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ABSTRACT

In this paper, we introduce tools to verify the satisfaction of tempo-
ral logic specifications using the until operator for hybrid dynamical
systems. Hybrid dynamical systems are given in terms of differen-
tial and difference inclusions, which capture the continuous and
discrete dynamics (or events), respectively. For such systems, condi-
tional invariance and eventual conditional invariance are employed
to characterize dynamical properties associated with the until op-
erators. Sufficient conditions for the satisfaction of temporal logic
specifications involving the until operator are provided by guaran-
teeing properties of the data defining the systems and the existence
of barrier functions or Lyapunov-like functions. Examples illustrate
the results throughout the paper.

CCS CONCEPTS

« Theory of computation — Logic and verification; Modal
and temporal logics; Linear logic; » Computer systems organi-
zation — Embedded and cyber-physical systems.

KEYWORDS

Linear temporal logic, until operator, forward invariance, condi-
tional invariance, hybrid systems.

ACM Reference Format:

Hyejin Han, Mohamed Maghenem, and Ricardo G. Sanfelice. 2020. Sufficient
Conditions for Satisfaction of Formulas with Until Operators in Hybrid Sys-
tems. In 23rd ACM International Conference on Hybrid Systems: Computation
and Control (HSCC ’20), April 22-24, 2020, Sydney, NSW, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3365365.3382223

1 INTRODUCTION

Linear Temporal logic (LTL) is a useful language to express complex
temporal properties of dynamical systems. By combining a set
of propositions and a set of temporal and logical operators, the
required task that the system needs to achieve is formulated as a
single (temporal logic) formula. LTL provides a general framework
to analyze complex tasks in dynamical systems that go beyond the
classical control tasks such as convergence, stability, safety, etc; see,
eg. [7,15,28,31].
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LTL was introduced for the verification of computer programs
[23]. LTL provides a unified approach to specify and certify behav-
iors of programs, in particular, invariance and eventuality. In recent
years, LTL has been introduced for dynamical systems with various
applications in modeling, analysis, design, and control of systems.
In [29], the proposed approach employs LTL for motion and task
planning of multi-agent systems. Assigned tasks including safety
constraints are formulated as LTL formulas and, in their setting,
such formulas are verified in real-time so that each agent avoids all
obstacles while performing their tasks. In [3], the authors formulate
a desired property of a physical plant by using co-safe LTL (sc-LTL),
which is a fragment of LTL, and propose a hybrid barrier certifi-
cate to verify the satisfaction of sc-LTL specifications. Furthermore,
extensions based on LTL have appeared in the literature, such as
metric temporal logic (MTL) [14, 26], signal temporal logic (STL)
[25], and alternating-time temporal logic (ATL*) [1].

A widely used approach to ensure specifications for dynamical
systems consists in constructing a transition system that terminates
only when the solution (or trajectory) of the dynamical system sat-
isfies the required specification; see, e.g., [11, 13, 20]. This approach
is typical in model checking and software verification methods
[4, 10]. It is to be noted that such an approach works well on finite
horizon specifications; namely, when the formula needs to be ver-
ified within a bounded amount of time. However, this approach
does not provide any guarantees when the formula is satisfied at
unknown large times. As an example, we can consider temporal
logic specifications (formulas) involving the until operator. Such
formulas may require arbitrarily long time to be certified. In fact,
as pointed out in [22], model-checking-based approaches for certi-
fying formulas using the until operator may require exponential
time.

The until operator is one of the basic (yet very powerful) opera-
tors in LTL language. In particular, the until operator has strong and
weak versions, named as strong until (Us) and weak until (U,,);
see, e.g., [5]. For example, given two propositions p and g, the satis-
faction of the formula p Usq implies that p is true until g happens
to be true, and ¢ must become true eventually. For the weak version,
the satisfaction of the formula p U,,q implies that p is true until g
happens to be true; however, q is not required to become true if p
is true forever. Verifying formulas involving (strong) until opera-
tors suggests that one has to show that a given proposition needs
to remain satisfied until another proposition becomes satisfied. A
simple but concrete application where the until operator is useful
concerns autonomous navigation problems in constrained environ-
ments [6, 30]. In such applications, mobile vehicles typically need
to navigate their environment without colliding with obstacles and
following a particular sequence of tasks. For instance, consider the
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situation where the vehicle needs to exit a room only via its exit
door while avoiding an obstacle in the center of the room. In such
setting, the vehicle needs to remain in the room without touching
the obstacle until reaching the exit door. Such a temporal behavior
can be expressed in terms of an LTL formula involving the until
operator.

In this paper, the required dynamical behavior for the solutions
to a hybrid system to satisfy temporal logic formulas involving
the until operator are presented. For this purpose, we employ two
properties: 1) conditional invariance, namely, the property that the
solutions to the system remain in a set if they start from a (likely
different) set; and 2) eventual conditional invariance, which con-
sists of the solutions reaching a set in finite time when they start
from a (likely different) set. These properties are used to formulate
sufficient conditions that use minimal information about solutions,
yet guarantee the satisfaction of temporal logic formulas involving
until operators. For the weak until operator, we present sufficient
conditions using barrier functions tailored to conditional invariance
for hybrid systems. These conditions use those in [19]. Furthermore,
we propose original sufficient conditions to certify eventual condi-
tional invariance for hybrid systems. Those conditions extend the
ones proposed in [16] for continuous-time systems. Moreover, they
are shown to be useful to formulate sufficient conditions that verify
formulas involving the strong until operator.

The remainder of this paper is organized as follows. Hybrid
systems, LTL for hybrid systems, and invariance notions are intro-
duced in Section 2. The characterizations of until operators using
invariance properties are presented in Section 3.1. The sufficient
conditions to guarantee invariance notions for hybrid systems and
the satisfaction of LTL formulas involving until operators for hybrid
systems are presented in Section 3.2 and Section 3.3, respectively.
Academic examples are provided to illustrate the results.

Notation. Let Ry¢ := [0,00) and N := {0,1,...,00}. For x,
y € R™, xT denotes the transpose of x, |x| the Euclidean norm
of x, |x|g := infyek [x — y| defines the distance between x and
the nonempty set K, and (x,y) = x y denotes the inner product
between x and y. For a set K ¢ R", we use int(K) to denote its
interior, K to denote its boundary, K to denote its closure, and
U(K) to denote any open neighborhood of K. For a set O ¢ R",
K \ O denotes the subset of elements of K that are not in O. By C?,
we denote the set of continuously differentiable functions. Finally,
F:R™ = R" denotes a set-valued map associating each element
x € R™ to a subset F(x) c R™.

2 PRELIMINARIES
2.1 Hybrid Systems

Following the modeling framework proposed in [8], we consider
hybrid systems modeled by general hybrid inclusions of the form

W:{xec x € F(x) )

x€D xte G(x),

with the state variable x € R", the flow set C ¢ R", the jump set
D c R", and the flow and jump maps, respectively, F : R" = R”"
and G : R" = R".
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A hybrid arc ¢ is defined on a hybrid time domain denoted
dom ¢ C Ryo X N. The hybrid arc ¢ is parameterized by an or-
dinary time variable t € R and a discrete jump variable j €
N. A hybrid time domain dom ¢ is such that for each (T,]) €
dom ¢, dom ¢ 0 ([0, T] x {0, 1,....., J}) = Wy ([t tj41] x (j}) for

+1
a sequence {tj}]]_:(), such that tj+; > t;j and ty = 0. Note that

the structure of a hybrid time domain dom ¢ is such that, given
t,)),(t',j)yedom @, t+j<t'+j ift <t'andj < j’.

