
DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

Ashraf Tahmasbi * 1 Ellango Jothimurugesan * 2 Srikanta Tirthapura 1 3 Phillip B. Gibbons 2

Abstract
When learning from streaming data, a change in
the data distribution, also known as concept drift,
can render a previously-learned model inaccurate
and require training a new model. We present an
adaptive learning algorithm that extends previous
drift-detection-based methods by incorporating
drift detection into a broader stable-state/reactive-
state process. The advantage of our approach is
that we can use aggressive drift detection in the
stable state to achieve a high detection rate, but
mitigate the false positive rate of standalone drift
detection via a reactive state that reacts quickly
to true drifts while eliminating most false posi-
tives. The algorithm is generic in its base learner
and can be applied across a variety of supervised
learning problems. Our theoretical analysis shows
that the risk of the algorithm is competitive to an
algorithm with oracle knowledge of when (abrupt)
drifts occur. Experiments on synthetic and real
datasets with concept drifts confirm our theoreti-
cal analysis.

1. Introduction
Learning from streaming data is an ongoing process in
which a model is continuously updated as new training
data arrive. We focus on the problem of concept drift, which
refers to an unexpected change in the distribution of data
over time. The objective is high prediction accuracy at
each time step on test data from the current distribution. To
achieve this goal, a learning algorithm should adapt quickly
whenever drift occurs by focusing on the most recent data
points that represent the new concept, while also, in the ab-
sence of drift, optimizing over all the past data points from
the current distribution (for statistical accuracy). The latter
has greater importance in the setting we consider where

*Equal contribution 1Department of Electrical and Computer
Engineering, Iowa State University, Ames, Iowa, USA 2Computer
Science Department, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, USA 3Apple, Cupertino, California, USA. Correspon-
dence to: Ashraf Tahmasbi <tahmasbi@iastate.edu>, Ellango
Jothimurugesan <ejothimu@cs.cmu.edu>.

data points may be stored and revisited to achieve accuracy
greater than what can be obtained in a single pass. More-
over, computational efficiency of the learning algorithm is
critical to keep pace with the continuous arrival of new data.

In a survey from Gama et al. (Gama et al., 2014), concept
drift between time steps t0 and t1 is defined as a change in
the joint distribution of examples: pt0(X, y) 6= pt1(X, y).
Gama et al. categorize drifts in several ways, distinguishing
between real drift that is a change in p(y|X) and virtual drift
(also known as covariate drift) that is a change only in p(X)
but not p(y|X). Drift is also categorized as either abrupt
when the change happens across one time step, or gradual
if there is a transition period between the two concepts.

A learning algorithm that reacts (well) to concept drift is
referred to as an adaptive algorithm. In contrast, an oblivi-
ous algorithm, which optimizes the empirical risk over all
data points observed so far under the assumption that the
data are i.i.d., performs poorly in the presence of drift. One
major class of adaptive algorithms is drift detection, which
includes DDM (Gama et al., 2004), EDDM (Baena-Garcı́a
et al., 2006), ADWIN (Bifet & Gavaldà, 2007), PERM
(Harel et al., 2014), FHDDM (Pesaranghader & Viktor,
2016), and MDDM (Pesaranghader et al., 2018). Drift de-
tection tests commonly work by tracking the prediction
accuracy of a model over time, and signal that a drift has
occurred whenever the accuracy degrades by more than a
significant threshold. After a drift is signaled, the previously-
learned model can be discarded and replaced with a model
trained solely on the data going forward.

There are a couple of challenges with using drift detection.
Different tests are preferred depending on whether a drift
is abrupt or gradual, and most drift detection tests have a
user-defined parameter that governs a trade-off between the
detection accuracy and speed (Gama et al., 2014); choosing
the right test and the right parameters is hard when the
types of drift that will occur are not known in advance.
There is also a significant cost in prediction accuracy when
a false positive results in the loss of a long-trained model
and data that are still relevant. Furthermore, even when drift
is accurately detected, not all drifts require restarting with a
new model. Drift detection can trigger following a virtual
drift when the model misclassifies data points drawn from a
previously unobserved region of the feature space, but the

ar
X

iv
:2

00
3.

06
50

8v
1

 [c
s.L

G
]

13
 M

ar
 2

02
0

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

older data still have valid labels and should be retained. We
have also encountered real drifts in our experimental study
where a model with high parameter dimension can adapt to
simultaneously fit data from both the old and new concepts,
and it is more efficient to continue updating the original
model rather than starting from scratch.

Our contribution is DriftSurf, an adaptive algorithm that
overcomes these challenges with drift detection. DriftSurf
works by maintaining two models at each time step and
incorporating drift detection into a broader two-state process.
The algorithm begins in the stable state and transitions to
the reactive state based on a drift detection trigger, and then
starts a new model. During the reactive state, the model
used for prediction is greedily chosen as the best performer
over data from the immediate previous time step (each time
step corresponds to a batch of arriving data points). At the
conclusion of the reactive state, the algorithm transitions
back to the stable state, keeping the model that was the best
performer throughout the entire reactive state. Our approach
has several advantages over standalone drift detection: (i)
most false positives will be caught by the reactive state and
lead to continued use of the original long-trained model and
all the relevant past data; (ii) when restarting with a new
model does not lead to better post-drift performance, the
original model will continue to be used; and (iii) switching
to the new model for predictions happens only when it
begins outperforming the old model, accounting for the
potentially lower accuracy of the new model as it warms up.
Meanwhile, the addition of this stable-state/reactive-state
process does not come at a significant cost in the recovery
time, because the switch to a new model happens greedily
within one time step of it outperforming the old model (as
opposed to switching only at the end of the reactive state).

