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Abstract
Although state-of-the-art (SOTA) CNNs achieve

outstanding performance on various tasks, their

high computation demand and massive number

of parameters make it difficult to deploy these

SOTA CNNs onto resource-constrained devices.

Previous works on CNN acceleration utilize low-

rank approximation of the original convolution

layers to reduce computation cost. However, these

methods are very difficult to conduct upon sparse

models, which limits execution speedup since re-

dundancies within the CNN model are not fully

exploited. We argue that kernel granularity de-

composition can be conducted with low-rank as-

sumption while exploiting the redundancy within

the remaining compact coefficients. Based on this

observation, we propose PENNI, a CNN model

compression framework that is able to achieve

model compactness and hardware efficiency si-

multaneously by (1) implementing kernel sharing

in convolution layers via a small number of basis

kernels and (2) alternately adjusting bases and

coefficients with sparse constraints. Experiments

show that we can prune 97% parameters and 92%

FLOPs on ResNet18 CIFAR10 with no accuracy

loss, and achieve 44% reduction in run-time mem-

ory consumption and a 53% reduction in inference

latency.

1. Introduction
One of the greatest strengths of Deep Neural Net-

works (DNNs), specifically Convolutional Neural Networks

(CNNs), is their large design space, which innately height-

ens flexibility and potential for accuracy. Improving model

accuracy conventionally involves increasing its size, given

sufficient training data. This increase in size can come in

the form of more layers (He et al., 2016), more channels per
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layer (Zagoruyko & Komodakis, 2016), or more branches

(Szegedy et al., 2015). A major drawback of naı̈vely in-

creasing model size is the substantial computational power

and memory bandwidth required to train and run inference

tasks. To address this issue, multiple methods have been

introduced to compress CNN models and increase sparsity

(Han et al., 2015; Wen et al., 2016). Model compression

can come in the form of weight quantization (Ullrich et al.,

2017) or Low Rank Approximation (LRA) (Denton et al.,

2014).

LRA utilizes matrix factorization to decompose weight ma-

trices into the product of two low rank matrices, thus reduc-

ing computation cost. Some works (Lebedev et al., 2014;

Tai et al., 2016) use tensor decomposition to represent the

original weight with the outer product of one-dimensional

tensors (i.e., vectors) . The speedup and parameter reduction

of these methods are notable; however, current approaches

are limited because they do not consider redundancies in

CNN parameters.

Model sparsity can be induced via various pruning tech-

niques, most of which are categorized under structured or

unstructured. On one hand, unstructured pruning aims to

remove unimportant weights of a network, irrespective of

its location. By targeting the least important weights in a

model, unstructured pruning has minimal impact on overall

accuracy while achieving a high sparsity level. However,

the undefined distribution of pruned weights makes it chal-

lenging to compress the model’s representation in memory.

On the other hand, structured pruning achieves sparsity by

removing entire DNN structures (e.g. filter-channels, filters,

layers, etc.) that are deemed unimportant, which may impact

a model’s performance by inadvertently removing sensitive

parameters. Such predictable pruning patterns open the

avenue for efficient model storage and computation. It is

important to note that merely applying structured pruning

is not enough to fully reap hardware efficiency benefits.

Without additional changes to the underlying representa-

tion in memory or the model’s training or inference stage

algorithms, conventional DNN platforms still fall victim to

inefficient memory transfers and computations.

In this paper, we propose Pruned kernel sharing for Efficient

CNN Inference (PENNI), a CNN model compression frame-

work that overcomes these challenges by decomposing layer
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parameters into tiny sets of basis kernels and accompanying

coefficient matrices. This method can benefit inference effi-

ciency by organizing the involved coefficients and computa-

tion flow in a hardware-friendly manner. High compression

rate is achieved by applying l1-regularization to the coeffi-

cients. The structural redundancies are further explored in

a model shrinkage procedure. We evaluate our method on

CIFAR10 and ImageNet with VGG16, ResNet and AlexNet.

Results show that we can achieve a 98.3% reduction on

parameters and a 93.3% reduction on FLOPs with less than

0.4% accuracy drop. PENNI outperforms state-of-the-art

(SOTA) pruning schemes in addition to being more effi-

cient for hardware implementation. Our code is avaliable at:

https://github.com/timlee0212/PENNI.

Our main contributions are listed as follows:

• We propose a hardware-friendly CNN model compres-

sion framework, PENNI. We apply filter decompo-

sition to generate a limited set of basis kernels and

corresponding coefficient matrix. Sparsity is achieved

by applying l1-regularization to coefficient matrices

in the retraining process. Structural redundancies are

then explored via a model shrinking procedure.