DEFINITION 2.1 (CONCEPT OF SOLUTIONS TO H). A hybrid arc
¢ : dom ¢ — R" is a solution to H if
(S0) $(0,0) € CU D; .
(S1) forallj € N such that I’ := {t : (t,j) € dom ¢} has nonempty
interior, t = ¢(t,j) is absolutely continuous and

o(t,j)eC forallt € int (),
é(t.j) € F((t,j))  foralmostallt € I;

(52) for all (t,j) € dom ¢ such that (t,j + 1) € dom ¢,
¢(t.j) €D, Pt j+1) € G(4(t.))).

A solution ¢ to H is said to be maximal if there is no solution ¢’
to H such that @(t,j) = ¢’(t,j) for all (¢,j) € dom ¢ with dom ¢
a proper subset of dom ¢’. It is said to be trivial if dom ¢ contains
only one element. Finally, it is said to be complete if its domain is
unbounded. The system H is said to be complete if the domain of
each maximal solution is unbounded.

For convenience, we define the range of a solution ¢ to H as
rged = {x € R" : x = ¢(t,)), (t,j) € dom @}. We use Sg/(x) to
denote the set of maximal solutions to H starting from x € C U D.

Given a set K ¢ R", R(K) denotes the reachable set from K for
all hybrid time. Furthermore, for a given closed set Q c R", the
function 79 : S¢r(R™ \ Q) = Ry is given by, for each solution ¢
to H fromR" \ Q

0 if R(¢(0,0)NQ =0
To(9) = ¢(§I,1ji)neQ t+j otherwise. )
(¢,j)edom ¢

Given a solution ¢ to H starting from R” \ Q, the function 79
provides (when finite) the first hybrid time at which the solution ¢
reaches the set Q. If the solution never reaches Q, the function 79
is set to infinity. See [8] for more details about hybrid dynamical
systems.

2.2 Linear Temporal Logic and Until Operators

Linear Temporal Logic (LTL) provides a framework to specify and
to formulate desired properties for dynamical systems [27]. In this
section, we introduce syntax and semantics of LTL.

DEFINITION 2.2 (ATOMIC PROPOSITION). An atomic proposition
p is a statement on the system state x that, for each x, p(x) is either
True (1 orT)or False (0or L).

DEFINITION 2.3 (LOGICAL OPERATORS).

e - is the negation operator

V is the disjuction operator

A is the conjunction operator
= is the implication operator

(]
[ ]
[ ]
e & is the equivalence operator
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DEFINITION 2.4 (TEMPORAL OPERATORS).

O is the next operator

< is the eventually operator

O is the always operator

U, is the strong until operator
o U, is the weak until operator

A proposition p is treated as a (single-valued) function of x,
that is, as the function x — p(x). The set of all possible atomic
propositions is denoted by #. For simplicity, we consider the case
of state-dependent atomic propositions with no inputs. That is, for
a given hybrid system H, consider a solution ¢ to H and (¢, ) €
dom ¢. When a proposition p is True at (t,j), i.e, p(¢(t,j)) = 1,
it is denoted by (¢, (t,/)) F p; whereas if p is False at (¢, j), it is
written as (¢, (¢, j)) # p.

Moreover, an LTL formula is a sentence consisting of atomic
propositions and operators of LTL. When an LTL formula f is
satisfied by a solution ¢ to a hybrid system H at (¢, ) € dom ¢, it
is denoted by (¢, (t,j)) F f; however, when f is not satisfied by a
solution ¢ at (z, ), it is denoted by (¢, (¢, ))) ¥ f.

Let p, q € P be two atomic propositions. Given a solution ¢ to
H and (t, j) € dom ¢, the semantics of LTL is based on a set of basic
operators yielding to the following basic formulas:

(¢, (t.0) F-p o (¢,(t.)) Fp (3a)
(@ () EpVa & (9.(t.)) Fp or (4.(t.)) Fq (3b)
(¢, (1)) FOp & (4, (t,j+1)) Fp and (t,j+1) € dom ¢ (3¢)
¢ () Fprg & (4,(t))Fp and (4, (t.))Fq (3d)
@ (L)) FOp & (8.(£.j) Fp (3e)

V({t',j/yedomg, t' +j >t +]
(¢, (&) ECP © A, j') edome, t'+j >t +] st (3)
(¢.(t".J")) Fp.
In the following, we introduce strong and weak versions of the

until operator studied in this paper.

DEFINITION 2.5 (STRONG UNTIL OPERATOR). Given two atomic
propositions p,q € P, a solution (t, j) — ¢(t,j) to a hybrid system
H satisfies the formula

f=pUsq (4)
at (t,j) € dom ¢ if there exists (t',j’) € dom ¢ such thatt’ +j
t+jand $(t', ') satisfies q; and ¢(t"’, j'') satisfies p for all t + j
(t”,j”) < t’ +j’. In other words,

IN IV

(@, (6, ) EpUsq & A(t',j)) edome, t' +j >t +] st
(¢.(t".j") F g; and
Y (t”,j"”) € dom¢ s.t.
t+j<t” +j" <t + 5, (g (17, 5) Ep.
DEFINITION 2.6 (WEAK UNTIL OPERATOR). Given two atomic
propositions p,q € P, a solution (t,j) — $(t,j) to H satisfies the
formula
f=pUnq ®)
at (t,j) € dom ¢ if
1) ¢(t’,j') satisfies p for all (t',j’) € dom ¢ such thatt’ +j' >
t+j;or
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2) there exists (t',j’) € dom ¢ such thatt’ +j > ¢+ j and
d(t’,j) satisfies q; and $(t”’,j'’) satisfies p for all (t"’,j"")
suchthatt +j <t” +j” <t' +j.

In other words,

(9, ) EpUwg & (p,(t,j)EDp
V(t',j') € dom¢ st t' +j >t+]or

(¢’ (t9])) }: P(usq

2.3 Invariance Notions

In this section, we introduce the invariance notions that will play a
key role in the proposed sufficient infinitesimal conditions to verify
LTL formulas using until operators for hybrid systems.

DEFINITION 2.7 (FORWARD (PRE-)INVARIANCE). A set K is said
to be forward pre-invariant for H if, for each solution ¢ € Sq;(K),
rge¢ C K. A set K is said to be forward invariant for H if it is
forward pre-invariant for H and, for every x € K, every solution
¢ € Sqq(K) is complete.

DEFINITION 2.8 (CONDITIONAL INVARIANCE). A set K C R" is
said to be conditionally invariant with respect to a set K, C K for H
if, for each solution ¢ € Sq¢;(Ky), #(t,j) € K for all (t,j) € dom .

