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Abstract
Evidence-based decision-making entails collect-
ing (costly) observations about an underlying phe-
nomenon of interest, and subsequently commit-
ting to an (informed) decision on the basis of accu-
mulated evidence. In this setting, active sensing is
the goal-oriented problem of efficiently selecting
which acquisitions to make, and when and what
decision to settle on. As its complement, inverse
active sensing seeks to uncover an agent’s prefer-
ences and strategy given their observable decision-
making behavior. In this paper, we develop an ex-
pressive, unified framework for the general setting
of evidence-based decision-making under endoge-
nous, context-dependent time pressure—which re-
quires negotiating (subjective) tradeoffs between
accuracy, speediness, and cost of information. Us-
ing this language, we demonstrate how it enables
modeling intuitive notions of surprise, suspense,
and optimality in decision strategies (the forward
problem). Finally, we illustrate how this formula-
tion enables understanding decision-making be-
havior by quantifying preferences implicit in ob-
served decision strategies (the inverse problem).

1. Introduction
Modeling decision-making processes is a central concern in
computational and behavioral science, with important appli-
cations to medicine (Li et al., 2015), economics (Clithero,
2018), and cognition (Drugowitsch et al., 2014). In evid-
ence-based decision-making, the agent first collects a series
of observations about an underlying phenomenon of interest,
then subsequently commits to an informed decision based on
the accumulated evidence. As popular examples, consider
the problems of hypothesis testing, medical diagnostics,
and employee hiring: In each case, the decision-maker first
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conducts acquisitions for information (i.e. hypothesis tests,
diagnostic procedures, and candidate interviews), the results
on which the final decision is then based (i.e. the selected
hypothesis, the declared disease, and the hiring decision).

In this context, active sensing is the goal-directed task of
selecting which acquisitions to make, when to stop gather-
ing information, and what decision to ultimately settle on.
Active sensing strategies have been studied for such appli-
cations as multi-hypothesis testing (Naghshvar et al., 2013),
sensory inference (Ahmad & Yu, 2013), and visual search
(Butko & Movellan, 2010). These are typically formulated
simply as sequential identification problems with an infinite
horizon—that is, of minimizing inaccuracies against a unit
sampling cost. However, for the general task of evidence-
based decision-making, two critical shortcomings bear em-
phasis—a lack of expressivity, and a need for specification.

First, any sufficiently realistic decision model must account
for the presence, endogeneity, and context-dependence of
time pressure. While deadlines are studied in Frazier et al.
(2008) and Dayanik & Yu (2013), they are external vari-
ables, and their settings are passive (i.e. sampling from a
single exogenous supply of information). This is unrealistic:
While lengthy aptitude tests may be more discriminative for
recruiting purposes, their grueling nature may also cause
more candidates drop out of the pipeline entirely. Simi-
larly, the probability of an adverse medical event that aborts
the diagnostic process depends on both the nature of the
test chosen (i.e. endogenous) and the underlying disease
itself (i.e. context-dependent). What we desire is a more
expressive framework capable of modeling such tradeoffs.

Second, even the simplest decision models suffer from a
need for specification. At a minimum, they require explicit
knowledge of the relative penalties of decision inaccuracies
and costs of acquisition. The need for complete specification

Problem Setting Decisions Acquisitions Outcomes

Hypothesis Testing Hypotheses Hyp. Tests Observations
Medical Diagnosis Diseases Diag. Tests Results
Cognitive Science Responses Perceptions Evidence
Sensory Inference Targets Fixations Sensations
Marketing & Sales Demographic Outreaches Engagements

Recruiting & Hiring Hire or Fire Interviews Assessments

Table 1. Applications and terminology in timely decision-making.
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Table 2. Comparison of models for timely decision-making. Our general framework accounts for the endogeneity (due to λ) and context-
dependence (due to θ) of time pressure, as well as differential costs of acquisition, deadline penalties, and preferences. 1 Ahmad & Yu
(2013), 2 Chernoff (1959), 3 Naghshvar et al. (2013), 4 Alaa & van der Schaar (2016), 5 Dayanik & Yu (2013), 6 Frazier et al. (2008). While
the second row of models incorporates (external) deadlines, they do not consider active sensing—the first only considers sampling from a
single stream, and the latter two only consider a passive supply of information, whence the problem readily reduces to optimal stopping.

Framework Accuracy of Decision Breach of Deadline Cost of Acquisition Time Pressure

Ahmad,1 Chernoff,2

Naghshvhar,3 etc.

∑
θ′ηa,θ′1{θ=θ′,θ 6=θ̂} - ηcτ P{δ = t} = 0

Alaa,4 Dayanik,5

Frazier,6 etc.

∑
θ′ηa,θ′1{θ=θ′,θ 6=θ̂,τ<δ} ηb1{τ=δ} ηcτ e.g.5 P{δ = t} = p(1− p)t

(Ours)
∑
θ′ηa,θ′1{θ=θ′,θ 6=θ̂,τ<δ}

∑
θ′ηb,θ′1{θ=θ′,τ=δ}

∑τ−1
t=0 ηc,λtcλt P{δ = t} = pθ,λt

∏t−1
t′=0(1− pθ,λt′ )

of (subjective) preferences severely dampens the practical
utility of any analysis. For instance, we expect doctors to
care much more about correctly diagnosing a lethal disease
than another condition that presents with similar symptoms.
Do they actually? By how much? Similarly, do recruiters
care more about identifying the best candidates, or simply
avoiding the worst at all costs? What we desire is a way to
perform inverse active sensing—that is, to uncover prefer-
ences that effectively underlie observed decision behavior.

Contributions. We tackle both challenges simultaneously.
In this paper, we first develop an expressive, unified frame-
work for decision-making under endogenous and context-
dependent time pressure. In this formulation, a decision-
maker is required to negotiate the subjective tradeoff be-
tween accuracy, speediness, and the cost of information.
Second, using this language, we demonstrate how it enables
modeling intuitive notions of surprise, suspense, and opti-
mality in decision strategies (the forward problem). Finally,
we illustrate how this formulation enables understanding
decision-making behavior by quantifying preferences im-
plicit in observed decision strategies (the inverse problem).

Implications. Decision-making behavior is heterogeneous,
and different agents are driven by different priorities. The
implications are clear: An expressive forward model allows
prescribing (optimal) decision-making in the presence of
subjective preferences, while an inverse procedure allows
describing (observed) decision-making in terms of prefer-
ences implicit among agents and institutions. In medicine,
some populations may be subject to less rigorous diagnostic
scrutiny than others (McKinlay et al., 2007), and test pre-
scriptions often skewed by financial incentive (Song et al.,
2010). The potential for detecting biases and quantifying
hidden priorities in decision systems offers a first step to-
wards a more methodical understanding of clinical practice.

2. Timely Decision-Making

First, we formulate the problem of timely decision-making
(Section 2.1), and derive the Bayesian recognition model for
an agent (Section 2.2). Next, we characterize optimal active
sensing strategies (Section 3.1), on the basis of which we
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Decision Agent Decision Behavior Decision Problem

Figure 1. Active sensing and inverse active sensing. Decision prob-
lems are characterized by their probabilistic dynamics (right), and
each instance is drawn from a known distribution (blue). Decision
agents are characterized by their strategy and preferences (left), and
maintain an internal representation according to a Bayesian recog-
nition model (red). When an agent is presented with a problem,
active sensing produces observable behavior (center). Conversely,
given an agent’s observed behavior with respect to a problem, in-
verse active sensing seeks to recover their preferences and strategy.

formalize and describe a solution for inverse active sensing
(Section 3.2). Figure 1 provides a high-level block-diagram.
NOTE: As a guide for anchoring our subsequent develop-
ments, see Figure 2 (on page 7) for a map of our key results.

2.1. Decision Problem

Let Θ give the space of decisions (e.g. possible diagnoses),
Λ the space of acquisitions (e.g. medical tests), and Ω the
space of outcomes (e.g. diagnostic results) of acquisitions.
We consider the setting where these spaces are finite, but
note that our analysis easily extends to continuous outcomes,
or distinct spaces of outcomes per test. Briefly, the goal of an
agent is to commit to a decision θ̂ ∈ Θ (e.g. issue an official
diagnosis) at some decision time σ ∈ N before a probabilis-
tic deadline δ ∈ N (e.g. complication of the underlying
disease). The active sensing challenge is in adaptively, se-
quentially choosing which acquisitions to perform, when to
stop gathering information, and what decision to settle on.

The outcome ω ∈ Ω of each acquisition λ ∈ Λ is a random
variable distributed according to the (stationary) generating
distribution qθ,λ(ω)

.
= P{ω|θ;λ}, where θ ∈ Θ is the un-

known latent multinoulli variable representing the correct
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decision (e.g. the true underlying disease). We assume that
{qθ,λ}θ∈Θ,λ∈Λ are known (e.g. the known power of each
medical test). Each λt conducted at time t ∈ N yields a cor-
responding outcome ωt+1 at the next step, and the outcomes
are conditionally independent over time. For brevity, let λ0:t

denote {λ0, ..., λt}, and analogously ω1:t for {ω1, ..., ωt}.
If the probabilistic deadline δ interrupts the trial, further
interaction is void. The deadline is a random variable dis-
tributed as P{δ = t} = pθ,λt

∏t−1
t′=0(1 − pθ,λt′ ) where

constants pθ,λ ∈ (0, 1) are specific to the acquisition λ (i.e.
endogenous) and latent variable θ (i.e. context-dependent).
This is in contrast to typical sequential identification mod-
els with either no deadline or external deadlines (see Table
2). We assume that {pθ,λ}θ∈Θ,λ∈Λ are known (e.g. the
known risks of complication for various diseases and pro-
cedures). The presence of time pressure is important—in
general decision-makers are not given an infinite window of
opportunity to ponder their options; moreover, more infor-
mative acquisitions are often riskier (e.g. more invasive).

Episodes and Risks. Each problem instance is drawn as
θ ∼ µ0 for some prior µ0. In the most general case, statistics
µ0 may be stratified by subpopulation (e.g. as a function of
patient demographics), or even as a learned mapping from
covariates. Here we simply take it that µ0 is known (e.g.
from medical experience or literature), and defer further as-
pects of modeling for later work. A decision episode is char-
acterized by the tuple (λ0:τ−1, τ, θ̂), where τ = min{δ, σ}
denotes the stopping time for the episode; note that θ̂ = ∅
should the deadline occur before a decision is registered.

Each episode is generated by a decision strategy π, which
produces—possibly stochastically—for each time t either
a (continuing) acquisition λt ∈ Λ or (terminating) decision
θ̂ ∈ Θ. Let cλ denote the immediate fixed cost of perform-
ing λ (e.g. the monetary expense of ordering a test), and
let coefficient vectors ηa ∈ R|Θ|

+
, ηb ∈ R|Θ|

+
, and ηc ∈ R|Λ|

+

respectively denote preference weights assigned to the im-
portance of deciding accurately (i.e. on the correct decision),
speedily (i.e. before the deadline), and efficiently (i.e. with
minimal cost). Then the loss function is given as follows:

`(λ0:τ−1, τ, θ̂; η) (1)
.
=
∑
θ′∈Θηa,θ′1{θ=θ′,θ 6=θ̂,τ<δ} / Accuracy of Decision

+
∑
θ′∈Θηb,θ′1{θ=θ′,τ=δ} / Breach of Deadline

+
∑τ−1
t=0 ηc,λtcλt / Cost of Acquisition

where we explicitly indicate dependence on η .
= (ηa, ηb, ηc).

Then risk associated with executing strategy π is given by:

L(π; η)
.
= Ep,q[`(λ0:τ−1, τ, θ̂; η)|µ0, π] (2)

where the expectation is taken with respect to problem dy-
namics p and q. Importantly, this gives the most flexible
framework: In addition to incorporating differential costs of
acquisition c ∈ R|Λ|

+
, the subjective penalties now depend

on both θ and λ (see Table 2). For instance, failing to cor-
rectly diagnose a relatively innocuous condition may incur
less damage than a lethal disease (viz. ηa); likewise, scaring
away a good candidate with tough interviews may entail a
larger sacrifice than losing a bad one to attrition (viz. ηb).

2.2. Beliefs and Information

In order to model and understand decision strategies, we first
describe an agent’s Bayesian recognition model for repre-
senting information. Note that this is not an assumption: We
are not effectively assuming that real-world decision-makers
indeed perform exact Bayesian inference—they most likely
do not; instead, we are simply deriving a compact (internal)
representation for use in describing their (external) behavior.

To this end, we highlight two implications of the endogene-
ity and context-dependence of time pressure. First, since
acquisitions are no longer independent from time-to-event
(i.e. survival), we cannot use the standard Bayes update as in
prior work (Proposition 1). Second, each step now conveys
two pieces of information: one from the acquired outcomes,
and another from the process survival itself (Proposition 2).

