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Abstract—This work pertains to the study of stability of
limit cycles for hybrid systems with explicit logic states within
a hybrid systems framework. We first focus on constructing
the hybrid systems with explicit logic states and revealing basic
properties of limit cycles. Application to model switched systems
under dwell-time switching as such a hybrid system is provided.
In addition, we establish sufficient and necessary conditions for
stability of the limit cycles relying on Poincaré maps. Examples
illustrate the results. A discussion about the case of systems with
nonunique solutions is also included.

I. INTRODUCTION

Hybrid systems are ubiquitous in realistic systems due to
their ability to capture models having state variables that
can evolve continuously (flows) and/or discretely (jumps).
In recent years, the study of limit cycles in hybrid systems
has received substantial attention. This is mainly due to the
existence of limit cycles with jumps in many engineering
applications, such as robotics [1], phase-locked loop [2],
gene networks [3], etc. In this paper, we consider a subset
of hybrid systems with great utility: hybrid systems with
explicit logic states; that is, hybrid systems containing dis-
crete modes or logic variables. Such systems can be modeled
using hybrid automata, in particular, and arise in a variety
of applications including the modeling of the dynamics of
genetic networks with binary hysteresis [3], the modeling
of heating control systems with desired temperature bands
[4], and the modeling of the DC-DC boost converter under
different switching modes [5].
Particular motivation for the study of hybrid systems with

explicit logic states comes from limit cycles in switched
systems with a sequence of modes. The problems of ensuring
the stability of limit cycles have been studied for specific
classes of switched systems. In particular, for a class of
switched linear systems in [6], Olsder applied a generalized
implicit function theorem to show characteristics of the
periodic solutions around operating points for sufficiently
small period. In [7], a sufficient condition given in terms
of a set of linear matrix inequalities for exponential stability
of limit cycles in a class of switched affine linear systems
was proposed using a discrete-time state description of the
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system. In [2], Flieller et al. utilized the sensitivity analysis
method to determine limit cycles of switched systems and
analyzed their local stability through the computation of the
Jacobian, which relies on the knowledge of the switching
sequence. In [8], the trajectory sensitivity approach was
employed to develop sufficient conditions for stability of
limit cycles in switched differential-algebraic systems. In [9],
Li studied the maximum number of limit cycles in a class of
discontinuous quadratic polynomial differential systems with
ε-order terms. Recently, Benmiloud et al. in [10] provided
a new methodology to guarantee local asymptotic stability
of the desired limit cycle in planar switched systems by
designing one switching surface. Existing works in this area
mostly focus on deriving stability conditions for switched
linear systems or planar switched systems. We believe that
conditions for stability of limit cycles in hybrid systems with
explicit logic states should play a more prominent role in
analysis and control of limit cycles with jumps. To the best of
our knowledge, tools for the analysis of asymptotic stability
of limit cycles in such hybrid systems are not available in
the literature.
In this paper, we exploit the main idea proposed in [11],

formulating the stability problem of limit cycles for hybrid
systems with explicit logic states in a hybrid dynamical
systems framework [12]. The main contributions of this
paper can be summarized as follows:

1) We employ the hybrid systems framework [12] to model
the hybrid systems with explicit logic states and the
mechanisms generating switching modes in a way that is
amenable to the tools in [11] for the study of attractivity,
stability, and robustness of limit cycles.

2) As an application, we model the switched systems under
dwell-time switching as a hybrid system with explicit
logic states. A notion of limit cycle for such hybrid
systems is introduced and some of its properties are
presented including compactness and transversality.

3) We establish sufficient and necessary conditions for
guaranteeing global asymptotic stability of limit cycles
for hybrid systems with explicit logic states, which
can further be extended for characterizing robustness of
asymptotic stability under perturbations of such systems
using the recent results in [12].