We present a theoretical analysis of DriftSurf, showing that
it is “risk-competitive” with Aware, an adaptive algorithm
defined in Section 5 that has oracle access to when a drift
occurs and at each time step maintains a model trained
over the set of all data since the previous drift. We also
provide experimental comparisons of DriftSurf to Aware
and two adaptive learning algorithms: a state-of-the-art
drift-detection-based method MDDM and a state-of-the-art
ensemble method AUE (Brzezinski & Stefanowski, 2013).
Our results on eight datasets with concept drifts show that
DriftSurf generally outperforms both MDDM and AUE.

2. Related Work
Most adaptive learning algorithms can be classified into
three major categories: Window-based, drift detection, and
ensembles. Window-based methods, which include the fam-
ily of FLORA algorithms (Widmer & Kubat, 1996) train
models over a sliding window of the recent data in the
stream. Alternatively, older data can be forgotten gradually

by weighting the data points according to their age with
either linear (Koychev, 2000) or exponential (Klinkenberg,
2004; Hentschel et al., 2019) decay. Window-based meth-
ods are guaranteed to adapt to drifts, but at a cost in accuracy
in the absence of drift.

The aforementioned drift detection methods can be further
classified as either detecting degradation in prediction ac-
curacy with respect to a given model, which include all of
the tests mentioned in Section 1, or detecting change in
the underlying data distribution which include tests given
by (Kifer et al., 2004; Sebastião & Gama, 2007). In this
paper, we focus on the subset of concept drifts that are
performance-degrading, and that can be detected by the first
class of these drift detection methods. As observed in (Harel
et al., 2014), under this narrower focus, the problem of drift
detection has lower sample and computational complexity
when the feature space is high-dimensional. Furthermore,
this approach ignores drifts that do not require adaptation,
such as changes only in features that are weakly correlated
with the label.

Finally, there are ensemble methods, such as DWM (Kolter
& Maloof, 2007), Learn++.NSE (Elwell & Polikar, 2011),
AUE (Brzezinski & Stefanowski, 2013), DWMIL (Lu et al.,
2017), and DTEL (Sun et al., 2018). An ensemble is a col-
lection of individual models, often referred to as experts,
that differ in the subset of the stream they are trained over.
Ensembles adapt to drift by including both older experts
that perform best in the absence of drift and newer experts
that perform best in the presence of drift. The predictions
of each individual expert are typically combined using a
weighted vote, where the weights depend on each expert’s
recent prediction accuracy. Strictly speaking, DriftSurf is an
ensemble method, but differs from traditional ensembles by
maintaining only two models and where only one model
is used to make a prediction at any time step. The advan-
tage of DriftSurf is its efficiency, as the maintenance of each
additional model in an ensemble comes at either a cost in
additional training time, or at a cost in the accuracy of each
individual model if the available training time is divided
among them. The ensemble algorithm most similar to ours
is from (Bach & Maloof, 2008), which also maintains just
two models: a long-lived model that is best-suited in the
stationary case, and a newer model trained over a sliding
window that is best-suited in the case of drift. Their algo-
rithm differs from DriftSurf in that instead of using a drift
detection test to switch, they are essentially always in what
we call the reactive state of our algorithm, where they choose
to switch to a new model whenever its performance is better
over a window of recent data points. Their algorithm has no
theoretical guarantee, and without the stable-state/reactive-
state process of our algorithm, there is no control over false
switching to the newer model in the stationary case.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

3. Model and Preliminaries
We consider a data stream setting in which the training data
points arrive over time. For t = 0, 1, 2, . . . , let Xt be the
set of data points arriving at time step t. We consider a
constant arrival rate m = |Xt| for all t. (Our discussion and
results can be readily extended to Poisson and other arrival
distributions.) Let St1,t2 = ∪t2−1t=t1 Xt be a segment of the
stream of points arriving in time steps t1 through t2−1. Let
nt1,t2 = m(t2 − t1) be the number of data points in St1,t2 .

Each Xt consists of data points drawn from a distribution
It not known to the learning algorithm. In the stationary
case, It = It−1; otherwise, a concept drift has occurred at
time t. We seek an adaptive learning algorithm with high
prediction accuracy at each time step.

The model being trained is drawn from a class of functions
F . A function in this class is parameterized by a vector of
weights w ∈ Rd. In a data stream setting, given a stream
segment St1,t2 of training data points, the best we can do
when the data are all drawn from the same distribution is to
minimize the empirical risk over this stream segment. The
empirical risk of function w over a sample S of n elements
is: RS(w) = 1

n

∑
x∈S fx(w), where fx(w) is the loss of

function w on input x. The optimizer of the empirical risk
is denoted as w∗S , defined as w∗S = arg minw∈FRS(w).
The optimal empirical risk isR∗S = RS(w∗S).

Let w be the solution learned by an algorithmA over stream
segment S = St1,t2 . Following prior work (Bousquet &
Bottou, 2007; Jothimurugesan et al., 2018), we define the
difference between A’s empirical risk and the optimal em-
pirical risk over this stream segment as its sub-optimality:
SUBOPTS(A) := RS(w)−RS(w∗S). Based on (Bousquet
& Bottou, 2007), achieving a sub-optimality on the order of
H(nt1,t2) over stream segment St1,t2 asymptotically mini-
mizes the total (statistical + optimization) error forF , where
H(n) = hn−α, for a constant h and 1/2 ≤ α ≤ 1. Note
that this is true when all data points are drawn from the same
distribution.

However, suppose a concept drift occurs at time td such
that t1 < td < t2 and data points in St1,td and Std,t2
are drawn from distributions I1 and I2, respectively. We
could still define empirical risk and sub-optimality of an
algorithmA over stream segment St1,t2 . But, balancing sub-
optimality withH(nt1,t2) does not necessarily minimize the
total error. Algorithm A needs to first recover from the drift
such that the predictive model is trained only over data
points drawn from the new distribution. We define recovery
time as follows:

Definition 1. The recovery time of an algorithm A is the
time it takes after a drift for this algorithm to provide a
solution w which is maintained solely over data points
drawn from the new distribution.