• Hardware inference efficiency is directly benefited

through model shrinking with no modifications to in-

ference algorithm. Further speedup can be brought

by computation reorganization of convolutional lay-

ers. To avoid restoring original filter tensors, we can

separate basis kernel convolutions from their weighted

sum computation. Keeping the two computation steps

distinct opens the avenue for exposing all pruned coeffi-

cients, thus leveraging coefficient sparsity and avoiding

wasteful zero-computations.

• Evaluation on CIFAR-10 and ImageNet with various

network architectures proves the effectiveness of the

proposed method with significant reduction in both

FLOPs and number of parameters with negligible ac-

curacy loss.

2. Related Work
Various methods have been proposed to accelerate CNN

inference. These methods either exploit redundancies of

CNN models to reduce the number of parameters and com-

putations or introduce lightweight model structures for a

given task.

Compact Model Design Previous works aim to develop

resource-efficient model structures to reduce computation

requirements and improve latency. Lin et al. (2013) pro-

pose global average pooling and 1x1 convolution, which

are widely adopted in the later compact architectures.

SqueezeNet (Iandola et al., 2016) utilizes both structures to

reduce the number of channels and remove fully-connected

layers. A similar idea appears in InceptionNet (Szegedy

et al., 2015), while a later version (Szegedy et al., 2016)

extends the idea by spatially separating the convolutional

layers. MobileNet (Howard et al., 2017) uses depthwise

separable convolution to reduce the computation cost by

splitting the original convolutional layer channel-wise. Its

following version, MobileNet V2 (Sandler et al., 2018),

adopts residual connections and introduces the inverted bot-

tleneck module to improve efficiency. Xie et al. (2017)

enhance the expressiveness of the depthwise convolution

by allowing limited connectivity within groups, while later

ShuffleNet (Zhang et al., 2018b) adopts the grouped con-

volution. In addition to the manually designed compact ar-

chitectures listed above, Neural Architecture Search (NAS)

methods aim to automatically find architectures with opti-

mal balances of compactness and performance. Multiple

such works (Tan et al., 2019; Cai et al., 2019; Liu et al.,

2019a; Tan & Le, 2019) generate architectures that outper-

form manually designed ones.

Low Rank Approximation Low Rank Approximation

(LRA) method decomposes the original weights into sev-

eral low rank matrices (Denton et al., 2014; Zhang et al.,

2015) or low dimension tensors (Lebedev et al., 2014; Kim

et al., 2015). Denton et al. (2014) utilize Singular Value De-

composition (SVD) to conduct the decomposition, whereas

Zhang et al. (2015) take nonlinear activations into account

to obtain the decomposition while minimizing error of the

response. Kim et al. (2015) adopt Tucker Decomposition to

compress the kernel tensor. Lebedev et al. (2014) use canon-

ical polyadic (CP) decomposition. In addition, Learning

Structured Sparsity (Wen et al., 2016) and Centripetal-SGD

(Ding et al., 2019a) directly train the DNN with low rank

constraints. These tensor decomposition methods rely on

the rank selection, which is an ill-posed problem, while the

matrix factorization methods have limited speedup since

redundancies in the standalone weight values are not con-

sidered.

Model Pruning The idea of weight pruning dates back

to the last century. Optimal Brain Damage (LeCun et al.,

1990) proposes pruning weight based on their impact on

the loss function. A later work, Optimal Brain Surgeon

(Hassibi & Stork, 1993) improves this method by replac-

ing the diagonal Hessian Matrix with an approximated full

covariance matrix. However, due to the giant size of the

modern DNNs, these methods incur unacceptable compu-

tation cost. Han et al. (2015) propose pruning weights by

comparing the magnitude with a threshold, and achieve the

optimal result by iterative pruning and fine-tuning. Guo et

al. (2016) further improve the sparsity level by maintaining

a mask instead of directly pruning the redundant weights.
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Figure 1. Overview of PENNI. There are four phases in the proposed framework: A. Decompose the filters into d-dimension basis and

the corresponding coefficient matrix; B. Recover the model performance by alternatively training basis and coefficients with sparsity

regularization applied to coefficients; C. Prune coefficient by magnitude; D. Explore the structure redundancies and shrink the model.

