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Abstract. Assistive robot manipulators must be able to autonomously
pick and place a wide range of novel objects to be truly useful. How-
ever, current assistive robots lack this capability. Additionally, assistive
systems need to have an interface that is easy to learn, to use, and to
understand. This paper takes a step forward in this direction. We present
a robot system comprised of a robotic arm and a mobility scooter that
provides both pick-and-drop and pick-and-place functionality for open
world environments without modeling the objects or environment. The
system uses a laser pointer to directly select an object in the world,
with feedback to the user via projecting an interface into the world. Our
evaluation over several experimental scenarios shows a significant im-
provement in both runtime and grasp success rate relative to a baseline
from the literature [5], and furthermore demonstrates accurate pick and
place capabilities for tabletop scenarios.
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1 INTRODUCTION

The ability to autonomously pick and place a wide range of novel objects can
benefit applications in assistive robotics where robots are deployed to support
humans in their daily life. The potential for this capability is enormous, given the
continuously growing elderly populations in many countries [8] and the millions
of people currently living with disabilities which affect motor functions [12]. This
paper proposes and evaluates a new robotic mobility scooter system (Fig. 1a)
comprised of a standard mobility scooter augmented with a robotic arm that can
perform novel-object pick-and-place tasks semi-autonomously. The system is op-
erated by a human driving the scooter who identifies grasp objects and place
targets using a laser pointer. Compared to a prior version of this system [5],
the current system can perform pick-and-place tasks in domestic settings al-
most twice as fast, much more consistently, and with higher task success rates.
Moreover, whereas the system reported in [5] is only able to pick up objects,
the new system can also place grasped objects using a similar laser interface as
used during grasping. Finally, we provide a much more extensive evaluation of
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Fig. 1. (a) The system has a Universal Robotics UR5 robot arm mounted on a Merits
Pioneer 10 mobility scooter. Five Occipital Structure depth sensors provide perception
functionality for the system. The user interface includes a monitor, a key stick, a
projector, and a dual laser pointer device. (b) The overview of our software workflow.

the system (under expert human control) than was provided in [5]. The perfor-
mance improvements described above and an improved user interface are due
to a number of new system features including the following. 1) A new strategy
for manually selecting grasps found via grasp detection using a toggle interface.
This strategy significantly reduces wrong-object grasping errors in cluttered en-
vironments. 2) A new type of user interface for assistive technology that utilizes
dynamic spatial augmented reality (DSAR) to communicate grasp intent to the
user by projecting light directly onto the real world. 3) A new configuration of
five depth sensors that provides good coverage of the area in front of the vehicle
without using metric SLAM. This makes sensing more reliable because it elim-
inates SLAM registration failures and it makes planned manipulator motions
more reliable because the system observes a larger portion of the work space.
4) Use of stiff rather than compliant manipulator hardware. Much prior work in
assistive manipulation uses compliant manipulators for safety [4, 5].

2 RELATED WORK

The focus of research on assistive robotic systems for manipulation tasks has
mainly been on human-robot interaction (HRI). Existing systems typically lack
the ability to autonomously grasp and place an unknown object in an unstruc-
tured environment. Martens et al. introduced a semi-autonomous robotic system,
composed of a robot arm mounted on a wheelchair with a speech interface [14].
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Their approach used visual servoing techniques to grasp known objects. Kemp
et al. developed a system with a laser pointer interface to allow a user to se-
lect an object in the world that their mobile robot would retrieve [9, 11], with
88.9% (32/36) grasp success rate in experiments on two different surfaces com-
bined. However, the objects were placed in isolation, and only top-down grasps
where allowed. Achic et al. proposed the combination of a hybrid brain-computer
interface and an electric wheelchair equipped with a robotic arm to facilitate
navigation and manipulation tasks [1]. Their experiments were restricted to pre-
programmed robot arm motions. Pathirage et al. proposed a similar system but
relied on a database of object models for grasping [16]. Grice et al. demonstrated
an assistive robotic system, in which a PR2 robot could be teleoperated for ma-
nipulation tasks via a web browser and a single-button mouse [4]. However, this
required to control the end-effector directly which makes it much harder to use
than autonomous grasping. Gualtieri et al. presented a system comprised of a
Baxter robotic arm mounted on a mobility scooter which used a laser pointer
device to locate the target object [5]. Although the system was able to grasp
novel objects, there were two primary issues: low grasp success rates and long
task execution times.

