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Abstract—Envisioned to be the future of secured distributed
systems, blockchain networks have received increasing attention
from both the industry and academia in recent years. However,
blockchain mining processes demand high hardware costs and
consume a vast amount of energy (studies have shown that
the amount of energy consumed in Bitcoin mining is almost
the same as the electricity used in Ireland). To address the
high mining cost problem of blockchain networks, in this paper,
we propose a blockchain mining resources allocation algorithm
to reduce the mining cost in PoW-based (proof-of-work-based)
blockchain networks. We first propose an analytical queueing
model for general blockchain networks. In our queueing model,
transactions arrive randomly to the queue and are served in a
batch manner with unknown service rate probability distribution
and agnostic to any priority mechanism. Then, we leverage the
Lyapunov optimization techniques to propose a dynamic mining
resources allocation algorithm (DMRA), which is parameterized
by a tuning parameter X > 0. We show that our algorithm
achieves an [O(1/K), O(K)| cost-optimality-gap-vs-delay trade-
off. Our simulation results also demonstrate the effectiveness of
DMRA in reducing mining costs.

I. INTRODUCTION

In recent years, blockchain technologies have gained signif-
icant attention from both the industry and academia. In stark
contrast to traditional Peer-to-Peer (P2P) networks, blockchain
technologies provide a truly decentralized and reliable mech-
anism, which allows users to communicate securely with each
other without the need to trust any third parties. As a result,
blockchains have been used as a platform for large-scale
distributed systems to enable a wide range of decentralized
applications (dApps), such as digital currencies [1], food
traceability [2], just to name a few.

However, as blockchain applications become more prevalent
and the daily transactions in blockchains continue to rise,
several fundamental performance issues of blockchain systems
also emerge. One pressing performance issue is the high
cost resulting from skyrocketing mining energy expenditure
in operating blockchain systems. For example, in PoW-based
(proof-of-work-based) blockchains such as Bitcoin, a miner
has to invest significant computational power to find a solution
and show PoW faster than other competing miners. Due to this
competitive nature and the fact that the probability of mining
the next block is positively correlated to the computational
resources used for solving the puzzle, miners tend to consume
vast amounts of electricity and buy various types of hardware
(e.g., CPU, GPU, FPGA, ASIC, etc.) to accelerate their mining

This work has been supported in part by NSF grants ECCS-1818791, CCF-
1758736, CNS-1758757; ONR grant N00014-17-1-2417, and AFRL grant
FA8750-18-1-0107.

processes. Indeed, studies have shown that the amount of
global energy consumed in Bitcoin mining is almost the same
as the electricity used in Ireland [3].

To achieve a more sustainable growth of blockchain sys-
tems, several new mechanisms have been proposed to increase
the mining resource efficiency, including, but not limited
to, proof-of-stake (PoS) [4], Trusted Execution Environments
(TEEs) [5], etc. However, recent studies also found that
these new mechanisms either are vulnerable to adversarial
attacks or only have marginal energy savings [6]. Due to the
limitations of these new blockchain designs, in this paper, we
dedicate ourselves to improving the mining resource efficiency
of the traditional and dominant PoW-based blockchains'.
Specifically, we focus on optimizing the operations of PoW-
based blockchains from a theoretical perspective by taking
a queueing theoretic approach and investigate how to dy-
namically allocate mining resources based on the number of
transactions in the Mempool to minimize the time-average
mining cost (mining energy cost offset by reward), while
keeping the blockchain networks stable at the same time. The
main technical results are summarized as follows:

« We develop a new logical queueing-based analytical model
that allows us to formulate the blockchain mining cost
minimization problem as a stochastic optimization problem.
We note that our proposed queueing-based analytical model
could be of independent interest for other research problems
in blockchain systems.