Beyond conventional unstructured pruning methods, various

structured pruning methodologies have been proposed to

ease translation from sparsity to inference speedup. Wen et

al. (2016) and Yang et al. (2019) apply group regularizer

in the training process to obtain structured sparsity. Liu et

al. (2017) apply l1-regularization to the scaling factors of

batch normalization layers to identify insignificant channels.

ThiNet (Luo et al., 2017) utilizes a data-driven method to

prune the channel with the smallest impact on the following

layer. In recent works (He et al., 2018a; Zhang et al., 2018a;

He et al., 2019; Ding et al., 2019b), different criteria are

adopted to rank the importance of the filter. Louizos et al.

(2017) use stochastic gates to apply l0-regularization to the

filters. NAS methods also incorporate filter pruning (He

et al., 2018b; Liu et al., 2019b). Although structured prun-

ing can directly benefit the inference efficiency, its pruning

granularity limits the compression rate or accuracy of CNN

models.

3. Proposed Method
3.1. Overview

Figure 1 presents the overview of PENNI framework. We

first decompose each layer’s convolution filters into a few

basis kernels and a coefficient matrix. Then, we retrain the

decomposed network with sparsity regularization applied to

coefficient matrix to recover any lost accuracy. Finally, we

prune the redundant coefficients based on magnitude and

obtain a compact CNN model.

Before the discussion on the method, we first define the

notations that will be used in this paper. We denote the pa-

rameters of convolutional layer l as θ(l) ∈ R
cl×cl+1×kl

w×kl
h ,

where cl is the number of the input channels, cl+1 is the

number of the output channels, and k
(l)
w and k

(l)
h are the ker-

nel dimensions. Since most CNN architectures implement a

square kernel shape, i.e., k
(l)
w = k

(l)
h , we denote the kernel

shape as k(l) × k(l) for simplicity; the shape of the kernel

does not affect this framework. Θ = {θ(l)} is the set of all

parameters of convolutional layers of a CNN model. We

denote the output features of layer l as S(l), and the input

features as I(l). (X,Y ) represents the data pairs, while Y
is the given label or unknown ground-truth. Ŷ represents

the network model’s prediction. With these notations, the

i-th channel of a layer’s output feature map S(l) can be

computed by:

S
(l)
i = σ(l)

(( cl−1∑
j=1

I
(l−1)
j ∗ θ(l)i,j

)
+ b

(l)
j

)
, (1)

where θ
(l)
i,j is the j-th kernel of the i-th filter, b

(l)
j is the bias

term of the j-th filter and the σ(l) is the non-linear function

of the layer l.

3.2. Filter Decomposition

The convolution operation dominates computation cost of

CNN inference. Irregular data access and compute patterns

make it extremely difficult to efficiently map the operation

onto parallel hardware and further improve inference effi-

ciency. We address this issue by reducing the number of

convolution operations and offloading the irregular compu-

tation to a sequential and simple pattern.

Previous work (Zhang et al., 2015) on accelerating CNN

inference utilizes a low rank assumption of output feature

subspace to represent the original weight matrix with the

multiplication of two low rank matrices, thus reducing the

computation required. Low rank assumption is reasonable

in this case because the number of output features is compa-

rable with the dimension of the feature space. Recent work

(Ding et al., 2019a) indicates that in most CNNs, regular-

ization on convolutional kernels can push the kernels to be

alike one another. Based on this observation, we argue that

the low rank assumption can also be applied to the subspace

that each convolutional kernel lies in. With this assumption,

we approximate the original convolutional layer by sharing

a tiny set of basis kernels and representing original kernels
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with coefficients.

Decomposition at a kernel granularity is done to obtain an

approximated layer. This process applies to a single layer

a time, so the superscript l is omitted for readability. We

first reshape the original weight tensor into a 2D matrix

θ′ ∈ R
clcl+1×k2

l ; thus, each kernel can be seen as its row

vector w ∈ R
k2
l . Suppose U ⊂ R

k2
l is a subspace with

basis B = {u1, u2, ..., ud} where d ≤ k2l . The objective of

decomposition process is to find the subspace that minimizes

the error between the projected and original vectors, shown

in Equation 2.

min
αw∈Rd

∑
w∈θ′

||w − αwB
T ||2. (2)

B = [u1 u2 ... ud] is the basis matrix where each column

vector is a basis of the subspace and αw is the coefficient

vector corresponding to the row vector w. With this decom-

position, the output of each layer is computed by:

S
(l)
i = σ(l)

(( cl−1∑
j=1

I
(l−1)
j ∗ (α(l)

i,jB
(l)T

)
+ b

(l)
j

)
, (3)

where α
(l)
i,j is the row vector in the coefficient matrix corre-

sponding to the j-th kernel of the i-th filter.

