k , AI[vd |Q] =

I[k ≤ n − λ]
2h

.

Similarly, we find the number of path traces Q by finding the number of ways to put k − 1

slots of black nodes into h gaps, and λ − 2h − k slots of white nodes into h gaps. Hence,��{Q ⊆ P
��vs ∈ bQ ,vd ∈ дQ

}�� = (
h + k − 2

k − 1

) (
λ − h − k − 1

h − 1

)
.

(3) If vs is gray and vd is black, by symmetry,

AI[vs |Q] =
I[k ≤ n − λ]

2h
, AI[vd |Q] =

I[k > n − λ]
n − λ + k ,��{Q ⊆ P

��vs ∈ дQ ,vd ∈ bQ
}�� = (

h + k − 2

k − 1

) (
λ − h − k − 1

h − 1

)
.

(4) If both are gray, then

AI[vs |Q] = AI[vd |Q] =
I[k ≤ n − λ]

2h
,

��{Q ⊆ P
��vs ∈ дQ ,vd ∈ bQ

}�� = (
h + k − 2

k

) (
λ − h − k − 1

h − 1

)
.
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The case k < 2 is not specified as

(
M
N

)
= 0 whenM < 0 ≤ N .

After the above discussion, we may conclude that for a particular Q , its term in the summation

depends only on itsh,k and the color ofvS andvd . Therefore, the 2
λ
terms in the original summation

(A.11) are merged into Poly(n) terms as below.

1 − Π(DI) −
2(1 − α)L

n

=

⌊λ/2⌋∑
h=1

λ−2h∑
k=0

αλ−h−k (1 − α)h+k−1 ·
(
λ − h − k − 1

h − 1

)
· 2·{ (

h + k − 2

k − 2

)
I[k > n − λ]
n − λ + k

+

(
h + k − 2

k − 1

) [
I[k > n − λ]
n − λ + k +

I[k ≤ n − λ]
2h

]
+

(
h + k − 2

k

)
I[k ≤ n − λ]

2h

}
=

⌊λ/2⌋∑
h=1

λ−2h∑
k=0

αλ−h−k (1 − α)h+k−1 ·
(
λ − h − k − 1

h − 1

)
· 2·{ (

h + k − 1

k − 1

)
I[k > n − λ]
n − λ + k +

(
h + k − 1

k

)
I[k ≤ n − λ]

2h

}
=

⌊λ/2⌋∑
h=1

λ−2h∑
k=0

αλ−h−k (1 − α)h+k−1
(
λ − h − k − 1

h − 1

)
ψ (k)
h + k

(
h + k
h

)
=

λ−1∑
t=1

αλ−t (1 − α)t−1
t

min{t,λ−t }∑
h=1

(
t

t − h

) (
λ − t − 1

h − 1

)
ψ (t − h). (A.12)

(A.12) is the polynomial-time algorithm of computing Π(DI). The tradeoff relationships of

different settings of (n, λ) is shown in Figure 7. Because ofψ (t −h), the summation above is difficult

to simplify. Thus, we applyψ (t − h) ≤ 2 and provide a lower bound for privacy metric.

1 − Π(D) − 2(1 − α)L
n

≤ 2

λ−1∑
t=1

αλ−t (1 − α)t−1
t

min{t,λ−t }∑
h=1

(
t

t − h

) (
λ − t − 1

h − 1

)
= 2

λ−1∑
t=1

αλ−t (1 − α)t−1
t

(
λ − 1

t − 1

)
=

2

λ

λ−1∑
t=1

αλ−t (1 − α)t−1
(
λ
t

)
=

2

λ(1 − α)

[
1 − αλ − (1 − α)λ

]
.

The lower bound in (4.5) is justified. □
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A.6 Proof of Theorem 5.1
Recall that the PCN is run as a Markov chain. In 3 steps, we prove the success rate tends to 0 when

the Markov chain becomes stable after infinitely many transactions.

(1) There exists an absorbing state.
For an edge (u,v) with 0 ≤ b(u,v), ˜b(v,u) < ℓ, it’s impossible to route through this edge via

any direction. So we call it locked.
In G, we pick a set of edges E ′ ⊆ E and set them locked, such that in the (undirected)

graph G′ = (V, E − E ′), for any (u,v) that is possible to be chosen as the pair of sender and

recipient, u,v belong to different connected components. Note that such E ′
exists: E ′

could

be E, where all nodes are separated from each other.

(2) There’s a non-zero probability that any transient state is transitioned to an absorb-
ing state within finite steps.
In an transient state G0 (excluding locked edges), there exists a pair of nodes (u,v) which
are still connected via some path P. As assumed, there exists an edge ε ∈ P whose public

balance is not updated with probability at least β > 0. Assume it takes k1 transactions of
value ℓ to deplete ε on the direction to v . After this, it takes another k2 transactions of value
ℓ to deplete ε on the opposite direction. Assume probability of choosing (u,v, ℓ) and (v,u, ℓ)
are p1 and p2, respectively. Then the probability of locking ε after k1 + k2 transitions is at
least (αp1)k1 (βp2)k2 , which is positive.

Let G1 denote the new state after locking ε . Note that G1 has one fewer edge than G0. Since

the number of edges is finite, there’s a positive probability that G0 is transitioned to a state

where no pair of nodes is connected via a path of unlocked edges. In this case, no more edge

can be locked, and this is exactly an absorbing state discussed above.