REMARK 2.9. Note that when K, = K, conditional invariance of K
with respect to K, is equivalent to forward pre-invariance of K.

Next, we introduce the definition of safety.

DEFINITION 2.10 (SAFETY). A hybrid system H is said to be safe
with respect to (X,, Xy,), where Xy, € R™ denotes the unsafe set and
Xo € R\ Xy, denotes the initial set, if each solution ¢ to H from X,
satisfies rge p C R™ \ X,.

REMARK 2.11. Conditional invariance of K with respect to K, is
equivalent to safety with respect to (Ko, Xy), where Xy, := R" \ K
defines the region of the state space that the solutions to H must avoid
when starting from the set of initial conditions K, [17].

Next, inspired by the ideas in [16] for continuous-time systems
with maximal solutions that are complete, we introduce the follow-
ing eventual conditional invariance notion. This notion plays an
important role when formulating a characterization of the strong
until operator via conditional invariance.

DEFINITION 2.12 (EVENTUAL CONDITIONAL INVARIANCE). Given
two sets Ko, K € R", the set K is said to be eventually conditionally
invariant with respect to K, for H if every maximal solution ¢ €
Sq((Ko) is such that T (¢) < oo and

o ¢(t,j) € K for every (t,j) € dom ¢ such thatt + j > Tk (9).

Since H can have maximal solutions that are not complete, we
introduce the following pre-eventual conditional invariance notion
which, compared to Definition 2.12, requires that only the complete
solutions to  must reach the set K.

DEFINITION 2.13 (PRE-EVENTUAL CONDITIONAL INVARIANCE).
Given two sets Ko, K CR"™, K is said to be pre-eventually condition-
ally invariant with respect to K, for H if every complete solution
¢ € Sqq(Ko) is such that T () < oo and

o §(t,j) € K for every (t,j) € dom ¢ such thatt + j > T (¢).
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3 MAIN RESULTS

In this section, as a first step, we characterize the until operators
using the previously mentioned invariance notions. Then, we pro-
pose infinitesimal characterizations of the considered invariance
notions. The latter will allow us to provide sufficient infinitesimal
conditions to verify LTL formulas with until operators for hybrid
systems.

Our results are valid for the general class of hybrid systems H
satisfying the following mild assumption:

(SA) The system H is such that F is outer semicontinuous, nonempty,
and locally bounded with convex images on C. Furthermore,
the jump map G is nonempty on D.

We notice that the hybrid basic conditions in [8, Chapter 6] further

require the sets C and D to be closed and the jump map G to be

locally bounded. Our conditions in (SA) are less restrictive than the

hybrid basic conditions.

3.1 Characterization of Until Operators Using
Invariance Notions

To propose necessary and sufficient conditions for the satisfaction
of the LTL formulas in (4) and (5) using set-invariance notions, we
introduce the following sets where the atomic propositions p and ¢
are satisfied, respectively:

P:={xeR":p(x)=1} and Q:={x e R" : q(x) =1}. (6)

With the sets P and Q as in (6), when a solution ¢ to H satisfies
pUwqat(t,j) = (0,0) with (¢, (0,0)) E pVg, we have the following
cases:

1) ¢ starts and remains in the set P for all hybrid time; or

2) ¢ starts and remains in the set P up to when ¢ reaches Q.

After ¢ reaches Q, ¢ may leave P U Q or stay in P U Q; or

3) ¢ starts from the set Q.
Remarkably, these properties can be assured using the conditional
invariance notion in Definition 2.8. In fact, notice that based on
items 1) - 3), the solution needs to either remain in P or remain
in P U Q for some time. Such a property coincides with condi-
tional invariance of P U Q with respect to P \ Q for the following
auxiliary system Hp,: given a closed set Q and a hybrid system
H = (C,F,D,G), we consider the system Hy,, = (Cpy, Fn, D, Gm)
given by

Fin(x) := F(x)
_ x ifxeQ
Om(x) = {G(x) otherwise

The intuition behind the construction of the system H,, is as fol-
lows. The system Hpy, is used to characterize the behavior of the
system H outside the set Q. Indeed, the solutions to H are the
solutions to Hy, (and vice versa) up to when they reach (if they
do) the set Q. Furthermore, the solutions to H,, starting from an
initial condition in Q are purely discrete solutions that remain at
the initial condition.

Vx €Cpm:=C\Q

Vx € Dy :=DUQ. @)

ExAMPLE 3.1 (TIMER). Consider a hybrid system H = (C, F, D, G)
modeling a constantly evolving timer with the state x € R and
F(x):=1 Vx € C:=[0,1],
G(x) =0 VxeD:={xeR:x=1}.
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Define two atomic propositions p and q such that

(1 ifxe1/21)
px) = { 0 otherwise
and
1 ifx=1
q(x) = { 0 otherwise.

The sets P and Q in (6) and the system Hy, in (7) are given by Q = D,
P =[1/2,1), and
Fn(x) =1
Gm(x) =x

Vx € Crp :=[0,1),
Vx € Dy =D = Q.

We notice that each solution to Hy, from P flows in P and reaches
the set Q. Once this solution reaches Q, it jumps according to the
jump map Gp(x) = x for allx € Q = D and cannot flow. Hence,
the solutions to Hy, starting from P\ Q never leave the set P U Q,
which concludes that the set Q U P is conditionally invariant with
respect to P\ Q for Hy,. However, conditional invariance of Q U P
with respect to P\ Q does not hold for system H since once a solution
to H reaches Q, it jumps outside P U Q. Furthermore, we also notice
that the formula f = p U, q is satisfied for every maximal solution ¢
toH at (t,j) = (0,0) with (¢, (0,0)) E pV q since the solutions to H
starting from P\ Q remain in P until reaching the jump set D = Q.

THEOREM 3.2 (WEAK UNTIL vS CONDITIONAL INVARIANCE). Con-
sider a hybrid system H = (C,F,D,G). Given two atomic propo-
sitions p and q, let the sets P and Q be given as in (6) and let the
system Hp, be as in (7). The formula f = p U,,q is satisfied for every
maximal solution ¢ to H at (t,j) = (0,0) with ($,(0,0)) EpV q if
and only if P U Q is conditionally invariant with respect to P \ Q for
Hm.

SKETCH OF PROOF. (=) Suppose that f = pU,,q is satisfied at
(t,j) = (0,0) for every maximal solution ¢ to H such that (¢, (0,0)) F
p V q. Then, we need to show that each solution ¢ to Hp, start-
ing from P \ Q stays in P U Q for all (¢,j) € dom /. Recall that
To(*) is introduced in (2). For every maximal solution ¢ to Hpm,
with 1(0,0) € P\ Q, we consider a solution ¢ to H such that
$(0,0) = (0,0) and

Y(t.j) = ¢(t.j) V(t.j) € domy st t+j<To) =To(4h). (8)

e By construction of H,,, both systems H and Hj,, have the
same data in (C U D) \ Q. Hence, a solution ¢ satisfying (8)
with respect to  always exists.

e By definition of the U,, operator, we conclude that ¢(t, j)
satisfies p or g for all (¢, j) € dom ¢ such that t + j = Tp(¢),
which implies that ¢(t, j) € P U Q for all (¢, ) € dom ¢ such
that t +j < To(9).

