
Communication-Efficient Network-Distributed
Optimization with Differential-Coded Compressors

Xin Zhang‡† Jia Liu† Zhengyuan Zhu‡ Elizabeth S. Bentley⇤
†Department of Computer Science, Iowa State University

‡Department of Statistics, Iowa State University
⇤Air Force Research Laboratory, Information Directorate

Abstract—Network-distributed optimization has attracted sig-
nificant attention in recent years due to its ever-increasing
applications. However, the classic decentralized gradient descent
(DGD) algorithm is communication-inefficient for large-scale and
high-dimensional network-distributed optimization problems. To
address this challenge, many compressed DGD-based algorithms
have been proposed. However, most of the existing works have
high complexity and assume compressors with bounded noise
power. To overcome these limitations, in this paper, we propose
a new differential-coded compressed DGD (DC-DGD) algorithm.
The key features of DC-DGD include: i) DC-DGD works with
general SNR-constrained compressors, relaxing the bounded
noise power assumption; ii) The differential-coded design entails
the same convergence rate as the original DGD algorithm; and iii)
DC-DGD has the same low-complexity structure as the original
DGD due to a self-noise-reduction effect. Moreover, the above
features inspire us to develop a hybrid compression scheme that
offers a systematic mechanism to minimize the communication
cost. Finally, we conduct extensive experiments to verify the
efficacy of the proposed DC-DGD and hybrid compressor.

I. INTRODUCTION

Network-distributed optimization, a canonical topic dating
back to [1], has received significant interest in recent years
thanks to its ever-increasing applications, e.g., distributed
learning [2]–[4], multi-agent systems [5], resource allocation
[6], localization [7], etc. All these applications involve geo-
graphically dispersed datasets that are too big to aggregate
due to high communication costs or privacy/security risks,
hence necessitating distributed optimization over the network.
A notable feature in network-distributed optimization is that
there is a lack of shared memory due to the absence of a ded-
icated parameter server – a key component in the hierarchical
distributed master/slave architecture. As a result, every node
can only exchange and aggregate information with its local
neighbors to reach a consensus on a global optimal decision.
In the literature, a classic algorithm for solving network-

distributed optimization problems is the decentralized gradient
descent method (DGD) proposed by Nedic and Ozdaglar [8].

This work has been supported in part by NSF grants ECCS-1818791,
CCF-1758736, CNS-1758757, CNS-1446582; ONR grant N00014-17-1-2417,
AFRL grant FA8750-18-1-0107, USDA grant 68-7482-17-009. DISTRIBU-
TION STATEMENT A: Approved for Public Release; distribution unlimited
88ABW-2019-4486 on 20 September 2019. Other requests shall be referred to
AFRL/RIT 525 Brooks Rd Rome, NY 13441. DISCLAIMER: Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of AFRL.

The enduring popularity of DGD lies in its simple gossip-
like structure, which can be easily implemented in networks.
Further, DGD achieves the same convergence rate as the
centralized gradient descent method, implying that distributed
computation does not sacrifice convergence rate. However,
despite the aforementioned salient features, a major limitation
of the DGD method is that it requires full information ex-
changes of the state variables between nodes. Hence, the DGD
algorithm is communication-inefficient when solving large-
size high-dimensional optimization problems in networks with
low-speed communication links. For example, consider a dis-
tributed image regression problem over a satellite network,
where each satellite has images of resolution 2048⇥2048 [9].
Hence, the parameter dimension is 2048 ⇥ 2048 ⇡ 4 ⇥ 106

and the communication load per DGD iteration is 134 MB
(32-bit floating-point). This is problematic for many satellite
networks with low-speed RF (radio frequency) links (typically
in the range of hundreds Mbps [10]).
To improve DGD’s communication efficiency, recent years

have seen a line of research based on exchanging compressed
information between nodes (see, e.g., [11]–[14]). However,
most of the existing works suffer from the following lim-
itations (see Section II for in-depth discussions): 1) more
complex algorithmic structures compared to DGD due to extra
parameter tunings; 2) restricted assumptions on compression
noise having finite power; and 3) strong i.i.d. (independently
identically distributed) distribution assumptions on datasets
at different locations, which hardly holds in practice. In
addition, most of the existing works simply treat compressors
as “blackbox operators” and do not consider how to minimize
communication load. The above limitations motivate us to de-
velop new compression-based algorithms for communication-
efficient network-distributed optimization.
The major contribution of this paper is that we pro-

pose a differential-coded compression-based DGD algorithmic
framework (DC-DGD) that overcomes the above limitations.
Moreover, based on the proposed DC-DCD framework, we
propose a hybrid compression scheme that integrates gradient
sparsification and ternary operators, which enables dynamic
communication load minimization. Our main technical results
and their significance are summarized as follows:
• We propose a new differential-coded DC-DGD algorithmic
framework, where “differential-coded” means that the infor-
mation exchanged between nodes is the differential between

two successive iterations of the variables, rather than the
variables themselves. We show that DC-DGD allows us to
work with a wide range of general compressors that are only
constrained by SNR (signal-to-noise-ratio) and thus could
have unbounded noise power. The use of SNR-constrained
compressors relaxes the commonly adopted assumption on
bounded compression noise power in the literature [11]–
[13]. More specifically, we show that if a compressor’s SNR
is greater than (1��N)/(1+�N), where �N is the smallest
eigenvalue of the consensus matrix used in all DGD-type
algorithms, then our DC-DGD algorithm achieves the same
O(1/t) convergence rate as the original DGD method.

• Not only does the use of SNR-constrained compressors
make our DC-DGD framework more general and practi-
cal, it also induces a nice “self-compression-noise-power-
reduction effect” that keeps the algorithmic structure of DC-
DGD simple. More specifically, based on a quadratic Lya-
punov function of the consensus form of the optimization
problem, we show that the accumulated compression noise
under DC-DGD shrinks to zero under SNR-constrained
compressors and differential-coded information exchange.
Hence, there is no need to introduce extra mechanisms
or parameters to tame the accumulated compression noise
for ensuring convergence. As a result, DC-DGD enjoys the
same low-complexity and efficient convergence rate as the
original DGD method.

• The insight on the relationship between DC-DCD and SNR-
constrained compressors further inspires us to develop a
hybrid compression scheme that integrates gradient spar-
sification and ternary operators to obtain controllable SNR
and a high compression ratio simultaneously. The proposed
hybrid compression scheme achieves the best of both worlds
through a meticulously designed mechanism to minimize
the communication load. Specifically, under the hybrid
compressor, the communication load minimization can be
formulated as an integer programming problem. Based on
the special problem structure, we show that the problem can
be solved efficiently by a greedy algorithm.
Our results in this paper contribute to the state of the art

of theories and algorithm design for communication-efficient
network-distributed optimization. The rest of the paper is
organized as follows. In Section II, we further review related
works on the state of the art of compressed DGD-based opti-
mization algorithms. In Section III, we first present our DC-
DGD algorithm and then analyze its convergence gaurantees.
In Section IV, we present a family of hybrid operators and a
greedy algorithm is proposed to choose the optimal hybrid
operator. Numerical results are provided in Section V. We
conclude this paper in Section VI.