Let td1 , td2 , . . . be the sequence of time steps at which a
drift occurs, and define td0 = 0. The goals for an adaptive
learning algorithm A are (G1) to have a small recovery
time ri at each tdi and (G2) to achieve sub-optimality on
the order ofH(ntdi ,t) over every stream segment Stdi ,t for
tdi + ri < t < tdi+1

(i.e., during the stationary periods
between drifts). In Section 5, we formalize the latter as A
being “risk-competitive” with an oracle algorithm Aware. It
implies that A is asymptotically optimal in terms of its total
error, despite concept drifts.

4. DriftSurf: Adaptive Learning over
Streaming Data in Presence of Drift

We present our algorithm DriftSurf for adaptively learning
from streaming data that may experience drift. Incremen-
tal learning algorithms work by repeatedly sampling a data
point from a training set S and using its gradient to deter-
mine an update direction. This set S expands as new data
points arrive. In the presence of a drift from distribution I1
to I2, without a strategy to remove from S data points from
I1, the model trains over a mixture of data points from I1
and I2, often resulting in poor prediction accuracy on I2.
One systematic approach to mitigating this problem would
be to use a sliding window-based set S from which further
sampling is conducted. Old data points are removed when
they fall out of the sliding window (regardless of whether
they are from the current or an old distribution). However,
the problem with this approach is that the corresponding
sub-optimality of the model trained over S is bounded by the
(limited) size of S . Larger window sizes help with achieving
a better sub-optimality, but will increase the recovery time.
On the other hand, smaller window sizes provide better re-
covery time, but the corresponding sub-optimality of the
algorithm over S increases. An ideal algorithm manages the
set S such that it contains as many as possible data points
from the current distribution and resets it whenever a (sig-
nificant) drift happens, so that it contains only data points
from the new distribution.

As noted in Section 1, prior work (Gama et al., 2004; Baena-
Garcı́a et al., 2006; Bifet & Gavaldà, 2007; Harel et al.,
2014; Pesaranghader & Viktor, 2016; Pesaranghader et al.,
2018) has sought to achieve this ideal algorithm by devel-
oping better and better drift detection tests, but with lim-
ited success due to the challenges of balancing detection
accuracy and speed, and the high cost of false positives.
Instead, we couple aggressive drift detection with a stable-
state/reactive-state process that mitigates the shortcomings
of prior approaches. Unlike prior drift detection approaches,
DriftSurf views performance degrading as only a sign of a
potential drift: the final decision about resetting S and the
predictive model will not be made until the end of the re-
active state, when more evidence has been gathered and a

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

Algorithm 1 DriftSurf: Processing a set of training points
Xt that arrives in time step t, t > 0

// wt−1, w′t−1, and w′′t−1 are (respectively) the parame-
ters of the current predictive model, the reactive model
(if in the reactive state), and the stable model (if in the
stable state)
// S , S ′, and S ′′ are (respectively) the sample sets (stream
segments) used for training the predictive model, the
reactive model (if in the reactive state), and the stable
model (if in the stable state)
// r is the length of the reactive state
if state.stable then

if Enter Reactive State then {condition 1 or 3 holds}
Set state to reactive
T ← ∅ {segment arrived during reactive state}
w′t−1 ← w0, S ′ ← ∅ {initialize randomly}
wf ← wt−1 {frozen parameters of the predictive
model}
c← 0 {time steps in the current reactive state}

else
wt ← Update(wt−1,S,Xt)
w′′t ← Update(w′′t−1,S ′′,Xt)

end if
end if
if state.reactive then

Add Xt to T
wt ← Update(wt−1,S,Xt)
w′t ← Update(w′t−1,S ′,Xt)
c← c+ 1
if Exit Reactive State then {c == r}

Set state to stable
w′′t−1 ← w0, S ′′ ← ∅ {initialize randomly}
ifRT (wf) > RT (w′t) then {condition 2 holds}

wt ← w′t, S ← S ′ {change the predictive
model}

end if
else ifRXt

(w′t−1) < RXt
(wt−1) then

Use w′t instead of wt for predictions only at the next
time step {greedy policy during the reactive state}

end if
end if

higher confidence decision can be made.

Our algorithm, DriftSurf, is depicted in Algorithm 1. The
algorithm starts in the stable state, and the steps are shown
for processing the batch of points arriving at time step t. If
the algorithm is in the stable state, DriftSurf checks for a
sign of drift to decide if it needs to enter the reactive state.
This decision is made by checking the following condition:

RXt
(wt−1) > Rb + δ (1)

where wt−1 is the parameters of the current predictive

Algorithm 2 Update(w,S,Xt): Process of updating param-
eters w using SGD, given sample set S and newly arrived
data points Xt

// ρ is the computational power and determines the num-
ber of update steps that can be performed
// η is the learning rate
Add Xt to S
for j = 1 to ρ do

Sample a point p uniformly from S
g ← ∇fp(w) {fp is the loss function at p}
w← w − η · g

end for
return w

model, Rb is the best observed risk of this model and δ
is a predetermined threshold that represents the tolerance in
performance degradation.

If condition 1 does not hold, DriftSurf assumes there was
no drift in the underlying distribution. It continues in the
stable state by expanding S by adding the newly arrived
set of data points Xt and updating the parameters of its
predictive model. However, if DriftSurf decides to enter
the reactive state, it changes its state to the reactive state,
and freezes the current predictive model by copying its
parameters to wf . In addition, DriftSurf adds a new model
with randomly initialized parameters w′t−1. The sample set
S ′ of this model is initialized to be empty. Note that this
sample set does not need to be stored independently and
consume additional memory space to store data points, but
instead, it can be represented by pointers into S .