Since novel object grasping is critical in domestic applications, grasp detec-
tion is a key element of our system. Several successful grasp detection systems
have been recently proposed in the literature including the following. Mahler et
al. proposed DexNet, another grasp system with a 93% grasp success rate [13].
That system takes depth images as input and detects grasps in the plane, i.e. with
a single degree of orientation freedom (orientation about the gravity axis). Mor-
rison et al. presented a closed loop system that can grasp dynamically moving
objects [15]. Their algorithm runs at 50 Hz and reached grasp success rate of 83%
on unseen objects. Similarly, Viereck et al. proposed another closed loop grasp-
ing system for dynamically moving objects with a 88.9% grasp success rate [22].
Kalashnikov et al. developed a reinforcement learning grasp system [10] using
large amounts of real robot experience that generalizes to 96% grasp success
on unseen objects. Gualtieri et al. proposed GPD [6, 21] that takes point cloud
data as input and produces 6-DOF grasp poses as output. That system has a
93% grasp success rate for novel household objects. In this paper, we decided to
build on GPD because it was easier to adapt to unstructured domestic settings.
In particular, since GPD operates with point cloud input, our system benefits
from low-occlusion point cloud data provided by our five depth sensors. In ad-
dition, since GPD is not limited to detecting planar grasps, it can more easily
generate side grasps – an important capability in domestic settings.

3 SYSTEM OVERVIEW

Our system is comprised of a UR5 robotic arm (6-DOF), equipped with a Robo-
tiq 2-finger 85 gripper, mounted on a Merits Pioneer 10 mobility scooter, as
shown in Fig. 1a. The vision system is made up of five Occipital Structure depth
sensors. Four are mounted near the handlebars (two on the left and two on the
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Fig. 2. (a) The front view of our system. (b) The user interface. (c) A nearly unoccluded
point cloud generated by combining information from the five depth sensors.

right) and an additional sensor is mounted higher up that can view elevated
surfaces like the top of a shelf or a tall table. Using this five-sensor setup, the
vision system can detect objects anywhere in a one-meter tall area in front of
the scooter. As illustrated in Fig. 2a, we mounted the sensors, their supporting
structures, and the robot arm in such a way that the front view of the user is
not blocked. This configuration also gives the sensors a nearly unoccluded view
of the workspace: see the nearly complete point cloud in Fig. 2c.

A dual laser pointer device, a ten-inch monitor, an X-keys XK-4 stick, and
an EPSON LCD H801A projector make up the physical user interface (Fig. 2b).
A workstation is mounted on the back of the scooter and is connected to the
robot, sensors, and user interface. The workstation consists of a 3.6 GHz Intel
Core i7-6850K CPU (six physical cores), 32 GB of system memory, and a Nvidia
GeForce GTX 1080 graphics card.

The software of our system can be divided into subsystems for perception,
planning, execution, and user interface, illustrated in Fig. 1b. The perception
subsystem consists of three parts. First, we acquire a fused point cloud by con-
catenating the individual point clouds from all five depth sensors. Second, we
detect the 3D position of the laser pointer using the infrared radiation (IR) im-
ages. Third, we detect potential grasps using the Grasp Pose Detection (GPD)
library [6,21]. Once grasps have been detected, the planning subsystem selects a
grasp based on either automatic grasp selection or manual grasp selection pro-
vided by our system, and then tries to find a feasible trajectory for the robot
arm. The execution subsystem executes that trajectory. When performing plac-
ing, grasp pose detection and grasp selection are skipped and the planning sub-
system will directly generate a trajectory to the position that the laser pointer
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Fig. 3. The picking workflow of our system. (a) User drives to pick location. (b) User
identifies target object using laser pointer. (c) Projector illuminates system grasp in-
tent. (d) System detects grasp and solves motion plan. (e) Arm executes grasp.

indicated. The user interface subsystem interacts with the user during the whole
process. All subsystems are implemented as ROS [17] nodes running on the
workstation. We describe the software subsystems in the following sections. Fig.
3 shows the process of our system picking up an object.