II. RELATED WORKS

As mentioned earlier, compression-based DGD algorithms
have received increasing attention in recent years. In this
section, we provide a more in-depth survey on the state of the
art in this area to put our work into comparative perspectives.

Broadly speaking, compression-based DGD algorithms can be
categorized as follows (some fall into multiple categories):

1) Uncoded Noise-Power-Constrained Compressed DGD:
In the literature, most of the early attempts on compressed
DGD were focused on noise-power-constrained compressors,
which are easier to analyze. One notable recent work is
the QDGD method proposed by Reisizadeh et al. [11]. The
main idea of QDGD is to introduce an ✏t-scaled aggregation
of compressed local copies coupled with an ✏t-scaled local
gradient step, where ✏t = O(1/

p
t) is an extra diminishing

parameter introduced in each iteration t to dampen the noise
power. However, due to the timid gradient step-size ✏t↵ (↵ is
the original local gradient step-size in DGD), the convergence
rate of QDGD is O(1/t1/4), which is much slower than the
original DGD. Also, the algorithm is more complex to use
than DGD due to the sensitivity in tuning the extra parameter
✏t. Moreover, QDGD was focused on strongly convex cases
and it is unclear whether its performance results can be
straightforwardly extended to non-convex cases.

2) Differential-Coded DGD with Noise-Power-Constrained
Compressors: Another more recently emerging line of re-
search is the differential-coded DGD approach. For example,
in [12], Tang et al. proposed the ECD-PSGD algorithm,
where extrapolated information is used in each iteration to
reduce compression noise. However, it requires computing an
optimized step-size in each iteration, which leads to high per-
iteration complexity. Also, the convergence rate of ECD-PSGD
is O(log(t)/

p
t), which is slower than the original DGD and

its stochastic variant. Another notable example is the ADC-
DGD algorithm proposed by Zhang et al. [13], where a t

�-
amplified differential-coded information (with � >

1
2) is used

in each iteration t. It is shown in [13] that ADC-DGD achieves
the same O(1/t) convergence rate as that of the original DGD.
However, ADC-DGD runs the risk of arithmetic overflow
due to the asymptotically unbounded t

�-amplification factor.
This extra �-parameter selection of ADC-DGD also makes it
complex to use compared to DGD.

3) Differential-Coded DGD with SNR-Constrained Com-
pressors: The most related algorithm to ours is the DCD-
PSGD algorithm proposed by Tang et al. in [12], which is by
far the only differential-coded algorithm that can work with
SNR-constrained compressors. Although DCD-PSGD shares
the above similarities with us, our DC-DGD algorithm differs
from DCD-PSGD in the following key aspects: i) DCD-PSGD
is designed for parallel training, where a key assumption is
that the data at each node are i.i.d., which guarantees that
the local objectives are identical. However, our work relaxes
this assumption and allows the local objectives to be non-
identically distributed. ii) The final output of DCD-PSGD
is the average of all nodes in the network, which could
be difficult to implement in network-distributed settings. In
contrast, DC-DGD does not require such an averaging at
the final output since each node reaches a global optimal
consensus. iii) Although both algorithms work with SNR-
constrained compressors, the SNR constraint of DCD-PSGD is

lower bounded by 4(1��N)2/(1�|�N |)2, while the SNR lower
bound of our DC-DGD is (1��N)/(1+�N), where �N is the
smallest eigenvalue of the consensus matrix. It can be readily
verified that our SNR lower bound is much smaller, which
implies that our DC-DGD can work with more aggressive
compression schemes. iv) To achieve the best convergence
rate, DCD-PSGD requires an optimal step-size determined by
a set of complex parameters (cf. step-size “�” in Theorem 1
and Corollary 2 in [12]) and hard to implement in practice. In
contrast, the step-size selection in our DC-DGD uses simple
sublinearly diminishing series and is easy to implement.

III. DIFFERENTIAL-CODED DECENTRALIZED GRADIENT
DESCENT WITH SNR-CONSTRAINED COMPRESSORS

In this section, we first present the problem formulation of
network-distributed optimization in Section III-A. Then, we
will present our DC-DGD algorithm in Section III-B and its
main theoretical results in Section III-C. Lastly, we provide
proof sketches for the main theoretical results in Section III-D.

A. Problem Formulation of Network-Distributed Optimization
We use an undirected connected graph G = (N ,L) to

represent a network, where N and L are the sets of nodes
and links, respectively, with |N | = N and |L| = E. We let
x 2 RD denote a global decision vector to be optimized.
In network-distributed optimization, we want to distributively
solve a network-wide optimization problem: minx2RD f(x),
where f(x) can be decomposed node-wise as follows:

min
x2RD

f(x) = min
x2RD

NX

i=1

fi(x), (1)

where each local objective function fi(x) is only observable
to node i. Problem (1) has many real-world applications. For
example, in the satellite network image regression problem
in Section I, each satellite i distributively collects image data
{uij ,vij , ✓ij}Ni

j=1, where uij , vij , and ✓ij represent the pixels,
geographical information, and ground-truth label of the j-th
image at satellite i, respectively, and Ni is the size of the
local dataset. Suppose that the regression is based on a linear
model with parameters x = [x>

1 x>
2]

>. Then, the problem can
be written as: minx f(x),minx

PN
i=1 fi(x), where fi(x),

1
Ni

PNi

j=1(✓ij�u>
ijx1�v>

ijx2)2. Note that Problem (1) can be
written as the following equivalent consensus form:

Minimize
NX

i=1

fi(xi) (2)

subject to xi = xj , 8(i, j) 2 L.

where xi 2 RD is the local copy of x at node i. The constraints
in Problem (2) guarantee that all the local copies are equal to
each other, hence the name consensus form.

B. The DC-DGD Algorithm
To facilitate the presentation of our DC-DGD algorithm, we

first need to formally define two technical notions. The first
one is the SNR-constrained unbiased stochastic compressors:

Definition 1 (SNR-Constrained Stochastic Unbiased Compres-
sor). A stochastic compressor C(·) is said to be unbiased and
constrained by an SNR threshold ⌘ if it satisfies C(z) = z+✏z,
with E[✏z]=0 and E[k✏zk2](1/⌘)kzk2, 8z 2 Rd.