Proposition 1 (Sufficient Statistic) Let νt
.
= 1{δ>t} de-

note the survival process, with initial value ν0 = 1. Then
the posterior process µt ∈ ∆(Θ) is given by the following:

µt = (1−νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+ νtM(λt−1, µt−1, ωt))νt−1
(3)

where the continual updateM : Λ×∆(Θ)×Ω→ ∆(Θ) re-
turns a distribution assigning to element θ the probability:

(1− pθ,λt−1
)qθ,λt−1

(ωt)µt−1(θ)∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

(4)

and where the terminal update M̄ : Λ×∆(Θ)→ ∆(Θ) re-
turns a distribution assigning to element θ the probability:

pθ,λt−1
µt−1(θ)/

∑
θ′∈Θpθ′,λt−1

µt−1(θ′) (5)

Moreover, the sequence (µt, νt)
∞
t=0 is a controlled Markov

process, where the control inputs are the acquisitions λt.

Proof. Appendix C. �

This allows us to formally define decision strategies π as
maps from µt, νt into ∆(Λ∪Θ). However, the dynamics of
acquisition and survival are entangled here. The following
result separately identifies the two sources of information:

Proposition 2 (Active and Passive Information) The in-
formation gleaned from (costly) acquisitions and (costless)
observations of survival can be uniquely decomposed as:

µt = µ̃t + αt + βt (6)

where µ̃t is a martingale that captures information obtained
from the (actively) acquired results, the (continual) compen-
sator αt = A(µt−1, λt−1, νt−1, νt) (passively) incorporates
the bias from the ongoing process survival (where α0 = 0):
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αt(θ) = αt−1(θ)− µt−1(θ)νt−1νt
· (pθ,λt−1

− p̄µt,λt−1
)/(1− p̄µt,λt−1

)
(7)

and βt = B(µt−1, λt−1, νt−1, νt) is the (terminal) compen-
sator that analogously incorporates the bias from process
stoppage (where β0 = 0)—if the deadline were breached:

βt(θ) = βt−1(θ) + µt−1(θ)νt−1(1− νt)
· (pθ,λt−1

− p̄µt,λt−1
)/p̄µt,λt−1

(8)

where for brevity we denote the weighted average posterior
probability of failure p̄µt,λt−1

.
=
∑
θ′∈Θpθ′,λt−1

µt−1(θ′).

Proof. Appendix C. �

This is intuitive: Before the deadline, the posterior process
for any θ ∈ Θ behaves like a supermartingale whenever
the corresponding deadline risk pθ,λt−1

is greater than the
average p̄µt,λt−1

, and behaves like a submartingale where
it is less risky. Equality holds only if the deadline is exoge-
nous, whence we recover the classic sequential identification
setting where the posterior process is (always) a martingale.

3. Strategies and Preferences
Having formalized the decision problem and recognition
model, we are ready for the forward and inverse problems.
First, we consider optimal active sensing strategies (trans-
lating preferences into behavior). Our results then enable
inverse active sensing (inferring preferences from behavior).

3.1. Optimal Active Sensing

Two distinguishing characteristics of our timely decision
framework is that it requires active strategies, and that deci-
sions are made under time pressure. This is in contrast to
the (passive) settings in Dayanik & Yu (2013) and Frazier
et al. (2008) with only a single choice of acquisition, where
the decision problem readily reduces to optimal stopping.
This is also in contrast to the (infinite) decision horizons in
Ahmad & Yu (2013) and Naghshvar & Javidi (2011), where
optimal strategies are free from considerations of survival.

First, we characterize the optimal value function, and show
that it is unique and computable (Proposition 3). We then
describe the optimal choice between continuing and termi-
nating (Proposition 4). Finally, we interpret the risk-benefit
tradeoff underlying the optimal acquisition (Proposition 5).

To begin, observe that at each time t, we wish to minimize
the to-go component of risk, motivating the value function:

V π(µt, νt; η)
.
= Ep,q[`(λ0:τ−1, τ, θ̂; η)

|λ0:t−1, µt, νt, π]−∑t−1
t′=0 ηc,λt′ cλt′

(9)

for strategy π and preferences η. Now, it is tempting to im-
mediately identify the optimal value function V ∗(µt, νt; η)
with the fixed point of a dynamic programming operator.
However, similar to even the passive case of Dayanik & Yu
(2013), active sensing is not a discounted (nor fixed-horizon)

problem; further, the stopping time itself is an endogenous
(choice) random variable. Consequently, such an operator
is not necessarily contractive (hence the optimal value is
not necessarily unique or computable). Fortunately, we can
leverage the (almost surely) finite decision deadline, and the
following result assures us that these properties still hold:

Proposition 3 (Optimal Value) The optimal value func-
tion V ∗(µt, νt; η) is a fixed point of the operator B defined
over the space of functions V ∈ R∆(Θ)×{0,1}

+
as follows:

(BV )(µt, νt; η) =

min{inf θ̂′∈ΘQ̄θ̂′(µt, νt; η), infλ′t∈ΛQλ′t(µt, νt; η)} (10)

where the (continual) Q-factors for acquisitions quantify
the risk-to-go upon performing acquisition λt, given by:

Qλt(µt, νt; η) = (1− νt)V (µt, 0; η) + ηc,λtcλt

+ νtEp,q[V (µt+1, νt+1; η)|λt, µt, νt = 1]
(11)

and the (terminal) Q-factors for decisions quantify the risk
upon settling on the final choice of decision θ̂, given by:

Q̄θ̂(µt, νt; η) = (1− νt)
∑
θ′∈Θηb,θ′µt(θ

′)
+ νt

∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′)
(12)

Moreover, the operator B is contractive, and the optimal
value function is therefore the unique fixed point admitted.

Proof. Appendix C. �

As a result, we have that V ∗(µt, νt; η) is (uniquely) identifi-
able, and is (iteratively) computable via successive approxi-
mations. Now, the natural question becomes when to keep
collecting information, versus stopping and committing to a
decision. The following gives a geometric characterization:

Proposition 4 (Continuation and Termination) Denote
by mθ ∈ ∆(Θ) each vertex in the simplex, and let the
optimal aggregate Q-factor for continuation be given by:

Q∗(µt, νt; η)
.
= infλ′t∈ΛQ

∗
λ′t

(µt, νt; η) (13)

and likewise Q̄(µt, νt; η)
.
= inf θ̂′∈Θ Q̄θ̂′ (µt, νt; η). Then

Q∗ is a concave function with respect to µt, and moreover
takes on values strictly greater than Q̄ at every vertex mθ:

∀mθ : Q∗(mθ, νt; η) > Q̄(mθ, νt; η) (14)

Hence the termination set T is the (disjoint) union of |Θ|
convex regions delimited by the intersection of Q∗ and Q̄:

T (η) = {µt : Q∗(µt, νt; η) ≥ Q̄(µt, νt; η)} (15)

and contains each of the simplex vertices. Finally, the (pos-
sibly null) continuation set is its complement ∆(Θ) \ T .

Proof. Appendix C. �

In the passive setting (i.e. with a single acquisition choice),
we are done. For active sensing, the key question concerns
which acquisition to perform. Intuitively, we expect this
choice to be made with respect to some notion of maximal
information gain. Simultaneously, we also expect this to be
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balanced against the deadline risk associated with different
acquisitions. Again, this tradeoff is critical: An aggressive,
extensive email survey may be maximally informative for
marketing outreach, but may also be most likely to cause
recipients to unsubscribe from the campaign entirely; also
recall our earlier examples on candidate tests and interviews.

Negotiating Tradeoffs. The tradeoff between surprise (i.e.
information gain) and suspense (i.e. riskiness of actions)
has been explored in prior work on Bayesian reasoning in
economics (Ely et al., 2015) and in binary decisions with
samples from a single continuous stream (Alaa & van der
Schaar, 2016). We first formalize these notions appropri-
ately in the context of active sensing for timely decisions.

Two distinctions warrant attention: First, the informative-
ness of an acquisition must be timely (i.e. arriving before
the deadline). Now, the classical definition for the informa-
tiveness of an acquisition simply measures the difference
between the prior and expected posterior values for some
appropriate measure of risk or uncertainty (DeGroot et al.,
1962). While this notion of surprise readily applies to the
infinite-horizon setting (Naghshvar et al., 2013), here we
only care about informativeness while the process is still
alive: Realizing the correct decision after the opportunity
has closed carries no value for the original decision problem.

Second, here the riskiness of different choices of acquisi-
tions is subjective (i.e. weighted by an agent’s preferences).
Now, the notion of suspense is previously simply taken with
respect to the the posterior survival probability (Alaa &
van der Schaar, 2016). In the presence of preferences, we
now care about the preference-weighted survival function.

Formally, define Markov operator Mλt for any appropriate
measure of risk or uncertainty U : ∆(Θ)× {0, 1} → R+ :

(Mλt
U)(µt, νt) = (1− νt)U(µt, νt)+

νtEp,q[U(M(λt, µt, ωt+1), νt+1)|λt, µt, νt+1 = 1]
(16)

capturing the expected posterior value of U should the dead-
line not intercede, and simply returns the prior if the process
were already dead. Then we naturally have the following:

(Timely) Surprise. With respect to U : ∆(Θ) × {0, 1} →
R+ , the informativeness of any choice of acquisition λt in
reference to the statistic (µt, νt) is given by the following:

It(λt)
.
= U(µt, νt)
− (1− p̄µt,λt−1

)(Mλt
U)(µt, νt)

(17)

(Subjective) Suspense. With respect the importance param-
eters η, the preference-weighted posterior probability of
survival until after acquisition λt is given by the following:

St(λt)
.
= 1−

∑
θ′∈Θηb,θ′pθ′,λt

µt(θ
′)∑

θ′∈Θηb,θ′µt(θ′)
(18)

These generalized notions of surprise and suspense simply
inherit existing definitions while accounting for the presence
of time pressure and subjective preferences. In particular,

setting pθ,λ = 0 recovers the original (infinite-horizon) defi-
nition of information gain (Naghshvar et al., 2013), whence
the optimal strategy simply greedily maximizes information.
Likewise, setting ηb,θ = 1 recovers the original (preference-
free) definition of suspense (Alaa & van der Schaar, 2016).

We can now formally characterize the risk-benefit tradeoff,
highlighting the expressivity of our framework. It turns out
that the optimal acquisition λ∗t (i.e per the optimal strategy)
naturally strikes a balance between surprise and suspense:

Proposition 5 (Surprise and Suspense) When µt 6∈T (η),
the optimal acquisition directly trades off surprise and su-
spense (in addition to the immediate cost of acquisition):

λ∗t = arg supλt∈Λ h(It(λt), St(λt))− ηc,λt
cλt (19)

where h is increasing in It(λt) and St(λt), and the uncer-
tainty function for the information gain is taken as U = V ∗.

Proof. Appendix C. �

Depending on an individual’s preferences, this tradeoff au-
tomatically expresses a range of behaviors from “surprise-
optimal” to “suspense-optimal”. Note that this is absent in
passive settings such as Frazier et al. (2008) and Dayanik
& Yu (2013)—i.e. no choice of surprise; it is also absent in
settings with no deadline risk, such as Ahmad & Yu (2013)
and Naghshvar et al. (2013)—i.e. no element of suspense.

Finally, for completeness we also state the optimal decision
θ̂∗ when µt∈T (η). Immediately from Equation 12 for Q̄:

θ̂∗ = arg supθ̂∈Θ ηa,θ̂µt(θ̂) (20)

Together, this (decision) rule and (acquisition) rule of Propo-
sition 5 fully identify the optimal active sensing strategy.

3.2. Inverse Active Sensing

In the opposite direction, the inverse active sensing (“IAS”)
problem translates (observed) behavior back to (unobserved)
preferences. We should be precise with semantics: Neither
are we assuming that real-world agents indeed act a cer-
tain way, nor are we prescribing that they act optimally.
Instead, our objective is thoroughly descriptive: Based on
an agent’s behavior, what do they appear (ceteris paribus) to
effectively prioritize? For instance, what diseases are more
important to diagnose correctly, and which tests are being
over-prescribed? While actual behavior may not be induced
(explicitly) by conscious optimization with respect to pref-
erences (e.g. bounded rationality), we wish to understand
them in terms of what is—in effect—prioritized (implicitly).

Inverse Optimization. We approach IAS from an inverse
optimization (“IO”) perspective with multiple observations.
Broadly, IO deals with finding an objective function to best
explain a set of observations (Bärmann et al., 2017; Dong
et al., 2018), and is applicable to a wide variety of under-
lying problems. Specifically, an objective is determined by
a (fixed) parameter and a (variable) signal. Different sig-
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Table 3. Examples of inverse optimization problems with respect to various underlying settings. A generic formulation is shown for each
example category. 1 Bärmann et al. (2017), 2 Dempe & Lohse (2006), 3 Dong et al. (2018), 4 Keshavarz et al. (2011), 5 Heuberger (2004),
6 Krumke et al. (1998), 7 Yang & Zhang (1999), 8 Ahmadian et al. (2018), 9 Abbeel & Ng (2004), 10 Ziebart et al. (2008). Notation:
dimensions m,n, k indicate arbitrary, problem-dependent dimensions; G,D respectively denote graphs and digraphs with vertices V and
edges E; SG is the set of spanning trees of G and PD is the set of paths in D; φ are known basis features, and w their respective weights.