« Based on the above analytical model, we propose a queue-
length-based online distributed dynamic mining resources
allocation algorithm (DMRA) to identify near-optimal so-
lutions. Our proposed algorithm does not require any prior
statistical information of the arrival and service processes.
Through theoretical analysis, we show that our algorithm
comes within an O(1/K) distance to the optimal time-
average mining cost, where K > 0 is a system parameter in
our proposed algorithm. Meanwhile, the proposed algorithm
achieves an O(K) bounded time-average queue-length.

« Besides theoretical analysis, our simulation results also show
that DMRA significantly reduces the mining cost while
keeping the blockchain queue stable at the same time.

II. RELATED WORK
To our knowledge, in the blockchain literature, queueing
related works include [8]-[10]. In [8], the authors studied the

'PoW-based blockchian protocols account for more than 90% of existing
digital currencies market [7].



problem of transaction confirmation time, where the trans-
action processes are analytically modeled as an M /G /1
queue. In this queueing model, transactions arrive at a single
server queue according to a Poisson process and are served
in batch. In their model, miners are profit-driven and select
transactions from Mempools according to the transaction fees.
It was shown that the confirmation time of transactions with a
larger transaction fee are shorter than those with a smaller fee.
Ricci et al. [9] adopted an M /G /1 queueing model to analyze
transaction delays in Blockchain networks. They showed that
transaction fees and transaction values are two important fac-
tors that influence the transaction delays. Koops [10] modeled
the Bitcoin confirmation time as a Cramer-Lundberg process
and provided a dynamic approach to uncover the probabilistic
distribution of the confirmation time of Bitcoin transactions.
Our work differs from [8]-[10] in the following key aspects:
First, all the aforementioned existing work studied transactions
confirmation time, while the focus of this paper is on mining
cost minimization subject to the queueing stability of the
blockchain system. Second, unlike [8]-[10], our proposed
algorithm does not rely on any statistical assumptions on the
arrivals and services. This is desirable because, in practice,
transactions arrival and service processes are often unknown
and can hardly be assumed as a particular queueing model.

Recently, there is also a line of work focusing on resource
allocation problems in blockchain networks. For example, Jiao
et al. [11] considered a mobile blockchain network, where
mobile users buy resources from the edge computing service
provider (ESP) and the search for PoW solution is offloaded to
the service provider. They provided an auction-based scheme
to maximize the social welfare of mobile blockchain network.
Similarly, Xiong et al. [12] also adopted the computational
offloading mechanism to manage the computing resource in
mobile blockchain. They formulated a two-stage Stackelberg
game between the service provider and mobile miners to max-
imize the profit of miners and edge service provider. Li et. al
[13] also modeled the energy allocation as a Stackelberg game
for mobile blockchain in Internet-of-Things (IoT) devices, and
they applied backward induction to guarantee the benefit of
microgrids and miners. We note that all of these existing works
[11]-[13] aimed to study the resources allocation problem of
mobile blockchain network in IoT devices, where the mining
process is offloaded to the service provider. In contrast, we
propose a logical queueing-based analytical model to investi-
gate how to directly allocate mining resources among miners
to reduce the their costs in a general blockchain network.

III. ANALYTICAL MODEL AND PROBLEM FORMULATION
A. Blockchain Network Information Propagation: A Primer

In blockchain networks, there are four steps for transactions
to be delivered to the network and finally included in the
global blockchain, as shown in Fig. 1. Each miner in the
network (also referred to as a “node” in the rest of the paper)
contains an exact local copy of the blockchain, and each
miner holds a memory, called Mempool, where transactions
are stored and waiting to be processed. When a new transaction
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Fig. 1: An illustrative example of information propagation in
a blockchain network.

is broadcast to the network, it will first be validated by the
miner at which it arrives. If valid, the transaction will be
stored in the Mempool and propagated to the other miners, see
Fig. 1(a); otherwise, the entry miner will reject the transaction.
Next, this transaction is broadcasted to the whole blockchain
networks, see Fig. 1(b). After selecting a set of transactions
from their own Mempools and forming them into a block,
miners compete to find a solution to PoW. When a miner
successfully obtains a solution, it immediately broadcasts the
newly mined block to its peers, see Fig. 1(c). Other miners then
check whether the solution to PoW is correct. If the majority of
miners reach a consensus that the solution is correct, the new
block will be added to the global blockchain and transactions
contained in this verified block will be removed from the
Mempools of all miners, see Fig. 1(d).