We can see from Definition 1 that, for a given compressor,
⌘ is its lowest SNR yielded by its largest compression noise
power E[k✏zk2]. We note that SNR-constrained stochastic
unbiased compressors are much less restricted than the noise-
power-constrained stochastic unbiased compressors previously
assumed in the literature (see, e.g., [11]–[13]), which satisfy
E[✏z] = 0 and E[k✏zk2]  �

2, 8 z. That is, the compression
noise power is universally upper bounded by a constant �2

regardless of the input signal. In contrast, the noise power
under SNR-constrained compressors could be arbitrarily large
as long as it satisfies a certain SNR requirement, hence being
more general. For example, the following are two typical SNR-
constrained stochastic unbiased compressors:

Example 1. [The Sparsifier Operator [15]] For any vector
z 2 Rd

, C(z) outputs a sparse vector with the i-th element
[C(z)]i following the Bernoulli(p) distribution:

(
Pr([C(z)]i =

[z]i
p) = p,

Pr([C(z)]i = 0) = 1� p,

where p 2 (0, 1] is a constant. The operation is unbiased and
the SNR is lower bounded by is p/(1� p).

Example 2. [Ternary Operator [16]] For any z 2 Rd
,

C(z) = kzk1sign(z)�bz, where � is the Hadamard product,
[sign(z)]i = sign([z]i) and bz is a random vector with the
i-th element [bz]i following the Bernoulli distribution:

(
Pr([bz]i = 1) = |zi|/kzk1,

Pr([bz]i = 0) = 1� |zi|/kzk1.

The operation is unbiased and the noise power E[k✏zk2] =Pd
i=1 |zi|(kzk1 � |zi|) and hence ⌘ = ⇥(d).

Next, we introduce the notion of consensus matrix, which
is denoted as W 2 RN⇥N in this paper. As will be seen
later, the entries [W]ij in W define the weight parameters
used by each node to perform local information aggregation.
Mathematically, W satisfies the following properties:
a) Doubly Stochastic:

PN
i=1[W]ij =

PN
j=1[W]ij = 1.

b) Symmetric: [W]ij = [W]ji, 8i, j 2 N .
c) Network-Defined Sparsity Pattern: [W]ij > 0 if (i, j) 2 L

and [W]ij = 0 otherwise, 8i, j 2 N .
Collectively, properties a) and b) imply that the spectrum of
W (i.e., the set of all eigenvalues) lies in the interval (�1, 1]
on the real line, with exactly one eigenvalue being equal to
1. Further, since all eigenvalues are real, they can be sorted
as �1 < �N (W)  · · ·  �1(W) = 1. For convenience, we
define a parameter � , max{|�2(W)|, |�N (W)|} 2 (0, 1),
i.e., the second-largest eigenvalue of W in magnitude. Simply
speaking, the use of the consensus matrix is due to the fact
that (W ⌦ IP)x = x if and only if xi = xj , (i, j) 2 L,

[8] where x = [x>
1 , . . . ,x

>
N]> and ⌦ represents the Kro-

necker product. Therefore, Problem (2) can be reformulated
as minx2RD

PN
i=1 fi(xi), s.t. (W⌦ IP)x = x, which further

leads to the original DGD algorithmic design [8].
With the notions of SNR-constrained unbiased stochastic

compressors and consensus matrix, we are now in a position
to present our DC-DGD algorithmic framework. To this end,
we let Ni , {j 2 N : (i, j) 2 L} denote the set of local
neighbors of node i. Then, our DC-DGD is stated as follows:

Algorithm 1: Differential-Coded Compressed Decentralized
Gradient Descent Method (DC-DGD).

Initialization:
1. Set the initial state xi,0=yi,0 =zi,0=0, 8i.
2. Let t=1, zi,1=�↵1rfi(xi,0), and di,1= zi,1 � xi,0, 8i.
Main Loop:
3. In the t-th iteration, each node sends the differential-coded

compressed information C(di,t) to its neighbors, where
C(·) is an SNR-constrained stochastic unbiased compres-
sor. Meanwhile, upon the reception of all neighbors’ in-
formation, each node performs the following updates:

a) Local copy inexact update: xi,t=xi,t�1+C(di,t). (3)
b) Weighted local aggregation step:

yi,t = yi,t�1 +
X

j2Ni

[W]ijC(dj,t). (4)

c) Local gradient step: zi,t+1 = yi,t � ↵trfi(xi,t). (5)
d) Local differential update: di,t+1 = zi,t+1 � xi,t. (6)

4. Stop if some preferred convergence criterion is met; oth-
erwise, let t t+ 1 and go to Step 3.

Several important remarks on the DC-DGD algorithm are in
order: 1) The combined update structure in Steps 3-b) and 3-
c) is the same as the original DGD algorithm, which contains
a weighted local aggregation step and a local gradient step.
Notably, DC-DGD only has one parameter: the step-size ↵t

(same as DGD). Thus, DC-DGD enjoys the identical structural
complexity as that of the original DGD method.
2) DC-DGD is memory-efficient: In DC-DGD, each node

only needs to store three local variables: xi,t, yi,t and zi,t.
This is in stark contrast to some DGD-based algorithms, e.g.,
ADC-DGD [13] and DCD-PSGD [12], where each node needs
to store all values of the previous iteration from its neighbors,
which is unscalable for large and dense networks that have
high node degrees.
3) Compared to the original DGD algorithm and many of its

variants, a notable difference in DC-DGD is that the gradient
rfi(xi,t) in Step 3-c) is calculated based on an inexact
update from xi,t�1 and the compressed differential C(di,t)
(i.e., Step 3-a)), rather than using an exact update. This is
derived from the convergence of a chosen Lyapunov function
(to be defined soon). Interestingly, we will show that this
modification does not harm the algorithm’s convergence speed
because the difference between inexact and exact updates is
negligible when the Lyapunov function is near convergence.

Before we prove the convergence of DC-DGD, it is insight-
ful to offer some intuitions on why DC-DGD retains most of
the simple structural properties of the original DGD and does
not need extra mechanism/parameter(s) to tame compression
noises. First, we define the following Lyapunov function:

L↵t(x) ,
1

2
x>(I�W ⌦ Id)x+ ↵tf(x). (7)

We note that L↵t(x) is also used for proving the convergence
of several other DGD-based algorithms (e.g., [17], [18]). To
understand our DC-DGD algorithm, we rewrite its updates
Steps 3-a) – 3-d) in the following vector form:

8
>>><

>>>:

xt = xt�1 + C(dt),

yt = yt�1 + (W ⌦ Id)C(dt),

zt+1 = yt � ↵trf(xt),

dt+1 = zt+1 � xt,

(8)

where y , [y>
1 , . . . ,y

>
n]

>
, z , [z>1 , . . . , z

>
n]

> and d ,
[d>

1 , . . . ,d
>
n]

>. Note that with y0 = 0, we have yt = (W ⌦
Id)xt by induction. Hence, we can rewrite the updates as:
8
><

>:

xt = xt�1 + C(dt) = xt�1 + zt � xt�1 + ✏t = zt + ✏t,

zt+1 = (W ⌦ Id)xt � ↵trf(xt) = xt �rL↵t(xt),

dt+1 = zt+1 � xt = �rL↵t(xt),

where ✏t is a compression noise satisfying E[✏t] = 0 and
E[k✏tk2]  (1/⌘)kdtk2 = (1/⌘)krL↵(xt)k2. That is, the
power of the noise ✏t depends on the difference between
two successive iterations, which in turn is the gradient of the
Lyapunov function rL↵t(xt). As the algorithm converges (to
be proved soon), rL↵t(xt) ! 0 implies that E[k✏tk2] ! 0.
Hence, no extra effort is required to tame the noise power
thanks to this self-compression-noise-power-reduction effect.