Framework Problem Class Objective Function Signal Parameter Response

Bärmann,1 Dempe,2 etc. Inverse Linear Optimization b>1 x,Ax = b2, x ≥ 0 A ∈ Rm×n b ∈ Rm+n x ∈ Rn

Dong,3 Keshavarz,4 etc. Inverse Convex Optimization f(a, b, x), g(a, b, x) ≤ 0 a ∈ Rm b ∈ Rk x ∈ Rn

Heuberger,5 Krumke,6 etc. Inverse Minimum Spanning Tree c>Aψ , ψ ∈ SG G = 〈V,E〉 c ∈ RE ψ ⊆ E
Yang,7 Ahmadian,8 etc. Inverse Integral Shortest Paths c>Aξ, ξ ∈ PD D; s, t ∈ V c ∈ RE ξ(s,t) ⊆ E
Abbeel,9 Ziebart,10 etc. Inverse Reinforcement Learning

∑∞
t=0 E[γtw>φ(St)] S0:T w ∈ R|Φ| A0:T

(Ours) Inverse Active Sensing E[`(λ0:τ−1,τ , θ̂; η)] 〈ω1:τ−1, µ0〉 η, ρ∈H×R 〈λ0:τ−1,τ , θ̂〉

nals induce different instances of the optimization problem,
hence different responses (i.e. solutions) from an optimiz-
ing agent. Given a collection of (observed) signal-response
pairs, we seek to infer the (unobserved) parameter. Table 3
sets out classic examples of this paradigm—along with IAS.
Three considerations drive our approach:

1. Uncertainty. Almost always, more than one configura-
tion will accord with observed behavior. In other settings
where the focus is typically on the would-be performance
of acting under the recovered objective, this is hardly an
issue. In contrast, our focus is on understanding drivers
of behavior, so extracting a single configuration is of lim-
ited utility. Ideally, we wish to work with a distribution.

2. Bounded Rationality. Instead of conditioning purely
on Bayes-optimal strategies, we may additionally con-
sider other well-studied objectives in behavioral litera-
ture—such as greedy look-ahead (Najemnik & Geisler,
2005) or information-maximizing (Butko & Movellan,
2010) strategies. We may even wish to compare how well
different classes of strategies describe observed behavior.

3. Imperfect Response. Even if we concede a known class
of strategies, observed responses are often imperfect due
to compliance, measurement noise, implementation er-
ror, and model uncertainty (Aswani et al., 2018; Esfahani
et al., 2018). We would like to account (probabilistically)
for the fact that the observed response to a signal may de-
viate from the perfect (i.e. objective-maximizing) choice.

Posterior Inference. We consider a Bayesian approach to
IAS; this accommodates [1]. Compacting notation, first let
λ̃t ∈ Λ ∪ Ω denote either λt (prior to stopping) or θ̂ ∈ Ω.
Likewise, let ω̃t ∈ Ω ∪ {∅} indicate ωt or ωτ = ∅. Then

D .
= {(λ̃n,t, ω̃n,t+1)τn−1

t=0 }Nn=1 (21)
denotes a collection of acquisitions and outcomes, with
decision episodes indexed n ∈ {1, ..., N}. Let π be drawn
from some prior P{π} over the space of strategies P . Then

Pp,q{π|D}= Pp,q{D|π}P{π}∫
P
Pp,q{D|π}dP{π} (22)

is the posterior over strategies—given the observed decision
behavior. Next, we specify what each strategy π consists in.

Behavioral Strategies. Most of the time, what we aim to do
is inverse optimal active sensing (cf. inverse optimization)
—that is, to locate preferences most consistent with an agent
making Bayes-optimal acquisitions. But what if we want
to accommodate a different criterion? Humans may act my-
opically (e.g. greedy lookahead), pursue approximate goals
(e.g. infomax), or simply follow rulebooks (e.g. attribute-
wise scoring schemes common in hiring and medical set-
tings). For this, we need the notion of generalized Q-factors.

Let a strategy be characterized by its set of (not necessarily
Bayes-optimal) factors {Qκλ :∆(Θ)×{0, 1}→R+}λ∈Λ, wh-
ere κ identifies the sensing criterion; this accommodates [2].
Denote with Q̃κλ̃ either Qκλ or Q̄θ̂; so Q̃κλ̃t

(µt, νt; η) encodes
the desirability of λ̃t under µt, νt given η. For instance, the
greedy look-ahead criterion (“GL”) simply corresponds to:

QGL
λt

(µt, νt; η)
.
= ηc,λtcλt + g(ηd) +

Ep,q[Q̄(µt+1, νt+1; η)|λt, µt, νt]
(23)

where g is some function of decision-threshold parame-
ters ηd∈R|Θ|+

, and here η .
= (ηb, ηc, ηd). As an arbitrary

functional of η, we can likewise encode any criteria of
choice, such as infomax QIM

λ by way of (weighted) entropy,
and (of course) the Bayes-optimal case Q∗λ. Given some
Q̃κ

.
= {Q̃κλ̃}λ̃∈Λ∪Θ, we consider the Boltzmann behavioral

strategy with inverse temperature ρ; this accommodates [3]:

πκρ (λ̃t|µt, νt; η)
.
=

exp(−ρQ̃κλ̃t
(µt, νt; η))∑

λ̃′t∈Λ∪Θexp(−ρQ̃κλ̃′t(µt, νt; η))
(24)

Formally, then, a strategy π is specified by (κ, η, ρ). If we
restrict our attention to known classes κ ∈ {GL, IM, ∗, ...},
then the prior P{π} is equivalently captured by P{κ, η, ρ}=
P{κ}P{η|κ}P{ρ}. (The conditioning on κ accommodates
a single global space of preference weights for different κ).

Now, D depends on the dynamics of both the decision prob-
lem and recognition model. However, the latter involves no
uncertainty (we impose a Bayesian recognition model), and
the former simply drops out when evaluating the posterior:

Proposition 6 (Strategy Posterior) The posterior P{π|D}
over P (Equation 22) satisfies the following proportionality:
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P{πκρ (...; η)|D} ∝ P{κ}P{η|κ}P{ρ}
·∏N

n=1

∏τn−1
t=0 πκρ (λ̃n,t|µn,t, νn,t; η)

(25)

where µn,t is recursively computed via update M , νn,t=1

prior to stopping, and πκρ (...; η) is defined as in Equation 24.

Proof. Appendix C. �

Note that setting P{κ} as the Dirac delta centered on the
Bayes-optimal criterion recovers the case of inverse optimal
active sensing; this is the formulation presented in Table 3.

Maximum A Posteriori. Seeking the MAP estimate effec-
tively reduces IAS to a (posterior) optimization problem. Let
H=Rd denote the d-dimensional (global) space of η, andK
the space of κ. Then the MAP estimate is given as follows,
where LSE[ · ] denotes logsumexp and P .

= K×H×R:

argmax
(κ,η,ρ)∈P

{
logP{k} − logP{η |κ} − logP{ρ}
−∑N

n=1

∑τn−1
t=0

(
ρQ̃

κ
λ̃n,t

(µn,t, νn,t; η)

+ LSEλ̃′n,t∈Λ∪Θ[−ρQ̃κλ̃n,t
(µn,t, νn,t; η) ]

)} (26)

Given some (finite) set of known κ’s, we can simply com-
pute the MAP for each (overH× R), then compare over K
using P{κ}. This can be done via standard gradient methods
or numerical optimization. Using Bayes-optimal strategies,
it is easy to show differentiability with respect to η and ρ:

Proposition 7 (Differentiable Posterior) Assuming diffe-
rentiable priors P{η |∗},P{ρ}, the posterior P{η, ρ|∗,D}
for optimal strategies is differentiable (almost everywhere).

Proof. Appendix C. �

Sampling from Posterior. Instead of a point estimate, we
can generate samples from the posterior for each κ. MCMC
sampling is common in inverse problem settings (Ye et al.,
2019; Bardsley & Fox, 2012; Ramachandran & Amir, 2007).
We perform geometric random walks over coordinates of a
lattice inH× R (Frieze et al., 1994; Applegate et al., 1990)
to yield samples from posterior P{η, ρ|κ,D} (Algorithm 1).
Consider a discrete subset L of Rd+1 comprising coordi-
nates that are integer multiples of a chosen resolution. The
algorithm simply tries to move to one of its neighbors N at
each step, with acceptance ratios determined by posteriors.

Algorithm 1 Posterior Sampler for IAS

1: Input: Decision behavior D and priors P{η |κ}, P{ρ}
2: Randomly select (η, ρ)0 ∈ L
3: Q̃0 ← ActiveSensing(κ, η0)
4: for i = 1, ... do
5: Randomly select (η, ρ)′ ∈ N ((η, ρ)i−1) . neighbor
6: Q̃′ ← ActiveSensing(κ, η′)
7: R← P{(η, ρ)′|κ,D}/P{(η, ρ)i−1|κ,D}
8: w.p. min{1, R} do (η, ρ)i ← (η, ρ)′ . accept
9: otherwise (η, ρ)i ← (η, ρ)i−1 . reject

10: Output: Estimate of posterior P̂{η, ρ|κ,D}
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Proposition 4
Proposition 5

Equation 20

Proposition 3

Proposition 6
   MAP

 

 Proposition 7

   MCMC
 

 Algorithm 1

Figure 2. Active sensing and inverse active sensing (redux). For-
ward direction shown in clockwise solid, and inverse in purple
dashed. Using a Bayesian recognition model (Propositions 1–2),
the optimal value is computable (Proposition 3) via dynamic prog-
ramming to obtain the optimal strategy (Propositions 4–5, Equation
20). In IAS, the strategy can be inferred (Proposition 6) via MAP
estimation (Proposition 7) or via MCMC sampling (Algorithm 1).

In a nutshell, we summarize the entire framework by harking
back to Figure 1. We now have all the tools for IAS: Figure
2 shows a map of our key developments in both the forwa-
rd (clockwise solid) and inverse (purple dashed) directions.

4. Illustrative Examples
We show archetypical examples that exercise our framework
through numerical simulation. Examples 1–2 give intuition
for optimal active sensing, and 3–5 exemplify potential
applications of IAS. Due to space limitation, commentary is
necessarily brief; Appendix A gives more context and detail.

Example 1 (Ternary Hypothesis) We first give geometric
intuition for the forward problem—exercising Propositions
4–5 and Equation 20. Consider the ternary hypothesis space
Θ = {θ1, θ2, θ3}, where the decision-maker is equipped
with unary tests λ1, λ2, λ3 (each probabilistically confirm-
ing or denying an individual hypothesis) and binary tests
λ12, λ23, λ13 (each probabilistically distinguishing between
pairs of hypotheses). Figures 3(a)–(d) depict the output
of (optimal) active sensing (by dynamic programming, cf.
Proposition 3) in the posterior simplex, showing the relation-
ships among Q-factors and their intersections, acquisitions
and decisions, as well as continuation and termination sets.

Example 2 (Decision Tree) We illustrate belief trajecto-
ries for a common class of decision problems. Con-
sider a medical diagnosis setting where the disease space
Θ = {θ1, θ2, θ3, θ4} is arranged in a hierarchy, and where
the diagnostic agent has access to a (top-level) test λ0 that
(probabilistically) distinguishes between the groups {θ1, θ2}
vs. {θ3, θ4} (and are otherwise uninformative), and (level-2)
tests λ12 and λ34 that respectively (probabilistically) distin-
guish between θ1 vs. θ2, and θ3 vs. θ4 (and are otherwise un-
informative). Figures 3(e)–(g) visualize episodes for differ-
ent cost-sensitivity preferences ηc, as well as verifying our
intuition that the optimal strategy navigates down the tree.
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(a) Q-factors for Decisions
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(c) Continue vs. Terminate
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(d) Acquisitions vs. Decisions

Figure 3. Optimal active sensing. Posterior simplex (before deadline) for Example 1. (a) Aggregate Q-factor for decisions, cf. Equation
20. (b) Intersection of aggregate Q-factors for acquisitions and decisions, cf. Proposition 4. (c) Continuation and termination sets; the
latter comprises convex regions around vertices, where Q∗ ≥ Q̄; the former is its complement. (d) Complete strategy map; continuation
and termination sets are partitioned into individual acquisition and decision regions, cf. Proposition 5, Equation 20 (continued on page 9).
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MAP Estimate: (0.25, 0.70)

Posterior Mean: (0.27, 0.73)

Ground Truth:  (0.25, 0.75)

P
os

te
ri

or
 P

ro
ba

bi
lit

y

(a) Recovering Distribution of Preferences
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(b) Comparing Distributions of Preferences
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(c) Understanding Effective Preferences

Figure 4. Inverse active sensing. (Relevant dimensions of) posteriors P{η, ρ|∗,D} for Examples 3–5 (cf. Proposition 6). Each distribution
is generated as 1000 MCMC samples, cf. Algorithm 1; MAP estimates are per Equation 26. N = 300 episodes are simulated for optimal
softmax agents in (a) and the (biased) “individual” agent in (b), and N = 1000 for the (unbiased) “population” agent in (b); a greedy
lookahead softmax agent (N = 300) is used in (c). Uniform priors P{η|∗} and P{ρ} are employed in all instances (continued on page 9).