Furthermore, one of the following must hold:

e When 75 (¢) < oo, the solution ¢/ to Hy;, remains equal to its
value when it reaches the set Q for the first time; and thus,
we conclude that (¢, j) € P U Q for all (¢,j) € dom ¢.

e When 7p(¢) = oo, the solution ¢ satisfies ¢(t,j) € P\
Q for all (t,j) € dom ¢ by definition of the U,, operator.
Furthermore, since both systems H and H,, have the same
data in (C U D) \ Q, it follows that ¢(t,j) = ¥(t,j) € P\ Q
for all (t, j) € dom ¢ = dom ¥.
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In either case, each solution ¢ to H,, starting from P\ Q stays in
PuUQ forall (¢,j) € dom ¢. Hence, P U Q is conditionally invariant
with respect to P \ Q for Hp,.

(<) Now, suppose that P U Q is conditionally invariant with
respect to P \ Q for Hp,. We show that, for each solution ¢ to H
such that ¢(0,0) € P\ Q, ¢ stays in PUQ for all (¢, j) € dom ¢ such
that t +j < 7o(4).

o Let i be a maximal solution to Hj, such that ¥/(z, j) = ¢(t,j)
for all (¢, ) € dom ¢ such that ¢ + j < 75 (4); the solution
to H,y, always exists since the systems H and H, share the
same data outside the set Q.

e Since PUQ is conditionally invariant with respect to P\ Q for
Hpm, we conclude that (¢, j) € P U Q for all (¢, ) € dom ¢.
Therefore, ¢(t,j) € P U Q for all (t,j) € dom ¢ such that
t+j < To(d). O

The bouncing ball example in [8, Example 1.1] illustrates Theo-
rem 3.2.

EXAMPLE 3.3 (BoUNCING BALL). Consider a hybrid system H =
(C,F, D, G) modeling a ball bouncing vertically on the ground, with
the state x = (x1, x2) € R? and the data

F(x) :[fi] Vx eC:={xeR?:x; >0)
G(x) :=[ —/?xz ] VxeD:={xeR?:x; =0,x2 <0},

where x1 denotes the height above the surface and x; is the vertical
velocity. The parameter y > 0 is the gravity coefficient and A € (0, 1)
is the restitution coefficient. Let ¢ > 0 and define atomic propositions
p and q such that

_J 1 ifx;€[0,e] and x2 <0
p(x) = { 0 otherwise,
and
|1 ifx1>20and x2>0
q(x) = { 0 otherwise.

The sets P and Q in (6) and the system Hy, in (7) are given by P =
[0,e] XRx0, Q =Ry30 X Ry, and

Fn(x) = F(x) Vx € Cimy =R>9 XRog
_Jx ifx € RZO X Rso

where Dy, = ({0} X R<g) U (R0 X Rsg).

We notice that each solution to Hy, from P\ {0} flows in P and
reaches the set Q after jumping from the set {0} xR <o C Dy,. However,
the solution starting from the origin is a constant discrete solution that
remains in the set P and never reaches Q. Once the solutions reach
Q, they jump according to the jump map G, (x) = x forallx € Q.
Hence, the solutions to Hy, starting from P\ Q = P never leave the set
P U Q, which concludes that the set Q U P is conditionally invariant
with respect to P\ Q for Hp,. Hence, using Proposition 3.8, we conclude
that the formula f = pU.,,q is satisfied for every maximal solution
¢ toH at (t,j) = (0,0) with (¢,(0,0)) EpVq.

Next, we consider the definition of the U operator. With the
same sets P and Q in (6), to assure that a solution ¢ to H satisfies
pUsqat (,j) = (0,0) with (¢, (0,0)) Ep Vg,
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1) ¢ starts and remains in the set P until reaching the set Q at
To(¢) < oo; or

2) ¢ starts from the set Q.
Note that p U,,q is less restrictive than p Usq. When p U,, q is sat-
isfied for all solutions ¢ to H with (¢, (0,0)) E pV g, solutions with
(¢, (0,0)) E p may satisfy p for all future hybrid time. Due to this,
compared to Theorem 3.2, the following result for the satisfaction of
p Usq requires additional conditions to guarantee that there exists
(t,j) € dom ¢ such that ¢(¢, j) satisfies g. Such a property consists
of Q being eventually conditionally invariant with respect to the

set P\ Q for Hyy, in (7).

THEOREM 3.4 (STRONG UNTIL v§ WEAK UNTIL + EVENTUAL CON-
DITIONAL INVARIANCE). Consider a hybrid system H = (C,F, D, G).
Given two atomic propositions p and q, let the sets P and Q be given in
(6) and let the system Hy, be as in (7). The formula f = p Usq is satis-
fied for every solution ¢ to H at (t,j) = (0,0) with (4, (0,0)) EpVgq
if and only if

1) the formula p U,,q is satisfied for every solution ¢ to H at
(t,j) = (0,0) with ($, (0,0)) = p V q (see Theorem 3.2); and
2) The set Q is eventually conditionally invariant with respect to

P\ Q for Hp,.

SKETCH OF PROOF. (=) Suppose that f = pUsq is satisfied at
(t,j) = (0,0) for every solution to H such that (¢, (0,0)) Ep V q.

e By definition, the aforementioned fact implies that f =
p Uy q is satisfied at (¢, ) = (0,0) for every solution to H
such that (¢, (0,0)) F p Vv q.

o We show that the set Q is eventually conditionally invariant
with respect to P \ Q for Hy,. Indeed, for every solution ¢
to Hy, with ¥(0,0) € P\ Q, we consider a solution ¢ to
H such that ¢(0,0) = ¥(0,0) and ¢ (t,j) = ¢(t,j) for all
(t,j) € dom ¢/ such that t +j < 7o (¢) = 7o (¢). In fact, such
a solution ¢ always exists since both H and H;, have the
same data outside the set Q. By definition of the U operator,
we conclude that ¢(t,j) € P U Q for all (t,j) € dom ¢ such
thatt+j < 75(¢) and that 75 ($) < co. Hence, y/(¢, j) € PUQ
forall (¢, j) € dom ¥ such thatt+j < 7o () and 7o () < oo.