C. Main Theoretical Results
In this subsection, we will establish the convergence of the

proposed DC-DGD algorithm. Our convergence results are
proved under the following mild assumptions:

Assumption 1. The local objective functions fi(·) satisfies:
• (Lower boundedness) There exists an optimal x⇤ with
kx⇤k <1 such that f(x) � f(x⇤), 8x;

• (Lipschitz continuous gradient) there exists a constant L > 0
such that 8x1,x2, krfi(x1)�rfi(x2)k  Lkx1�x2k, 8i;

• (Bounded gradient) there exists a constant D > 0 such that
for all x, krfi(x)k  D, 8i.

Note that the first two bullets are standard in convergence
analysis: The first one ensures the existence of optimal solu-
tion and the second guarantees the smoothness of the local
objectives. The third bullet is needed to bound the deviation
of local copies to their mean (cf. Theorem 2). It is equivalent
to fi(·) being D-Lipschitz continuous. This mild assumption
has been widely adopted in analyzing non-convex optimization
algorithms in the literature (see, e.g., [19]–[21]).
To show the convergence of DC-DGD, we will show that the

iterates {xt}1t=1 and the gradient {rf(xt)}1t=1 are bounded

over all iterations, and the summation of the gradients of the
Lyapunov function over the iterations is also bounded.

Theorem 1. Under Assumption 1, if a constant step-size ↵ 
(�N (⌘ + 1) + ⌘ � 1)/L(1 + ⌘) is used, where ⌘ is the SNR
threshold satisfying ⌘ > (1� �N)/(1 + �N), then the sum of
the gradients of the Lyapunov function L↵ is bounded:

tX

⌧=0

E[krL↵(x⌧)k2] 
2↵

�
f(0)� f(x⇤)

�

1 + �N � ↵L� (1� �N + ↵L)/⌘
.

Note that Theorem 1 has a key condition on the SNR
threshold: ⌘ > (1��N)/(1+�N). This SNR lower bound is to
guarantee the feasible domain for the step-size ↵. Interestingly,
it can be seen that as �N ! 1 (i.e., a sparse consensus matrix
W), the lower bound for SNR ⌘ shrinks to zero, meaning that
as the network gets sparser, we could adopt compressors with
larger compression ratios.
Next, we bound the derivation of each local copy from the

mean of all local copies in any iteration t:

Theorem 2. Under Assumption 1 and with the same step-size
and SNR selections as in Theorem 1, in each iteration t, the
deviations of local copies from the mean can be bounded as:

E[kxt�x̄tk2]
✓
↵ND

1��

◆2

+
tX

⌧=1

�
2(t�⌧)E[krL↵(x⌧�1)k2]/⌘,

where x̄t = 11>xt/N and � = max{|�2|, |�N |}.

Theorem 2 requires that E[rL↵(xt)] is bounded, which is
guaranteed by Theorem 1. Lastly, based on Theorems 1 and
2, we show that DC-DGD converges to an error ball of a
stationary point of the global objective function at rate O(1/t):

Theorem 3. Under Assumption 1, if the step-size satisfies ↵ 
(�N (⌘ + 1) + ⌘ � 1)/L(1 + ⌘), then it holds that
tX

⌧=0

E[krf(x̄⌧)k2]  C1(↵,�)[f(0)� f(x⇤)] +
↵
2
N

2
D

2
L

(1� �)2
t,

where C1(↵,�) = 4(↵
(1��2) +

L
2)/[(1 + �N � ↵L)⌘ � (1 �

�N + ↵L)] + 2N
↵ . Thus, DC-DGD converges at rate O(1/t)

to an error ball that depends on parameters (↵, N,D,L,�):

min
⌧=0,··· ,t

E[krf(x̄⌧)k2]
C1(↵,�)[f(0)�f(x⇤)]

t
+
↵
2
N

2
D

2
L

(1��)2 .

Note that in Theorem 3, similar to the original DGD algo-
rithm, the size of the error ball is determined by two terms: The
first one is a convergence error with sublinear diminishing rate
O(1/t); The second term is the approximation error affected
by the step-size and the network structure (characterized by N

and �). Therefore, to reach an optimal solution, the step-size
↵ needs to be small so that the second term is close to zero.
However, as ↵! 0, the coefficient for the convergence error
C1(↵,�) ⇡ 2/↵!1, which in turn requires more iterations
for shrinking the first term.
The next result shows that with diminishing step-size ↵t =

O(1/t1/3), DC-DGD converges to a first-order stationary point
(optimal solution in convex problems) at rate O(1/t2/3):

Corollary 1. Let ↵t = (C2/t)1/3, where C2 , (f(0) �
f(x⇤))(1��)2/D2

N
2
L, and ↵t  (�N (⌘+1)+1�⌘)/L(1+

⌘), then the convergence rate of DC-DGD is:

min
⌧2[0,t]

E[krf(x̄⌧)k2]
3
�
f(0)�f(x⇤)

�2/3
(D2

N
2
L)1/3

(1� �)2/3t2/3
+O

⇣1
t

⌘
.

D. Proofs of the Main Theoretical Results
Due to space limitation, we provide proof sketches of the

main theoretical results in this subsection and relegate the full
proofs to our online technical report [22].

Proof Sketch of Theorem 1. Let Ft , �(x1,· · · ,xt) denote a
filtration. It can be shown that the Lyapunov function L↵(x)
has (1��n+↵L)-Lipschitz gradients. It then follows that:

L↵(xt+1)  L↵(xt)� hrL↵(xt),rL↵(xt)� ✏t+1i+
(1� �N + ↵L)

2
[krL↵(xt)k2+k✏t+1k2�2hrL↵(xt), ✏t+1i].