Example 3 (Differential Importance) We show an arche-
typical application of IAS in recovering preferences from be-
havior—exercising Propositions 6–7 and Algorithm 1. Con-
sider a preoperative testing problem, where the aim is to con-
firm (θ1) or deny (θ2) the absence of comorbidities that may
complicate surgery. Given the downside risk, we certainly
hope to verify that Type I errors are taken more seriously
than Type II (i.e. accuracy weights ηa,θ2 > ηa,θ1 ). Suppose
that (unbeknownst to us) this is true in practice: we simulate
a random collection D of decision episodes for a Bayes-
optimal softmax decision agent driven by ηa = (0.25, 0.75).
Figure 4(a) depicts the output of our MAP and MCMC solu-
tions, showing (relevant dimensions of) recovered estimates
for optimal softmax strategies, along with the true weights.

Example 4 (Differential Treatment) We highlight the ap-
plicability of IAS in comparing preferences across different
agents or populations. Consider the problem of detecting
the phenomenon of prescription bias with respect to two dif-
ferent diagnostic tests (λ1, λ2) for the same disease. Absent
bias, by definition it must be the case that all ηc,λ take on
identical values. Suppose that (unbeknownst to us) one hos-
pital secretly favors λ1 (ceteris paribus) more than λ2, unlike
the rest of the hospital network; we simulate episodes for
each accordingly. Figure 4(b) shows (relevant dimensions
of) the output of Algorithm 1 and Equation 26—for both the
institution in question and the population (of other institu-

tions). The former’s bias in favor of λ1 (i.e. with cost-sen-
sitivity weights ηc,λ1

<ηc,λ2
) is evident, in contrast with the

(apparently) unbiased behavior of the latter (ηc,λ1
≈ηc,λ2

).

Example 5 (Effective Preferences) Finally, we give an ex-
ample that emphasizes the interpretative nature of IAS. Con-
sider an agent who (unbeknownst to us) behaves myopically
(cf. greedy lookahead), with a higher decision-threshold
parameter for one hypothesis (i.e. ηd,θ1<ηd,θ2). Now, if
we were just interested in the generic question of what best
describes their behavior, we would simply run IAS across
the entire space P—including all classes κ of interest. In
this case, for instance, we would—unsurprisingly—recover
some configuration (GL, η, ρ) as MAP estimate. But suppose
we are actually interested in interpreting their behavior as if
they were optimal with respect to some preferences (which
we wish to identify). We are now asking the question: No
matter what your internal decision-making processes are,
what are you effectively prioritizing? For instance, if the
medical consensus is that λ1 is more important to catch than
λ2, then recovering the effective values of η a (via κ = ∗)
would give an immediate assessment of this. Figure 4(c)
shows (relevant dimensions of) our IAS output on the (greed-
ily) simulated decision episodes, where we find (ceteris
paribus) that thresholds ηd,θ1 < ηd,θ2 effectively translate
into accuracy weights η a,θ1 > η a,θ2 , which (in this case)
accords—at least ordinally—with the medical consensus.
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(f) Typical Belief Trajectory
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(g) Typical Belief Trajectory with Lowered ηc

Figure 3. Optimal active sensing (continued from page 8). Example 2 considers a medical diagnosis setting with diseases θ1, θ2, θ3, θ4

arranged in a hierarchy (e)—each λ (probabilistically) distinguishes between its child elements. Intuitively, we expect that the optimal
strategy navigate down the decision-tree, sequentially going from high-level tests to low-level tests before declaring specific diagnoses.
Figure (f) shows a typical belief trajectory for the optimal strategy computed; observe from its decision-behavior that it indeed successively
narrows down the space of hypotheses through the tree. Figure (g) additionally shows the effect of uniformly decreasing the cost-sensitivity
parameter ηc—as expected, the optimal strategy can now afford to “double-check” each test result before committing down each branch.
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(d) Preference Weights and Posteriors
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(f) Preference Weights and Average Risk

Figure 4. Inverse active sensing (continued from page 8). For additional visual intuition, (d) computes the (log un-normalized) posterior in
relation to (relevant dimensions of) the space of preferences η for Example 3; we observe (as expected) that the posterior is maximized at
values that coincide with the ground truth. Similarly, (e) shows the (log un-normalized) posterior in relation to the inverse temperature ρ
in the context of Example 3; here we explicitly simulate a range of ground-truth values and observe (as expected) that the posterior is
maximal along the 45◦ line (to make this clearer, we standardize all probabilities along this line). Finally, in (f) we observe (as expected)
that the (Bayes-optimal) strategy induced by the true parameters is in fact the strategy that achieves the lowest average (ground-truth) risk.

Discussion. In this work, we developed a unified theoreti-
cal framework for evidence-based decision-making under
time pressure, illustrating how it enables modeling intuitive
tradeoffs in decision strategies, and understanding behavior
by quantifying preferences implicit in observed strategies.

In modeling the forward problem, our formulation of ac-
tive sensing inherits several assumptions from prior liter-
ature (Ahmad & Yu, 2013; Alaa & van der Schaar, 2016;
Chernoff, 1959; Dayanik & Yu, 2013; Frazier et al., 2008;
Naghshvar et al., 2013)—that the spaces of decisions, ac-
quisitions, and outcomes are given; that the distributions
of deadlines, outcomes, and problem instances are known
or must be appropriately estimated beforehand; and that
the outcomes of acquisitions are conditionally independent
over time—which is not always true depending on the type
of acquisition in question, and is a shortcoming of this ap-
proach that requires extra care in practical applications. On
the other hand, our framework departs from prior work by
way of expressivity and specification—in accounting for
the presence, endogeneity, and context-dependence of time
pressure; in accommodating differential costs of acquisition
and penalties for inaccuracies and deadline breaches; and
in modeling preference weights directly via behavioral data

without prior specification. Where need be, note that it is
possible for future work to generalize the present approach
to continuous outcome spaces, or disjoint outcome spaces
Ωλ per acquisition; to incorporate learnable mappings from
instance-specific features x to priors µ0(x); and to allow
unknown environment parameters to be jointly estimated (al-
though complexity may be of concern in high dimensions).

In approaching the inverse problem, we inherit a data-driven
formulation of inverse optimization—i.e. where solutions
to multiple problem instances are observed (Aswani et al.,
2018; Bärmann et al., 2017; Dong et al., 2018; Esfahani
et al., 2018). Further, our Bayesian method is similar to prior
approaches in inverse problems settings (Bardsley & Fox,
2012; Ramachandran & Amir, 2007; Ye et al., 2019), and the
posterior sampler bears resemblance to a Bayesian solution
to inverse optimal control (Abbeel & Ng, 2004), which anal-
ogously adapts geometric random walks to the underlying
parameter space. The complexity of Algorithm 1 is there-
fore identical; it has been shown that such a Markov chain is
rapidly-mixing (i.e. sampling terminates in a polynomially-
bounded number of steps) under some assumptions (Ra-
machandran & Amir, 2007; Applegate et al., 1990). For a
more detailed survey of related literature, see Appendix B.
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A. Notes on Simulations
Context for Example 1. Propositions 4–5 and Equation 20
give a theoretical characterization of optimal active sens-
ing. The aim of this example is to visualize the geometry
of the forward problem in the simplex, illustrating these
various results through a non-trivial example. In addition
to the main points to note in the captions to Figures 3(a)–
(d), in this example we set ηa,θ1<ηa,θ2<ηa,θ3 and likewise
ηb,θ1<ηb,θ2<ηb,θ3 , where ηa,θ<ηb,θ for all θ (as is often the
case—for medical diagnosis, for instance—failing to make
a decision before the deadline is at least as bad as making
the incorrect decision); observe that this preference ordering
among the hypotheses is reflected in the termination regions
in Figure 3(c): The optimal strategy most readily commits
to θ3 since it is the most important to catch, whereas it can
afford to be surer of θ1 before committing to it. Finally,
note that Proposition 5 operates implicitly behind Figure
3(d): In this example, we set punary, qunary and pbinary, qbinary
such that the former are more powerful but more risky, and
the latter are less powerful but less risky, which induces a
surprise-suspense tradeoff; note that increasing the power
(or decreasing the risk) of unary tests would naturally ex-
pand the (inner) acquisition regions or λ1, λ2, λ3 relative
to λ12, λ23, λ13, and vice versa in the opposite direction.
(Moreover, the tradeoff in Equation 20 is similarly (but triv-
ially) implicit in Figure 3(a): The peak of the Q-factor for
decisions gravitates away from vertices with higher ηa,θ).

Context for Example 2. While Example 1 illustrates prop-
erties of the optimal Q-factors, Example 2 and Figure 3(e)–
(g) visualizes the optimal strategy in action (i.e. showing
typical belief trajectories) through an intuitive example from
medical diagnosis. Consider the diagnostic problem with
diseases θ1, θ2, θ3, θ4 arranged in a hierarchy as in Figure
3(e) such that each test λ probabilistically distinguishes be-
tween its child elements, which can be specific diseases,
groups of diseases, or even disease stages as in progressive
cognitive impairment (Jarrett et al., 2019); for real-world
analogies see for instance National Guideline Centre (2016);
National Center for Complementary & Integrative Health
(2017). We naturally expect that the optimal strategy nav-
igate down the decision-tree, starting first from high-level
tests, then onto low-level tests, before finally declaring spe-
cific diagnoses of diseases. Panel (f) shows a typical belief
trajectory for the optimal strategy; observe from its decision
behavior that it indeed successively narrows down the space
of hypotheses through the tree. Panel (g) additionally shows
the effect of uniformly decreasing the cost-sensitivity pa-
rameter ηc: as expected, the optimal strategy now affords to
“double-check” test results before committing to a branch.

Context for Example 3. Unlike the previous two (which
serve to illustrate our results for the forward problem), this
gives an archetypical example exercising the full framework

for IAS that we have been building towards. In this case, we
specifically use the problem of preoperative testing as a con-
crete setting, but more broadly we are simply demonstrating
the central capability of IAS—that is, in understanding pref-
erences from behavior: Given the decision-behavior of an
agent acting according to unknown preferences, can we
recover their preferences? To do so, here we perform in-
verse optimal active sensing on a simulated agent that in
fact behaves as κ = ∗ (i.e. the model matches the behavior);
in Example 5, we highlight the interpretive nature of IAS
through a more general example (where there is a mismatch).
First, we simulate a collection D of 300 decision episodes
for a Bayes-optimal softmax agent with access to a single
preoperative test for surgery-complicating comorbidities.
The agent is driven by ηa = (0.25, 0.75); that is, Type I
errors are taken more seriously than Type II errors—but this
is (of course) unknown from the IAS point of view, and the
pretext is that we wish to estimate ηa fromD. Complete IAS
(cf. Proposition 6) would yield an estimate for the full tuple
(κ, η, ρ); in Figure 4(a) we show dimensions of the result
for κ = ∗ relevant to this example. The MAP estimate is
computed as Equation 26, and the posterior as Algorithm 1.
For additional visual intuition, Figures 4(d)–(f) depict the
(log un-normalized) posterior probabilities in relation to
values of η and ρ in this example, and also verify numeri-
cally—through 10,000 random episodes—that the (Bayes-
optimal) strategy induced by the true parameter values is in
fact the strategy with the lowest average (ground-truth) risk.