If, at time step t, DriftSurf is in the reactive state (including
the time step that it has just decided to enter the reactive
state), DriftSurf adds Xt to S and S ′, sample sets of the
predictive and reactive models. Then, it updates wt−1 and
w′t−1. During the reactive state the choice of decision model
follows a greedy approach meaning that among w and w′

the one with the better performance in the previous time step
will be chosen to be the current decision model. This helps
to obtain good performance during the reactive state. The
idea is that if there was no drift and entering the reactive state
was the result of false drift detection, we expect the previous
predictive model be the winner of this greedy approach.
However, if entering the reactive state was the result of an
actual drift, the greedy approach helps to switch to the newly
added model sooner.

Upon exiting the reactive state, DriftSurf needs to choose
the predictive model. It will switch to w′ for its predictive
model if the reactive model outperforms the previous predic-
tive model over the set of data points, T , that arrived during
the reactive state:

RT (w′) < RT (wf). (2)

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

If condition 2 holds, DriftSurf resets its predictive model to
the parameters of w′. Note that sample set S will be reset
accordingly, too. Otherwise, it continues with the updated
version of the previous predictive model.

Algorithm 1 is generic in the individual base learner. Al-
gorithm 2 shows an example where the parameters of each
base learner are incrementally updated using SGD. For the
purpose of theoretical analysis in Section 5 and experimen-
tal evaluation in Section 6, the update process we focus
on is STRSAGA (Jothimurugesan et al., 2018), which is a
variance-reduced SGD for streaming data, because of its fast
convergence rate and ability to deal with different arrival
distributions. For any update process, we let ρ denote the
computational power available at each time step. When the
update process is an SGD-style algorithm, ρ is the number
of gradients that can be computed.

Handling a corner case. Consider the case that a drift hap-
pens when we are in the reactive state. In this case, no
matter what predictive model we choose at the end of the
reactive state, both the current predictive and reactive mod-
els are trained over a mixture of data points from both the
old and new distributions. This will decrease the chance
of recovering from the actual drift. To avoid this problem,
DriftSurf adds a new model with parameters w′′ upon re-
turning to the stable state. This model, which we refer to as
the stable model, trains over the stream segment S ′′ arrived
after entering the stable state. DriftSurf keeps comparing the
performance of the predictive and stable models. In addition
to condition 1, DriftSurf enters the reactive state upon the
following condition:

RXt
(wt−1) > RXt

(w′′t−1) + δ′ (3)

where δ′ is set to be much smaller than δ.

5. Analysis of DriftSurf

In this section, we show that DriftSurf achieves the goals
G1 and G2 from Section 3 for an adaptive learning algo-
rithm in the presence of (abrupt) concept drifts. As in prior
work (Bousquet & Bottou, 2007; Jothimurugesan et al.,
2018), we assume thatH(n) = hn−α, for a constant h and
1
2 ≤ α ≤ 1, is an upper bound on the statistical error over a
set of data points of size n drawn from the same distribution.

Aware is an adaptive learning algorithm with oracle knowl-
edge of when drifts occur. At each drift, the algorithm
restarts the predictive model to a random initial point and
trains it over data points that arrive after the drift. The main
obstacle for other adaptive learning algorithms to compete
with Aware is that they are not told exactly when drifts
occur.

The Aware implementation we are comparing to uses STR-
SAGA for incremental training (i.e., as its update process).

At any time step t, sub-optimality of this algorithm over its
training sample set S of size n is bounded as follows:
Lemma 1. (LEMMA 3 IN (JOTHIMURUGESAN ET AL.,
2018)) Suppose all fx are convex and their gradients are
L-Lipschitz continuous, and thatRS is µ-strongly convex.
Also, assume that the condition number L/µ is bounded by
a constant at each time. At the end of each time step t, the
expected sub-optimality of STRSAGA over its sample set S
of size n is:

E[SUBOPTS(STRSAGA)] ≤ (1 + o(1))H(n)

whereH(n) = hn−α, for a constant h and 1
2 ≤ α ≤ 1.

As a means of achieving goal G2 (suboptimality on the
order ofH(ntd,t) after a drift at time td), we will show that
the empirical risk of DriftSurf after a drift is “close” to the
risk of Aware, where close is defined formally in terms of
our notion of risk-competitiveness in Definition 2.
Definition 2. For c ≥ 1, a recovered adaptive learning
algorithm A is said to be c-risk-competitive to Aware at
time step t > td if:

E[SUBOPTStd,t(A)] ≤ c · (1 + o(1))H(ntd,t)

where td is the time step of the most recent drift. Also,
ntd,t = |Std,t|, and H(n) = hn−α, for a constant h and
1
2 ≤ α ≤ 1.

We will analyze the risk-competitiveness of DriftSurf in two
cases: (i) stationary environment and (ii) after a drift. Ad-
ditionally, we will provide high probability analysis of the
recovery time after a drift (goal G1).

For simplicity, in the rest of this section, we assume only a
single abrupt drift happens at time step td. In addition, we
assume all loss functions fx are convex and their gradients
are L-Lipschitz continuous, and that the empirical riskRS
is µ-strongly convex, where µ is the regularization hyper-
parameter. Lastly, we assume the condition number L/µ is
bounded by a constant at each time step.

5.1. Stationary Environment

Our goal is to achieve an empirical risk that is competitive
to that of Aware in a stationary environment. Note that at
any time 0 < t < td, before any drift happens, we are
in a stationary environment. Based on Lemma 1, at any
time 0 < t < td the expected sub-optimality of Aware and
DriftSurf are (respectively) bounded by (1 + o(1))H(n0,t)
and (1 + o(1))H(nte,t), where te is the time that the cur-
rent predictive model of DriftSurf was initialized. To prove
DriftSurf is risk-competitive to Aware, we need to show that
the expected size of its sample set Ste,t is close to n0,t. To
achieve this, we first in Lemma 2 (and similarly in Lemma 8)
show that the probability of entering the reactive state in a
stationary environment is very small.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

Lemma 2. In a stationary environment, at any time t the
probability of entering the reactive state because of condi-
tion 1 is bounded by (2 + o(1))n

− 1
4

te,t, where |Ste,t| = nte,t
and Ste,t is the stream segment that the predictive model of
DriftSurf is trained over.