Taking conditional expectation and using the properties
of SNR-constrained unbiased compressors yield:
E[L↵(xt+1)|Ft]  L↵(xt) + 1

2 [(↵L � �N � 1) +
(1��N+↵L)

⌘]krL↵(xt)k2. Since ⌘ > (1 � �N)/(1 + �N),
we have (�N (⌘ + 1) + ⌘ � 1)/L(1 + ⌘) > 0. Then,
by setting step-size ↵ as stated in the theorem, we have
[↵L � �N � 1 + (1� �N + ↵L)/⌘] < 0. It then follows
that �[↵L � �N � 1 + (1 � �N + ↵L)/⌘]krL↵(xt)k2 
2(L↵(xt) � E[L↵(xt+1)|Ft]). Taking full expectation on
both sides and telescoping from 0 to t, we have:

� [↵L� �N � 1 + (1� �N + ↵L)/⌘]⇥
tX

⌧=1

E[krL↵(xt)k2]  2(L↵(x0)� E[L↵(xt+1)]). (9)

Since E[L↵(xt+1)] � ↵E[f(xt+1)] � ↵
Pn

i=1 fi(x
⇤), after

rearranging terms, we can conclude that:
tX

⌧=1

E[krL↵(xt)k2] 
2↵(

PN
i=1 fi(0)�

PN
i=1 fi(x⇤))

1 + �N � ↵L� (1� �N + ↵L)/⌘
,

and the proof is complete.

Proof Sketch of Theorem 2. For notation convenience, We let
W̃ , W ⌦ Id. From (8), we can obtain:

8
>>>>>>>>>><

>>>>>>>>>>:

x1 = W̃x0 � ↵0rf(x0)� ✏1 = �↵0rf(x0)� ✏1,

x2 = W̃x1 � ↵1rf(x1)� ✏2

= �W̃↵0rf(x0)� ↵1rf(x1)� W̃✏1 � W̃✏2,

...

xt = �
t�1X

⌧=0

↵W̃t�⌧�1rf(x⌧)�
tX

⌧=1

W̃t�⌧✏⌧ .

Using the above equations, we can derive the following
inequality for the deviation from the mean x̄t:

kxt � x̄tk2 = kxt � (1/N)11>xtk2

 2
��
Xt�1

⌧=0
↵(W̃t�⌧�1 � (1/N)11>)rf(x⌧)

��2

+ 2
tX

⌧=1

k(W̃t�⌧ � (1/N)11>)✏⌧k2

+ 2
tX

⌧=1

tX

s=1,s 6=⌧

⌧✓
W̃t�⌧ � 11>

N

◆
✏⌧ ,

✓
W̃t�s � 11>

N

◆
✏s

�
.

Taking the expectation on both sides, noting E[✏t] = 0, and
after some algebraic manipulations, we arrive at:

E[kxt�x̄tk2]
✓
↵ND

1��

◆2

+
tX

⌧=1

�
2(t�⌧)E[krL↵(x⌧�1)k2]/⌘,

which completes the proof.

Proof Sketch of Theorem 3. First, we prove a key descending
inequality on x̄t = 1

N

PN
i=1 xi,t. From the update rule

xt+1 = W̃xt � ↵rf(xt) � ✏t+1, we have x̄t+1 = x̄t �
↵
N

PN
i=1rfi(xi,t)� ✏̄t+1. It then follows that:

f̄(x̄t+1)  f̄(x̄t)� hrf̄(x̄t),
↵

N

NX

i=1

rfi(xi,t) + ✏̄t+1i

+
L

2

���
↵

N
rf(xi,t)

���
2
+ k✏̄t+1k2 + 2

D
↵

N
rf(xi,t), ✏̄t+1

E�
.

where f̄(x) = 1
N

PN
i=1 fi(xi). Taking conditional expectation

on both sides and after some algebraic manipulations, we can
show that

E[f̄(x̄t+1)|Ft]  f̄(x̄t)�
↵

2
krf̄(x̄t)k2+

↵

2
k 1
n

nX

i=1

rfi(xi,t)�rf̄(x̄t)k2 +
L

2n2⌘
krL↵(xt)k2.

Taking full expectation, telescoping the inequality from ⌧ = 0
to t, and after further algebraic manipulations, we have:

↵

2

tX

⌧=0

E[krf(x̄⌧)k2] 

1

N
+

✓
↵L

(1� �2)N2⌘
+

L

2N2⌘

◆
⇥

2↵

1 + �N � ↵L� (1� �N + ↵L)/⌘

�
[f(0)�f(x⇤)]+

↵
3
D

2
Lt

(1� �)2
,

which, after further rearrangements, yields the result stated in
the theorem. This completes the proof.

IV. A HYBRID COMPRESSION DESIGN UNDER DC-DGD
FOR COMMUNICATION COST MINIMIZATION

Inspired by previous theoretical insights, in this section,
our goal is to design a hybrid SNR-constrained compression
scheme to achieve high communication cost saving, while
having a controllable SNR. Recall from Section III-A that
the sparsifier can control the compression noise power by
adjusting the probability p and the expected communication
cost for a d-dimensional vector is d[c1p+c0(1�p)], where c1
is the cost for sending a floating number and c0 is the cost for
value 0. Therefore, if the SNR ⌘ threshold is large, the com-
munication cost will be close to sending uncompressed copy
dc1. For the ternary operator, its compression noise power isPd

i=1 |zi|(kzk1 � |zi|), which is not directly controllable by

any parameter. The communication cost is c1 + (d � 1)c00,
where c

0
0 is the cost for the ternary values {�1, 0, 1}.

In general, the communication cost of a ternary-compressed
vector is much smaller than that of the sparse-compressed
vector: For example, if using 32-bit floating numbers and one
bit for zero, the cost for a d-dimensional sparse compressed
vector is [32p+(1�p)]d. In contrast, for the ternary operator,
the cost will be 32+2(d�1) if using 32-bit floating numbers
and two bits for the ternary values. With a larger SNR
threshold ⌘ (i.e., larger p) and high dimensionality d, the
communication cost of the ternary compressor is much smaller.
Therefore, to have a controllable compression noise power as
well as high communication cost savings, a promising solution
is to combine the sparse and the ternary compressors.
To this end, consider a d-dimensional vector z =

[z1, · · · , zd]>. We can sort and rearrange the elements of z
in descending order of magnitude to have: z[1], . . . , z[d], with
|z[i]| � |z[i+1]|, i = 1, . . . , d � 1. For the first largest s1

elements, we apply the ternary compressor, while for the rest
of the elements, we use the sparse compressor, i.e.,

z[1], z[2], · · · , z[s1�1], z[s1]| {z }
ternary compression

, z[s1+1], · · · , z[d�1], z[d]| {z }
sparsifier compression

)

z[1], 0, · · · , � 1, 1
| {z }

ternary compressed

,
z[s1+1]

p
, · · · , 0,

z[d]

p| {z }
sparsifer compressed

As a result, the compression noise power levels of the first
s1 largest elements and the rest are