Context for Example 4. Clearly IAS allows analyzing pref-
erence weights within a decision-agent (i.e. differential im-
portances)—that is our objective from the beginning. How-
ever, we are often also interested in comparing preference
weights across agents and/or populations. In the case of
healthcare, for instance, current diagnostic guidelines are
largely based only on consensus (Martin & Cifu, 2017), with
remarkable physician-, provider-, and population-level vari-
ability in clinical practice even among routine procedures
(Song et al., 2010), which may incur significant harms and
costs (Bock et al., 2016). This example illustrates the poten-
tial use of IAS in assessing such differences in behavior. As
a concrete setting, consider the phenomenon of prescription
bias w.r.t. two different diagnostic tests (λ1, λ2) for the same
disease. Using our timely decision-making framework, pre-
scription bias is naturally defined, simulated, and detected as
inequalities between ηc,λ for different λ. Ceteris paribus, we
simulate the presence of bias in an “individual” institution
of of interest (via 300 trajectories driven by cost-sensitivity
weights ηc,λ1<ηc,λ2); similarly, we simulate the absence
of bias in the broader “population” (via 1000 trajectories
driven by ηc,λ1

≈ηc,λ2
). (Two runs of) IAS would yield

estimates (κ, η, ρ) each for the individual and population pa-
rameters; in Figure 4(b) we show relevant dimensions of the
results for κ = ∗, where we observe the apparent deviation
of the individual’s preferences from that of the population.
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Context for Example 5. While Examples 3–4 show the
result of IAS with κ = ∗ on an agent that behaves as κ = ∗,
here we emphasize the interpretive nature of IAS for under-
standing decision-making behavior through a more general
example—where there is a mismatch. Of course, the (ob-
vious) caveat here—as in any parameter estimation prob-
lem—is that the mismatch cannot be too large. Clearly a
complete mismatch would yield nonsensical results in IAS:
consider a strategy that simply selects acquisitions and de-
cisions uniformly at random. In practice, however, while
there may be a range of (active sensing) decision-making
behaviors in the world, we generally expect that they be
(somewhat imperfect) approximations to the optimal strat-
egy. For instance, the acquisition behavior induced by the
greedy generalized Q-factor (Equation 23) can be seen as
a one-step approximation to Q∗λ where (apart from the soft
decision-threshold) V ∗ is simply replaced by Q̄. Figure
4(c) shows what happens when we interpret behavior (un-
beknownst to us) generated as κ = GL, in terms of the
effective preferences under κ = ∗—namely, that (ceteris
paribus) greedy look-ahead behavior driven by ηd,θ1<ηd,θ2
is roughly equivalent to η a,θ1 > η a,θ2 . This (perhaps ob-
vious) point is worth belaboring—that is, while decision
agents may not necessarily be optimal in practice, this has
little bearing on the fact that inverse optimal active sensing
can still be able to provide a common yardstick by which
different decision behaviors can be quantified and compared.

Computation. For all examples, agents are simulated with
inverse temperature ρ = 10. The precise setting is unimpor-
tant, and we observe that similar results obtain for an order
of magnitude larger or smaller; however, note that very large
values result in more deterministic behavior, which may not
be realistic (ρ =∞ gives fully-deterministic strategies), and
very small values result in more random behavior, which
may result in difficulties in parameter estimation (ρ = 0
gives strategies that are completely random). For MCMC, we
choose the lattice given by the union of Gη∩ [0, 1]d ∈ H and
Gρ ∈ R, where Gη .

= {x : xj is an integer multiple of r}
with r = 0.05 being our choice of resolution for the ele-
ments of η (and j being the index into elements of x), and
where Gρ .

= {0.01, 0.03, ..., 30, 100} is the set of roughly
(logarithmically) uniformly-spaced values for ρ. Note that
restricting the values of η to [0, 1] by itself involves no loss
of expressivity, since different values of ρ are equivalent to a
scaling of theQ-factors, which (by linearity of expectations)
is equivalent to a scaling of all elements of η. What does
have an effect on expressivity is the choice of resolution
r; now, our goal is to understand the relative magnitudes
of preference weights underlying decision behaviors, and
setting r = 0.05 with the [0, 1] bounds means that we can al-
ready represent relative importance weights taking on values
up to a maximum of 20 times each another. (In practice, if
IAS still returns estimates with elements at opposing bound-

aries of the lattice, this may indicate that we need to further
increase the resolution—e.g. by setting r = 0.01, which
would allow representing relative importance weights up to
100 times one another). For each inverse example, the pos-
terior distributions (using uniform priors) are generated as
1000 samples; with 300 initial “burn-in” samples discarded.

Modeling Priors. We briefly mention here a point for (more
applied) future work. In this paper we focus on develop-
ing a theoretical framework and demonstrating archetypical
examples for modeling and understanding timely decision-
making behavior. Therefore we do not concern ourselves
with the (separate but related) problem of obtaining or mod-
eling the priors µ0 themselves. Recall from Section 2.1 that
we simply take it that µ0 for a given problem instance is
available from an agent’s experience, medical literature, etc.
(Again, however, bear in mind the interpretive nature of
IAS: we are not effectively assuming that decision-makers
themselves possess such exact and common knowledge). In
our numerical examples, we simulate episodes for D with
µ0 uniformly randomly scattered throughout the simplex. In
practical applications with real-world input data, we proba-
bly wish to model µ0 based on additional input (clearly, hav-
ing a single constant prior may not provide nearly enough
variation for meaningful estimation of preference weights).
Any such model necessarily depends on the specific context;
however, while we defer this topic to future work with a
more applied focus, we note that in many cases existing
domain-specific models (such as those in medicine) can be
more or less adapted for this purpose. See Petousis et al.
(2018) for an example where such models are deployed for
modeling initial beliefs also in an inverse setting (although
with a very different approach, detailed in the next section).
In the context of medical diagnosis, for instance, one can
consider a rich literature of feature-based models (Freed-
man et al., 2005), including the widely used and validated
Tammemägi and Gail risk models (Tammemägi et al., 2013;
Gail, 2011; Smedley et al., 2011) for lung cancer and breast
cancer, which can consider a variety of baseline features
such as age, race, body mass, smoking status, family history,
and previous biopsies in generating accurate priors for use.

B. Related Work
In this paper, we develop an expressive theoretical frame-
work for evidence-based decision-making under time pres-
sure, and illustrate how it enables modeling and understand-
ing decision behavior via optimal and inverse active sens-
ing. As such, it lends itself to contextualization within
broader notions of both the forward and inverse problem
settings. While relevant works have been noted throughout
the manuscript, here we provide a more detailed overview.

Active Sensing. In the broadest sense, active sensing refers
to the general process of directing one’s attention towards ex-
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Table 4. Comparison with related work in sequential analysis. Viewed from the perspective of sequential analysis, our decision problem
can be framed as one of active multiple-hypothesis testing via adaptive and sequential sensing in the presence stochastic, endogenous, and
context-dependent time pressure. An exemplary work is shown for each category. Importantly, we focus on the significance of subjective
preferences, and develop a most general framework accommodating both forward (i.e. modeling) & inverse (i.e. understanding) problems.

Literature Acquisition Decision Strategy Evidence Costs Horizon Deadline Problem

Wald et al. (1948) Passive Binary - Sequential Fixed No - Forward
Blahut (1974) Passive Binary - Batch Fixed No - Forward
Bertsekas et al. (1995) Passive Binary - Sequential Fixed Fixed External Forward
Frazier et al. (2008) Passive Binary - Sequential Fixed Stochastic External Forward
Lorden (1977) Passive Multiple - Sequential Fixed No - Forward
Tuncel (2005) Passive Multiple - Batch Fixed No - Forward
Dayanik & Yu (2013) Passive Multiple - Sequential Fixed Stochastic External Forward
Polyanskiy & Verdu (2011) Active Binary Fixed Sequential Fixed No - Forward
Hayashi (2009) Active Binary Adaptive Batch Fixed No - Forward
Naghshvar & Javidi (2011) Active Binary Adaptive Sequential Fixed No - Forward
Nitinawarat et al. (2013) Active Multiple Fixed Batch Fixed No - Forward
Atia & Veeravalli (2012) Active Multiple Adaptive Batch Fixed No - Forward
Naghshvar et al. (2013) Active Multiple Adaptive Sequential Fixed No - Forward

(Ours) Active Multiple Adaptive Sequential Differential Stochastic Endogenous Forward+Inverse

tracting task-relevant information through interaction with
the world (Yang et al., 2018). This broad notion of inten-
tional information gathering has been applied in various set-
tings such as multi-view learning (Yu et al., 2009), sensory
processing (Schroeder et al., 2010), personalized screen-
ing (Ahuja et al., 2017), time-series prediction (Yoon et al.,
2018), and black-box classification (Janisch et al., 2019).
While most applications focus on crafting function approx-
imators to optimize performance on the downstream task,
our focus is instead in developing an expressive framework
for modeling and understanding the decision process itself.

Timely Decision-Making. In particular, we study active sens-
ing for the general problem of timely decision-making—that
is, the goal-directed task of selecting which acquisitions to
make, when to stop gathering information, and what de-
cision to ultimately settle on. As such, it is related to the
sequential identification problem in statistics (Naghshvar
et al., 2013), neuroscience (Ahmad & Yu, 2013), and eco-
nomics (Augenblick & Rabin, 2018)—where a hypothesis is
selected following observations of relevant evidence. Start-
ing with the seminal work on binary hypothesis testing
(Wald et al., 1948), a variety of studies have aimed to char-
acterize a range of heuristic and/or optimal strategies, with
such extensions as deadline pressure (Frazier et al., 2008),
incorporating active choice (Castro & Nowak, 2009), and
comparisons of behavioral strategies (Ahmad & Yu, 2013).
We emphasize the goal-directed nature of active sensing in
general (and our timely decision-making setting): this is
in contrast to pure exploration and surveillance problems,
which do not involve a specific task (the decision problem).

Generalized Setting. Several key distinctions warrant spe-
cial attention (see Table 4). We consider the most flexible
decision-making setting: (1) acquisitions are active—i.e.
involving choices among multiple competing sensory op-

tions; (2) strategies are adaptive—i.e. admitting context-
dependent choices determined on the fly; and (3) samples
are sequential—i.e. requiring a variable number of observa-
tions per the endogenous choice of stopping and issuing a de-
cision. These distinctions are critical—for instance, if sam-
pling were passive (e.g. single stream of observations), then
the task readily reduces to the well-studied problem of op-
timal stopping (Frazier et al., 2008; Dayanik & Yu, 2013).
Further, as motivated throughout, we additionally account
for (4) differential costs of acquisition and the presence of
(5) stochastic, endogenous, and context-dependent time pres-
sure. Perhaps most importantly, we accommodate modeling
and understanding (6) subjective preferences in decision
behavior, and uniquely focus on both forward and inverse
problems in our active sensing framework. Table 4 sets out
a comparison with related work in sequential analysis in
general, and Table 2 specifically as pertains timely decision-
making. In this view, our work develops a most generalized
framework to analyze both optimal and inverse problems.

Inverse Active Sensing. For the inverse direction, we ap-
proach the problem from an inverse optimization perspective.
In general, IO turns optimization problems on their heads:
Given (one or more) solutions to some problem, the goal
is to infer (parameters of) the objective function (Ahuja &
Orlin, 2001). IO has been applied to a broad range of under-
lying problems, including inverse linear (Dempe & Lohse,
2006) and integer (Schaefer, 2009) programming, inverse
convex optimization (Keshavarz et al., 2011), inverse conic
programming (Iyengar & Kang, 2005), and any manner of
inverse combinatorial optimization problems (Heuberger,
2004). Table 3 shows inverse (optimal) active sensing along-
side example formulations for some classic IO applications.

Multiple Observations. In particular, inverse active sensing
can be interpreted as a form of data-driven IO with multiple
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Table 5. Summary comparison of IAS and IRL. Although the two classes of IO problems share superficial resemblance from the perspective
of inverse learning from multiple observations, they have vastly different goals and multiple crucial distinctions. In particular, while
learning medical diagnosis behavior can be alternatively cast in IRL as a generic apprenticeship problem, our proposed IAS framework is
much better suited for modeling and understanding the decision process itself in timely decision-making settings. 1 Petousis et al. (2018).