The structure of the paper is as follows. We start with a
motivational example in Section II. The formulation of the
hybrid model and an application to switched systems with
dwell-time are given in Section III. Section IV introduces
the definition of limit cycle and gives some of its basic



properties. Section V presents the stability notions as well
as sufficient and necessary conditions for stability of limit
cycles. Section VI discusses the case of nonuniqueness of
solutions in switched systems with dwell-time.
Notation: Specifically, R

n denotes the n-dimensional
Euclidean space, R>0 denotes the set of nonnegative real
numbers, i.e., R>0 := [0,+∞), and N denotes the set of
natural numbers including 0, i.e., N := {0, 1, 2, · · · }. The
equivalent notation [x⊤ y⊤]⊤ and (x, y) are used for the same
vector. Given a set A ⊂ R

n, A denotes its closure. Given
a continuously differentiable function h : Rn → R and a
function f : Rn → R

n, the Lie derivative of h at x in the di-
rection of f is denoted by Lfh(x) := 〈∇h(x), f(x)〉. Given
a function f : Rm → R

n, its domain of definition is denoted
by dom f , i.e., dom f := {x ∈ R

m : f(x) is defined}.

II. MOTIVATIONAL EXAMPLE

The following example motivates the study of limit cycles
for hybrid systems with explicit logic states in this paper.
The state-triggered switched system features a limit cycle.
Consider a thermostat that controls the temperature ξ of

a heating system [4]. The heater in the system is used to
maintain the temperature of the thermostat within a desired
temperature band. The proposed model does not consider the
influence of the internal temperature of the heater. As we will
show later, the system can be modeled as a hybrid system
with a logic variable q ∈ Q := {1, 2}. When q = 1 and the
temperature is at the higher end b2 (or above) of the desired
temperature band, reset q to 2 and the heater turns off until
the temperature reaches the lower end b1 of the desired band.
When q = 2 and the temperature is less than or equal to b1,
reset q to 1 and the heater turns on again. Fig. 1 shows a
hybrid automaton modeling this system [4]. The parameter
a is the natural cooling coefficient of the thermostat and the
parameter c characterizes the effectiveness of the heater. The
desired temperature band for the thermostat is chosen as the
interval [b1, b2]. If the parameters a, b1, b2, and c satisfy
a > 0 and c > ab2 > ab1 > 0, the system exhibits periodic
behavior for any initial condition, as shown in Fig. 2.

ξ = b2

ξ = b1

ξ̇=−aξ+c

(ξ 6 b2)
ξ̇=−aξ

(ξ > b1)

Fig. 1. The hybrid automaton of a thermostat

In this paper, our interest is in developing analysis methods
that can be applied to such a system with explicit logic
states as well as to switched systems under dwell-time so as
to guarantee asymptotic stability of limit cycles. While the
models considered in [9], [10] are specific cases of switched
systems with logic modes, they only apply to planar switched
systems. On the other hand, the results presented here are
suitable for general hybrid systems with explicit logic states.
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Fig. 2. State trajectories of the thermostat system with initial values 0 for
ξ and 1 for q (blue) or 18 for ξ and 2 for q (red), where a = 0.1, b1 = 15,
b2 = 20 and c = 10. Left: Transient response of ξ; Right: Phase plot of
state variables q and ξ.

III. PROBLEM STATEMENT
AND MATHEMATICAL MODELING

A. System Description

Following [12, Chapter 1.4], consider the hybrid system
with explicit logic states given by

H






[
ξ̇

q̇

]
=

[
fq(ξ)
0

]
ξ ∈ Cq, q ∈ Q

[
ξ+

q+

]
= gq(ξ) ξ ∈ Dq, q ∈ Q

(1)

where ξ̇ and q̇ denote the derivatives with respect to time,
respectively, and ξ+ and q+ denote the values of the state
ξ and the logic variable q after a jump, respectively. The
state vector of H is given by x := (ξ, q) ∈ R

n+1, where
ξ ∈ R

n is the continuous state component, q ∈ Q is the
discrete state component associated with the explicit logic
mode, and Q is a finite index set of qmax elements, namely,
Q := {1, 2, · · ·, qmax}. The explicit logic state q, by its
nature, can change only via a jump. For each q ∈ Q, the
function fq : Rn → R

n defines the evolution of ξ during
flows and the function gq : Rn ×Q → R

n+1 determines the
value of the state after jumps.
System (1) with state x = (ξ, q) can be written within the

hybrid systems framework in [12] as follows:

H





ẋ = f(x) :=

[
fq(ξ)
0

]
x ∈ C

x+ = g(x) := gq(ξ) x ∈ D

(2)

where C :=
⋃

q∈Q

(Cq × {q}) denotes the flow set and D :=
⋃

q∈Q

(Dq ×{q}) denotes the jump set. The data of the hybrid

system H is given by (C, f,D, g). The elements of data
that represent H on the state space Rn+1 have the following
properties:

- Given functions fq for each q ∈ Q, the flow map f :
R

n×Q→R
n+1 defines the continuous evolution of x.

- The jump map g is given by, for each q ∈ Q, function
gq : Rn → R

n × Q that defines the changes of x at
jumps.

- For each q ∈ Q, the sets Cq and Dq are subsets of Rn,
on which the flows are effective and jumps (with such
value of q) can occur, respectively.

Compared to our previous results in [11], [13], the explicit



logic state in the hybrid system H allows us to capture
certain families of logic mode patterns or switching signals
explicitly. We extend and specialize, as needed, our previous
results to fit such a model. When modeling a system with
explicit logic states as a well-posed hybrid system, the tools
in [12] for robust stability of limit cycles apply.
A solution to H is parameterized by ordinary time t and a

counter j for jumps. It is given by a hybrid arc1 φ : domφ →
R

n+1 that satisfies the dynamics of H; see [12] for more
details. A solution φ to H is said to be complete if domφ

is unbounded. It is precompact if it is complete and bounded.
It is said to be maximal if it is not a truncated version of
another solution. The set of maximal solutions to H from
the set K is denoted as

SH(K) :={φ :φ is a maximal solution toHwith φ(0, 0)∈K}.

We define t 7→ φf (t, x0) as a solution of the flow dynamics

ẋ = f(x) x ∈ C

from x0 ∈ C. Note that by construction, the q component of
the solutions to H remains constant during flows.

B. Special Case: Switched Systems with Dwell-Time

The continuous state ξ of H in (2) may contain an auxil-
iary state component χ that is useful in modeling switched
systems under dwell-time switching. A dwell-time switching
signal has switching times ti satisfying ti+1−ti > Tχ for i =
1, 2, · · · , where Tχ > 0 denotes the dwell-time parameter. In
fact, a hybrid system modeling switched systems with dwell-
time switching signals is given by2

ż = f̃q(z)
χ̇ = 1
q̇ = 0




 z ∈ C̃q, χ > 0

z+ = z

χ+ = 0
q+ = g̃q(z)



 z ∈ D̃q, χ ∈ [Tχ,∞)

(3)

with state x = (ξ, q) = ((z, χ), q) ∈ R
n+1 × Q and dwell

time parameter Tχ > 0. System (3) fits the framework of
hybrid systems in (2) with ξ := (z, χ) ∈ R

n+1, fq(ξ) :=

(f̃q(z), 1), gq(ξ) := (z, 0, g̃q(z)), Cq := C̃q × R>0, and
Dq := D̃q×[Tχ,∞). A model with switches occurring every
Tχ seconds (after the first switch) is given as in (3) but with
flow and jump sets Cq := C̃q×[0, Tχ] andDq := D̃q×{Tχ},
respectively.
The following example illustrates the latter model in a

system that features a limit cycle.

Example 3.1: (A boost converter) Consider the simplified
boost DC-DC converter shown in Fig. 3. The boost circuit

1A hybrid arc is a function φ defined on a hybrid time domain and for
each j ∈ N, t 7→ φ(t, j) is locally absolutely continuous. A compact hybrid
time domain is a set E ⊂ R>0 × N of the form E =

⋃J
j=0([tj , tj+1], j)

for some finite sequence of times 0 = t0 6 t1 6 · · · 6 tJ+1. The set E is
a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, · · · , J})
is a compact hybrid time domain.
2For a more general switched system with dwell-time signals, see [12,

Example 2.13].