4 USER INTERFACE

We developed a simple graphical user interface (GUI) using RViz [17]. The GUI
is used to visualize the various outputs of our system: the perception results,
the status of the system, and the current actions available to the user. The user
interacts with this interface by using the key stick. The dual laser pointer allows
the user to select the next target (either the object to be grasped or the location
for placing) for the system. The laser device consists of two (5 mW 650 nm) red
lasers. The user positions the pointer by illuminating only a single laser. When
the laser is positioned as desired, the user activates the second laser to confirm
the selection.

A dynamic spatial augmented reality (DSAR) system augments our user
interface by providing more informative feedback using a projector mounted on
the scooter (Fig. 1a and 2b). This system highlights an area with a beam of light
indicating the target of the next pick or place action. Specifically, while picking
the area around the selected object will be highlighted (Fig 3c) and while placing
the position selected for placing an object will be highlighted.

To do this, we first create a virtual camera that has the same intrinsics
and extrinsics as the projector. We then project the segmented point cloud into
the frame of the virtual camera to create a black-and-white image where pixels
are white if the corresponding point belongs to the segmentation and black
otherwise. Finally, the image is sent to the projector and the white pixels are
illuminated.

In order to determine the intrinsics of the projector lens, the projector was
mounted a fixed distance away from a wall and an image was projected upon it.
The projector was then modeled as a pinhole camera with an intrinsic camera
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matrix K:

K =

fx 0 cx
0 fy cy
0 0 1

 (1)

Let W and H be the width and height of the image respectively, w and h
be the width and height of the image in pixels respectively, X and Y be the
distances from the principal point (the intersection of the optical axis and the
image) to the origin (top-left) point of the image on the image plane in their
respective axes, and Z be the distance from the projector to the image plane. We
can determine the focal length f of the projector in pixels using the projective
equation: fx = fy = w Z

W . The principal point (cx, cy) is then calculated in

pixels: cx = w X
W ; cy = h Y

H .

5 PERCEPTION

5.1 Point Cloud Generation

Both the grasp detection and motion planning use point cloud information as the
primary input, so it is important to obtain the most complete point cloud possible
of the workspace. Our system uses five Occipital Structure depth sensors. Four
of them are mounted 114cm above the ground, and the other one is 156cm. The
higher sensor points 44 degrees downward. The four lower sensors are separated
into two mirrored groups. One in each group points 25 degrees downward which
covers most of the workspace. The other one points 55 degrees downward which
supplement the view of the area lower and closer to the arm. The distance
between the two groups is 63cm. All five sensors also have an inward degree of
20. Coverage of the workspace with multiple views is important for both obstacle
avoidance and for grasp detection; as shown by [6] and [21], grasp detection
accuracy can improve by as much as 9% simply by adding one additional view.
Our system attempts to provide at least two views of the workspace using the
five-sensor setup: the sensors on the left and right group provide two views, and
the higher one provides another view. Fig. 2c shows an example of a point cloud
generated from our cameras. The point cloud from our five cameras covers all of
the reachable workspace of the robot arm, as is indicated by the complete table
being seen in front of the robot.