At a high level, the proof (Appendix B.1) relies on showing
that E[RXt(wt−1)−Rb] is smaller than the sub-optimality
of wt−1 over Ste,t. The provided upper bound for the prob-
ability that condition 1 holds follows Lemma 1 and using
Markov’s inequality. A similar upper bound can be obtained
for the probability that condition 3 holds.

Besides, if DriftSurf enters the reactive state, Lemma 3 shows
that the probability of switching to the reactive model is very
small.

Lemma 3. In a stationary environment, if DriftSurf enters
the reactive state, the probability of switching to the reac-
tive model at the end of the reactive state is bounded by
O(e−(

β−r
3r)), where r is the length of the reactive state and

β is the number of time steps that the predictive model was
around before entering the reactive state, i.e. |S| = β ×m.

The proof relies on the fact that STRSAGA is a stochastic
optimization method that provides the following property at
each iteration i:

E[RS(wi)−R∗S] ≤

min

ρn[RS(wi−1)−R∗S]

min
k<n

[(RT ′(wi)−R∗T ′) +
n− k
n
H(k)]

(4)

where ρn = 1−min(1
n ,

µ
L), |S| = n, and T ′ ⊂ S is of size

k.

In the proof (Appendix B.1), we let T ′ be the first r ×m
elements of S . Note that the expected sub-optimality of wf

and w′ over T and T ′ are the same. The provided upper
bound for the probability that condition 2 holds follows the
mentioned property of STRSAGA on T ′ and using Markov’s
inequality.

Using the above results, we can compute the expected size
of S for the predictive model of DriftSurf in a stable state.

Corollary 1. In a stationary environment, at any time step
t > 0 such that 4

√
n0,t > 6 4

√
2re1/3, the expected size of

sample set S for the predictive model in a stable state is
larger than n0,t

4 , where n0,t is the total number of data
points arrived until time step t and r is the length of the
reactive state.

Based on the results of Corollary 1, we can provide the ex-
pected risk-competitiveness of DriftSurf’s predictive model
at any time t in a stable state:

Lemma 4. In a stationary environment, DriftSurf is expected
7

41−α -risk-competitive to Aware, at any time step t > 0 in
a stable state such that 4

√
n0,t > 6 4

√
2re1/3, where r is the

length of the reactive state.

Proof. Lemma 1 bounds the expected sub-optimality of
DriftSurf over Ste,t as (1 + o(1))H(nte,t). We apply prop-
erty 4 to relate the expected sub-optimality over Ste,t to the
expected sub-optimality over S0,t, where the expected size
of Ste,t is bounded by Corollary 1 as nte,t ≥

n0,t

4 :

E[SUBOPTS0,t(DriftSurf)] ≤

(1 + o(1))H
(n0,t

4

)
+
n0,t − n0,t/4

n0,t
H
(n0,t

4

)
≤ 7

41−α
(1 + o(1))H(n0,t).

In addition to expected risk-competitiveness, DriftSurf pro-
vides a minimum risk-competitiveness:

Corollary 2. At any time step t > 0, the size of sample set
S for the predictive model in a stable state is larger than
r ×m, where r is the length of a reactive state. Therefore,
DriftSurf is at worst 2(tr)α-risk-competitive with Aware.

5.2. In Presence of an Abrupt Drift

Suppose an (abrupt) drift happens at any time td. Let p
(p∗) be the probability that DriftSurf enters a reactive state
(switches to the reactive model at the end of a reactive state,
respectively). In this section, we first show that w.h.p. Drift-
Surf has a small recovery time (goal G1).

Lemma 5. Suppose a drift happens at time td. With prob-
ability 1 − ε, the recovery time of DriftSurf is bounded by

kr + 2
p (ln 1

ε1
+ k ln 2), where k <

√
1−ε2
ε2

(1−p∗
p∗2) is the

number of times DriftSurf enters the reactive state before
recovering from drift, and ε = ε1 + ε2.

The high-level proof sketch for this Lemma (full proof in
Appendix B.2) is to divide the recovery time of DriftSurf into
two parts: (i) time steps spent in reactive state, and (ii) time
steps spent in the stable state before recovery. To bound the
first part, we need to bound the number of times DriftSurf
enters the reactive state and multiply that by r, the length of
each reactive state. This can be obtained using Cantelli’s in-
equality. On the other hand, the second part can be bounded
by bounding the sum of k independent geometric random
variables, each with distribution ∼ Ge(p).

After recovering from the drift, the analysis is similar to
the stationary case with the difference being that Aware,
unlike the recovered model, uses data points arrived during
the recovery time. Lemma 6 provides the risk-competitive
analysis of DriftSurf at any time step t > td.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

Lemma 6. The predictive model of DriftSurf in the stable
state is expected 15

81−α -risk-competitive with Aware with
probability at least 1− ε, at any time step i > td + l such
that 4

√
m(t− td − l) ≥ max(6 4

√
2re1/3, 4

√
ml), where td

is the time of the drift, l = kr + 2
p (ln 1

ε1
+ k ln 2) where

k <
√

1−ε2
ε2

(1−p∗
p∗2), and ε = ε1 + ε2.

Proof. Based on Lemma 5, with probability 1− ε, DriftSurf
recovers from drift after l = kT ′ + 2

p (ln 1
ε1

+ k ln 2) time

steps, where k <
√

1−ε2
ε2

(1−p∗
p∗2), and ε = ε1 + ε2. After

recovering from the drift, the situation is similar to the
stationary case. Let tr be the time step that DriftSurf recovers
from the drift at time td. Also, let te be the time step that
the current predictive model was initialized.