consists of a DC voltage source E, an inductor L, an ideal
diode d, a capacitor c, a resistor R, and an ideal switch S.
The controlled switch S can be either on or off, defining two
main steady-state modes of operation (cf. [14]).

mode 1: S is on mode 2: S is off

ON
OFF

S

L

E Rc

d

Fig. 3. The boost converter

The circuit associated to each mode is shown in Fig. 4. In
mode 1, in which the switch is on, the inductor offloads
power to the resistor. In mode 2, in which the switch is off,
the input source charges the inductor and the capacitor feeds
the load. Assuming no parasitic effects, the dynamics of the
boost DC-DC converter on such modes are modeled by

ż = Aqz + bq (4)

where z = (z1, z2) ∈ R
2
>0 is the state vector with z1 the

inductor current, z2 the voltage over the capacitor, and q ∈
{1, 2} a logic variable used to indicate whether the switch S
is on or off. When the logic variable q is equal to 1 (i.e., the
switch S is on), the dynamics of the system are governed by

A1 =

[
0 − 1

L
1

c
− 1

Rc

]
, b1 =

[
E
L

0

]
.

When the logic variable q is equal to 2 (i.e., the switch S is
off), the dynamics of the system are governed by

A2 =

[
0 0
0 − 1

Rc

]
, b2 =

[
E
L

0

]
.

As suggested in [6], one would expect different behaviors

L

E Rc

L

E Rc

(a) mode 1 (b) mode 2

Fig. 4. Two different modes for the boost converter
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Fig. 5. A limit cycle of the boost converter system in (5) with initial
condition (1.153, 2.476) from mode 2. Left: Phase plot of state variables
z1 and z2; Right: Transient response of q.



by toggling the switch S. In this work, we are interested in
periodic behavior. For instance, when we change the position
of the switch S every second and the parameters are chosen
as c = 0.5, L = 1, R = 2, and E = 1, the boost converter
exhibits a limit cycle for any initial condition. A limit cycle,
denoted O, of the system in (5) is depicted in Fig. 5.3

In a similar manner as in [12, Chapter 2.4], we model
the switching frequency/events using a timer variable χ that
increases during flow, and then triggers a jump once it
reaches a given threshold Tχ. Following (3), when q = 1, we
make χ to increase as ordinary time t, and whenever χ = Tχ,
reset χ to 0 and the logic variable q to 2. When q = 2, we
make χ to increase as ordinary time t, and whenever χ = Tχ

again, reset χ to 0 and the logic variable q to 1. Hence, the
whole system composed by the circuit states z1 and z2, timer
variable χ, and the logic variable q can be represented by
the following hybrid system HB = (CB, fB, DB, gB) :

HB :






ẋ=




ż

χ̇

q̇



=fB(x) :=




Aqz + bq

1
0



 x ∈ CB

x+=




z+

χ+

q+



=gB(x) :=




z

0
3− q



 x ∈ DB

(5)

where x = (ξ, q) = (z, χ, q), z = (z1, z2) := (iL, uC),
CB = R

2
>0 × [0, Tχ] × Q, DB = R

2
>0 × {Tχ} × Q, and

Q = {1, 2}. △

IV. LIMIT CYCLES AND BASIC PROPERTIES

A. Definitions

In this section, we introduce the notion of limit cycles
for systems as in (2) and, in the next section, reveal their
basic properties. As in [11], we consider a class of periodic
solutions defined as follows.

Definition 4.1: (periodic solution) Consider a hybrid sys-
tem H with explicit logic states in (2). Let φ∗ be a complete
solution to H. Then φ∗ is periodic with period T ∗ and J∗

jumps in each period if T ∗ ∈ (0,∞) and J∗ ∈ N \ {0} are
the smallest numbers such that φ∗(t+T ∗, j+J∗) = φ∗(t, j)
for all (t, j) ∈ domφ∗.

The definition of a periodic solution φ∗ with period T ∗

and J∗ jumps implies that there exist J∗ jumps and a
switching sequence {q1, q2, · · · , qJ∗} with elements in Q in
each period. Moreover, it implies that if (t, j)∈dom φ∗, then
(t+T ∗, j+J∗)∈dom φ∗. A periodic solution to H generates
a limit cycle.