5.2 Laser Pointer Detection

A dual laser pointer device is used to identify the target for the next pick or
place action. We detect the position of the laser pointers by reading the infrared
radiation (IR) image from the depth sensors. Since our device consists of two
parallel laser pointers, each potential location is detected by finding two nearby
high-value areas within each IR image using hierarchical clustering [18]. To in-
crease the accuracy, we detect potential locations in the IR image of each of the
five sensors and map them to 3D to find a matching position.
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6 GRASP DETECTION

6.1 Preprocessing

The goal of point cloud preprocessing is to eliminate from consideration the
parts of the environment that can be safely excluded using standard methods.
First, we remove all planes that are roughly horizontal with respect to the vehicle
from the cloud. We use RANSAC [3] parameterized with a distance threshold of
0.015m and a maximum angle relative to the horizontal of five degrees. Planes
are not removed unless they contain at least 13k inliers. We eliminate at most
70% of the points in the cloud this way. After removing horizontal planes, we
attempt to segment individual objects using Euclidean cluster extraction [19]
with a distance threshold of 0.005m. We eliminate all clusters except the one
closest to the point of interest found using our laser point detection subsystem.
If the remaining cluster has fewer than 500 points, we skip this step and simply
return all points within a 0.1m radius ball centered at the laser pointer position.

6.2 Grasp Pose Detection

After point cloud preprocessing is complete, we detect feasible grasps using
GPD [6, 21]. GPD detects 6-DOF robotic hand poses that are predicted to be
feasible grasps. The system takes two different point clouds as input: the seg-
mented cloud as described above and the full cloud. GPD uses the segmented
cloud to seed candidates for grasp detection and the full cloud to ensure that the
detected grasps do not collide with the environment. Because the seeded grasps
are drawn only from the segmented cloud, the system only detects grasps in the
vicinity of the segmented object.

7 GRASP AND PLACE SELECTION

After grasp candidates are found, the system filters out all grasps that do not
have a collision-free inverse kinematics (IK) solution [7]. To select a grasp to
execute from the set of remaining feasible grasps, the user can either defer to a
built-in set of heuristics or select the grasp manually.

7.1 Automatic grasp selection

In automatic grasp selection, we prioritize the grasps using an objective function
equal to the product of the following five factors:

C = CwCjCaCsCp (2)

Cw penalizes grasps that are near the gripper width limits. Small errors in
perception or kinematics can make grasps that are close to the maximum width
of the gripper fail. Grasps that are close to the minimum width often correspond
to small parts of an object that are not suitable for a mechanically stable grasp.
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Let Gw be the grasp width, i.e., the extent of the points in the closing direction
of the gripper, Wmin be the min gripper width, Wmax be the max gripper width,
and Wd be a minimum acceptable distance from the gripper extrema (0.015m
in our experiments). Cw is:

Cw = 1− max(0,Wd −min(|Gw −Wmin|, |Gw −Wmax|))
Wd

(3)

Cj gives preference to grasps that can be reached by moving the arm in
short distances in configuration space. Grasps with larger joint distance need
more execution time. Let Ji be the initial arm configuration, Gj be the arm
configuration which reaches the grasp pose, and Jm be the max joint distance.
The joint distance cost Cj is computed as:

Cj = max(0, 1− 1

Jm
‖Ji −Gj‖) (4)

Ca takes the approach vector of the grasp into account giving preference to
top grasps over side grasps. When scoring side grasps, it prefers grasps that
approach the object from the front. Top grasps are easier for the robot arm to
execute. Side grasps that approach an object from the front are less likely to
collide with objects blocked by the target which might not be observable by the
sensors. Let Ga be the approach vector of a grasp and Gx be the axis vector. Ca

is computed as:

Ca =

{
0.5 + 0.5|Ga[1]|, |Gx[2]| > 0.8

1, otherwise
(5)

where Ga[1] is the y component in the approach vector (the y axis in the world
frame is pointing forward) and Gx[2] is the z component in the axis vector.