(<) Suppose that the formula p U,, q is satisfied for every so-
lution ¢ to H at (t,j) = (0,0) with (¢, (0,0)) F p V q. This fact
implies that, using Theorem 3.2, the solutions to H, starting from
P\ Q remain in the set P U Q.

e When additionally Q is eventually conditionally invariant
with respect to P\ Q for Hp,, we conclude that the solutions
to H,y, starting from P\ Q remain in the set P U Q and reach
the set Q.

e We show that, for each solution ¢ to H such that ¢(0,0) €
P\ Q, ¢ staysin PUQ for all (¢, j) € dom ¢ such that ¢ +j <
To(¢), and To(¢) < co. Let ¢ be a solution to H. Since both
H and H;, share the same data outside the set Q, there
always exists a solution ¥ to Hy, such that (¢, ) = @(t, j)
for all (¢, j) € dom ¢ provided that ¢t +j < To(¢) = To ().
Since we already know that ¥/(¢,j) € P U Q for all (¢,)) €
dom ¢/, we conclude that ¢(t,j) € PUQ for all (¢, j) € dom ¢
provided that t + j < 75 (¢). O

The bouncing ball example in Example 3.3 is used to illustrate
Theorem 3.4.
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EXAMPLE 3.5 (BOUNCING BALL). Consider the systemH = (C, F, D, G)

in Example 3.3 while replacing the atomic proposition p therein by p
such that

. x

o ={ b

Hence, the set P, according to (6), is given byf = P\ {0}. We already
showed, in Example 3.3, that the formula f = p U,,q is satisfied for
every maximal solution ¢ to H at (t,j) = (0,0) with (¢, (0,0)) F
p V q. Furthermore, since the solutions not starting from the origin
will never reach the origin, we conclude that f = pU,,q is also
satisfied for every maximal solution ¢ to H at (t,j) = (0,0) with
(¢, (0,0)) E pVq. Furthermore, we also showed that all the solutions to
H,y, starting from F\Q = P reach Q, which concludes that the set Q is
eventually conditionally invariant with respect to P\ Q for Hp,. Hence,
using Theorem 3.4, we conclude that f = p Usq is satisfied for every
maximal solution ¢ to H at (t,j) = (0,0) with (§, (0,0)) EpVgq.

if x#0
otherwise.

EXAMPLE 3.6 (THERMOSTAT). Consider a hybrid system H =
(C, F, D, G) modeling a thermostat system, with the state x := (h, z) €
R? and

F(x) == [0 -z+2 +2Ah]T
G(x) := [1 -h Z]T
where
Co={xe€eX:h=0,z2>zpjn}, C1:={x e X :h=1,z < zmax},
Dy:={xeX:h=0,2<zpin}, D1 :={x€X:h=1,z > zmax}-

VxeC:=CyUCy
Vx € D:=DyU Dy,

The variable h denotes the state of the heater, i.e., h = 1 implies the
heater is on and h = 0 implies the heater is off. the variable z is the
room temperature, zo denotes the room temperature when the heater is
off, and z  denotes the capacity of the heater to raise the temperature
such that

20 < Zmin < Zmax < 20 + ZA. 9)

Define two atomic propositions p and q such that

- 1 lfxE {l}X(—OO,ZmaX]
p(x) = { 0 otherwise (10)
and
_ 1 if x = {0} X [Zmax, +0)
q(x) := { 0 otherwise. (11)

The sets P and Q in (6) and the system H,y, in (7) are given by P =
{1} X (=20, Zmax], Q = {0} X [zmax, +o0), and

Fmn(x) = F(x) Vx € Cy = C\Q
Gm(x) = x if x = [0 [Zmax,‘f'oo)]—r Vx € D
" G(x) ifxeD "

We notice that each solution to Hpy, from P\ Q flows in P and
reaches the set Q after jumping from {[0  zmax] '} C Dp,. Once the
solutions reach Q, they jump according to the jump map Gp(x) = x
forallx € Q and they cannot flow. Hence, the solutions to Hp, starting
from P\ Q = P never leave the set P U Q, which concludes that the
set Q U P is conditionally invariant with respect to P\ Q and Q is
eventually conditionally invariant with respect to P\ Q for Hp,. Hence,
using Theorems 3.2 and 3.4, we conclude that the formula f = p Usq
is satisfied for every maximal solution ¢ to H at (t,j) = (0,0) with
(.(0,0) FpVag.
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3.2 Sufficient Conditions for Forward
Invariance Notions

In this section, we present sufficient conditions to guarantee the
different invariance notions in Section 2.3. First, we recall the suf-
ficient conditions for invariance notions using a barrier function
in [18, 19] for hybrid systems. Then, we propose new sufficient
conditions for eventual conditional invariance for hybrid systems
inspired from [16] in the setting of continuous-time systems. Below,
the concept of the tangent cone! to a set is used; see [8, Definition
5.12]. The tangent cone at a point x € R" of a set C ¢ R” given by

Te(x) = {v eR": liminfm = 0} .
h—0* h

(12)
We also recall the equivalence [2, Page 122]
veTe(x) ©
F{hi}ien — 07 and {vi}jen = v:x + hjv; € CVie N, (13)
Furthermore, for the given sets Xy, X}, € R" with X, N X, = 0,

we recall from [18] the notion of a barrier function candidate with
respect to (X, Xy) for H.

DEFINITION 3.7 (BARRIER FUNCTION CANDIDATE). Consider H =
(C,F,D,G). Givensets X, and Xy, € R"™ with XN Xy, = 0, a function
B : R™ >R is said to be a barrier function candidate with respect to

(Xo, Xy) for H if

B(x) <0
B(x) >0

Vx € X,

Vx € (CUD) N Xa. (14)

In the following, we recall a result on safety for hybrid systems
[18, Theorem 3.2] to derive sufficient conditions for conditional
invariance for hybrid systems. Given two sets X, Xy,, the conditions
given below provide sufficient conditions to verify that R"” \ Xy, is
conditionally invariant with respect to X, for H.

PROPOSITION 3.8 (CONDITIONAL INVARIANCE). Consider a hybrid
system H = (C,F,D,G) satisfying (SA). Let two sets X, and Xy
such that X,, R™" \ Xy, € C U D. The set R" \ Xy, is conditionally
invariant with respect to X, for H ifthere exists a C! barrier function
candidate B with respect to (X,, Xy,) for H as in (14) such that K :=
{x € CUD : B(x) < 0} is closed and the following hold:

1) (VB(x),n) < 0 forallx € (U@K)\K)NC and alln €
F(x) N T (x); and

2) B(n) <0 forallx e DNK and alln € G(x); and

3) G(ODNK)cCUD.

According to Remark 2.9, when X, = R" \ Xj,, conditional
invariance of R \ X, with respect to X, reduces to forward pre-
invariance of the set K := X,. In the next statement, we recall from
[19, Theorem 1 and Proposition 2] sufficient conditions for forward
invariance using barrier functions.

PROPOSITION 3.9 (FORWARD INVARIANCE). Consider a hybrid sys-
tem H = (C,F, D, G) satisfying (SA). Let K be a closed set such that
K c CUD. The set K is forward pre-invariant for H if there exists a
C! barrier function candidate B with respect to (K,R"™ \ K) for H as
in (14) such that the following hold:

!This tangent cone is also known as the contingent cone, or the Bouligand tangent
cone.
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1) (VB(x),n) < 0 forallx € CN (U(OK) \ K) and all n €
F(x) N Te(x).
2) B(n) <0 forallx € DNK and alln € G(x).
3) G(DNK) c (CUD).
Furthermore, the set K is forward invariant for H if the following
additional conditions hold:
4) No maximal solution to H starting from K has a finite time
escape within C N K.
5) Every maximal solution from (0C N K) \ D is nontrivial.

REMARK 3.10. One can guarantee that the solutions to H do not
have a finite escape time ? inside the set K N C when, for example, the
set KNC is compact or when the flow map F has a global linear growth
on K N C. Furthermore, according to [19, Proposition 3], the existence
of a nontrivial solution starting from each point in (K N C) \ D can
be proved by verifying the following infinitesimal condition.