The decomposition problem can be formulated as best ap-

proximation and is perfectly solved using singular value

decomposition (SVD). We first obtain θ̄′ by subtracting

each row vector with the mean vector, and then compute

the covariance matrix W = θ′T θ′. Conducting SVD on W,

and organizing the singular value by their magnitude, we’ll

have:

W = UΣVT . (4)

The basis matrix B is then derived by selecting the first d
columns from matrix U and obtaining the corresponding

coefficients by multiplying the θ′ by the projection matrix

BBT . Normally, k2l � clcl+1 and parameter matrices of a

pretrained model are dense, so W is a full rank matrix with

the rank k2l . Thus, the low rank approximation on kernel

space makes the SVD computation faster than conducting

decomposition at the filter granularity. A singular value may

represent the portion of the basis vector contributing to the

original vectors; but, rather than selecting d based on it, we

leave it as a hyper-parameter providing a trade-off between

computational cost and model accuracy.

3.3. Retraining

Although the discussed filter decomposition scheme gives

the best approximation of the original parameters in low-

rank subspace, the model accuracy may greatly degrade

due to varying sensitivity of affected weights. Zhang et al.

(2015) address this issue by considering the non-linear block

and minimizing response error of the layer. However, innate

redundancies in the models are not exploited, which limits

the compression rate and the speedup. Thus, we incorporate

a retraining process for twofold benefits: recover the model

accuracy and exploit redundancy within the CNN structure

through coefficient sparsity regularization. The objective of

retraining phase is to minimize the loss:

L′ = L(Θ, X, Y ) + γ
∑
l

clcl+1∑
i

||α(l)
i ||1, (5)

where the first term is the original loss of the model (i.e.,

cross entropy loss), the second term is the sum of the co-

efficients magnitude and γ is the strength of the sparsity

regularization.

If we visualize these two parameter sets as separate lay-

ers, it conceptually increases the depth of the model and

makes it harder to converge. Thus, in the training process,

we generate the reconstructed parameter θ̂ from the basis

and coefficients and compute the gradients as the original

convolutional layer. The chain rule can then be applied to

derive the gradients of the basis and the coefficients from

the original convolutional layer’s gradients. Specifically,

∂L′

∂B
= (

∂L′

∂θ̂
)TA,

∂L′

∂A
=

∂L′

∂θ̂
BT + γ, (6)

where the θ̂ = ABT and A ∈ R
clcl+1×d is the coefficient

matrix. Again, we omit the superscript l for readability.

The gradient of coefficient matrix consists of two terms.

The first term pushes the coefficient towards the direction

that decreases the error, while the second term coerces the

reconstructed kernels to be close to the basis kernels. If we

jointly train the basis and coefficients, the coefficients will

be updated based on the old basis and vice versa. Jointly

training both makes it very difficult for the model to con-

verge, producing further accuracy drop. We avoid this issue

by conducting retraining in an alternating fashion, i.e., freez-

ing the coefficients and train the basis for several epochs

and then freezing the basis and train coefficients.

The decomposed manner can also benefit the sparsity regu-

larization. Since l1-regularizer is non-smooth, it equates to

adding a constant to the gradient, which dominates the gra-

dient in the later stage of training. This causes the training

process to be very unstable or unable to converge. Regu-

larization on the decomposed filter state avoids this issue.

Examining the gradient from the original weight’s perspec-

tive, the regularization constant is essentially scaled as a

consequence of being applied only to the coefficients. This

scaling factor decreases the constant proportional to the di-

minishing gradients. The constant is still within the same

magnitude of the gradient of the loss term, thus stabilizing

the process of converging to a sparse parameter set.
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3.4. Model Shrinking

Retraining the filter-decomposed model with sparsity reg-

ularization results in predominantly near-zero coefficients.

As shown in (Han et al., 2015), we can select a threshold

based on the standard deviation of each coefficient matrix

and prune all weight values with a magnitude lower than the

threshold. Only a few epochs of coefficient fine-tuning is

required to recover accuracy lost by pruning. A combination

of high sparsity level and low accuracy loss can be achieved

without any additional iterations.