Ps1
i=1 |z[i]|(|z[1]| � |z[i]|)

and (1/p�1)
Pd

i=s1+1 z
2
[i], respectively. In order to ensure the

effective SNR of the hybrid scheme satisfies ⌘ > C for some
lower bound C, we have:

(ternary) : |z[i]|(|z[1]|� |z[i]|) < (1/C)z2[i], 8i  s1 (10)

(sparsifer) : (1/p� 1)z2[i] < (1/C)z2[i], 8i > s1. (11)

To satisfy (10) and (11), we have s1 = argmini{|z[i]| >
1

1+1/C |z[1]|} and p >
1

1+1/C , respectively. Then, on average,
the compressed vector has 1+(d� s1)p floating numbers and
(s1�1)+(d�s1)(1�p) ternary values, which is more efficient
compared to that under the sparsifier compressor.
In fact, the hybrid compression idea above can be gener-

alized to achieve further communication cost savings: Instead
of just using z[1] for the ternary compression, we can select
multiple “anchor elements” {z[q1], · · · , z[qk]}. There are si

elements between z[qi] and z[qi+1]. Thus, a d-dimensional
vector can be partitioned into (k+1) groups. For the elements
with indices in (qi, qi + si), we apply the ternary compressor
based on z[qi]. For the remaining elements, we apply the
sparsifier operator. Similar to (10), we have

|z[j]|(|z[qi]|� |z[j]|) < (1/C)z2[j], 8j 2 (qi, qi + si). (12)

Then, the compressed vector has k+ (d�
Pk

i=1 si)p floating
and (

Pk
i=1 si � k) + (d �

Pk
i=1 si)(1 � p) ternary values.

Moreover, we need to save the indices of the anchor elements,
for which we need dlog(k + 1)e bits per element.

Given an SNR threshold ⌘, the communication saving of our
hybrid compression scheme is highly dependent on the group
number k and the positions of the anchor elements, which
can be optimized by solving an integer programming problem.
Take 32-bit floating numbers and 2-bit ternary values as an
example. To achieve the maximum communication saving, the
group number k and the locations of the anchor elements can
be determined by solving:

min
k,{z[qi]}

(
32


k +

✓
d�

kX

i=1

si

◆
p

�

| {z }
Number of floating values

+[2 + dlog(k + 1)e| {z }
cost of storing
anchor indices

]⇥

✓ kX

i=1

si � k

◆
+

✓
d�

kX

i=1

si

◆
(1� p)

�

| {z }
Number of ternary values

)
. (13)

Problem (13) is an integer optimization problem, which can
be shown to be equivalent to bin packing problems, thus being
NP-hard. However, an efficient greedy heuristic algorithm can
be developed by leveraging the special problem structure.
Specifically, we note that the objective function is increasing
and decreasing with respect to k and

Pk
i=1 si, respectively.

Therefore, we can find anchor points {z[qi]}ki=1 and their
corresponding ternary sets (of size si) by checking (12); if the
ternary cost of the si elements is smaller than the sparsifier
cost, we remove these si elements from the current vector;
otherwise, we use the sparsifier compressor on the current
vector. We summarize the greedy algorithm as follows:

Algorithm 2: A greedy algorithm for solving Problem (13).

Initialization:
1. Sort and rearrange the elements of vector z in a descending

order of magnitude.
2. Let i = 1. Set the ternary set T as empty.
Main Loop:
3. Inner Loop:

3.1) For each element z[j], j /2 T , find the set: Sj =
{z[k] : |z[k]|(|z[j]|� |z[k]|) < z

2
[k]/C, k /2 T }.

3.2) Set qi = argmax |Sj | and si = max |Sj |.
4. Compare the ternary cost 32+2(si�1) with the sparsifier

cost [32p+ 2(1� p)]si;
5. If the ternary cost is smaller, then remove the correspond-

ing elements from the current vector and add them to T ,
let i i+ 1 and go to Step 3; otherwise, break the loop.

Final Step:
6. Apply the ternary operator to each group in T and the

sparse operator to T c
.

Now, we analyze the running time complexity of the greedy
algorithm. First of all, the sorting requires O(d log(d)) time.
The worst-case number of iterations in the main loop is O(d);
while in each inner loop, it takes O(d) steps to find the ternary
set for each element. Hence, the overall time-complexity of
Algorithm 2 is O(d2 + d log(d)).

V. NUMERICAL RESULTS

In this section, we perform extensive numerical experiments
to validate the performances of our proposed DC-DGD algo-
rithm and the hybrid compression scheme.
1) Convergence of DC-DGD: In this simulation, we adopt

the sparsifier compression in Example 1 and vary the proba-
bility parameter p to induce different SNR threshold values.
Consider a five-node circle network in Fig. 1(a) with the global
objective function: minx f(x) = f1(x) + f2(x) + f3(x) +
f4(x) + f5(x), where

fi(x) =

(
log(1 + (a>i x+ bi)2/2), if i = 1, 2;

(a>i x� bi)2/2, if i = 3, 4, 5.
(14)

In (14), the coefficients {ai, bi}5i=1 are randomly generated
from the standard Gaussian distribution. Note that f1(x) and
f2(x) are non-convex and the remaining are convex. In our
simulations, we use the following two consensus matrices:

W1 =

2

6666664

1
5

2
5 0 0 2

5
2
5

1
5 0 0 2

5

0 2
5

1
5

2
5 0

0 0 2
5

1
5

2
5

2
5 0 0 2

5
1
5

3

7777775
, W2 =

2

6666664

1
2

1
4 0 0 1

4
1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

0 0 1
4

1
2

1
4

1
4 0 0 1

4
1
2

3

7777775
.

Note that �N (W1) = �0.45 and �N (W2) = 0.09. We
compare the original DGD, the ADC-DGD [13], and our
DC-DGD algorithms. For DC-DGD, the sparsifier probability
parameter p is chosen from {0.3, 0.5, 0.8}. Note that since
ECD-PSGD and DCD-PSGD in [12] are using stochastic
gradients and hence results are not directly comparable, they
are not included in the simulations. In ADC-DGD, we adopt
the low-precision representation (see [11, Example 1]) and
choose the amplifying exponent � from {0.8, 1.2}. We use
fixed step-size 0.1 and repeat 50 independent trials for each
setting. The simulation results are presented in Figs. 1(b)–1(c).
Fig. 1(b) illustrates the convergence of the three algorithms

with W1. We can see that DC-DGD converges with p = 0.8
but fails to converge with p chosen from {0.3, 0.5}. This
confirms our Theorem 1: From Example 1 and Theorem 1,
the lower bound of p can be derived from p/(p � 1) >