F(x)NTgnc(x) #0 Vx € U(xo) N (K NAC) and
VYxo, € (KN AC) \ D.

In the following, inspired by [16, Theorem 3.4], we propose
sufficient conditions for pre-eventual conditional invariance for
hybrid systems.

THEOREM 3.11 (PRE-EVENTUAL CONDITIONAL INVARIANCE). Con-
sider a hybrid system H = (C,F,D,G) and two sets K,,K c R".
Then, the set K is pre-eventually conditionally invariant with respect
to the set K, for H if the following properties hold:

1a) There exist a C! functionv : R" — R and a locally Lipschitz

function fi : R — R such that

(Vo(x),n) < fe(v(x))  Vn e F(x)NTe(x), Vx € C,

v(n) < v(x) ¥n € G(x), ¥x € D. (16)
1b) There exists r1 > 0 such that
S1:={xeC:u(x)<r}ck, (17)

and the solutions toy = f(y) starting from v(K,) converge
to (=0, 1] in finite time.3

2a) There exist a C' function w : R® — R and a function f :
R — R such that

(Vw(x),n) <0 Vi € F(x) N Te(x), Yx € C,

w(n) < fa(w(x)) VneG(x), ¥x € D. (18)
2b) There exists rp > 0 such that
Sy:={xeD:w(x)<r}ckK (19)

and the solutions to z* = f;(z) starting from w(K,) converge
to (—oo, 7] in finite time.

SKETCH OF PROOF. According to the definition of pre-eventual con-
ditional invariance, we need to show that for each complete solu-
tion ¢ to H starting from Ko, Tx () < co and §(t,j) € K for all
(t,j) € dom ¢ such that t + j > T (¢).

Consider a complete solution ¢ to H starting from ¢(0, 0) € K.
Let y be the maximal solution to y = f;(y) starting from y(0) =
v(4(0,0)) € v(K,) and let z be the complete solution to the system
zt = f;(z) starting from z(0) = w(¢(0,0)) € w(K,).
2A solution has finite escape time inside a given set if the solution diverges while

remaining inside the set within a bounded (hybrid) time domain; see [12, Chapter 3].
3The solutions to § = f, (y) from v(K,) exist at least until they reach the set (—co, r1].
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e Using Lemmas A.1, A.2, and A.3 under (16), we conclude
that v(¢(t,j)) < y(t) for all (t,j) € dom ¢; on the other
hand, under (18), we conclude that w(¢(t, j)) < z(j) for all
(t,j) € dom ¢.

e Since the solution y starting from v(K,) will converge to
(=00, r1] in finite time and the solution z starting from w(K,)
will converge to (—co, 2] in finite time, we conclude the
existence of (ty,jz) € R>o X N such that y(t) € (—oo, r{] for
all t > t; and z(j) € (=00, r2] forall j > j,.

e Since the solution ¢ is complete, ({t;} x N) N dom ¢ # 0;
hence,

v(@(t,))) <
or (R>o X {jz}) Ndom ¢ # 0; hence,
w(g(t, ) < r2

As a consequence, we conclude that, for all (¢,) € dom ¢
such that t +j > ty + jz, it follows that ¢(z, j) € K. O

Yt >ty : (t,)) € dom ¢

Vj > jz: (t,j) € dom ¢.

REMARK 3.12. It is important to notice that, in Theorem 3.11, it
is possible to conclude pre-eventual conditional invariance of K with
respect to K, using only condition 1) (or only condition 2), respectively)
provided that we have the knowledge that the solutions from K, reach
the set K only via flowing (or only jumping, respectively). Indeed, in
many applications of hybrid systems, the state variable is composed
of both continuous and discrete variables, see the thermostat hybrid
model in Example 3.6. Furthermore, when the sets K, and K are defined
only in terms of the continuous state variables (respectively, only in
terms of the discrete state variables), it is possible to conclude that the
solutions from K, reach the set K only by flowing (respectively, only

by jumping).

REMARK 3.13. In Theorem 3.11, one could think of unifying condi-
tions 1) and 2) as follows:

(Vo(x), n) < fe(v(x))
o(n) < fa(v(x))

where the functions f; and fy are defined in Theorem 3.11. Further-
more, one could think of concluding the pre-enventually conditionally
invariant of K with respect to K, by showing that the set (—oo,r] is
pre-enventually conditionally invariant with respect to v(K,) for the
reduced system given by

y=fely)
y* = faly)

Such a comparison-based reasoning is very useful to analyze purely
continuous-time or purely discrete-time systems. In general, a key
step for such a reasoning to hold consists in showing that (20) and

(21) imply that
v(g(t. ) < y(t.))

However, (22) does not necessarily hold under (20) and (21) due to
the possible mismatch in the instant of jumps between the solutions
¢ to H and y to (21). It holds, however, if we replace the inequalities
in (20) by equalities (the latter is in general very restrictive). As a
consequence, the comparison arguments, in general, do not extend
directly to the context of hybrid systems. Hence, it would be interesting
to investigate a general version of the comparison lemma for hybrid

¥n € F(x) N Te(x), Yx € C,

Vn € G(x), Vx € D, (20)

y € v(C)
y € v(D). 1)

(t,j) € dom ¢. (22)
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systems as it would simplify considerably the conditions in Theorem
3.11. This direction will pursued in future work.

ExaMmpLE 3.14. Consider a hybrid system H = (C,F, D, G) with
the state x = (x1,x2) € R? and the data

| TX1 T X2 — 2. _
F(x).—[_x2+x1] Vx € C:={xeR*: x1 20, xp >—1, x1 >x2}
0
G(x)::[ . ] Vx € D:={xeR?:x; =0, x3 < 0}.
X2

Consider the sets K, and K given by K, = [0, 1] X (=00, —1] and
K = Ryg X [-1/2,+c0). Next, to conclude that the set K is pre-
eventually conditionally invariant with respect to the set K, for H,
will show that the conditions in Theorem 3.11 are satisfied. Indeed,
for the candidate v(x) = —|x|?, we conclude that for f.(y) := —2y,
item 1a) holds. Furthermore, we notice that v(K,) = (—oco, —1] and
that for, ri = 1/2, (17) holds trivially since S1 = 0. Finally, for the
systemy = fc(y) = —2y, it is easy to see that the solutions starting
from v(K,) = (—o0, —1] reach the set (—o0, 1/2]. Hence, item 1b) is
satisfied.
On the other hand, for the candidate w(x) = —x3 and for

£1(2) = { -z if z€ w(D)

z otherwise,
we conclude that item 2a) holds since —%2 = x2 —x1 < 0 for all
x € C and, for all x € D, w(G(x)) = —w(x). Finally, item 2b) holds
forra = 1/2 and the solutions to z* = f;(z) starting from [1, +0)
reaches (—o0, 1/2].

REMARK 3.15. As we illustrated in Example 3.14, once we propose
the candidate functions v and w, we find the functions fc, f; and the
constants ri, ry such that the conditions in Theorem 3.11 hold. That
is, for a particular expression of the data of the hybrid system and
the sets K, and K, we can automate the process of generating the
functions and parameters satisfying the conditions in Theorem 3.11
as in [21, 24].