Definition 4.2: (limit cycle) A periodic solution φ∗ to H
with period T ∗ ∈ (0,∞) and J∗ ∈ N \ {0} jumps in each
period defines a limit cycle4 O = {x ∈ R

n × Q : x =
φ∗(t, j), (t, j) ∈ domφ∗} =

⋃
q∈Q

(Oq × {q}), where Oq is
the range of φ∗ with logic variable component equal to q.

3The code is available online: https://github.com/
HybridSystemsLab/BoostConverterLimitCycle.
4Alternatively, the limit cycle O can be written as {(ξ, q) ∈ Rn ×Q :

(ξ, q) = (φ∗
ξ
(t, j), φ∗

q(t, j)), t ∈ [ts, ts+T ∗], (t, j) ∈ domφ∗} for some
ts ∈ R>0.

B. Basic Properties of Limit Cycles

In what follows, we focus on a class of hybrid systems
with explicit logic states in (2) that satisfies the following
assumption. In particular, the systems in the motivational
example (Section II) and Example 3.1 satisfy them.

Assumption 4.3: For a hybrid system H = (C, f,D, g) in
(2) with state x := (ξ, q) on R

n × Q, there exist compact
sets Mq ⊂ R

n and continuously differentiable functions hq :
R

n → R for each q∈Q such that, for each q∈Q,

1) the set Cq can be written as Cq = {ξ ∈ R
n : hq(ξ) > 0}

and the set Dq can be written as Dq = {ξ ∈ R
n :

hq(ξ) = 0, Lfqhq(ξ) 6 0};
2) the function fq is continuously differentiable on an open
neighborhood of Mq ∩ Cq , and the jump map gq is
continuous on Mq ∩Dq;

3) Lfqhq(ξ) < 0 for all ξ ∈ Mq ∩Dq and g((Mq ∩Dq)×
{q})∩(MQ∩D) = ∅, whereMQ :=

⋃
q∈Q

(Mq×{q});
4) HM := (MQ∩C, f,MQ∩D, g) has a periodic solution

φ∗ with period T ∗ ∈ (0,∞) and J∗ ∈ N \ {0} jumps
per period that defines a limit cycle O ⊂ MQ∩(C∪D).

Remark 4.4: Item 1) in Assumption 4.3 implies that flows
occur when every hq is nonnegative while jumps only occur
at points in zero level sets of hq. The continuity property
of fq in item 2) of Assumption 4.3 is further required
for the existence of solutions to ẋ = f(x) according to
[12, Proposition 2.10]. Moreover, item 2) also guarantees
that solutions to ẋ = f(x) continuously depend on initial
conditions. The first condition in item 3) is necessary to
establish a transversality property of limit cycles. The second
condition in item 3) implies that, for each q, p ∈ Q such that
q 6= p, we have ((Mq∩Dq)×{q})∩((Mp∩Dp)×{p}) = ∅.
The setMQ restricts the analysis of the hybrid system H to a
particular region of the state space, leading to the restriction
of H given by HM in item 4) of Assumption 4.3.

We revisit the motivational example in Section II to
illustrate the properties of a hybrid system HM satisfying
Assumption 4.3.

Example 4.5: (Thermostat, revisited) Consider the ther-
mostat system in the motivational example. Using a logic
variable q ∈ Q := {1, 2}, the system can be modeled
as a hybrid system in (2), in which switches are triggered
by conditions involving the temperature state ξ and the
logic variable q. The resulting hybrid system HTem =
(CTem, fTem, DTem, gTem) has state x = (ξ, q) and dynam-
ics

HTem





ẋ=fTem(x) :=

[
−aξ+c(2−q)