The sparse coefficients expose redundancies in CNN struc-

tures that can be utilized to shrink the model. Model shrink-

age begins with reshaping the coefficient matrix θ(l) into

the shape cl × cl+1 × k′. By selecting the first dimension

(i.e., the input channels) and summing the number of the

non-zero elements of the remaining two dimensions, we can

obtain a vector p
(l)
i with cl elements. Zeros in p

(l)
i indicate

that corresponding input channels are redundant since no

output channels are connected. Indices of these channels

can be represented by the set P
(l)
i . Selecting the second

dimension (i.e., the output channels) and conducting the

same procedure, we can get p
(l)
o and P

(l)
o , which indicate re-

dundant output channels. The redundancies in basis kernels

can also be derived with the same procedure.

Note that it is possible for redundancies of a layer’s input

and output channels to not match. We can exploit this fea-

ture by considering the connections between input channels

and redundant output channels of the same layer. If some

input channels only have connections to redundant output

channels, these inputs consequentially become redundant.

Thus, we iteratively update the redundancy sets by applying

the following steps. First, we take the union of the current

layer’s output channels with the next layer’s input chan-

nels, i.e., P
(l)
o ←− P

(l+1)
i ←− P

(l)
i ∪ P

(l+1)
o . Then, we

update θ(l) by setting all corresponding coefficients in Po

and Pi to zero and deriving new redundancy vectors and

sets. This procedure, depicted in Fig. 2, is repeated until no

modification is made in an iteration.

Layer 

Layer + 1( + )
( ) Layer 

Layer + 1
Update Coe cients

Figure 2. Model shrinking procedure. The blank items in P
(l)
o and

P
(l+1)
i represents the redundant channels, while the shaded items

denote the difference of the two redundant sets.

A potential problem with the iterative θ(l) update procedure

is when it is applied to CNN architectures with skip con-

nections, such as ResNet (He et al., 2016). Specifically,

dimensions of pruned output feature maps might be incon-

sistent with corresponding skip connections. The solution

to this issue is straightforward. If the shortcut path has a

dimension-matching operation (i.e., 1×1 convolution), we

update the output channel of the 1×1 convolution and the

current layer by taking the intersection of their redundancy

sets. If the shortcut path has no such operation, we will need

to update the redundancy sets of the start and the end of the

skip connection before updating the coefficients.

Layer 

Layer + 1

…1x1 Conv

Layer 

Layer 

Layer + 1

…1x1 Conv

Layer 

Layer 

Layer + 1

…
1x1 Conv

Layer Intersection Union

(a) With dimension matching component.

Layer 

Layer + 1

…

Layer + 1
Layer

Layer 

Layer + 1

…

Layer + 1
Layer

Layer 

Layer + 1

…

Layer + 1
LayerUnion Intersection

(b) Without dimension matching component.

Figure 3. Shrinking a model containing skip connections. The

shaded items represent the difference of the redundant sets in each

step. The corresponding items will be eliminated (added) in the

intersection (union) step.

3.5. Hardware Benefit

The decisive advantage of PENNI over previous CNN prun-

ing, compression, or filter decomposition methods is its

potential for synergistic reduction of memory and compu-

tational footprints. PENNI directly leverages filter decom-

position by enabling a partition of the convolution step into

two distinct stages.

The first stage involves channel-by-channel convolutions

with each of the d two-dimensional basis kernels, producing

cld intermediate feature maps; this stage is analogous to

to depthwise separable convolution (Chollet, 2017) with d
branches. Each branch duplicates one of the basis kernels

across the cl input channels. Applying such a technique

greatly reduces the number of multiply-and-accumulates

(MACs) in the convolution step, which is the bottleneck in
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convolutional layers.

The second stage is a weighted sum to produce the con-

volutional layer’s output feature map. Specifically, cld in-

termediate feature maps are multiplied element-wise with

the coefficient matrix and then accumulated at the output.

As described in Section 3.4, the coefficient matrices are

incredibly sparse; therefore, we reduce the model’s memory

footprint and prevent redundant zero-multiply computations

by representing the coefficients through a sparse matrix for-

mat. Although this stage introduces additional computations

that offset the reduction in MACs from the first stage, the

overall number of computations is dramatically reduced,

thus improving inference latency.

Beyond the aforementioned straightforward benefits of the

proposed two-stage convolutional layer scheme, PENNI also

offers a unique attribute that can be leveraged for current

and future hardware accelerator designs. The determinis-

tic convolutional kernel structure means that the number

of basis kernels can be altered to fit nicely with the num-

ber of processing elements (PEs) in accelerators such as

DaDianNao (Chen et al., 2014) without forcing the model

to conform to the hardware (e.g. reducing layer width).