. . .

td tr te told distribution

l ×m nte,t

ntd,t

Figure 1. A drift happens at time td. DriftSurf recovers by time tr .
The current predictive model is initialized at time te.

To show DriftSurf is 15
81−α -risk-competitive to Aware, we

want to show nte,t ≥
ntd,t
8 . Using Corollary 1, we expect

to have nte,t ≥
ntr,t
4 at any time step t ≥ tr such that

4
√
ntr,t ≥ 6 4

√
2re1/3, where r is the length of reactive state.

Therefore, 3nte,t ≥ ntr,te . On the other hand, we have

nte,t = ntd,t − ntd,tr − ntr,te
= ntd,t − l ×m− ntr,te ≥ ntd,t − l ×m− 3nte,t.

Also, at any time step t such that 4
√
m(t− td − l) ≥

max(6 4
√

2re1/3, 4
√
ml), we have t− td ≥ 2l. Therefore,

4nte,t ≥ ntd,t − l ×m ≥
ntd,t

2
.

It remains to bound the expected sub-optimality over Std,t,
which is similar to the proof of Lemma 4. Lemma 1 bounds
the expected sub-optimality over Ste,t as (1+o(1))H(nte,t),
and property 4 relates the expected sub-optimality over Ste,t
to the expected sub-optimality over Std,t:

E[SUBOPTStd,t(DriftSurf)] ≤

(1 + o(1))H
(ntd,t

8

)
+
ntd,t − ntd,t/8

ntd,t
H
(ntd,t

8

)
≤ 15

81−α
(1 + o(1))H(ntd,t).

6. Experimental Results
In this section, we present the experimental results. We
empirically confirm the risk-competitiveness of DriftSurf

with Aware throughout a set of experiments on streamed
in synthetic, semi-synthetic datasets, real-world datasets
in presence of drift. We also show the effectiveness of
DriftSurf through comparison to two state-of-the-art adaptive
learning algorithms, the ensemble method AUE and the drift-
detection-based method MDDM, which are used with the
same parameters provided by the authors. More detail on
these algorithms is provided in Appendix C.1.

Table 1. Basic statistics of datasets

DATASET # INSTANCE # DIM

SYNTHETIC
SEA 100000 3
HYPERPLANE 100000 10
SINE1 10000 2

SEMI-
SYNTHETIC

RCV1 20242 47235
COVERTYPE 581012 54

REAL
AIRLINE 5810462 13
ELECTRICITY 45312 13
POWERSUPPLY 29928 2

Table 1 presents an overview of the datasets used in our
experiments. The prediction task for each dataset is binary
classification. Drifts in semi-synthetic datasets are generated
by rotating data points or changing the labels of the real-
world datasets that originally do not contain any drift. We
divide each dataset into equally-sized batches to arrive over
the course of the stream. More detail on the datasets is
provided in Appendix C.2.

In our experiments, a batch of data points arrives at each
time step. We first evaluate the performance of each algo-
rithm by measuring the misclassification rate over this batch,
and then each algorithm gains access to the labeled data to
update their model(s). The base learner in each algorithm
is a logistic regression model trained using STRSAGA. Hy-
perparameter settings are discussed in Appendix C.3. All
reported results of the misclassification rates represent the
median over five trials.

We present the misclassification rates at each time step in
Figures 2 and 3 on the PowerSupply and CoverType datasets
(see Appendix D.1 for other datasets). A drift occurs at time
76 in PowerSupply, and at times 30 and 60 in CoverType.
We observe DriftSurf outperforms MDDM because false
positives in drift detection lead to unnecessary resetting of
the predictive model in MDDM, while DriftSurf avoids the
performance loss by catching most false positives via the
reactive state and returning to the older model. In particu-
lar, the CoverType dataset was especially problematic for
MDDM, which continually signaled a drift. We also observe
DriftSurf adapts faster than AUE on CoverType. This is be-
cause after an abrupt drift, the predictions of DriftSurf are
solely from the new model, while for AUE, the predictions
are a weighted average of each expert in the ensemble. Im-
mediately after a drift, the older, inaccurate experts of AUE

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

50 60 70 80 90 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
isc
la
ss
ifi
ca
tio
n
ra
te

Aware
MDDM
AUE
DriftSurf

Figure 2. Misclassification rate over time for
PowerSupply

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

Figure 3. Misclassification rate over time for
CoverType

20 40 60 80 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

Figure 4. Misclassification rate over time for
Airline (ρ = 4m divided among models)

have reduced, but non-zero weights that negatively impact
the accuracy. On both datasets, we observe the recovery
time of DriftSurf is within one reactive state, and confirm
that DriftSurf is competitive with Aware.

Table 2 summarizes the results for all the datasets in terms of
the total average of the misclassification rate over time. To
better demonstrate the impact of the reactive state strategy,
we considered the sensitivity towards different levels of
noise in the SEA dataset, shown in the first four rows of
Table 2. We observe the stability of DriftSurf in the presence
of noise, while the drift detection of MDDM suffers with
false positives and overreacts to higher levels of noise.

We observe that on a majority of the datasets in Table 2,
DriftSurf is the best performer. In some instances (Airline
dataset), DriftSurf and AUE have a tight performance, and in
some cases (Electricity dataset) AUE outperforms DriftSurf.
A factor is the different computational power (number of
gradient computations per time step) used by each algorithm.
AUE maintains an ensemble of ten experts, while DriftSurf
maintains just two, and so AUE uses five times the compu-
tation of DriftSurf. To account for the varying computational
efficiency of each algorithm, we did another experiment
where the available computational power for each algorithm
is divided equally among all of its models, shown in Figure
4 for the Airline dataset, with more results in Appendix D.2.
After normalizing for equal computational power, we ob-
serve DriftSurf has better accuracy and recovers faster after
drift compared to AUE.