0

]
x∈CTem

x+=gTem(x) :=

[
ξ

3− q

]
x∈DTem

(6)

where CTem := {x ∈ [0, b̄] × Q : (q = 1, ξ 6 b2) or (q =
2, ξ > b1)} and DTem := {x ∈ [0, b̄] × Q : (q = 1, ξ =
b2) or (q = 2, ξ = b1)}. The parameters a, b1, b2, b̄ and
c satisfy a > 0, c > ab2 > ab1 > 0, and b̄ > b2.
Define compact sets Mq ⊂ R, q ∈ {1, 2}, as M1 := [0, b2]



and M2 := [b1, b̄], and define continuously differentiable
functions hq : Mq → R, q = {1, 2}, as h1(ξ) := b2 − ξ and
h2(ξ) := ξ − b1. Then, CTem and DTem can be rewritten
as CTem =

⋃2

q=1
(CTemq

× {q}) with CTemq
= {ξ ∈

Mq : hq(ξ) > 0} and DTem =
⋃2

q=1
(DTemq

× {q}) with
DTemq

= {ξ ∈ Mq : hq(ξ) = 0, LfTemq
hq(ξ) 6 0}, where

fTemq
(ξ) = −aξ + c(2 − q) and we used the properties

LfTem1
h1(ξ) = −(−aξ+c(2−q)) = ab2−c < 0 for each ξ ∈

M1∩DTem1
and LfTem2

h2(ξ) = −aξ+c(2−q) = −ab1 < 0
for each ξ ∈ M2 ∩ DTem2

. By design, the sets MQ, CTem

and DTem are compact, whereMQ :=
⋃

q∈Q
(Mq×{q}). In

addition, since the functions fTem and gTem are continuously
differentiable, item 2) in Assumption 4.3 holds. Furthermore,
it can be verified that for each q ∈ {1, 2}, gTem((Mq ∩
DTemq

)×{q})∩(MQ∩DTem) = ∅ since gTem(x) = (ξ, 3−q)
as defined in (6). Therefore, for the hybrid system HTemM

=
(MQ ∩ CTem, fTem,MQ ∩ DTem, gTem), Assumption 4.3
holds. △

The following properties hold for HM defined in item 4)
of Assumption 4.3.

Lemma 4.6: Let Assumption 4.3 hold. Then, the data
of the hybrid system HM = (MQ ∩ C,F,MQ ∩ D,G)
satisfies the hybrid basic conditions given by (A1)-(A3) in
[12, Proposition 6.5].

The following result shows that a limit cycle generated by
periodic solutions as in Definition 4.2 is closed and bounded.

Lemma 4.7: Consider a hybrid system H = (C, f,D, g)
with explicit logic states in (2) and compact sets Mq ⊂ R

n

for each q ∈ Q satisfying Assumption 4.3. Then, any limit
cycle O for HM is compact.

The following result establishes a transversality5 property
of limit cycles for HM .

Lemma 4.8: Consider a hybrid system H = (C, f,D, g)
with explicit logic states in (2) and compact sets Mq ⊂ R

n

for each q ∈ Q satisfying Assumption 4.3. Any limit cycle
O for HM is transversal to MQ ∩D at every jump, where
MQ :=

⋃
q∈Q

(Mq × {q}).

Following the construction in [1], for the hybrid system
H in (2), for each q ∈ Q, the time-to-impact function with
respect to Dq is defined by TDq

: C ∪D → R>0∪{∞},
where6

TDq
(x) :=inf{t > 0 : φ(t, j) ∈ Dq × {q}, φ ∈ SH(x)}

for each x = (ξ, q) ∈ C ∪D.
Next, let us introduce the Poincaré map for a hybrid

system H = (C, f,D, g) with explicit logic states in (2). For
each q∈Q, the hybrid Poincaré map Pq : (Mq∩Dq)×{q} →

5A limit cycle O with J∗ jumps in each period is transversal toMQ∩D
at every jump (where J∗ ∈ N\{0} and D is the union of J∗ jump sets, i.e.,
D =

⋃
q∈Q(Dq × {q})), if it intersects each jump set (Mq ∩Dq)× {q}

at exactly one point (ξ̄, q) := O ∩ MQ ∩ (Dq × {q}) with the property
Lfqhq(ξ̄) 6= 0, where q ∈ Q.
6In particular, when there does not exist t > 0 such that φf (t, x) ∈

Dq × {q}, we have {t > 0 : φf (t, x) ∈ Dq × {q}} = ∅ for each q ∈ Q,
which gives TDq

(x) = ∞.