Meanwhile, the weighted sum stage can be computed in

a streaming manner, much favored by single-instruction,

multiple-data (SIMD) processors. Also, because data ac-

cess patterns of convolutional layers conventionally require

hardware-specific data-reuse algorithms to minimize costly

cache evictions, removing interactions of the input channels

at the convolution step via depthwise separation alleviates

hardware complexity. Lastly, partitioning the convolution

step to two stages opens the avenue for further accelerator-

based throughput optimizations such as pipelining.

4. Experiments
In this section, we demonstrate the effectiveness of the pro-

posed framework. Experiments were held on CIFAR10

(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009)

datasets. Experiment settings are detailed before comparing

compression results between PENNI and both state-of-the-

art channel pruning and weight pruning methods. Finally,

we conduct an ablation study to show the contribution of

each component in the framework.

4.1. Experiment Settings

CIFAR10 On CIFAR-10, we chose VGG16 (Simonyan &

Zisserman, 2014), ResNet18 and ResNet56 (He et al., 2016)

for experimentation. VGG16 is a small version tailored for

CIFAR10. We use ResNet56 to test the performance on

compact models. Model training involved the following

data preprocessing steps: random flipping, random crop-

ping with 4 pixels padding, and normalization. The VGG16

and ResNet18 models were first pretrained for 100 epochs

with 0.1 initial learning rate; then, the learning rate was

multiplied by 0.1 at 50% and 75% epochs, while ResNet56

was pretrained for 250 epochs with the same learning rate

scheduling. All pretraining, retraining and fine-tuning pro-

cedures implemented Stochastic Gradient Descent (SGD)

as the optimizer with 10−4 weight decay, 0.9 momentum,

and batch size set to 128. We selected d = 5 for the de-

composition stage and retrained for 100 epochs with 0.01

initial learning rate and the same scheduling. Regularization

strength was set to γ = 10−4. The interval between training

basis and coefficients was set to 5 epochs. The final fine-

tuning procedure took 30 epochs with 0.01 initial learning

rate and the same scheduling scheme.

ImageNet On ImageNet, we used AlexNet (Krizhevsky

et al., 2012) and ResNet50 for the experiment, incorporating

the pretrained models provided by PyTorch (PyTorch, 2019).

Since AlexNet has different kernel sizes across layers, we

selected d = 64 and 14 for the first two convolutional lay-

ers, and d = 5 for the rest 3×3 convolutional layers. For

ResNet50, we use 4 sets of parameter settings, with d = 5, 6
and regularization strength set to 5e − 5 and 1e − 4. The

retraining procedure lasted 50 epochs with the same hyper-

parameters as CIFAR10 but set batch size to 256 and cosine

annealing. For AlexNet, we warmed up with a learning rate

of 0.0001 for five epochs; then, the learning rate was set to

0.001 for the remaining 45 epochs. The fine-tune procedure

took 30 epochs with learning rate set to 0.01 for ResNet50

and 0.0001 for AlexNet.

4.2. CIFAR10 Results

We selected channel pruning methods PFEC (Li et al., 2016),

Slimming (Liu et al., 2017), SFP (He et al., 2018a), AOFP

(Ding et al., 2019b), C-SGD (Ding et al., 2019a), FPGM

(He et al., 2019) and Group-HoyerSquare (Yang et al., 2019)

for comparison. For the works providing parameter trade-

offs, we use results with similar accuracy drop. The results

are shown in Table 1. ‘Ours-D’ denotes the compression

result with only decomposition and retraining phases, while

‘Ours-P’ incorporates all four phases. We only consider the

parameters of the convolutional and linear layers, and the

FLOP count is taken by calculating the number of Multiply-

Accumulation (MAC) operations. Based on the computation

flow described in Section 3.5, we consider that the sparsity

of coefficient matrix can be converted to reduction in FLOPs.

Thus, we ignore the zeros in the coefficient matrices when

counting FLOPs. On VGG16, we outperformed channel

pruning methods by achieving a reduction over 98% on

parameters and 93.26% on FLOPs. Although there is a

slightly higher accuracy drop, it is only 0.15% behind AOFP

with 10% extra reduction on FLOPs and 0.42% behind

Slimming with almost double reduction on FLOPs, which
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Table 1. Compression Result on CIFAR10. ‘Ours-D’ denotes the result with only the decomposition and retraining (i.e., phase A and

phase B in Figure 1), while ‘Ours-P’ incorporates the pruning and model shrinkage based on the ‘Ours-D’ model. ‘-’ denotes unavailable

data from the original paper.