B. A Virtual Blockchain Queueing Model

Note that in the information propagation process as shown
in Fig. 1, the propagation time for spreading new transactions
across the network in a blockchain is on a much shorter
timescale (e.g., seconds) compared to the block mining time
(e.g., on the order of 10 minutes). This observation suggests
that the propagation delays in a blockchain are negligible in
practice. Hence, a new valid transaction can be viewed as
arriving at the Mempools of all nodes simultaneously. Also,
since all nodes maintain the same set of transactions after each
propagation process is finished, the Mempools of all nodes can
be viewed as a global logical queue that stores all transactions
waiting to be processed at multiple servers that represent the
miners, as illustrated in Fig. 2(a). In this multi-server queueing
model, transactions arrive randomly and are removed from the
queue when a new block is generated. Again, noting that the
update time upon recovering a new block across the network
is negligible, the queueing model in Fig. 2(a) can be further
simplified as a single-server queue as shown in Fig. 2(b),
where the single virtual server models the fact that in each
time-slot, only one miner will be winning in solving the PoW.
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Fig. 2: An illustration of blockchain virtual queueing model.

We assume that the system operates in slotted time indexed
by t € {0,1,2,...}. We assume that the duration of a time-slot
is longer than the average block generation time. Let A be the
set of miners with || = N, and each miner is indexed by i =

., N. We let D be the total number of resource types in the
system, e.g., electricity, CPU cores, GPU units, FPGA units,
etc. Let 0¥[t], k € {1,2, ..., D}, denote the amount of resource
k allocated at miner ¢ in time-slot ¢. For convenience, we use
vector 8;[t] = [0}[t], 02[t], ..., 0P[t]] T € RP to compactly rep-
resent all resources that miner 7 invests to mine a new block in
time-slot ¢. We let weight vector w £ [wy, ws, ..., wp] ' € RP
represent the relative importance of each type of resource.
Let Z(6;[t]) denote the random amount time for miner i to
mine a new block given resources 6;[t]. According to [14],
we assume that Z(;[t]) follows an exponential distribution
with rate parameter \;(6;[t]) dependent on resource allocation
0;[t]. We assume \;(0;]t]) is a concave function of 8;[t], which
represents the “diminishing return effect”” This is because
blockchain systems are fundamentally security-constrained:
certain level of latency is required in blockchain networks
to mitigate double-spending frauds. As a result, doubling the
mining resources does not necessarily result in a mining speed
twice as fast. In this paper, we propose a novel e-parameterized
function to model \;(0;[t]):

Xi(0:[t]) = (w ' 6;[t])", (1)

where 0 < € < 1 is a system parameter. Clearly, \;(-) is a
concave function. Here, € can be interpreted as a “difficulty”
parameter of blockchain networks. Under security constraints,
the larger the value of e, the easier to mine a new block.

In blockchain networks, every miner selects a set of trans-
actions from their own Mempools (or the global logical queue
in our model) to generate a new block. Every miner will work
on a different puzzle that is unique to the block they form. Let
S|t] be the random number of blocks mined by the blockchain
system in time-slot ¢. Note that the average time the miners
generate a block can be computed as E{min;cp Z(0;[t])}.
Hence, the average number of mined blocks under resources
0;[t], Vi, can be computed as:

1
E{S[t]} = E{mlnze/\/ Z(6:[t])}
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where (a) follows from the fact that if X, X5, ..., Xy are
mutually independent random variables and X; ~ exp()\;),
Vi =1,...,N, then min{X1, Xy, ..., Xy} ~ exp(320, o).
Suppose that each mined block contains a fixed number of

transactions (denoted by V). Then, the system can serve S[t]V
transactions in time-slot t. Meanwhile, we assume that, in each
time-slot, new transactions arrive randomly at the blockchain
system according to a process {A[t]}$2,, where A[t] denotes
the number of transactions arriving in time-slot ¢. In this paper,
we assume that Aft] < Apax and S[t] < Smax, Vi, for some
constants Amax, Smax > 0. Let Q[t] represent queue-length
(i.e., the number of transactions) in the queue in time-slot ¢.
Then, the queue-length evolution can be written as:

Q[t+1] = max {Q[t] — S[t]V + A[t],0}. 3)
C. Problem Formulation

In PoW-based blockchains, miners compete to solve the
puzzle to mine a new block, and the successful miner will win
a fix reward R and flexible transaction fees M. Since there
are S[t] number of blocks mined by the blockchain system
in time-slot ¢, the total reward provided by the system is
S[t](R+M). We let ¢(0;[t]) denote the cost of miner 4 in time-
slot ¢ given resource allocation ;[t], where the cost function
¢(-) is assumed to be increasing, convex, and differentiable.
We note that here we assume that the miner will receive the
reward once he mines a new block. In practice, the miner
may not receive the reward if the mined block is not finally
added to the global blockchain due to branching?. Hence, our
model can be viewed as a lower bound for the mining cost in
actual blockchain networks. The problem of handling cost in
branching will be left for our future studies.

From a social welfare perspective, the blockchain system
operator wants the miners to invest fewer total resources in
mining new blocks. At the same time, each miner tries to
maximize his/her own rewards. These two conflicting goals
can be represented by the total net expected mining cost in
time-slot ¢ (resource costs subtracted by the total received
rewards for the miners R + M), which can be computed as:

E{p[t]} = E{ ZL c(6;[t]) — S[t|(R + M)}.
= 30 O~ (R MY Nl &)

i=
Define p as the tlme average mining cost for all miners, i.e.,
p=limsup, ., L S E {plr]}.

Apart from minimizing the time-average mining cost, the
blockchain system operator also wants to guarantee that the
allocated mining resources at all miners are sufficient such
that transactions can be processed in a timely manner and
the blockchain queue is stable. In this paper, we adopt the
following notion of queueing stability [15]: We say that the
blockchain queue is strongly stable if it satisfies:

t 1

lim sup — ZE{Q 1} < o0, %)

t—o0

that is, the stability of blockchain queue implies that the
transactions in queue cannot be accumulated to infinity. Putting

2By design, a blockchain could branch if different blocks are generated
simultaneously. Eventually, blocks not on the main chain may be discarded.



the above objective function and constraints together, the
mining resources allocation optimization problem (MRA) can
be formulated as:
MRA: Minimize p
subject to 0 < 6;[t] < Omax, Vi, t,
Queueing-stability constraint in (5),

where vector 6,,,, contains the upper bounds for all mining
resources and the inequalities between vectors in the con-
straints are component-wise. In what follows, we will develop
a dynamic resource allocation algorithm that provably achieves
the optimal solution to Problem MRA.

IV. DYNAMIC MINING RESOURCES ALLOCATION
ALGORITHM

In this section, we consider the problem of optimally
allocating mining recourses to minimize the mining cost
while maintaining the stability of the blockchain system. To
this end, we propose a dynamic mining resources allocation
algorithm in Section IV-A and present theoretical analysis of
the proposed algorithm in Section I'V-B.

A. Dynamic Mining Resources Allocation Algorithm

We note that Problem MRA is a challenging Markov
decision process problem under a dynamic system with a
large solution space. To solve Problem MRA, we first present
a useful lemma that shows that under mild assumptions, it
suffices to only consider the class of stationary randomized
policies, which significantly reduces the size of solution space
to be considered.