Cs encodes a preference for grasps that are nearby the segmented cloud as
this decreases the possibility that the object will slide away during grasping. Let
Gb be a fixed point relative to the grasp position, l be the gripper length, and
S be the sample cloud. The sample distance cost Cs is computed as:

Cs = 1− min(l,min∀p∈S ‖p−Gb‖)
l

(6)

Finally, Cp penalizes grasps far away from the detected laser pointer position.
Let p be the laser pointer position and th be a distance threshold (0.05m in our
experiments). The position distance cost Cp is computed as:

Cp = exp(−10 ∗max(0, ‖p−Gb‖ − th)) (7)

7.2 Manual Grasp Selection

Although automatic grasp selection often works well, there are a few scenarios
where it has problems. First, in densely cluttered scenes, the segmented point
cloud might contain multiple objects and a grasp on the wrong object is selected.
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Second, the system may attempt to grasp the table, shelf, or some other part
of the environment. Third, in the case of pick-and-place, the user might have a
preference for grasping the object in a particular way. The option for manual
grasp selection enables the user to overcome these problems by specifying exactly
how to grasp the object. Note that the grasp detection system is still active here
– the only difference is that after grasp detection has occurred, the user may
select which detected grasp is most suitable instead of relying on the heuristics
described earlier.

During manual grasp selection, the set of feasible grasps are visualized on a
small monitor mounted near the scooter handlebars (see Fig. 1a) and the user
can toggle through them using the key stick to select the desired one. To facilitate
this process, we cluster the detected grasps to remove nearby duplicates using
hierarchical clustering [18] on the 3-DOF position of the grasps. The maximum
Euclidean distance inside each cluster of grasps is 0.02m. We then display the
clusters.

7.3 Place Selection

When in pick-and-place mode, grasps are generated and executed in the same
manner as above. However, after the grasp is selected, we measure the distance
between the grasp and the surface the object is on. This offset will be added to
the next laser pointer detection in order to adjust to the height the object was
grasped at. Once the grasp has been executed, the user is free to re-position the
scooter in front of the surface they wish to place the object onto. The placement
pose is generated by combining the orientation the object was grasped in and
the position indicated by the second laser pointer detection.

7.4 Motion Planning

OpenRAVE [2] is used for collision checking and motion plan generation. There
are two steps when computing motion plan. First, linear trajectories are at-
tempted. If no collision-free trajectory can be found, trajectory optimization,
TrajOpt [20], is used. When grasping, the system iterates through the grasps in
sorted order (based on Section 7.1 and 7.2) and tries to generate a collision-free
motion plan for the whole grasping task, i.e., reaching, grasping, lifting, and
dropping. We execute the first grasp for which a valid motion plan can be found.

8 EXPERIMENTS

We performed experiments that compare the performance of our system to the
results from [5]. Then we performed an additional experiment that evaluates
pick-and-place functionality in a more challenging environment. We also compare
our automatic grasp selection against manual grasp selection. Fig. 4a shows the
30 objects used to test the system. These objects are similar to those used in
Gualtieri et al. [5] to allow a fair comparison.
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(a) (b)

Fig. 4. (a) The 30 objects used in the experiments. (b) Our system grasping in-situ.

8.1 Evaluating Grasping in Isolation

Experimental Protocol To compare the grasping functionality of our system
to prior work [5], we performed 15 trials in a tabletop scenario on a 46 cm tall
table while the scooter was stationary. For each trial, six objects were randomly
selected from the object set and placed on the table in randomly selected posi-
tions at least two centimeters away from each other in an upright orientation.
These trials were run with automatic grasp selection in pick-and-drop mode by
an expert user who determined the order the objects were grasped in. We evalu-
ated the detection success rate, grasp success rate, and the detailed time spent.
Detection success is defined as the selected grasp being on the desired object.
Grasp success means that the robot was able to grasp and transport the object
to a handlebar-mounted basket. When measuring the time the system took, we
only average over successful detections, grasps, plans, etc. We do not include
system loss time, e.g., time spent by the user to press a key.