Approach Markov
Process

Stopping
Time

Behavior
Parameters

Modeling
Acquisitions

Modeling
Decisions

Time
Pressure

Parameters
Interpretable

Downstream
Goal

Accuracy
of Decision

IRL
(Petousis)1

States with
Transitions Fixed Per-State

Rewards Yes No No No Apprentice-
ship

Objective,
Imposed

IAS
(Ours)

Posterior
& Survival

Stochastic,
Endogenous

Risk-based
Preferences Yes Yes Yes Yes Understan-

ding
Subjective,

Learned

observations (of solutions). Methods for data-driven IO are
increasingly relevant with the exponentially growing avail-
ability of electronic patient data (Jarrett & van der Schaar,
2020), and have been studied as pertains to imperfect in-
formation (Esfahani et al., 2018) and noisy observations
(Aswani et al., 2018), as well as using online learning (Bär-
mann et al., 2017; Dong et al., 2018). Now, a popular ap-
plication of this paradigm is inverse reinforcement learning
(“IRL”), which deals with inferring the reward function for a
reinforcement learning agent (Abbeel & Ng, 2004; Ziebart
et al., 2008). Although IRL may appear to bear resemblance
to IAS, they have vastly different goals and a number of
crucial distinctions. These are best highlighted by direct
comparison with Petousis et al. (2018), which applies IRL
for apprenticeship of expert cancer screening behavior (see
Table 5). In the first instance, (1) the typical goal of IRL
lies in apprenticeship; to that end, the central concern is
in replicating some notion of (“true”) performance, using
(potentially black-box) reward functions as an intermediary
to parameterize behavior. In contrast, in IAS the goal lies
in modeling and understanding the decision process itself
(in timely decision-making settings); to that end, the central
concern is in recovering a (transparent) description of an
agent’s (subjective) preferences. This distinction becomes
apparent in a number of aspects that render IRL unsuitable
for our purposes. An immediate difference lies in (2) the
nature of the Markov process in question: Recall that our
formulation tracks a posterior process (cf. Proposition 1)
over the hypothesis space, with survival itself is informative
(cf. Proposition 2). Applying the IRL formulation instead as
in Petousis et al. (2018), the “state space” is taken to be the
space of hypotheses; the Markov process tracks where the
agent him-/herself is located within the hypothesis space,
and the “transitions” model the agent probabilistically mov-
ing between hypotheses over time. Now, (3) this abstraction
is inherently opaque: What does it mean for the agent to “be”
somewhere, and what how do the transition probabilities
inform our understanding of what an agent prioritizes? This
is fine simply as a mathematical intermediary to parameter-
ize behavior, but is by no means interpretable as a vehicle
for understanding behavior (see also point 5). In contrast,
IAS purely focuses on the specific task of estimating pref-
erences for understanding. Moreover, (4) these transition

parameters must be concomitantly learned, which adds an
(unnecessary) layer of approximation. Equally importantly,
(5) in the IRL formulation (as is typical), the observed behav-
ior is parameterized (and learned) in terms of per-state (and
action) rewards, which—in timely decision-making—are
not amenable to interpretation: What does it mean to reward
the agent for being “in” a given (intermediary) hypothesis at
each point in time? Again, this is fine purely as mathemati-
cal means to parameterize data (e.g. in their apprenticeship
setting), but makes less sense for our purposes of under-
standing. Instead, we directly parameterize behaviors as
importance weights assigned to inherently interpretable ele-
ments of the loss function (Equation 1). On a more technical
note—but perhaps even more significantly: (6) in our frame-
work, not only is the stopping time itself is an endogenous
variable, it is modeled as a conscious choice (cf. Propo-
sition 4); this is critical, since the ultimate decision itself
is in some sense the whole point. In contrast, the IRL for-
mulation (as is typical) employs fixed horizons, and does
not accommodate modeling the conscious choice of stop-
ping. In fact, to assess apprenticeship, the “accuracy” of
their learned behavior is quantified via the post-hoc choice
of equating some acquisitions to “positive” diagnoses (and
others to “negative” diagnoses); accuracies (e.g. Type I and
II errors) are therefore objective and imposed for evaluation.
In contrast, we seek to model the entire decision process
endogenously (not just acquisition behavior) via subjective
preferences over accuracies, deadlines, and costs—which
are learned. Last but not least is the technical distinction
that (7) the contractive property of the operator B is not
readily guaranteed in our setting (cf. Proposition 3); this
is in contrast with typical reinforcement learning (and IRL)
settings with fixed or infinite discounted horizons. Table 5
summarizes main distinctions between the problem classes.

Bayesian Approach. In terms of the objective, typical IO
settings are chiefly concerned with notions of identifiability
and optimality—that is, in recovering either some notion of
a “true” parameter, or in prescribing behavior that performs
“as well as” (or better than) observed solutions per the “true”
parameter (this obviously includes inverse reinforcement
learning). Instead, the focus of IAS is on describing and
understanding observed decision behavior; thus we embrace
non-identifiability—after all, we seek the range of strategies
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and preferences that can interpret or best explain behavior
(there is no single right answer). In this sense, we are more
aligned with Bayesian approaches to inverse problem set-
tings (Ye et al., 2019; Bardsley & Fox, 2012; Ramachandran
& Amir, 2007), which avoid confronting the convexity as-
sumptions of duality-based approaches (Bertsimas et al.,
2015; Keshavarz et al., 2011), nor the intractability of non-
convex solutions (Aswani et al., 2018; Esfahani et al., 2018).

Preference Elicitation. Finally, for completeness we note
that preference elicitation is a well-studied problem in com-
putational and social science: A range of works have ap-
proached the problem of (interactive) preference elicitation
using gaussian processes (Guo et al., 2010), Markov de-
cision processes (Wray & Zilberstein, 2016), and differ-
entiable networks (Vendrov et al., 2020). However, these
lines of work are very differet in that what is being mod-
eled (and optimized) is the process of explicitly reaching out
and querying user preferences efficiently—that is, the active
preference elicitation task itself constitutes the forward prob-
lem. In contrast, our focus is on implicitly understanding
strategies and preferences from observed decision behavior.

Relationship with POMDPs. Throughout this work, we
have taken a “bottom-up” approach in contextualizing our
developments—that is, by taking the basic case of sequen-
tial identification and “generalizing” from there, which
highlights structural results specific to the timely decision-
making problem. As its complement, it is equally possible
to take an opposite “top-down” approach—that is, by tak-
ing the generic POMDP formalism and “specializing” from
there. In particular, the timely decision-making problem can
be formulated as a POMDP with |Θ| decision states plus an
additional “terminal” state, with transitions from each of the
former into the latter, and self-loops for all states; stepwise
decomposing Equation 1 yields a “reward”. For instance, for
the decision tree from Example 2, the POMDP would con-
sist of the state space S = {θ0, θ1, θ2, θ3, θ4} where θ0 is
absorbing, action space A = {λ0, λ12, λ34, θ1, θ2, θ3, θ4},
emission kernels that correspond to generating distributions
{qθ,λ}θ∈Θ,λ∈Λ, and transition kernels to {pθ,λ}θ∈Θ,λ∈Λ.

In light of this correspondence to POMDPs, note that Propo-
sition 1 follows by construction, providing an alternative
proof. Note, however, that Propositions 2–5 are structural
results specific to active sensing for timely decision-making;
in particular, we note—analogously to the passive case of
Dayanik & Yu (2013)—that Proposition 2 is not free due to
the fact that this is neither a fixed-horizon nor discounted
problem; likewise, concavity of Q is similar to—but not
the same as—the classic PWLC result. That said, the fact
that the (forward) active sensing problem can be re-cast as a
POMDP does mean that we can use generic algorithms to ac-
complish the inner-loop ActiveSensing sub-procedure
in Algorithm 1 (bar minor technicalities in translation, such
as the fact that applying off-the-shelf POMDP solvers re-

quires the use of some nominal discount rate γ<1 to guar-
antee convergence). In our simulations, we verify using im-
plementations from http://pomdp.org/code/index.html and
http://github.com/AdaCompNUS/sarsop for our examples
that all results are virtually identical for any solver of choice,
such as PBVI and SARSOP (with γ nominally set to 0.99).

In the inverse direction, as noted above IAS (with optimal
κ) is likewise related to inverse optimal control; by casting
the forward problem generically as a POMDP, solving the
inverse optimal active sensing problem in our framework
can be interpreted by analogy to a model-based, Bayesian
solution to inverse reinforcement learning, but with partially-
observable states instead, and a reward function parameter-
ized by stepwise decomposing Equation 1; though beyond
the scope of this work, it is conceivable to derive “max-
margin”, “max-likelihood”, etc. versions of IAS (with op-
timal κ) in addition to the MAP and MCMC versions pre-
sented here. Finally, note that non-Bayes-optimal strategies
can alternatively be modeled by defining rewards as sums
of hand-crafted features, or by using “belief-dependent”
POMDPs. In the former case, however, this may require
more prior knowledge than we have access to, and—more
importantly—may not result in an interpretable functional
form amenable to comparing preferences across decision
agents (a key mission objective of ours); in the latter, note
that approximating the forward solution to belief-dependent
POMDPs in general requires that rewards be convex in
µ—which may be difficult to satisfy or verify in practice.

C. Proofs
Proposition 1 (Sufficient Statistic) Let νt

.
= 1{δ>t} de-

note the survival process, with initial value ν0 = 1. Then
the posterior process µt ∈ ∆(Θ) is given by the following:

µt = (1−νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+ νtM(λt−1, µt−1, ωt))νt−1
(27)

where the continual updateM : Λ×∆(Θ)×Ω→ ∆(Θ) re-
turns a distribution assigning to element θ the probability:

(1− pθ,λt−1
)qθ,λt−1

(ωt)µt−1(θ)∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

(28)

and where the terminal update M̄ : Λ×∆(Θ)→ ∆(Θ) re-
turns a distribution assigning to element θ the probability:

pθ,λt−1
µt−1(θ)/

∑
θ′∈Θpθ′,λt−1

µt−1(θ′) (29)

Moreover, the sequence (µt, νt)
∞
t=0 is a controlled Markov

process, where the control inputs are the acquisitions λt.

Proof. For M̄ , we want that θ be assigned the probability:

Pp,q{θ|λt−1, µt−1, νt−1 = 1, νt = 0} (30)

=
Pp,q{θ, νt = 0|λt−1, µt−1, νt−1 = 1}
Pp,q{νt = 0|λt−1, µt−1, νt−1 = 1} (31)

http://pomdp.org/code/index.html
http://github.com/AdaCompNUS/sarsop
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=
Pp{νt = 0|θ, λt−1, νt−1 = 1}µt−1(θ)∑
θ′∈Θ Pp{νt = 0|θ, λt−1, νt−1 = 1}µt−1(θ)

(32)

=
pθ,λt−1

µt−1(θ)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)
(33)

For M , we want that θ be assigned the probability:

Pp,q{θ|λt−1, µt−1, νt = 1, ωt} (34)

=
Pp,q{θ, νt = 1, ωt|λt−1, µt−1, νt−1 = 1}
Pp,q{νt = 1, ωt|λt−1, µt−1, νt−1 = 1} (35)

=Pp{θ, νt = 1|λt−1, µt−1, νt−1 = 1} · Pq{ωt|θ,
λt−1, νt = 1}/∑θ′∈Θ(Pp{θ′, νt = 1|λt−1,

µt−1, νt−1 = 1}Pq{ωt|θ′, λt−1, νt = 1}) (36)
=Pp{νt = 1|θ, λt−1, νt−1 = 1} · Pq{ωt|θ,
λt−1, νt = 1}µt−1(θ)/

∑
θ′∈ΘPp{νt = 1|θ,

λt−1, νt−1 = 1}Pq{ωt|θ′, λt−1, νt = 1}µt−1(θ) (37)

=
(1− pθ,λt−1)qθ,λt−1(ωt)µt−1(θ)∑

θ′∈Θ(1− pθ′,λt−1)qθ′,λt−1(ωt)µt−1(θ′)
(38)

where we used P{θ|λt−1, µt−1, νt−1 = 1} = µt−1(θ). To
show this is a controlled Markov process, first note that:

Pp,q{µt|λt−1, µt−1, νt−1, νt} (39)
=(1− νt−1)Pp{µt|λt−1, µt−1, νt−1 = 0, νt = 0}

+ ((1− νt)Pp{µt|λt−1, µt−1, νt−1 = 1, νt = 0}
+ νtPp,q{µt|λt−1, µt−1, νt = 1})νt−1 (40)

=(1− νt−1)1{µt=µt−1}
+ ((1− νt)1{µt=M̄(λt−1,µt−1)}

+ νt
Pp,q{µt, νt = 1|λt−1, µt−1, νt−1 = 1}

Pp{νt = 1|λt−1, µt−1, νt−1 = 1}
)νt−1 (41)

=(1− νt−1)1{µt=µt−1}
+ ((1− νt)1{µt=M̄(λt−1,µt−1)}
+ νt

∑
ω′t∈Ω(1{µt=M(λt−1,µt−1,ω′t)}

·
∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
))νt−1 (42)

Then the joint probability of the tuple is given by:

Pp,q{µt, νt|λt−1, µt−1, νt−1} (43)
=Pp,q{µt|λt−1, µt−1, νt−1, νt}
· Pp{νt|λt−1, µt−1, νt−1} (44)

=(1− νt−1)1{µt=µt−1} + ((1− νt)
· 1{µt=M̄(λt−1,µt−1)}

∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

+ νt
∑
ω′t∈Ω(1{µt=M(λt−1,µt−1,ω′t)} ·∑

θ′∈Θ(1− pθ′,λt−1
)qθ′,λt−1

(ωt)µt−1(θ′)))νt−1 (45)

and for any f : ∆(Θ)× {0, 1} → R+ we have:

Ep,q[f(µt, νt)|λt−1, µt−1, νt−1] (46)
=Ep,q[(1− νt−1)f(µt−1, 0)

+ ((1− νt)f(M̄(λt−1, µt−1), 0) + νt ·
f(M(λt−1, µt−1, ωt), 1))νt−1|λt−1, µt−1, νt−1] (47)

=(1− νt−1)f(µt−1, 0) + (f(M̄(λt−1, µt−1), 0)

·∑θ′∈Θpθ′,λt−1µt−1(θ′)

+
∑
ω′t∈Ω(f(M(λt−1, µt−1, ωt), 1) ·∑

θ′∈Θ(1− pθ′,λt−1)qθ′,λt−1(ωt)µt−1(θ′)))νt−1 (48)

where we used the fact that Pp{νt = 1|λt−1, µt−1, νt−1 =
1} = 1 −∑θ′∈Θpθ′,λt−1

µt−1(θ′) , that Pp{νt = 0|λt−1,
µt−1, νt−1 = 1} =

∑
θ′∈Θpθ′,λt−1

µt−1(θ′). Likewise, it
is also trivial to see that Pp{νt = 0|λt−1, µt−1, νt−1 =
0} = 1, as well as Pp{νt = 1|λt−1, µt−1, νt−1 = 0} = 0.