Lemma 1 (Solution Space). Let 6* = [63,...,0%]" be an
optimal mining resources allocation vector. If Problem MRA is
feasible, and the blockchain system satisfies the boundedness
assumptions and the law of large number assumption, then,
for any § > 0, there exists a stationary randomized policy
that makes mining resources allocation decisions depending
only on the system state while at the same time satisfies:
p < p* + 6§ and E{A[t]} < E{S[t]V}, where p* =
SV {el0) — (R+ M)A ().

The proof of Lemma 1 follows from [15, Theorem 4.5]
and we omit the details here due to space limitation. Based
on this insight, in what follows, we propose a dynamic
mining resources allocation algorithm based on Lyapunov
optimization technique to stabilize the blockchain queue and
solve Problem MRA. To this end, we first define the following
Lyapunov function L[t] = Q[t] . Hence, the Lyapunov drift
can be computed as AL[t] = E{L[t +1] — L[t]|Q[t]}. Tt is
known from the classical work by Tassiulas and Ephremides
[16] that greedily minimizes AL[t] induces queueing-stability
of the system. Further, to minimize the mining cost while
maintaining queueing stability, we incorporate the mining cost
function of Problem MRA into the Lyapunov drift AL[t]. That
is, in every time-slot ¢, we greedily minimize the following
drift-plus-penalty expression:

+KZ,1

— (R4 M)A:(6:[t])|Q[1]}, (6)

where K > 0 is a parameter that, as will be shown later,
is used to tune the tradeoff between queueing delay and the
achievable mining cost. Next, we will state a basic property
of the expression in (6) that will be useful in our later
performance analysis:

Lemma 2 (Drift Bound). For 0 < 6,][t]
plus-penalty term in (6) satisfies:

< Onax, the drift-

L+ Ky — (R+ M)Xi(6:[1))|QI1)}
§B+KZ¢1 c(0:lt]) — (R + M)X:(6:[1])|Q[11}
+E{QIA(Al] - S[V)|QI} @)

. A2 82 VE
where B is defined as B & 224 maxsma 3

Proof. Using the queue-length evolution in (3) and the defi-
nition of the conditional Lyapunov drift given Q[t], we have:

LIAIQI} = 5B { @l + 11~ Ql*IQlH )
< QUIQl b= S E{(Al-s1v)*}
FE{QU(AL—SIHV) Q1)) € B+QUIE{AI-SVIQI.
where (a) follows from (v — y) < max[2?,y?] for z >

0,y > 0. Adding K Y17, {c(i[t]) — (R + M)A(6:[t])|Ql1]}
on both sides completes the proof. O

ALt

< SE{(QlH) - SIV +A[) >

—E{L[t + 1]—

Since the arrival process A[t] of new transactions is indepen-
dent of Q[t], minimizing the right-hand-side (RHS) of (7) for
all ¢, i.e., the upper bound of the drift-plus-penalty expression,
is equivalent to solving the following optimization problem by
plugging in Eq. (2) and rearranging terms:

Minimize K" c(6,[]) (K (R+ M)+ Q[ }gj Ai(0ilt]) g

=1 =1

subject to 0 < 0;[t] < Omax-

This observation motivates a dynamic mining resource alloca-
tion algorithm (DMRA) stated in Algorithm 1 as follows:

Algorithm 1 Dynamic Mining Resource Allocation Algorithm.

1: Initialization: Let ¢ = 0; Choose a value for K.

2: for each time-slot t =0,1,... do

3:  Each miner ¢ observes Q[t] and then allocates mining
resources 0;[t], Vi by solving Problem (8).

Let the blockchain queue evolve according to (3).

5: end for

»

B. Performance Analysis

In this section, we will analyze our proposed dynamic
mining resources allocation algorithm in Algorithm 1.