Appendices D.3–D.5 contain additional experimental results.
In Appendix D.3, we report the results for single-pass SGD
and an oblivious algorithm (STRSAGA with no adaptation
to drift), which are generally worse across each dataset.
One exception is that the oblivious algorithm has the best
accuracy on the Electricity dataset because the drift does
not warrant training a new model from scratch. Appendix
D.4 studies the impact of DriftSurf’s design choice of using
greedy prediction during the reactive state, showing that it
performs similarly or better than waiting until the end of

the reactive state before deciding whether to transition to a
new model. Finally, Appendix D.5 includes results for each
algorithm when SGD is used as the update process instead
of STRSAGA. We observe that using SGD results in lower
accuracy for each algorithm, and also that, relatively, AUE
gains an edge because its ensemble of ten experts mitigates
the higher variance updates of SGD.

Table 2. Total average of misclassification rate

DATASET Aware DriftSurf MDDM AUE

SEA0 0.139 0.088 0.088 0.094
SEA10 0.199 0.158 0.176 0.163
SEA20 0.267 0.245 0.288 0.248
SEA30 0.350 0.335 0.363 0.339
HYPER-SLOW 0.118 0.117 0.117 0.113
HYPER-FAST 0.192 0.173 0.162 0.178
SINE1 0.169 0.189 0.177 0.211
RCV 0.118 0.126 0.129 0.167
COVERTYPE 0.267 0.267 0.313 0.278
AIRLINE 0.338 0.334 0.347 0.334
ELECTRICITY 0.315 0.315 0.340 0.3
POWERSUPPLY 0.309 0.294 0.320 0.3

7. Conclusion
We presented DriftSurf, an adaptive algorithm for learning
from streaming data that contains concept drifts. Our risk-
competitive theoretical analysis showed that DriftSurf has
high accuracy competitive with Aware both in a stationary
environment and in the presence of abrupt drifts. Our ex-
perimental results confirmed our theoretical analysis and
also showed high accuracy in the presence of either abrupt
or gradual drift that generally outperforms state-of-the-art
algorithms MDDM and AUE. Furthermore, DriftSurf main-
tains just two models while achieving high accuracy, and
therefore its computational efficiency is significantly better
than an ensemble method like AUE.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

References
Bach, S. H. and Maloof, M. A. Paired learners for concept

drift. In ICDM, pp. 23–32, 2008.

Baena-Garcı́a, M., del Campo-Ávila, J., Fidalgo, R., Bifet,
A., Gavaldà, R., and Morales-Bueno, R. Early drift de-
tection method. In StreamKDD, pp. 77–86, 2006.

Bifet, A. and Gavaldà, R. Learning from time-changing
data with adaptive windowing. In ICDM, pp. 443–448,
2007.

Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. MOA:
Massive online analysis. JMLR, 11:1601–1604, 2010.

Bousquet, O. and Bottou, L. The tradeoffs of large scale
learning. In NIPS, pp. 161–168, 2007.

Brzezinski, D. and Stefanowski, J. Reacting to different
types of concept drift: The accuracy updated ensemble
algorithm. IEEE Trans. Neural Netw. Learn. Syst, 25(1):
81–94, 2013.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. The UCR time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293–1305, 2019.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Elwell, R. and Polikar, R. Incremental learning of concept
drift in nonstationary environments. IEEE Trans. Neural
Netw., 22(10):1517–1531, 2011.

Gama, J., Medas, P., Castillo, G., and Rodrigues, P. Learning
with drift detection. In Advances in Artificial Intelligence-
SBIA, pp. 286–295, 2004.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation.
ACM Comput. Surv., 46(4):44, 2014.

Harel, M., Crammer, K., El-Yaniv, R., and Mannor, S. Con-
cept drift detection through resampling. In ICML, pp.
1009–1017, 2014.

Harries, M. Splice-2 comparative evaluation: Electricity
pricing. Technical report, University of New South Wales,
1999.

Hentschel, B., Haas, P. J., and Tian, Y. Online model man-
agement via temporally biased sampling. ACM SIGMOD
Record, 48(1):69–76, 2019.

Ikonomovska, E. Airline dataset. URL http://kt.
ijs.si/elena_ikonomovska/data.html.
(Accessed on 02/06/2020).

Janson, S. Tail bounds for sums of geometric and exponen-
tial variables. Statistics & Probability Letters, 135:1–6,
2018.

Jothimurugesan, E., Tahmasbi, A., Gibbons, P. B., and
Tirthapura, S. Variance-reduced stochastic gradient de-
scent on streaming data. In NeurIPS, pp. 9906–9915,
2018.

Kifer, D., Ben-David, S., and Gehrke, J. Detecting change
in data streams. In VLDB, pp. 180–191, 2004.

Klinkenberg, R. Learning drifting concepts: Example selec-
tion vs. example weighting. IDA, 8(3):281–300, 2004.

Kolter, J. Z. and Maloof, M. A. Dynamic weighted majority:
An ensemble method for drifting concepts. JMLR, 8:
2755–2790, 2007.

Koychev, I. Gradual forgetting for adaptation to concept
drift. In ECAI Workshop on Current Issues in Spatio-
Temporal Reasoning, 2000.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. RCV1: A
new benchmark collection for text categorization research.
JMLR, 5:361–397, 2004.

Lu, Y., Cheung, Y.-m., and Tang, Y. Y. Dynamic weighted
majority for incremental learning of imbalanced data
streams with concept drift. In IJCAI, pp. 2393–2399,
2017.

Pesaranghader, A. and Viktor, H. L. Fast hoeffding drift
detection method for evolving data streams. In ECML
PKDD, pp. 96–111, 2016.

Pesaranghader, A., Viktor, H. L., and Paquet, E. A
framework for classification in data streams using multi-
strategy learning. In ICDS, pp. 341–355, 2016.