Proposition 2 (Active and Passive Information) The in-
formation gleaned from (costly) acquisitions and (costless)
observations of survival can be uniquely decomposed as:

µt = µ̃t + αt + βt (49)

where µ̃t is a martingale that captures information obtained
from the (actively) acquired results, the (continual) compen-
sator αt = A(µt−1, λt−1, νt−1, νt) (passively) incorporates
the bias from the ongoing process survival (where α0 = 0):
αt(θ) = αt−1(θ)− µt−1(θ)νt−1νt

· (pθ,λt−1 − p̄µt,λt−1)/(1− p̄µt,λt−1)

(50)

and βt = B(µt−1, λt−1, νt−1, νt) is the (terminal) compen-
sator that analogously incorporates the bias from process
stoppage (where β0 = 0)—if the deadline were breached:

βt(θ) = βt−1(θ) + µt−1(θ)νt−1(1− νt)
· (pθ,λt−1

− p̄µt,λt−1
)/p̄µt,λt−1

(51)

where for brevity we denote the weighted average posterior
probability of failure p̄µt,λt−1

.
=
∑
θ′∈Θpθ′,λt−1

µt−1(θ′).

Proof. First, writing out the expectation:

Ep,q[µt|λt−1, µt−1, νt−1, νt] (52)
=Ep,q[(1− νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+νtM(λt−1, µt−1, ωt))νt−1|λt−1, µt−1, νt−1, νt] (53)
=(1− νt−1)µt−1 + ((1− νt)M̄(λt−1, µt−1)

+ νt
∑
ω′t∈Ω(M(λt−1, µt−1, ω

′
t)

·
∑
θ′∈Θ(1− pθ′,λt−1

)qθ′,λt−1
(ωt)µt−1(θ′)

1−∑θ′∈Θpθ′,λt−1
µt−1(θ′)

))νt−1 (54)

Then for element θ, this is equal to:

(1− νt−1)µt−1 + ((1− νt)
pθ,λt−1

µt−1(θ)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)

+ νt
∑
ω′t∈Ω

(1− pθ,λt−1
)qθ,λt−1

(ωt)µt−1(θ)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
)νt−1 (55)

= µt−1 + ((1− νt)
pθ,λt−1

µt−1(θ)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)
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+ νt
(1− pθ,λt−1)µt−1(θ)

1−∑θ′∈Θpθ′,λt−1
µt−1(θ′)

− µt−1)νt−1 (56)

= µt−1 + ((1− νt)

·
pθ,λt−1 −

∑
θ′∈Θ

pθ′,λt−1µt−1(θ′)∑
θ′∈Θ pθ′,λt−1

µt−1(θ′)
µt−1(θ)−

νt
pθ,λt−1

−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
µt−1(θ))νt−1 (57)

Therefore it is straightforward to define the functions αt =
A(µt−1, λt−1, νt−1, νt), βt = B(µt−1, λt−1, νt−1, νt), as
well as µ̃t = µt − αt − βt, where α0 = β0 = 0 and:

αt(θ) = αt−1(θ)− µt−1(θ)

· pθ,λt−1
−

∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

1−
∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
νt−1νt (58)

βt(θ) = βt−1(θ) + µt−1(θ)

· pθ,λt−1
−

∑
θ′∈Θpθ′,λt−1

µt−1(θ′)∑
θ′∈Θpθ′,λt−1

µt−1(θ′)
(1− νt)νt−1 (59)

Finally, for µ̃t observe that:

αt + βt =∑t
t′=1(Ep,q[µt′ − µt′−1|λt′−1, µt′−1, νt′−1, νt′ ]) (60)

therefore the difference between two steps is:

µ̃t − µ̃t−1 = µt − µt−1

− Ep,q[µt − µt−1|λt−1, µt−1, νt−1, νt] (61)

hence—taking expectations—we can write:

Ep,q[µ̃t − µ̃t−1|λt−1, µt−1, νt−1] = 0 (62)
⇒ Ep,q[µ̃t|λt−1, µt−1, νt−1] = µ̃t−1 (63)

Proposition 3 (Optimal Value) The optimal value func-
tion V ∗(µt, νt; η) is a fixed point of the operator B defined
over the space of functions V ∈ R∆(Θ)×{0,1}

+
as follows:

(BV )(µt, νt; η) =

min{inf θ̂′∈ΘQ̄θ̂′(µt, νt; η), infλ′t∈ΛQλ′t(µt, νt; η)} (64)

where the (continual) Q-factors for acquisitions quantify
the risk-to-go upon performing acquisition λt, given by:

Qλt
(µt, νt; η) = (1− νt)V (µt, 0; η) + ηc,λt

cλt

+ νtEp,q[V (µt+1, νt+1; η)|λt, µt, νt = 1]
(65)

and the (terminal) Q-factors for decisions quantify the risk
upon settling on the final choice of decision θ̂, given by:

Q̄θ̂(µt, νt; η) = (1− νt)
∑
θ′∈Θηb,θ′µt(θ

′)
+ νt

∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′)
(66)

Moreover, the operator B is contractive, and the optimal
value function is therefore the unique fixed point admitted.

Proof. Each of the Q-factors for decisions is given by:

Q̄θ̂(µt, νt; η) (67)
.
=Ep,q[`(λ0:τ−1, τ, θ̂; η)|λ0:t−1, τ = t, θ̂, µt, νt]

−∑t−1
t′=0 ηc,λt′ cλt′ (68)

=Ep,q
[∑

θ′∈Θηa,θ′1{θ=θ′,θ 6=θ̂,τ<δ}

+
∑
θ′∈Θηb,θ′1{θ=θ′,τ=δ}

+
∑τ−1
t′=0 ηc,λt′ cλt′ |λ0:t−1, τ = t, θ̂, µt, νt

]
−∑t−1

t′=0 ηc,λt′ cλt′ (69)

=Ep,q
[∑

θ′∈Θηa,θ′1{θ=θ′,θ 6=θ̂,t<δ}

+
∑
θ′∈Θηb,θ′1{θ=θ′,t=δ}|θ̂, µt, νt

]
(70)

=νt
∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′)

+ (1− νt)
∑
θ′∈Θηb,θ′µt(θ

′) (71)

For acquisitions, first observe that:

Qλt(µt, νt; η) (72)
.
=Ep,q[V (µt+1, νt+1; η)|λt, µt, νt] + ηc,λtcλt (73)
=(1− νt)Ep,q[V (µt+1, νt+1; η)|λt, µt, νt = 0]

+ Ep,q[V (µt+1, νt+1; η)|λt, µt, νt = 1]νt

+ ηc,λtcλt (74)
=(1− νt)V (µt, 0; η) + ηc,λtcλt

+ (Ep,q[V ((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1])νt (75)

For the expectation term:

Ep,q[V ((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1] (76)
=
∑
ω′t+1∈Ω(Pp,q{νt+1 = 1, ωt+1|λt, µt, νt = 1}
· V (M(λt, µt, ωt+1), 1; η))+

Pp{νt+1 = 0|λt, µt, νt = 1}V (M̄(λt, µt), 0; η) (77)
=
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(Pp{θ′, νt+1 = 1|λt, µt, νt = 1}
· Pq{ωt+1|θ′, λt, νt+1 = 1}))+
Pp{νt+1 = 0|λt, µt, νt = 1}V (M̄(λt, µt), 0; η) (78)

=
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(Pp{νt+1 = 1|θ, λt, νt = 1}
· Pq{ωt+1|λt, θ′, νt+1 = 1}µt(θ)))
+ V (M̄(λt, µt), 0; η)

∑
θ′∈Θpθ′,λt

µt(θ
′) (79)

=
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′))

+ V (M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′) (80)

Therefore each Q-factor for acquisition is given by:

Qλt(µt, νt; η) = (1− νt)V (µt, 0; η) + ηc,λtcλt

+
(
V (M̄(λt, µt), 0; η)

∑
θ′∈Θpθ′,λtµt(θ

′)

+
∑
ω′t+1∈Ω(V (M(λt, µt, ω

′
t+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ω′t+1)µt(θ
′))
)
νt (81)
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For the contractive property, we want that ‖BV i −BV j‖ ≤
γ‖V i − V j‖ for some γ < 1, but where we do not have the
benefit of an explicit discount factor γ for this purpose. For
notational brevity, in the following we omit the functional
dependence of value functions and Q-factors on η:

|(BV i)(µt, νt)− (BV j)(µt, νt)| (82)

= |min{inf θ̂′∈ΘQ̄
i
θ̂′

(µt, νt), infλ′t∈ΛQ
i
λ′t

(µt, νt)}
−min{inf θ̂′∈ΘQ̄

j

θ̂′
(µt, νt), infλ′t∈ΛQ

j
λ′t

(µt, νt)}| (83)

= |min{inf θ̂∈Θ(νt
∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′) + (1− νt)
·∑θ′∈Θηb,θ′µt(θ

′)), infλ′t∈Λ((1− νt)V i(µt, 0)

+
(∑

ω′t+1∈Ω(V i(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V i(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt

+ ηc,λ′tcλ′t)}
−min{inf θ̂∈Θ(νt

∑
θ′∈Θ,θ 6=θ̂ηa,θ′µt(θ

′) + (1− νt)
·∑θ′∈Θηb,θ′µt(θ

′)), infλ′t∈Λ((1− νt)V j(µt, 0)

+
(∑

ω′t+1∈Ω(V j(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V j(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt

+ ηc,λ′tcλ′t)}| (84)

≤|infλ′t∈Λ((1− νt)V i(µt, 0) + ηc,λ′tcλ′t

+
(∑

ω′t+1∈Ω(V i(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V i(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt)

− infλ′t∈Λ((1− νt)V j(µt, 0) + ηc,λ′tcλ′t

+
(∑

ω′t+1∈Ω(V j(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V j(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt)| (85)

= |(1− νt)V i(µt, 0) + ηc,λ∗t cλ∗t

+
(∑

ω′t+1∈Ω(V i(M(λ∗t , µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′))

+ V i(M̄(λ∗t , µt), 0)
∑
θ′∈Θpθ′,λ∗t µt(θ

′)
)
νt

− infλ′t∈Λ((1− νt)V j(µt, 0) + ηc,λ′tcλ′t

+
(∑

ω′t+1∈Ω(V j(M(λ′t, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ′t)qθ′,λ′t(ωt+1)µt(θ
′))

+ V j(M̄(λ′t, µt), 0)
∑
θ′∈Θpθ′,λ′tµt(θ

′)
)
νt)| (86)

≤|(1− νt)V i(µt, 0) + ηc,λ∗t cλ∗t

+
(∑

ω′t+1∈Ω(V i(M(λ∗t , µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′))

+ V i(M̄(λ∗t , µt), 0)
∑
θ′∈Θpθ′,λ∗t µt(θ

′)
)
νt

− (1− νt)V j(µt, 0)− ηc,λ∗t cλ∗t

−
(∑

ω′t+1∈Ω(V j(M(λ∗t , µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′))

− V j(M̄(λ∗t , µt), 0)
∑
θ′∈Θpθ′,λ∗t µt(θ

′)
)
νt| (87)

= |∑ω′t+1∈Ω((V i(M(λ∗t , µt, ωt+1), 1)

− V j(M(λ∗t , µt, ωt+1), 1))

·∑θ′∈Θ(1− pθ′,λ∗t )qθ′,λ∗t (ωt+1)µt(θ
′)νt)| (88)

≤|(1− infθ′∈Θ,λ′∈Λpθ′,λ′)

·∑ω′t+1∈Ω((V i(M(λ∗t , µt, ωt+1), 1)

− V j(M(λ∗t , µt, ωt+1), 1))

·∑θ′∈Θqθ′,λ∗t (ωt+1)µt(θ
′)νt)| (89)

≤(1− infθ′∈Θ,λ′∈Λpθ′,λ′)

· supµ′t+1∈∆(Θ)|V i(µ′t+1, 1)− V j(µ′t+1, 1)| (90)

≤γ‖V i − V j‖ (91)

where in the fourth equality λ∗t
.
= arg infλ′t∈ΛQ

k
λ′t

(µt, νt)
in which k .

= arg infk′∈{i,j}infλ′t∈ΛQ
k′

λ′t
(µt, νt), and in the

last step γ .
= 1− infθ′∈Θ,λ′∈Λpθ′,λ′ < 1, and we also used

the fact that V (µt, 0) = Q̄θ̂(µt, 0) =
∑
θ′∈Θηb,θ′µt(θ

′).

For the uniqueness property, consider two such fixed points
V ∗ and V ′∗. But ‖V ∗−V ′∗‖ = ‖BV ∗−BV ′∗‖ ≤ γ‖V ∗−
V ′∗‖, therefore it must the case that ‖V ∗ − V ′∗‖ = 0.