Results Table 1 shows the results from this experiment. We attempted to re-
move all objects from the table 15 times. Each time, the table was initialized
with six objects placed in random locations as described above (a total of 90
objects to be grasped). It took our system 104 attempts to grasp these 90 ob-

Work of [5] This Work
Grasp SR 89.6% (78/87) 93.8% (90/96)
Detect SR 87.8% (108/123) 92.3% (96/104)

Table 1. Results for Grasping In Isolation

Avg. Std.
Acquire Point Cloud 8.0s 2.4s
Detect Laser Pointer 5.8s 5.3s
Detect Grasp Pose 7.4s 2.3s

Grasp Filter 1.6s 0.6s
Plan Motion 2.4s 2.8s

Execute 24.2s 1.1s
Attempt Total 51.7s 7.2s

Table 2. Timing for Grasping
In Isolation
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(a) (b)

Fig. 5. (a) The kitchen layout for in-situ experiments. (b) One experimental setup in
the kitchen environment.

jects where 96 out of 104 (92.3%) detection attempts succeeded and 90 out of 96
(93.8%) grasping attempts succeeded. Compared to [5], this constitutes a 4.5%
improvement in detection success rate and a 4.2% improvement in grasp success
rate. Table 2 shows the runtime of our system. On average, each grasp took 51.7s
to perform, with almost half the time required to execute the reaching motion.

8.2 Evaluating Grasping In-Situ

Experimental Protocol To test our system in a real-world scenario, we used
the open kitchen area shown in Fig. 5a. We performed five trials. In each trial,
ten objects were randomly selected from the object set and placed in randomly
chosen positions. Three objects were placed on a 73 cm tall table, three were
placed on a 31 cm tall table, two were placed on the top shelf of a bookshelf
(100 cm high), and two were placed on the middle shelf of the bookshelf (69 cm
high). Certain objects were not allowed to be placed on the middle shelf as they
could only be grasped from the top down and the arm could not fit inside the
shelf. Each trial was run with automatic grasp selection in pick-and-drop mode
by an expert user. The sequence in which the objects had to be grasped was
randomly generated for each trial. For each object in the sequence, the scooter
was first driven to Start Point 1 (see Fig. 5a) and then up to the desired object.
We allowed the user to trigger the system several times (until the target object
was retrieved). To compare to the work of Gualtieri et al. [5], we use the same
evaluation metrics for this experiment (additional experimental records were
provided by the authors of [5]).

Results Out of the 50 tasks (5 trials each with 10 objects), 48 succeeded,
giving us a task success rate of 96%. The two failures were due to objects falling
over on the middle shelf during the experiment, making it impossible for the
system to grasp them. As is shown in Table 3, our system has a 10% higher task
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Work of [5] This Work
Task SR 86.0% (43/50) 96.0%(48/50)

Failure Type Work of [5] This Work
Detect Laser 7.6% (5/66) 10.3% (7/68)
Lost Track 15.1% (14/93) n.a.
Plan Grasp 16.5% (13/79) 10.3% (6/58)

Wrong Object 3.0% (2/66) 4.4% (3/68)
Execute Grasp 27.9% (17/61) 4.0% (2/50)

Table 3. Results for Grasping In-Situ

Work of [5] This Work
Avg. Std. Avg. Std.

Acquire Point Cloud - - 8.6s 2.7s
Detect Laser Pointer - - 6.0s 3.6s
Detect Grasp Pose - - 4.7s 1.7s

Filter Grasp - - 1.6s 0.9s
Plan Motion - - 2.9s 2.9s

Execute - - 24.3s 1.1s
Attempt Total - - 50.7s 5.7s

Driving - - 11.4s 4.7s
System Task Total - - 57.7s 15.3s

Task Total 128s 99s 69.0s 18.4s

Table 4. Timing for Grasping In-Situ

success rate and a 24% lower grasp execution failure rate compared to [5]. In 6
of the 58 attempts the system failed to generate a feasible grasp for execution
(due to a failure in grasp detection, IK solving, or motion planning), showing
a 6.2% improvement compared to the prior work. While the prior work had
a track loss of 15.1%, our system never has track loss, thanks to our sensing
strategy that does not require metric SLAM. However, our system shows a minor
increment (2.7%) in laser detection failure. With respect to wrong object failures
(i.e., the robot grasps an object that was not targeted by the user), our system
has similar performance as the baseline. Table 4 shows the average runtime for
this experiment. The average time to complete a successful attempt was 50.7s.
When including failed attempts and driving, the time increases to 69s. This is a
significant improvement over the 128s average time reported for the baseline [5].