(1��N (W1))/(1+�N (W1)), which is 0.72. Thus, choosing
p 2 {0.3, 0.5} (i.e., p < 0.72) violates the convergence
condition in Theorem 1. Moreover, we note that, with p = 0.8,
the convergence speed of the DC-DGD is almost the same as
the original DGD (the black dashed line). Fig. 1(c) presents
the convergence performance of these algorithms with W2.
Following similar derivations, one can show that the lower
bound of p is 0.45. In this case, DC-DGD converges for
p = 0.5 and fails to converge for p = 0.3, which confirms
Theorem 1 again. In both cases, we can see that DC-DGD
converges faster and has smaller variances than ADC-DGD.
2) Compression Operator Comparison: Next, we com-

pare three SNR-constrained compressors: the sparsifier, the
ternary compressor, and our proposed hybrid compressor. We
generate 20 d-dimensional vectors independently from the

1

2

3

45

(a)

10−4

10−2

100

102

0 25 50 75 100
Iteration

N
or

m
 o

f G
ra

di
en

t

DGD
DC−DGD (p=0.3)
DC−DGD (p=0.5)
DC−DGD (p=0.8)

ADC−DGD (γ=0.8)
ADC−DGD (γ=1.2)

(b)

10−4

10−2

100

102

0 25 50 75 100
Iteration

N
or

m
 o

f G
ra

di
en

t

DGD
DC−DGD (p=0.3)
DC−DGD (p=0.5)
DC−DGD (p=0.8)

ADC−DGD (γ=0.8)
ADC−DGD (γ=1.2)

(c)

Fig. 1. (a) The five-node circle network; (b-c) Performance comparsion: Convergence error vs Iteration with the consensus matrices W1 and W2, respectively.
The black solid curve is the original DGD algorithm. The other curves represent the error averaged over 50 trials and the shaded regions indicate the standard
deviations of results over random trials.

0.00

0.25

0.50

0.75

1.00

1.25

20 50
Vector Dimension

Bi
as

Ternary Sparsifer Hybrid

(a) Case1: Bias.

0.0

2.5

5.0

7.5

20 50
Vector Dimension

Si
gn

al
−N

oi
se

 R
at

io
 (d

B)
Ternary Sparsifer Hybrid

(b) Case1: Signal-to-Noise Ratio.

0

250

500

750

20 50
Vector Dimension

C
om

m
s.

 C
os

t (
Bi

t)

Ternary Sparsifer Hybrid

(c) Case1: Communication Cost.

0.00

0.25

0.50

0.75

1.00

20 50
Vector Dimension

Bi
as

Ternary Sparsifer Hybrid

(d) Case2: Bias.

0

4

8

12

20 50
Vector Dimension

Si
gn

al
−N

oi
se

 R
at

io
 (d

B)

Ternary Sparsifer Hybrid

(e) Case2: Signal-to-Noise Ratio.

0

400

800

1200

20 50
Vector Dimension

C
om

m
s.

 C
os

t (
Bi

t)

Ternary Sparsifer Hybrid

(f) Case2: Communication Cost.

Fig. 2. Comparisons between three compressors: (a)-(c) are the boxplots for the SNR lower bound as 0dB; and (d)-(e) are the boxplots for the SNR lower
bound 3 dB. The red dashed lines in (a) and (d) represents 0; the red dashed lines in (b)&(e) present the SNR lower bound 0 dB and 3 dB, respectively.

multivariate Gaussian distribution N (0, Id) with d 2 {20, 50}.
We apply three operators on each vector, respectively, and
conduct 100 trials. For any x and the compressed C(x),
we evaluate: 1) bias: kE[C(x)] � xk; 2) signal-to-noise ratio
(SNR): kxk2/Var[C(x)]; and 3) communication cost. Here the
SNR is corresponding to ⌘ in Theorem 1. The smaller bias
and the larger the SNR (less noisy), the better the compressor.
To calculate the communication cost, we use 32-bit floating
numbers and 2-bit ternary numbers. For the sparsifier operator,
only one bit is used to represent value 0. Note that SNR is
controllable by adjusting p in the sparsifier and our hybrid
compressors. To illustrate this advantage, we set the SNR
lower bound as 0 dB and 3 dB. In both cases, the parameters
are optimized for the largest communication cost savings: For
the 3 dB SNR lower bound, we have p = 2

3 for the sparsifier

and ⌘ = 2 for the hybrid compressor; For the 0 dB SNR lower
bound, we have p= 1

2 for the sparsifier and ⌘=1 for the hybrid
compressor. Boxplots results are illustrated in Fig. 2.
In Fig. 2(a) and 2(d), we can see that our hybrid compressor

has the smallest bias, while the bias of the sparsifier increases
as p decreases. We can see from Fig. 2(b) and 2(e) that our
hybrid compressor can make the SNR larger than the given
bound, while the ternary operator cannot. The communication
costs are shown in Fig. 2(c) and 2(f). Although the ternary
compressor has the lowest cost, it cannot control its SNR. In
contrast, our hybrid scheme achieves almost 50% cost savings
compared to the sparsifier scheme under all circumstances.

3) Real-World Data Experiments: Lastly, we compare
DC-DGD with the original DGD [8], QDGD [11], ADC-
DGD [13] with 10-node networks and real-world data.

0.24

0.07

0.19

0.11
0.05

0.24

0.02

0.14

0.02

0.07

0.07

1

2

3

4

56

7

8

9

10

(a) Network Topology of Case1.

10−2

10−1

100

0 50 100 150 200
Iteration

N
or

m
 o

f G
ra

di
en

t

DGD DC−DGD + Sparsifier
DC−DGD + Ternary DC−DGD + Hybrid
ADC−DGD QDGD

(b) Case1: Error vs Iteration.

10−2

10−1

100

0 5 10 15 20 25
Comms. Cost (104 Bit)

N
or

m
 o

f G
ra

di
en

t

DGD DC−DGD + Sparsifier
DC−DGD + Ternary DC−DGD + Hybrid
ADC−DGD QDGD

(c) Case1: Error vs Comms. Cost.

0.31

0.24
0.19

0.14

0.07 0.05

0.240.19
0.07 0.05

0.02

0.14
0.1

0.07 0.05

0.14
0.1

0.07 0.05

0.02

0.14

0.07 0.05

0.02

0.1

0.05

0.02

0.05

0.05

0.02

1

2

3

4
5

6
7

8 9

10

(d) Network Topology of Case2.

10−2

10−1

100

0 50 100 150 200
Iteration

N
or

m
 o

f G
ra

di
en

t

DGD DC−DGD + Sparsifier
DC−DGD + Ternary DC−DGD + Hybrid
ADC−DGD QDGD

(e) Case2: Error vs Iteration.