1) Upper Bound for Mining Cost: We first show that our
proposed DMRA algorithm achieves a mining cost that is
guaranteed to be within an O(1/K) distance to the optimal
value of Problem MRA, and the result is stated in Theorem 1:



Theorem 1. Let B be defined as in Lemma 2. Suppose that
Problem MRA is feasible such that there exists an optimal
solution to Problem MRA that achieves the optimal value p*.
For any K > 0, the time-average mining cost incurred by the
DMRA algorithm is upper bounded by:

t—1 N

lim sup — Z Z {c(6;

=00 7=0 i=1

MO} <p+ 2

— (R+ M)A =

Proof. To snnjghfy the notation, in the rest of the paper, we

use F[t] = 370, {c(8:[t]) — (R + M)Xi(8:t])}. Plugging the
result of Lemma 1 into the RHS of (7) under given queue-

length Q[t] and setting § — 0, we have:
AL[t|+KF[t] < B+ Kp*+Q[t|E{A[lt]-S[t]V|Q[t]}. (9)

Taking expectation with respect to Q[t] and then summing
over 7 € {0,1,...,t — 1}, we have:

E{L[#]} — E{L0]} + Kzt__lo Flr]
< Bt + Kp* t+z E{Q[ 1(A[7] —
Since Q[t] >0, E {A[t}}SE{S[t]V} and L[t] >0, we have:

S[rv)y. (10)

L B E{L[O}}
- 1 <p*+ = . 11
EZ:T 0 - 1{ + Kt (n
Finally, taking limsup as ¢ — oo and plugging in the
definition of F'[t] yields the upper bound. O

2) Bounded Average Queue Length: Next, we consider the
delay performance of our proposed DMRA algorithm. To this
end, we first introduce the following assumption.

Assumption 1. (Slater Condition). For the expected arrival
rate and service rates, there exists a constant value A > 0

that satisfies: E{A[t]} <E{S[t]V} — A.

Theorem 2. [f Problem MRA is feasible and Assumption I
holds, then our proposed dynamic mining resources allocation
algorithm stabilizes the blockchain queue, i.e., the queue is
strongly stable, and the time-average queue-length satisfies:

13 K(p* — min
limsup — ZE{Q + K(p* —p™")

)
t—o0 AA

in

where p™?" is the minimum mining cost.

Proof. According to (10), since L[t] > 0, we have:

t—1 t—1

“E{L[0]}+ K> Flr|l<Bt+Kp“t+ > E{Q[7)(Alr] - S[r]V)}

=0 7=0

According to Assumption 1, we have:

fZEw

B4 KG - | B(LO)
- A tA
Taking limsup as ¢ — oo completes the proof. O

% -1
Bt—HE{L[ N+ Kpt—K S
tA

Flr]

+

(12)

3) Time-Varying K for Asymptotic Optimality: Rather than
using a fixed K, we can gradually increase K while maintain-
ing the blockchain queue to be mean state stable. By doing
s0, we can eliminate the term K in Theorem 1.

Theorem 3. If K|[t] is used in the drift expression of (9) and
Kt] satisfies K[t] = Ko(t + 1), where Ko > 0 is a constant,
then it holds that

t—1 N
h?i)bup ZZ{C — (R+ M)X;(0;[7))} = p*.
© 7=0i=1

Proof. Since AL[t] = E{L[t+ 1] — L[t]|Q[t]}, E{A[t]} <
E {S[t]V}, according to (9), replacing K with K[¢] and taking
expectation with respect to Q[t], then we have:

E{Lt+ 1)} — B{LI} + KIOFl) < B+ K[y, (13)
Dividing both sides by K[t], we have:
E{L{t+1]}  E{L[} B .
KK +F[t]§K—m+p . (4)
Summing over 7 € {0,1,...,¢ — 1}, we have:
E{L t—1 B t—1
+Z]E{L [ ] K[TJ+;)F[T]
15)

< — *t.
: Z 7

Since K|t is non-decreasing and K [r] > 0, V7, then we have
> 0. Because Lt} >0, dividing t on both sides

[T 1] K[T]
of (15), we have L S\ Flr] <p*+ 130 K[T] Taking
limsup as t — oo, wegetfztr 10%2 1?01 w BT}H <
l?o logt _, 0, which concludes the proof. O

Theorems 1 and 2 show that our algorithm admits a
[O(1/K),O(K)] cost-delay tradeoff. It achieves within an
O(1/K) neighborhood of the optimal time-average mining
cost with a delay on the order of O(K). Theorem 3 shows
that we can narrow the gap by choosing the sequence { K[t]}.