8.3 Evaluating Pick-and-Place In-Situ

Experimental Protocol We tested the pick-and-place functionality in a more
complex version of the kitchen environment from the previous experiment. Along
with the shelf and two tables, there was also a 108 cm tall high table, a 87 cm
tall kitchen counter, and a ground area. On each of these seven surfaces we put
four numbered tags 7 cm away from each other. We performed three trials. In
each trial, 28 objects were randomly sampled from the object set, labeled from 1
to 28, and placed on top of the corresponding tag. The orientation of the objects
was determined by a fair coin flip (1=upright, 0=not upright). Fig. 5b shows a
setup of one trial. Each object was randomly assigned a target surface and the
order the objects were to be pick-and-placed in was determined by randomly
generating a permutation of 1 to 28. These trials were run with manual grasp
selection in pick-and-place mode by an expert user. At the start of each task,
the scooter was driven to Start Point 2 (seen in Fig. 5a) and then up to the next
object to be grasped. After the object was grasped, the scooter was driven to the
target surface and the object was placed on top of it. During the experiment, the
user was allowed to perform pick-and-place actions to separate the target object
from nearby objects. We evaluated the same metrics as in Section 8.2. Fig. 4b
shows our system grasping an object in this experiment.
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Task SR 96.4%(81/84)

Failure Type Grasping Placing
Detect Laser 2.0%(3/150) 1.0%(1/104)
Detect Grasp 8.0%(12/150) -
IK/Planning 20.0%(27/135) 7.8%(8/103)
Wrong Object 0%(0/135) -

Execute 12.0%(13/108) 3.2%(3/95)

Table 5. Results for Pick-and-Place In-
situ

Avg. Std.
System Task Total 129.9s 75.6s

Grasping Placing
Avg. Std. Avg. Std.

Acquire Cloud 8.3s 2.5s 9.5s 4.4s
Detect Laser Pointer 6.0s 2.2s 4.7s 3.0s
Detect Grasp Pose 3.7s 1.6s - -

Grasp Filter 4.9s 2.6s - -
Grasp Selection 2.5s 2.6s - -
Motion Planning 7.5s 6.4s 1.1s 5.0s

Execution 17.1s 3.9s 15.6s 1.5s
Attempt Total 53.3s 9.5s 35.1s 10.2s

Table 6. Timing for Pick-and-Place In-
Situ

Results Out of the 84 tasks (3 trials with 28 tasks each trial), 81 succeeded
giving us a 96.4% task success rate. In 13 of the successful tasks, it was necessary
to move a nearby object out of the way (we did this by performing a separate
pick/place with the scooter) in order to reach the target object. As is shown in
Table 5, the laser detection failure drops compared to the previous experiment
because this experiment was conducted at night and there was less interference
caused by sunlight. The grasp detection failure rate remains similar to the pre-
vious experiment, but the system suffered from more IK/planning failures and
execution failures. The primary reason is the increment in complexity of the
environment. The high counter top is especially challenging because it nearly
reaches the arm’s workspace limit. No wrong object failure appeared because
of the use of manual grasp selection. This enabled the user to select on-target
grasps. The average time needed for each pick-and-place task was 130s excluding
time for driving. Note that this is higher than the sum of the total grasping time
and the total placing time in Table 6 because it was not guaranteed that each
task could be finished by only one pick-and-place attempt.