(Mq ∩Dq)× {q} is given by

Pq(x) := {φ(TDq
(g(x)), j) : φ ∈ SHM

(g(x)),
(TDq

(g(x)), j)∈domφ}
(7)

for all x ∈ (Mq ∩Dq)× {q}.

V. STABILITY OF LIMIT CYCLES

In this section, we present stability properties of limit
cycles for hybrid systems with explicit logic states. First, we
define asymptotic stability using the hybrid Poincaré map Pq

in (7). Below, for each q ∈ Q, P k
q denotes k compositions

of the hybrid Poincaré map Pq with itself.
Next, a relationship between stability of fixed points of

Poincaré maps7 and the stability of the corresponding limit
cycles is established.8

Theorem 5.1: Consider a hybrid system H = (C, f,D, g)
with explicit logic states in (2) and compact sets Mq ⊂ R

n

for each q ∈ Q satisfying Assumption 4.3. Suppose every
maximal solution to HM = (MQ ∩ C, f,MQ ∩ D, g) is
complete. Then, the following statements hold:

1) for each q ∈ Q, x∗
q := (ξ∗q , q) ∈ (Mq ∩Dq)× {q} is a

stable fixed point of the Poincaré map Pq in (7) if and
only if the limit cycle O to HM from φ∗(0, 0) = g(x∗

q)
for each q ∈ Q is stable for HM ;

2) for each q ∈ Q, x∗
q := (ξ∗q , q) ∈ (Mq ∩ Dq) × {q}

is a globally asymptotically stable9 fixed point of the
Poincaré map Pq if and only if the unique limit cycle
O to HM from φ∗(0, 0) = g(x∗

q) for each q ∈ Q is
asymptotically stable for HM with basin of attraction
containing every point in10 MQ ∩ (C ∪D).

The following example illustrates the stability of the
corresponding limit cycle using Theorem 5.1.

Example 5.2: (Thermostat, revisited) Consider the tem-
perature control system HTemM

in Example 4.5. Assump-
tion 4.3 is verified in Example 4.5. Moreover, it can be
shown that every maximal solution to HTemM

is complete.
For each q ∈ Q = {1, 2}, let the Poincaré maps for HTemM

be given by Pq with its associated fixed point (ξ∗q , q). Using
Theorem 5.1, to show that the limit cycle O of HTemM

is asymptotically stable with basin of attraction containing
every point in MQ ∩ (CTem ∪ DTem), it suffices to check,
for each q ∈ Q, the eigenvalues of the Jacobian matrices
associated to the Poincaré maps Pq at its fixed point (ξ∗q , q).
Due to the linear form of the flow map of HTemM

, the
Jacobian matrices of the Poincaré maps have explicit analytic
forms. Since q keeps constant during flow, the flow solution
φf to the flow dynamics ξ̇ = −aξ + c(2 − q) from ξ0 are
given by φf (t, ξ0) = e−at(ξ0 − c

a
) + c

a
when q = 1 and

7A point x∗ is a fixed point of a Poincaré map P : Rn+1 → R
n+1 if

x∗ = P (x∗).
8For stability notions of fixed points of Poincaré maps and limit cycles,

we refer the reader to [11].
9In this paper, our results employ the term “global” as in [12] and related

references, which requires careful treatment.
10A “global” property forHM implies a “global” property of the original

system H only when M is equal to C ∪ D. For tools to establish the
asymptotic stability property, see [12].