Arch Method Base Acc. Pruned Acc. ΔAcc Param. RParam. FLOPs RFLOPs

VGG16 Baseline 93.49% - - 14.71M - 314.26M -
PFEC 93.25% 93.40% -0.15% 5.4M 64% 206M 34.2%

Slimming 93.62% 93.56% -0.06% 1.77M 87.97% 127M 43.50%
AOFP 93.38% 93.28% -0.10% - - 77M 75.27%
Ours-D 93.49% 93.14% -0.35% 183.4M 44.44% 183.4M 41.65%
Ours-P 93.49% 93.12% -0.37% 0.135M 98.33% 21.19M 93.26%

ResNet18 Baseline 93.77% - - 11.16M - 555.43M -
Ours-D 93.77% 93.89% +0.12% 6.28M 56.27% 332.34M 40.17%
Ours-P 93.77% 94.01% +0.24% 0.341M 96.94% 44.98M 91.90%

ResNet56 Baseline 93.57% - - 0.848M - 125.49M -
PFEC 93.04% 93.06% +0.02% 0.73M 13.7% 90.9M 27.6%
SFP 93.59% 93.35% -0.24% - - 59.4M 52.67%

C-SGD 93.39% 93.44% +0.05% - - - 60.85%
FPGM 93.59% 93.49% -0.10% - - 59.4M 52.67%

Group-HS 93.14% 93.45% +0.31% - - - 68.43%
Ours-D 93.57% 94.00% +0.43% 0.471M 44.46% 92.80M 26.15%
Ours-P 93.57% 93.38% -0.19% 39.37K 95.36% 28.98M 79.40%

is acceptable. Since ResNet18 is originally designed for

the ImageNet dataset, no previous work has provided result

for comparison. We include it in this paper to show that

PENNI is able to shrink over-parameterized models and

may improve accuracy. On ResNet56, which is a compact

model specially tailored for CIFAR10, we can still prune

94.52% parameters and 76.9% FLOPS with 0.2% accuracy

drop. Our method outperformed previous channel pruning

methods by a nearly 20% extra FLOPs reduction, and a 10%

extra reduction over the group regularization method.

4.3. ImageNet Results

Table 2. Compression Result of AlexNet on ImageNet.

Method Top-1 Top-5 FLOPs RFLOPs

Baseline 56.51% 79.07% 773M -
AOFP 56.17% 79.53% 492M 41.33%
Ours-D 55.41% 78.30% 573M 25.88%
Ours-P 55.57% 78.32% 232M 70.04%

On ImageNet, we chose Slimming, ThiNet (Luo et al.,

2017), SFP, AOFP, C-SGD and FPGM for comparison. The

result of AlexNet compression is shown in Table 2. We can

prune 70.04% FLOPs with 1% loss on top-1 accuracy. For

ResNet50, we observe the 1×1 convolutional layer of the

bottleneck block as the coefficient matrix with 1-D basis

and apply regularization to it. Table 3 shows the result on

ResNet50 compression. We use multiple parameter settings

1Computed based on the reduction percentage reported by orig-
inal paper.

Table 3. Compression Result of ResNet50 on ImageNet. We cate-

gorize the results by accuracy.

Method Top-1 Top-5 FLOPs RFLOPs

Baseline 76.13% 92.86% 4.09G -
Ours-D 76.20% 92.85% 3.23G 21.10%
ThiNet-70 72.02% 90.67% 2.58G1 36.80%
Ours-R1 73.87% 91.79% 220M 94.73%
SFP 74.61% 92.06% 2.38G1 41.80%

C-SGD-50 74.54% 92.09% 1.81G1 55.76%
Ours-R2 74.74% 92.27% 527M 87.12%
C-SGD-60 74.93% 92.27% 2.20G1 46.24%

FPGM-40% 74.83% 92.32% 1.90G1 53.50%
Ours-R3 75.00% 92.21% 576M 85.92%
AOFP-C1 75.63% 92.69% 2.58G 32.88%
AOFP-C2 75.11% 92.28% 1.66G 56.73%