REMARK 3.16. It is important to notice that the conditions in item
1) in Theorem 3.11 can be removed when the following hold:

o The set K is forward pre-invariant for H.

o The solutions to H starting from K, achieve the necessary
amount of jumps such that the solutions to zt = f;(z) from
w(K,) reach (—oo,r3].

In the following, we propose sufficient conditions for eventual
conditional invariance for hybrid systems.

THEOREM 3.17 (EVENTUAL CONDITIONAL INVARIANCE). Consider
a hybrid system H = (C, F, D, G). Consider two sets K,, K ¢ R" such
thatK, ¢ CUD andK is pre-eventually conditionally invariant with
respect to K,. Then, the set K is eventually conditionally invariant
with respect to the set K, for H if the following property holds:

e There exists a set S C CUD UK such thatKo, UK C S and S
is forward invariant for Hpy, = (Cy, Fmyy, D, Gr) in (7).

SKETCH OF PROOF. Since the set K is pre-eventually conditionally
invariant with respect to the set K, for H, to complete the proof, it
remains only to show that the solutions to H starting from K, \ K
always reach the set K. Proceeding by contradiction, assume the
existence of a maximal solution ¢ to H starting from K, \ K that

H. Han, et al.

never reaches the set K. We notice that each solution to H starting
from K, \ K is a solution to H,, provided that it does not reach
the set K. Hence, since the set S is forward invariant for H,,, we
conclude that the solution ¢ is complete. The aforementioned fact
contradicts the fact that K is pre-eventually conditionally invariant
with respect to the set K, for H. O

ExAMPLE 3.18. We reconsider the hybrid system in Example 3.14.
It is easy to see that the set S := K, U K is forward invariant for Hy,.
Indeed, all the solutions to Hy, starting from K, flow in K, until they
reach K. Once in K they reduce the constant discrete solutions that
are complete.

3.3 Sufficient Conditions for Until Operators

Due to the equivalence we provide in Section 3.1, sufficient condi-
tions that guarantee the needed invariance properties of the sets
guarantee the satisfaction of the formulas in (4) and (5).

THEOREM 3.19 (WEAK UNTIL). Consider a hybrid system H =
(C,F, D, G) satisfying (SA). Given atomic propositions p and q, let
the sets P and Q be as in (6) such that P ¢ C U D. Then, the formula
f = pUy,q is satisfied for each solution ¢ to H at (t,j) = (0,0) with
(¢,(0,0)) E p V q if there exists a C! barrier function candidate B
with respect to the sets (P \ Q,R™ \ (P U Q)) for H as in (14) such
that K := {x e CUDU Q : B(x) < 0} is closed and the following
hold:

1) Forallx € (C\ Q) N (U(JK) \ K), (VB(x),n) < 0 for all
n € F(x) NTeyo(x).

2) Forallx e KN (D\ Q), B(n) <0 foralln € G(x).

3) Forallx e KN (D\ Q),G(x) cCUDUQ.

SKETCH OF PROOF. Let the system H,, = (Cpy, Fiys D, Gr) be as
in (7). Since K = {x € CUD U Q} : B(x) < 0} and the barrier
function candidate B satisfies

B(x) <0 Vx eP\Q

B(x)>0 V¥xe(CUD)\(PUQ)=(CuDUQ)\(PUQ),

we conclude that B is a barrier candidate with respect to (P\ Q,R"\
(P U Q)) for Hy,. Furthermore, item 1) implies that (VB(x),n) < 0
for all x € (U(0K) \ K) N Cp, and all n € F(x) N Tc,, (x). Item 2)
implies that B(y) < 0 forallx € KN (D \ Q) and all € G, (x).
When x € KN Q, Gp(x) = x and B(x) < 0; and thus, B(y) < 0
forall x € KN (DU Q) and all € Gy (x). Item 3) implies that
Gm(KN(D\Q)) € Cpy UDyy,. Furthermore, G, (KNQ) =KNQ C
Cm U Dy Hence, G (K N Dy) € Cyy U Dyy,. Therefore, using
Proposition 3.8, we conclude that P U Q is conditionally invariant
with respect to P\ Q for Hj,. Hence, using Theorem 3.2, we conclude
that the formula f = p U,,q is satisfied for each solution ¢ to H at
(t,J) = (0,0). o

ExAMPLE 3.20 (BOUNCING BALL). We reconsider the bouncing-
ball hybrid model in Example 3.3 in order to confirm the conclusions
therein using Theorem 3.19. Indeed, consider the barrier candidate
B(x) := x1 — €. It is easy to see that B is a barrier candidate with
respect to (P\Q,R™\ (PUQ)) for H. Furthermore, forallx € C\Q =
R>o X R<g, we have (VB(x), F(x)) = x2 < 0; hence, item 1) holds.
Furthermore, for allx € KN D = D, B(G(x)) = B(x) < 0; hence,
item 2) holds. Finally, for all x € D, G(x) € {0} X R»¢ C C; hence,
item 3) holds. As a consequence, using Theorem 3.19, we conclude



Sufficient Conditions for Satisfaction of Formulas with
Until Operators in Hybrid Systems

that the formula f = p U,,q is satisfied for each solution ¢ to H at
(t.)) = (0,0) with (4, (0,0)) F p V g.

EXAMPLE 3.21 (THERMOSTAT). We reconsider the thermostat hy-
brid model in Example 3.6 in order to show that the formula f =
p Uy, q is satisfied for each solution ¢ to H at (t,j) = (0,0) with
(¢,(0,0)) E p V q using Theorem 3.19. Indeed, consider the bar-
rier candidate B(x) := (2h — 1)(z — zmax). It is easy to see that B
is a barrier candidate with respect to (P \ Q,R"™ \ (P U Q)) for H.
Furthermore, for allx € C\ Q = ({1} X R) U ({0} X (=00, zmax)),
we have (VB(x),F(x)) = (2h — 1)(-=z + zp + zah) < 0 under (9);
hence, item 1) holds. Furthermore, forallx e KND = [1  zmax]',
B(G(x)) = B([0 zmax]") < 0; hence, item 2) holds. Finally, for
all x € D, G(x) € C; hence, item 3) holds. As a consequence, using
Theorem 3.19, we conclude that the formula f = p U,,q is satisfied
for each solution ¢ to H at (t,j) = (0,0) with (¢, (0,0)) EpVgq.