φf (t, ξ0) = e−atξ0 when q = 2. From the definition of the
Poincaré map and the solution of the flow dynamics from
x = (ξ, q) with q = 1 and ξ = b2 ∈ M1 ∩ DTem1

, it
follows that P1(x) = (b2, 1). Similarly, from the solution of
the flow dynamics from x = (ξ, q) with q = 2 and ξ = b1 ∈
M2∩DTem2

, it follows that P2(x) = (b1, 2). Then, the fixed
points for P1 and P2 are x∗

1 = (ξ∗1 , 1) = (b2, 1) and x∗
2 =

(ξ∗2 , 2) = (b1, 2), respectively. The Jacobian matrices of Pq

at the fixed points x∗
q for each q ∈ {1, 2} are both the zero

matrices. According to Theorem 5.1, the hybrid limit cycle
O of the hybrid system HTemM

is asymptotically stable with
basin of attraction containing every point in MQ ∩ (CTem ∪
DTem). In fact, the (unique) limit cycle O is defined by a
periodic solution φ∗ to HTemM

from φ∗(0, 0) = (b1, 1) with
T ∗ = 1

a
ln ab1−c

ab2−c
+ 1

a
ln b2

b1
and two jumps per period. △

VI. REMARKS ON SYSTEMS WITH
NONUNIQUE LIMIT CYCLES

Compared to the switched system in (3), where χ flows at
a constant rate of 1, general switched systems under dwell-
time switching, where χ flows at variable rates, allow for
nonuniqueness of solutions; see, e.g., (3) and the first set of
definitions for Cq and Dq below it. The following example
presents a switched system with multiple limit cycles under
dwell-time switching, which is modeled using one of the
models given in Section III-B.
Consider the hybrid inclusion HA = (CA, FA, DA, GA)

with state x = (z, χ, q) ∈ R
4 modeling a switched system

under dwell-time switching

HA

{
ẋ ∈ FA(x) x ∈ CA

x+ = GA(x) x ∈ DA

(8)

where z = (z1, z2) ∈ R
2, CA = R

2 × [0, Tχ] × Q, DA =
R

2 × {Tχ} × Q, Q = {1, 2}, FA(x) = (fq(z), [ǫ, 1], 0),
11 ǫ > 0, GA(x) = (z, 0, 3 − q), f1(z) = A1z + b1,

f2(z) = A2z + b2, with A1 =

[
0 −1
5 −1

]
, b1 =

[
1
0

]
, A2 =

[
0 0
0 −1

]
and b2 =

[
0
0

]
. The hybrid system HA can exhibit

periodic behaviors. Note that the system HA allows for
nonuniqueness of solutions due to the set-valued flow map.
Due to this, multiple limit cycles within a period are possible.
In fact, HA = (CA, FA, DA, GA) at least has a periodic
solution φ∗ with period T ∗ = 4Tχ and J∗ = 2 jumps per
period for ǫ ∈ (0, 0.5] and a periodic solution φ∗ with period
T ∗ = 2Tχ and J∗ = 2 jumps per period.
Note that the system HA may have no limit cycles when

ǫ = 0. In fact, HA has a solution that flows for all time
in such a case. For a hybrid system with explicit logic
states and nonunique solutions, such as the above example,
to guarantee (asymptotic) stability of limit cycles using the
proposed method in this paper, a proper definition of set-
valued Poincaré maps will be required due to the existence
of multiple solutions from the same initial condition.

11Here, the differential inclusion χ̇ ∈ [ǫ,1] leads to switching instants tj
satisfying 0 6 t1 6 Tχ/ǫ and tj+1 − tj 6 Tχ/ǫ for each j ∈ N \ {0}.

VII. CONCLUSION
This paper introduced a Poincaré map to analyze asymp-

totic stability of limit cycles in a class of hybrid systems
with explicit logic states, which can model switched systems
under dwell-time switching. The compactness and transver-
sality properties of limit cycles have been presented. Via the
constructions of time-to-impact functions and the Poincaré
map, sufficient and necessary conditions for asymptotic
stability of limit cycles have been established. An example
for a switched system with dwell-time, which allows for
nonuniqueness of solutions, suggests that multiple limit
cycles within a period are possible. Due to existence of set-
valued maps in such a switched system, ways to establish
conditions for asymptotic stability of limit cycles remain a
challenging problem. For future work, we will also inves-
tigate the robust stability of limit cycles in hybrid systems
with explicit logic states.
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