Proposition 4 (Continuation and Termination) Denote
by mθ ∈ ∆(Θ) each vertex in the simplex, and let the
optimal aggregate Q-factor for continuation be given by:

Q∗(µt, νt; η)
.
= infλ′t∈ΛQ

∗
λ′t

(µt, νt; η) (92)

and likewise Q̄(µt, νt; η)
.
= inf θ̂′∈Θ Q̄θ̂′ (µt, νt; η). Then

Q∗ is a concave function with respect to µt, and moreover
takes on values strictly greater than Q̄ at every vertex mθ:

∀mθ : Q∗(mθ, νt; η) > Q̄(mθ, νt; η) (93)

Hence the termination set T is the (disjoint) union of |Θ|
convex regions delimited by the intersection of Q∗ and Q̄:

T (η) = {µt : Q∗(µt, νt; η) ≥ Q̄(µt, νt; η)} (94)

and contains each of the simplex vertices. Finally, the (pos-
sibly null) continuation set is its complement ∆(Θ) \ T .

Proof. We first show that V ∗ is concave. Since V ∗ is the
limit of successive approximations by application of B, we
simply want to show if V is concave that BV is then con-
cave. Suppose V is concave. Since BV is the minimum be-
tween inf θ̂′∈ΘQ̄θ̂′(µt, νt; η) and infλ′t∈ΛQλ′t(µt, νt; η) and
the former clearly concave, it remains to show that each
Qλt

in the latter is concave. This is obvious for νt = 0
since V (µt, 0) = Q̄θ̂(µt, 0) is concave. For νt = 1, we
want that

∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1; η)

∑
θ′∈Θ(1−
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pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)) be concave. Let υ ∈ (0, 1). We

similarly omit functional dependence on η for brevity:

υ
∑
ω′t+1∈Ω(V (M(λt, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt)qθ′,λt(ωt+1)µt(θ
′))

+ (1− υ)
∑
ω′t+1∈Ω(V (M(λt, µ

′
t, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µ′t(θ
′)) (95)

=
∑
ω′t+1∈Ω((υV (M(λt, µt, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

/(υ
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µt(θ

′)

+ (1− υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′))

+ (1− υ)V (M(λt, µ
′
t, ωt+1), 1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µ′t(θ
′)

/(υ
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µt(θ

′)

+ (1− υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′)))

· (υ∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

+ (1−υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′))) (96)
≤∑ω′t+1∈Ω(V ((υM(λt, µt, ωt+1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

+ (1− υ)M(λt, µ
′
t, ωt+1)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µ′t(θ
′))

/(υ
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µt(θ

′)

+ (1− υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′)), 1)

· (υ∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)

+ (1−υ)
∑
θ′∈Θ(1− pθ′,λt

)qθ′,λt
(ωt+1)µ′t(θ

′))) (97)
=
∑
ω′t+1∈Ω(V (M(υµt + (1− υ)µ′t))

·∑θ′∈Θ((1− pθ′,λt)qθ′,λt(ωt+1)

· (υµt(θ′) + (1− υ)µ′t(θ
′)))) (98)

Now, V ∗ is simply the limit of successive approximations
by application of B, so by induction V ∗ is concave. Finally,
each Q∗λt

and therefore Q∗ is concave since V ∗ is concave.

For the inequality, note if νt = 1 then Q̄θ̂ at each vertex
is simply zero for any choice of θ̂. But clearly Q∗λt

is at
least ηc,λtcλt for any choice of λt, so it must be true that
Q∗ > Q̄. Finally, consider the intersection (if any) of Q∗

and Q̄θ̂ when νt = 1, for any θ̂. Let µt, µ′t ∈ ∆(Θ) be
two points for which θ̂ = arg inf θ̂′∈ΘQ̄θ̂′(·, νt; η). Since
the former is concave and the latter is affine, we can write:

Q̄θ̂(υµt + (1− υ)µt, 1; η) (99)
=υQ̄θ̂(µt, 1; η) + (1− υ)Q̄θ̂(µt, 1; η) (100)
=υV ∗(µt, 1; η) + (1− υ)V ∗(µt, 1; η) (101)
≤V ∗(υµt + (1− υ)µt, 1; η) (102)
≤Q̄(υµt + (1− υ)µt, 1; η) (103)
≤Q̄θ̂(υµt + (1− υ)µt, 1; η) (104)

for υ ∈ (0, 1), hence the set Q̄θ̂ < Q∗ is convex. Finally,
the overall termination set T (η) is the union of |Θ| such
regions. For completeness, consider the other (trivial) case
where νt = 0; clearly Q∗λt

= Q̄+ ηc,λt
cλt

, so convexity is
automatic and there is no intersection (i.e. T (η) is empty).

Proposition 5 (Surprise and Suspense) When µt 6∈T (η),
the optimal acquisition directly trades off surprise and su-
spense (in addition to the immediate cost of acquisition):

λ∗t = arg supλt∈Λ h(It(λt), St(λt))− ηc,λt
cλt (105)

where h is increasing in It(λt) and St(λt), and the uncer-
tainty function for the information gain is taken as U = V ∗.

Proof. Each optimal Q-factor for acquisitions is given by:

Q∗λt
(µt, νt; η) (106)

=(1− νt)V ∗(µt, 0; η) + ηc,λt
cλt

+ (Ep,q[V ∗((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1])νt (107)
=(1− νt)V ∗(µt, 0; η) + ηc,λt

cλt

+ (V ∗(M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′)

+
∑
ω′t+1∈Ω(V ∗(M(λt, µt, ω

′
t+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt)qθ′,λt(ω
′
t+1)µt(θ

′)))νt (108)

Note that the expectation term can also be expressed:

Ep,q[V ∗((1− νt+1)M̄(λt, µt)

+ νt+1M(λt, µt, ωt+1), 1; η)|λt, µt, νt = 1] (109)
=Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1] + Pp{νt+1 = 0|λt, µt, νt = 1}
· V ∗(M̄(λt, µt), 0; η) (110)

So we can rewrite:∑
ω′t+1∈ΩPp,q{νt+1 = 1, ωt+1|λt, µt, νt = 1}
· V ∗(M(λt, µt, ωt+1), 1; η) (111)

=
∑
ω′t+1∈Ω(V ∗(M(λt, µt, ωt+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt
)qθ′,λt

(ωt+1)µt(θ
′)) (112)

=Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1] (113)

Hence each Q-factor for acquisitions can be expressed:

Q∗λt
(µt, νt; η) (114)

=(1− νt)V ∗(µt, 0; η) + ηc,λt
cλt

+ (V ∗(M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′)

+
∑
ω′t+1∈Ω(V ∗(M(λt, µt, ω

′
t+1), 1; η)

·∑θ′∈Θ(1− pθ′,λt)qθ′,λt(ω
′
t+1)µt(θ

′)))νt (115)
=(1− νt)V ∗(µt, 0; η) + ηc,λtcλt
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+ (V ∗(M̄(λt, µt), 0; η)
∑
θ′∈Θpθ′,λt

µt(θ
′)

+ Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1])νt (116)

=(1− νt)V ∗(µt, 0; η) + ηc,λt
cλt

+ (

∑
θ′∈Θηb,θ′pθ′,λtµt(θ

′)∑
θ′∈Θpθ′,λt−1

µt−1(θ′)

∑
θ′∈Θpθ′,λt

µt(θ
′)

− (V ∗(µt, 1; η)− Pp{νt+1 = 1|λt, µt, νt = 1}
· Ep,q[V ∗(M(λt, µt, ωt+1), 1; η)|λt, µt,
νt+1 = 1]) + V ∗(µt, 1; η))νt (117)

=(1− νt)V ∗(µt, 0; η)− It(λt) + ηc,λtcλt

+ (

∑
θ′∈Θηb,θ′pθ′,λt

µt(θ
′)∑

θ′∈Θηb,θ′µt(θ′)

∑
θ′∈Θηb,θ′µt(θ

′)

+ V ∗(µt, 1; η))νt (118)
=(1− νt)V ∗(µt, 0; η)− It(λt) + ηc,λt

cλt

+ ((1− St(λt))
∑
θ′∈Θηb,θ′µt(θ

′)

+ V ∗(µt, 1; η))νt (119)

Consider νt = 1, and suppose µt ∈ T (η). Then:

Q∗λt
= V ∗(µt, 1; η)− It(λt)
− (St(λt)− 1)

∑
θ′∈Θηb,θ′µt(θ

′) + ηc,λt
cλt

(120)
= −h(It(λt), St(λt)) + ηc,λt

cλt
(121)

for some h increasing in It(λt) and St(λt), since other
terms do not depend on the choice of λt. Hence minimiz-
ing Q∗λt

is equivalent to maximizing h(It(λt), St(λt)) −
ηc,λt

cλt
. For completeness, consider also νt = 0. But

clearly T (η) is empty since Q∗λt
= Q̄+ ηc,λtcλt , therefore

µt 6∈ T (η) and there is no acquisition hence no tradeoff.

Proposition 6 (Strategy Posterior) The posterior P{π|D}
over P (Equation 22) satisfies the following proportionality:

P{πκρ (...; η)|D} ∝ P{κ}P{η|κ}P{ρ}
·∏N

n=1

∏τn−1
t=0 πκρ (λ̃n,t|µn,t, νn,t; η)

(122)

where µn,t is recursively computed via update M , νn,t=1

prior to stopping, and πκρ (...; η) is defined as in Equation 24.

Proof. First, the likelihood term is given by:

Pp,q{D|πκρ (...; η)} (123)

=Pp,q{(λ̃n,0:τ−1, ω̃n,1:τ )Nn=1|κ, η, ρ} (124)

=
∫

∆(Θ)

∏N
n=1

∏τ−1
t=0 (P{λ̃n,t|µn,t, νn,t, κ, η, ρ}

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t})
dP{µn,t+1|λ̃n,t, µn,t, ω̃n,t+1} (125)

=
∏N
n=1

∏τ−1
t=0 (P{λ̃n,t|µn,t =

M(λn,t−1, µn,t−1, ω̃n,t), νn,t, κ, η, ρ}

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t}) (126)

=
∏N
n=1

∏τ−1
t=0 π

κ
ρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t),

νn,t; η)Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t} (127)

where for third equality recall the Bayesian recognition
model (which involves no uncertainty), and the fourth equal-
ity is just our definition of a strategy. So the posterior is:

Pp,q{πκρ (...; η)|D} (128)

=
1

Z
P{κ}P{η|κ}P{ρ}∏N

n=1

∏τ−1
t=0 (

πκρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t), νn,t; η)

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t}) (129)

where the normalizing constant is given by:

Z =
∫
K
∫
H
∫
R
∏N
n=1

∏τ−1
t=0 (

πκρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t), νn,t; η)

· Pp,q{νn,t+1, ω̃n,t+1|λ̃n,t, µn,t, νn,t})
dP{ρ}dP{η|κ}dP{κ} (130)

Note that the dynamics term does not depend on κ, η, or ρ
and cancels out from the numerator and denominator, so:

P{πκρ (...; η)|D} (131)

=
1

Z ′
P{κ}P{η|κ}P{ρ}∏N

n=1

∏τn−1
t=0 (

πκρ (λ̃n,t|M(λn,t−1, µn,t−1, ω̃n,t), νn,t; η)) (132)

Proposition 7 (Differentiable Posterior) Assuming diffe-
rentiable priors P{η |∗},P{ρ}, the posterior P{η, ρ|∗,D}
for optimal strategies is differentiable (almost everywhere).

Proof. First, we show each Q̃∗ ˜λn,t
(µn,t, νn,t; η) is concave in

η, for which it is sufficient to show each V ∗(µn,t, νn,t; η) is
concave. Let π be the Bayes-optimal strategy corresponding
to the point υη + (1− υ)η′ for υ ∈ (0, 1). Then:

V ∗(µn,t, νn,t; υη + (1− υ)η′) (133)
=V π(µn,t, νn,t; υη + (1− υ)η′) (134)
=υV π(µn,t, νn,t; η) + (1− υ)V π(µn,t, νn,t; η

′) (135)
≥υV ∗(µn,t, νn,t; η) + (1− υ)V ∗(µn,t, νn,t; η

′) (136)

where the second equality follows from linearity of expecta-
tions, and the inequality from the fact that any the optimal
strategy for η and η′ respectively is by definition at least
as good as any other strategy π (which in this case is only
known to be optimal for some other point υη + (1− υ)η′).
But for any function f : Rd → R for some finite d that is
concave, the set of points of non-differentiability is at most
countable. Therefore Q̃∗ ˜λn,t

(µn,t, νn,t; η) is differentiable
(almost everywhere). Now, the likelihood is a differentiable
in ρ and in each Q̃

∗
˜λn,t

(µn,t, νn,t; η), so the posterior is
differentiable (almost everywhere) in η and ρ as long as
the priors P{η |∗} and P{ρ} themselves are differentiable.