8.4 Comparing Automatic and Manual Grasp Selection

Experimental Protocol Finally, we compared the automatic grasp selection
and manual grasp selection. We performed 50 trials with the same table setup
as in Section 8.1. In each trial, two objects were randomly selected and placed
next to each other on the table. One of the two objects was randomly chosen as
the target object, and an expert user operated the system to perform one pick-
and-drop on the target object with automatic grasp selection mode and manual
grasp selection mode, respectively. Note that for each mode, there was only one
attempt allowed to pick up the target object. We evaluated the wrong object
and the grasp execution failure rates of the two grasp selection modes.

Results As shown in Table 7, manual grasp selection has a 20% lower wrong
object failure rate because it allows the user to choose on-target grasps when
applicable. This eliminates the possibility that the system selects a grasp to be
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Automatic Selection Manual Selection
Wrong Object Failure 26.0% (13/50) 8.0% (4/50)

Grasp Execution Failure 6.0% (3/50) 14.0% (7/50)

Table 7. Results of Comparing Automatic and Manual Grasp Selection

executed on an object that is not the target but had higher objective function
value, as is the case with automatic grasp selection. However, there were still
three occasions for the manual selection mode where our system only provided
grasps on the wrong object. Interestingly, automatic grasp selection shows a 6%
lower grasp execution failure rate. The main reason for this is that the robot
was forced to execute a challenging grasp on a target object (i.e., a grasp that
could easily result in a collision), while automatic grasp selection simply executed
easier grasps on the wrong object.

9 DISCUSSION AND LIMITATIONS

We present an assistive robotic system that enables pick and place of novel ob-
jects in open world environments. Our experimental results demonstrate reliable
pick-and-drop and pick-and-place capabilities. In pick-and-drop in-situ experi-
ments, we reached a grasp execution success rate of 96% and an average total
runtime of 57.7s. In pick-and-place in-situ experiments, we reached a grasp ex-
ecution success rate of 88%, a place execution success rate of 96.8%, and an
average total runtime of 129.9s.

The two most common failure modes of our system are: (i) not immediately
finding a feasible motion plan, and (ii) not detecting the desired object with
the laser pointer. The first failure mode could be addressed by using a different
planner. The second failure mode could be addressed by developing a better
laser pointer detection algorithm. One way to do this might be to use RGBD
sensors, such as the Intel Real Sense, to be able to exploit the RGB. That should
facilitate the detection of the laser pointer.

The runtime of our system could be reduced in multiple ways. Currently,
point cloud acquisition, laser pointer detection, grasp pose detection, and robot
arm motions take up most of the time. To avoid infrared interference that causes
the point clouds to be very noisy and have a large amount of missing depth
data, we currently switch the sensors on and off, which takes a lot of time. This
problem could be tackled by using stereo cameras which do not use infrared and
therefore are not required to be turned on and off. Grasp pose detection could
be made faster by using a CPU with more cores, enabling a larger degree of
parallel computations.

The pick-and-place problems that our system addresses are relatively simple.
When placing, we only consider the target position of the placement and mainly
ignore the object’s orientation. In the future, we would like to allow the user to
choose a target orientation for the placement and enhance our system with the
capability to reorient the object accordingly. Furthermore, we can currently not



Towards Assistive Robotic Pick and Place 15

maintain a fixed object orientation while moving the robot arm after grasping.
This would be a problem if the robot had to pick up an object filled with a
liquid, e.g., a cup of coffee.

Our user interface provides another avenue for future research. Currently
the projector is only used for displaying the next target of our system, however
there are a number of ways to expand its usage to display more information to
the user. For example, it could display the locations of planned grasps or the
workspace of the arm. Our objective is to remove the screen from the system,
allowing people to give commands to and receive information from the system
in the real world.

User studies are another direction for future research. As this system aims
to assist people with different abilities, we first plan to develop a variety of
adaptations of user interface with different access methods. User studies could
then be used to determine which interfaces work the best overall and which
interfaces work better for specific demographics of users. This would allow us to
provide a robust assistive system which is applicable to a large variety of users.
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