10−2

10−1

100

0 5 10 15 20 25
Comms. Cost (104 Bit)

N
or

m
 o

f G
ra

di
en

t

DGD DC−DGD + Sparsifier
DC−DGD + Ternary DC−DGD + Hybrid
ADC−DGD QDGD

(f) Case2: Error vs Comms. Cost.

Fig. 3. (a) an (d) Two ten-node network examples. The consensus weights are shown on the corresponding edges. (b) and (e) Convergence in terms of
iterations; (c) and (f) Convergence in terms of communication cost. The curves are averaged over 10 trials and the shaded regions represent the standard
deviation of results over random trials.

We consider a classification task on the Spambase dataset
from UCI repository [23]. This dataset contains email spam
data from 4601 email messages and 57 features. The data
are evenly distributed to 10 machines. The local objective
fi(x) is a logistic regression problem with a non-convex
regularizer [24]: � 1

ni

Pni

j=1[yij log(
1

1+exp(�x>⇣ij)
) + (1 �

yij) log(
exp (�x>⇣ij)

1+exp (�x>⇣ij)
)]+⇢

Pd
i=1

x2
i

1+x2
i
, where the label yij 2

{0, 1}, the feature ⇣ij 2 R57 and ⇢ = 0.1 in our experiment.
For ADC-DGD and QDGD, floating numbers are randomly
quantized to integers with the low-precision representation. In
our DC-DGD, we test three compressors: the sparsifier, the
ternary compressor, and our hybrid compressor. We use 32
bits for the floating numbers, 8 bits for integers (int8), and 2
bits for ternary values. In addition, value 0 is represented by 1
bit in the sparsifier. We use two different network topologies as
shown in Figs. 3(a) and 3(d). For the first topology, � = 0.98
and �N = 0.24; For the second topology, � = 0.88 and
�N = �0.37. The simulation results are shown in Fig. 3.
We can see that DC-DGD with the ternary compressor does

not converge under the second topology. This is because the
SNR-threshold is not controllable under the ternary compres-
sor. Thus, ternary compressor is not a safe choice in DGD-
type algorithms. Fig. 3(b) and 3(e) illustrate the convergence
rates of the algorithms. We can see that the QDGD has the
slowest convergence speed, which is followed by ADC-DGD.
Note that DC-DGD, when converged, has almost the same
speed as the original DGD. Fig. 3(c) and 3(f) compare the
communication cost of these algorithms. In Fig. 3(c), we see
that the ternary compressor has the lowest communication
cost (approximately 105 bits to achieve error 10�2). However,

ternary compressor does not work in the second network.
We can also see that DC-DGD with our hybrid compressor
converges in both networks and has the lowest communication
cost under the second network (approximately 2⇥ 105 bits to
achieve error 10�2). In contrast, ADC-DGD costs 2.5 ⇥ 105

bits and other methods cost more than 2.5⇥105 bits. Moreover,
we note that our DC-DGD has smallest variance compared to
ADC-DGD and QDGD (compare the shaded regions), which
suggests that our DC-DGD is more stable.

VI. CONCLUSION

In this paper, we designed and analyzed a new differential-
coded compressed decentralized gradient descent (DC-DGD)
algorithm for communication-efficient network-distributed op-
timization. The key features of our DC-DGD algorithm in-
clude: i) DC-DGD works with general compression schemes
that are only constrained by SNR (signal-to-noise ratio); ii)
By exchanging the differentials between successive iterations
(hence the name differential-coded), the DC-DGD algorithm
converges at the same O(1/t) rate as the original DGD;
iii) DC-DGD enjoys the same low-complexity algorithmic
structure as the original DGD algorithm and does not require
additional mechanisms to tame compression noise thanks to
its self compression noise reduction effect. Based on the above
theoretical insights, we proposed a new family of hybrid SNR-
constrained compressors that integrate sparsifier and ternary
operators. We showed that our hybrid compressor has a
controllable SNR-threshold and offers a systematic framework
to minimize communication costs. Moreover, by leveraging the
special problem structure, we developed an efficient greedy
algorithm to reduce the communication cost.

REFERENCES

[1] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation.” Massachusetts Inst of Tech Cambridge Lab for Information
and Decision Systems, Tech. Rep., 1984.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 11, pp. 1–122, 2011.

[3] J. Konecny, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[4] A. Nedic, A. Olshevsky, and C. A. Uribe, “Distributed learning for
cooperative inference,” arXiv preprint arXiv:1704.02718, 2017.

[5] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Automatic
Control, vol. 55, no. 4, pp. 922–938, 2010.

[6] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” Journal of optimization theory and
applications, vol. 129, no. 3, pp. 469–488, 2006.

[7] M. Rabbat and R. Nowak, “Decentralized source localization and
tracking wireless sensor networks,” in Proc. IEEE ICASSP, vol. 3, 2004,
pp. 921–924.

[8] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, p. 48, 2009.

[9] A. Garg, S. V. Naidu, H. Yahia, and D. Singh, “Wavelet based reso-
lution enhancement for low resolution satellite images,” in Proc. 9th
IEEE International Conference on Industrial and Information Systems
(ICIIS2014), Gwalior, India, December Dec 2014.

[10] A. A. Shatnawi and M. N. M. Warip, “Challenges to inter-satellite
communication system: A review,” International Journal of Computer
Applications, vol. 148, no. 6, pp. 22–25, August 2016.

[11] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized
decentralized consensus optimization,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 5838–5843.

[12] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication com-
pression for decentralized training,” in Advances in Neural Information
Processing Systems, 2018, pp. 7652–7662.

[13] X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley, “Compressed distributed
gradient descent: Communication-efficient consensus over networks,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 2431–2439.

[14] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani,
“Robust and communication-efficient collaborative learning,” in Ad-
vances in Neural Information Processing Systems, 2019, pp. 8386–8397.

[15] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems, 2018, pp. 1299–1309.

[16] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519.

[17] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[18] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,”
IEEE Transactions on signal processing, vol. 66, no. 11, pp. 2834–2848,
2018.

[19] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep
learning in fixed topology networks,” in Advances in Neural Information
Processing Systems, 2017, pp. 5904–5914.

[20] Y. Zhou, Y. Liang, and H. Zhang, “Generalization error bounds with
probabilistic guarantee for sgd in nonconvex optimization,” arXiv
preprint arXiv:1802.06903, 2018.

[21] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic vari-
ance reduction for nonconvex optimization,” in International conference
on machine learning, 2016, pp. 314–323.

[22] X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley, “Communication-efficient
network-distributed optimization with differential-coded compressors,”
arXiv preprint arXiv:1912:03208, 2019.

[23] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[24] Z. Wang, Y. Zhou, Y. Liang, and G. Lan, “Stochastic variance-
reduced cubic regularization for nonconvex optimization,” arXiv preprint
arXiv:1802.07372, 2018.