(3) Success rate reaches 0 almost surely as T → ∞.
Apparently, in any absorbing state, no transaction sampled from the same distribution can

succeed. In this Markov chain, at least one absorbing state is reachable from any transient

state. Thus, almost surely, the PCN will be at an absorbing state after finite number of

transactions. Because such PCNs will no longer be able to support any transaction sampled

from the same distribution, the overall success rate is 0. □

B SIMULATION RESULTS
B.1 Transaction Value
In the experimental settings in Section 6, the value of every transaction followed a Pareto distribu-

tion Ψ(1.16, 1000). To study the curves for different transaction value distributions, we first selected

two typical network structures: Lightning Network and Erdős-Rényi network with the same size

and density. We also fixed the size of the workload to 3,000 transactions. We considered two

properties of transaction values: distribution type and expectation. The distribution types include

the uniform distribution from 0 to twice the expected value, and 3 different Pareto distributions

with β = 1.1, 1.16, 1.25. Their PDFs are plotted in Figure 16 (Appendix B). Figure 13 illustrates

the privacy-success rate tradeoffs for each of these experimental settings. Here, the “imbalanced”

curve in the top row refers to our approach for generating the endpoints of transactions; instead of

choosing the source and destination uniformly, we assign users a weight of 1 with probability 0.8

and 16 with probability 0.2. When generating transactions, we sample endpoints with probability

proportional to their weights. On average, 20% of the users hold 80% of the weight; this models the

imbalance observed in real financial transactions. These plots show that when the mean transaction

value increases, the success rate decreases. This is because we are keeping the capacity distribution

fixed, so larger transactions are more likely to fail. Similarly, using increasingly heavy-tailed Pareto
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transactions (smaller β) causes the minimum transaction value to decrease, which increases the

success rate. Although these plots illustrate some trends related to transaction value distribution,

the main takeaway is the fact that for a variety of transaction value distributions, the slope of

the privacy-success rate curves is shallow. Figure 11 also shows the slopes of curves are also not

decisively steep when the workloads are heavier. This implies that one cannot trade small losses
in privacy for large gains in success rate, or vice versa.

Fig. 13. Success rate-privacy tradeoffs for different transaction value distributions. The top row considers
Pareto-distributed transactions of different means; the bottom row considers different distributions with the
same mean.

B.2 Workload size
We next investigate the role of workload size by varying the number of transactions in our workload.

Figure 14 shows the average success rate as a function of privacy as we process from 1,000 to 100,000

transactions. The ER graph has a density of log(50)/50. More precisely, this experiment revealed

two unexpected phenomena: (1) for all privacy levels (including zero), success rate decreases as we

process more transactions. It is not obvious a priori why this should happen, as transactions are

generated uniformly at random between nodes; on average, transaction flows should be balanced.

(2) Success rate is not always monotonically decreasing in the privacy parameter. This phenomenon

is triggered by "deadlocks" introduced in Section 5. These deadlocks suggest that sacrificing a little

privacy can actually hurt average success rate in the long term. Hence system designers should be
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wary of deploying a noise mechanism that sacrifices only a little privacy; not only are the gains

modest in theory, they can actually be negative in practice, unless system designers deal with

deadlocks.

Fig. 14. Transaction workload size vs success rate.

Declining success rate over time. The declining success rates are partially due to the previously-

described deadlocks. However, we observe the phenomenon even at zero privacy, when deadlocks

cannot happen. The reason may be related to the formation of routing bottlenecks. Suppose a node
v receives many transactions until all of v’s neighboring channels are imbalanced, with most of

the balance on v’s side of the channel. In such a scenario, nobody can route through v: funds
cannot reach v , so it cannot relay money. Under randomized transaction workloads like ours, such

bottlenecks are theoretically recurrent; in practice, they can also occur if some nodes are popular

money recipients (e.g., merchants). The only way to break a bottleneck is for the bottlenecked

node(s) to send their own transactions out of the isolated zone. In a large network, the likelihood

of this happening for a uniform workload is small. Hence, the system may be bottlenecked for a

long time.

B.3 Network Size
To observe the effects of network size, the source and destination of each transaction are still drawn

uniformly, and the values of transactions still follow Pareto distribution Ψ(1.16, 1000). To generate

smaller versions of the Lightning network, we snowball sample the full-sized graph until reaching

the desired size. For each network size, we sample 100 networks, and the average density of both

Erdős-Rényi and LND networks are matched.
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Fig. 15. Privacy-Success rate tradeoff curves for different graph sizes.

The tradeoff curves are shown in Figure 15. When the size is small, there is high variance in

network topology of LND, which leads to high variance in success rates. As the network size

increases, the privacy-success rate tradeoff becomes insensitive to these variations. Moreover, we

observe that success rate increases. This may be because as more nodes are added, there are more

paths for transactions to traverse, which gives additional robustness to link imbalance.

B.4 Data distributions and workloads
Figure 16 illustrates the pdfs of the Pareto distributions used in our experiments. Notice that Pareto

distributions have a minimum transaction value, and are also heavy-tailed.

Fig. 16. Pareto distribution pdfs for different parameter settings.

Our experiments use a snapshot of the real Lightning network topology, illustrated in Figure 17.

The graph has many nodes of degree 1 or 2, with several large hubs that are well-connected. This

is qualitatively different from the synthetic ER graphs we also used in experiments.
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Fig. 17. Snapshot of the Lightning network topology from December 28, 2018. Node sizes are scaled propor-
tionally to their degree in the graph.
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