THEOREM 3.22 (STRONG UNTIL). Consider a hybrid system H =
(C,F, D, G) satisfying (SA). Given atomic propositions p and q, let
the sets P and Q as in (6) such that P ¢ C U D. Then, the formula
f = pUsq is satisfied for each solution ¢ to H at (t,j) = (0,0) with
(¢, (0,0)) E pV q if the following hold:
1) The formula p U,,q is satisfied for each solution ¢ to H at
(t,j) = (0,0) with (¢, (0,0)) EpVgq.
2) There exist a C' functionv : R"* — R, a locally Lipschitz
function f. : R — R, and a constant ry > 0 such that the
following hold:
2.1) (Vo(x),n) < fe(v(x)) for alln € F(x) N T\ (x) and for
allx e (CNP)\ Q;

2.2) v(n) < v(x) foralln € G(x) and allx € DN P;

23)S1 :={x € CNP:ou(x) <ry} C Q and the solutions to
Y = fe(y) starting from v(P \ Q) converge to (—oo,r1] in
finite time.
3) There exist a C' functionw : R® - R, f; : R — R, and
ra > 0 such that the following hold:
3.1) (Vw(x),n) < 0 foralln € F(x) N Teyo(x) and all x €
(CNP)\Q;

3.2) w(n) < fy(w(x)) foralln € G(x) and allx € DN P;

33) Sy :={x € DNP: w(x) < rp} C Q and the solutions to
z* = fy(z) starting from w(P \ Q) converge to (—co,r3] in
finite time.

4) No maximal solution starting from P has a finite time escape
within PN (C\ Q) and every maximal solution from (PNAC) \
(D U Q) is nontrivial.

SKETCH OF PROOF. Let the system Hy,, = (Cp, Frn, D, Gm) be as
in (7). Using item 1) and Theorem 3.2, we conclude that Q U P is
conditionally invariant with respect to P \ Q for Hp,. Furthermore,
since the solutions starting from Q are discrete, we conclude that
P U Q is forward pre-invariant for Hp,. Next, under item 4) and
using Proposition 3.9, we conclude that P U Q is forward invariant
for H,y,. As a last step using items 2) and 3), we show that Q is
pre-eventually conditionally invariant with respect to P \ Q for
Hm.

Indeed, consider the hybrid system 7-{;" =(Cm NP, Fp,Diy N
(P U Q), G,) which is the restriction of H,, to P U Q. Using The-
orem 3.11 for 7'(;" under items 2) and 3) we conclude that Q is
pre-eventually conditionally invariant with respect to P\ Q for H, ,’n
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However, the solutions to ‘H;n are the solutions to H, since PUQ is
forward invariant for H,,. Hence, Q is pre-eventually conditionally
invariant with respect to P \ Q for H,,. O

ExXAMPLE 3.23 (THERMOSTAT). We reconsider the thermostat hy-
brid model in Example 3.6 in order to show that the formula f =
pUsq is satisfied for each solution ¢ to H at (t,j) = (0,0) with
(¢,(0,0)) E p V q using Theorem 3.22. Indeed, we already showed
in Example 3.21 that the formula f = pU,,q is satisfied for each
solution ¢ to H at (t,j) = (0,0) with (¢, (0,0)) F pV g; item 1) is
satisfied. Furthermore, for the candidate v(x) = zmax — z, we conclude
that for fc(y) :== —y — a for some a € (0, Zmax — 2o — 24), items 2.1)
and 2.2) hold. The constant a always exists under (9). Furthermore,
we notice that v(P\ Q) = v(P) = [0, +o0) and that, forr; = 0, the in-
clusion in item 2.3) holds trivially since S1 = 0. Finally, for the system
Y = fe(y) = —y — a, it is easy to see that the solutions starting from
v(Ko) = [0, +00) reach the set (—o0,0]. Hence, item 2.3) is satisfied.
On the other hand, for the candidate w(x) = q and for

1-z ifzew(D)
fa(2) = { z ];therwise,
we conclude that items 3.1) and 3.2) hold since ¢ = 0 for allx € C
and, for all x € D, w(G(x)) = 1 — w(x). Furthermore, forry = 0 the
inclusion in item 3.3) holds trivially since Sp = 0. Finally, the solutions
toz" = fy(z) starting from {1} reach (—oo,0]; hence, item 3.3) holds.
Finally, in order to conclude item 4), we notice that F is linear; hence,
there is no possibility of finite-time escape inside C. Moreover, the
solution starting from C \ D are nontrivial.

4 CONCLUSION

In this paper, tools are introduced for certifying temporal logic
specifications involving until operators for hybrid systems. For
such systems, equivalence relationships are established between
the satisfaction of formulas having until operators and some of
the invariance notions studied in control literature. In particular,
conditional invariance and eventual conditional invariance notions
are revisited in this paper in the context of hybrid systems. Further-
more, sufficient conditions certifying these invariance properties
are proposed. As a consequence, sufficient conditions (not involv-
ing the computation of the systems’ solutions) guaranteeing the
satisfaction of temporal logic specifications with the until operators
are proposed. Future research direction may include the relaxation
of the proposed sufficient conditions for the eventual conditional
invariance notion along the lines of Remark 3.13. Furthermore, an-
other extension consists in the analysis proposed in this paper to
handle more complex specifications where the until operator is
involved in addition to other operators as in [9].
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A APPENDIX

The following result is a version of the well-known comparison
Lemma that can be found in [12, Lemma 3.4].

LemMA A.1. Consider the scalar differential equation given by
u=f(tu), u(to) = uo, (23)
where for allt > 0 and allu € S C R, f(t,u) is continuous in t and
locally Lipschitz in u. Furthermore, let [ty, T) be the maximal interval,
T can be infinity, of existence of the solution u(t). Moreover, suppose
that u(t) € S forallt € [ty,T).

On the other hand, let v(t) be a continuous function such that
v(tg) < ug, v(t) € S forallt € [ty,T), and its upper right-hand
derivative D*v(t) satisfies the following differential inequality, for
almost all t € [ty,T),
o(t+5) —o(t)

D*o(t) == limsup
s

s—0*

Then, v(t) < u(t) forallt € [ty,T).

< f(t (). (24)

LEMMA A.2. Assume that the functiont — v(t) in Lemma A.1
satisfies v(t) = v(x(t)) for allt € [ty, T) with t — x(t) a solution to
the system

x € F(x) VYx € C c R",
andv € C1, it follows that, for almost allt € [ty, T),

D*o(t) = 0(t) = (Vo(x(t)), X(t)).

ProOF. Since the solution x is absolutely continuous, it follows
that x(t) exists for almost all ¢ € [to, T). Furthermore, since v € C!.
Hence, 0(t) exists for almost all ¢ € [ty, T). Let t € [to, T) such that
v(t) exists, then, by definition of the time derivative, we conclude
that
lim sup M =D u(t).

s—0% S

u(t+s)—olt
o(t) = lim vlt+s) ~olt) =
s—0
Furthermore, using the classical chain rule for composition of dif-
ferentiable functions, we conclude that

o(t) = (Vo(x (1)), %(1)).
m]
LEMMA A3. Letx : [tg, T) — R™ be a solution to the following
constrained differential inclusion
x € F(x)
Then, for almost all t € [ty, T),
x(t) € Te(x(t)).

PRrOOF. Lett € [ty, T) such that x(t) exists; thus, x(¢) € F(x(t,))).
Furthermore, let a sequence {t,},,en C (fo, T — t) such that ¢, — 0.
That is, for v, (t) := (x(tn) — x(t))/tn, we have lim, v, (t) = x(t)
and at the same time x(t) + tpvn (t) = x(t,) € C. Hence, using (13),
we conclude that x(t) € T (x(t)). O

Vx € C c R™.
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