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to evalu-
ate the performance of our proposed dynamic mining resource
allocation algorithm for PoW-based blockchain networks.

1) Simulation Settings: In our experiment, we consider a
blockchain network with N miners. Each of these miners
generates transactions and mines new blocks with one CPU
core. Transactions arrivals A[t] are i.i.d. across time and
uniformly distributed over the interval [50, 200]. In this paper,
we consider two types of mining resources. The first one is
CPU utilization, e.g., the CPU utilization ranges from 40%
to 60%, and the CPU utilization is managed by the cpulimit
tool. Higher CPU utilization means higher hashing rate and
thus higher probability that the miner successfully mines
a block. However, higher CPU utilization also results in a
higher mining energy cost. The second type of resource is the
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electricity. In the simulations, we adopt the following linear
cost model: ¢(6;[t]) = m(w"8;[t]) + n, where m,n > 0 are
constants. When computing the reward of each block, we use
the fixed value reward (R) and ignore tye random transaction
fee (M) for simplicity. We compare our proposed DMRA
algorithm with two baselines. The first baseline is denoted
as MaxMining, where the system tries to make use of all
available resources to mine a new block at all times. The
second baseline is denoted as RandMining, where the system
randomly allocates mining resources to mine a block. Unless
otherwise mentioned, we use the following default parameter
settings: The length of each time-slot is 1 minute, the total
time duration of all simulations is 200 minutes. We set the
tradeoff parameter K = 20. The weight for CPU utilization
and electricity is set to 3 and 1, respectively. We let N = 4,
R=3,V=3m=045 n=0, and ¢ = 0.5.

2) Performance Analysis: Figs. 3 and 4 show the mining
cost and delay performance achieved by our proposed DMRA
method and baselines. We observe that our dynamic mining
resources allocation algorithm DMRA achieves similar delay
performance as MaxMining. However, DMRA significantly
reduces the mining cost compared to MaxMining. Even though
RandMining could reduce the mining cost to some extent, it
could not keep the blockchain queue stable since it allocates
the mining resources randomly. In general, our proposed
DMRA method significantly reduces the mining cost while
keeping the blockchain queue stable at the same time. This is
because, compared to the baselines, our proposed algorithm
can dynamically allocate mining resources according to the
number of transactions in the blockchain queue.

3) Impact of the Tradeoff Parameter K: Figs. 5 and 6
show the tradeoff between time-average mining cost and
time-average queue-length under different values of tradeoff

parameter K. We can observe that a larger K leads to a
better mining cost performance, but at the cost of incurring a
larger queueing delay and vice versa. Thus, there is a tradeoff
between the mining cost and the queueing delay. By tuning
the value of K, we can control the tradeoff between mining
cost and delay in blockchain networks.

VI. CONCLUSION

In this paper, we proposed a queueing-based analytical
model to study the mining resources allocation problem in
PoW-based blockchain networks. In our queueing model, we
did not assume the knowledge of arrivals probability distribu-
tion and are agnostic to any priority mechanism. We leveraged
Lyapunov optimization techniques and proposed a dynamic
mining resources allocation algorithm with a parameter K,
which can be used to tune the trade-off between mining
energy cost and queueing delay. We showed that the proposed
algorithm is within an O(1/K) distance to the optimum, with
a worst case delay scaling as O(K). Our simulation results
also demonstrated the effectiveness of our proposed algorithm
in reducing the mining cost for blockchain networks.
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