C-SGD-70 75.27% 92.46% 2.59G1 36.75%

FPGM-30% 75.59% 92.63% 2.36G1 42.20%
Ours-R4 75.66% 92.79% 768M 81.23%

to justify the trade-off between accuracy and compression

rate. ‘Ours-D’ only involves decomposition and retraining

step with d = 5, while ‘R1’ and ‘R2’ incorprate pruning and

shrinking phases with regularization strength set to 1e− 4
and 5 − e5. ‘R3’ and ‘R4’ has the same parameter apart

from setting d = 6 in the decomposition phase. The results

show that the decomposition step can reduce more than 20%

of the FLOPs with no accuracy drop. With the pruning and

shrinking procedures, 94.73% of the FLOPS can be pruned

with 2.4% top-1 accuracy loss. When we relax the regular-

ization, we can still prune 81.23% of the FLOPs with only

0.5% accuracy loss. The FLOPs reduction is nearly two
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times the reduction of previous channel pruning methods. A

even larger compression rate can be achieved by combining

the 1×1 convolutional layer with the coefficient matrices.

4.4. Inference Acceleration

Table 4. Measured inference performance of VGG16-CIFAR10 on

different devices.

Device Variation Latency(ms) Memory(MB)

CPU Baseline 12.9 137
PENNI 5.96 77.6

GPU Baseline 10.8 487
PENNI 7.26 424

Hardware Settings We used Intel Xeon Gold 6136 to test

the inference performance for CPU platform and NVIDIA

Titan X for the GPU platform. For software, we used Py-

Torch 1.4 (Paszke et al., 2019) to implement the inference

test. Batch size was set to 128 (1) for inference testing on the

GPU (CPU). GPU inference batch size is higher than CPU

to increase utilization and emphasize the latency impact of

our method on the highly parallel platform. We indicate

these settings as latency and peak memory consumption

values vary across platforms or library versions.

Table 4 displays inference latencies and memory consump-

tion recorded for the baseline and PENNI framework. As

mentioned in 3.5, one of PENNI’s defining strengths is its

impact on computational and memory footprints. Results

shown in Table 4 reveal a 1.5× (2.2×) reduction in mea-

sured inference latency on the GPU (CPU). Peak memory

consumption also benefited from a 1.1× (1.8×) reduction.

It is important to note that these metrics were taken with-

out applying the convolution computation reorganization

described in 3.5; this is done intentionally to reveal the ef-

fectiveness of our model shrinkage with zero changes to the

hardware and inference-time computation. The reduction

in memory is a straightforward consequence of the decom-

position and shrinking stages of the PENNI framework. Al-

though our method is successful at dramatically decreasing

model size in memory, intermediate feature maps seems to

dominate on-device memory consumption, especially with

a batch size of 128 on the GPU.

4.5. Subspace Dimension

To justify the selection of the parameter d, we conduct an

experiment with different decompose dimensions. We used

the same VGG16 baseline model and hyper-parameters as

4.2. The result is shown in Fig.4 indicates that the remaining

FLOPs scales linearly with the number of basis kernels. This

is expected since the number of convolutional operations

is determined by d. The parameters scale linearly before
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Figure 4. Test accuracy, parameters and computation reduction

with different number of basis kernels d.

6-D basis and have minor difference with the increasing

dimension. This is because even though more basis vector

requires more coefficients, it also adds flexibility and thus

leads to sparser coefficients. The test accuracy reveals the

same trend, with d ≥ 4, minor improvement on the accuracy

can be brought by increasing d. Thus, we select d = 5 for

the balance between parameter and FLOPs reduction and

accuracy drops.

4.6. Model Shrinking

(a) VGG16-CIFAR10

(b) ResNet56

Figure 5. Layer width after the model shrinking.
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We show the effectiveness of model shrinking by compar-

ing layer widths. As shown in Figure 5, on VGG16, the

model shrinking procedure effectively removes redundant

channels in the second half of all layers. Meanwhile, on

ResNet56, the shrinking is limited by the dimension match-

ing requirement of the skip connections. The oscillation

pattern of the layer width indicates that redundancies of the

inner-block layer can be effectively exploited. These results

show that PENNI can benefit unmodified inference software

and hardware by exploiting structural redundancies.

5. Conclusion
This work proposes the PENNI framework for hardware-

friendly CNN model compression. Our method improves

inference latency with no changes to inference algorithms

and hardware via model shrinking, thus translating model

sparsity to speedup. A low rank assumption is used to de-

compose CNN filters into basis kernels and prune the result-

ing coefficient matrices, which results in structured sparsity.

A novel alternating fine-tuning method is used to further

increase sparsity and improve model performance. Unique

characteristics generated by the decomposition step may

be leveraged for hardware efficiency via convolution com-

putation reorganization, directly benefiting modern DNN

platforms.
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