Pesaranghader, A., Viktor, H. L., and Paquet, E. McDiarmid
drift detection methods for evolving data streams. In
IJCNN, pp. 1–9, 2018.

Sebastião, R. and Gama, J. Change detection in learning
histograms from data streams. In PAI, pp. 112–123, 2007.

Sun, Y., Tang, K., Zhu, Z., and Yao, X. Concept drift adap-
tation by exploiting historical knowledge. IEEE Trans.
Neural Netw. Learn. Syst., 29(10):4822–4832, 2018.

Widmer, G. and Kubat, M. Learning in the presence of
concept drift and hidden contexts. Machine learning, 23
(1):69–101, 1996.

http://archive.ics.uci.edu/ml
http://kt.ijs.si/elena_ikonomovska/data.html
http://kt.ijs.si/elena_ikonomovska/data.html

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

A. Pseudocode of STRSAGA

The process for updating a model considered in this paper is STRSAGA (Jothimurugesan et al., 2018), shown in Algorithm 3.
STRSAGA differs from Algorithm 2 (SGD) in that (i) it uses variance-reduced update steps that result in faster convergence,
and (ii) it handles streaming data that do not arrive at a steady rate by controlling the rate at which its sample set grows.
(In this paper, we only consider data that arrive at a fixed rate at each time step, but by using STRSAGA, the results can
be readily extended to Poisson and other arrival distributions.) In STRSAGA, data points are not sampled from the entire
available stream segment, but instead from a separately maintained sample set. Newly arriving data are first added to a buffer
(called WaitingRoom), and then points are moved from WaitingRoom to the sample set at a controlled rate “to ensure that
the optimization error on the subset that has been trained is balanced with the statistical error of the effective sample size”
(Jothimurugesan et al., 2018). The implementation of STRSAGA we use in this paper uses the “alternating schedule” in its
sampling.

Algorithm 3 Update(w,S,Xt): Process of updating parameters w using STRSAGA, given sample set S and newly arrived
data points Xt

// ρ is the computational power and determines the number of update steps that can be performed
// η is the learning rate
Add Xt to WaitingRoom {WaitingRoom is the set of training points not added to S yet}
for j = 1 to ρ do

if WaitingRoom is non-empty & j is even then
Move a single point, p, from WaitingRoom to S
α(p)← 0 {α(p) is the prior gradient of p, initialized to 0}

else
Sample a point p uniformly from S

end if
A←

∑
x∈S α(x)/|S| {A is the average of all gradients and can be maintained incrementally}

g ← ∇fp(w) {fp is the loss function at p}
w← w − η(g − α(p) + A)
α(p)← g

end for
return w

B. Proofs from the Analysis of DriftSurf

This section contains proof details from the analysis of DriftSurf. Throughout, we will assume that H(n) = hn−α, for a
constant h and 1/2 ≤ α ≤ 1, is an upper bound on the statistical error over a set of data points of size n. Also, assume
all fx are convex and their gradients are L-Lipschitz continuous, and thatRS is µ-strongly convex for the set of training
samples S. In addition, we assume that the condition number L/µ is bounded by a constant at each time, and ρ = 2m,
where ρ denotes the number of gradients that can be computed at each time step t and m = |Xt| is the number of points
arriving at time t. Table 3 summarizes the notation used in this section.

Table 3. Summary of notation used in the analysis
Xt Data points arriving at time step t
m = |Xt|, the number of points arriving at each t
r length of the reactive state (in time steps)
ρ the number of gradients computed at each time step
α the exponent in the statistical error boundH(n) = hn−α

p probability DriftSurf enters a reactive state after a given drift
p∗ probability DriftSurf switches to the reactive model at end of a given reactive state

In Section 5, we defined Aware to be an adaptive learning algorithm with oracle knowledge of when drifts occur. Through
Lemmas 4 and 6, we showed that under certain conditions DriftSurf is expected risk-competitive to Aware. Here, we state the

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

consequence with regards to the total error. As stated in Section 3, the total error of an algorithm A over the stream segment
S is the sum of the statistical and optimization errors; under uniform convergence bounds, the total error is bounded by
H(|S|) +E[SUBOPTS(A)] (Bousquet & Bottou, 2007). Empirical risk minimization (ERM), which is a process with no limit
on the computational power, over a stream segment S yields a model with total error equal to the statistical error. When
DriftSurf is risk-competitive with Aware, then the total error of DriftSurf can be bounded relative to the error of ERM by the
following lemma.

Lemma 7. Suppose the last drift occurred at time td. If DriftSurf is c-risk-competitive to Aware at time t > td, then the total
error of DriftSurf is at most a (c+ 1 + o(1)) factor of the error bound of ERM,H(Std,t).

Proof. By the definition of risk-competitiveness to Aware, E[SUBOPTStd,t(DriftSurf)] ≤ c(1 + o(1))H(ntd,t). Adding the
statistical error, the total error is at most (c(1 + o(1)) + 1)H(ntd,t).

Note that although the ERM error bound,H(), is only an upper bound, it is usually considered to be a tight bound (Bousquet
& Bottou, 2007).

In the remainder of this section we complete the proofs for the results in Section 5 that establish the conditions under which
DriftSurf is risk-competitive with Aware both in a stationary environment and in the presence of an abrupt drift.

B.1. In a Stationary Environment

In Lemma 2 and Lemma 8, we show the probability of entering the reactive state in a stationary environment is small.

Lemma 2. In a stationary environment, at any time t the probability of entering the reactive state because of condition 1 is
bounded by (2 + o(1))n

− 1
4

te,t, where |Ste,t| = nte,t and Ste,t is the stream segment that the predictive model of DriftSurf is
trained over.

Proof. In a stationary environment, DriftSurf enters the reactive state at time t because of condition 1 ifRXt
(wt−1) > Rb+δ.

Therefore,

Pr[RXt(wt−1) > Rb + δ] = Pr[RXt(wt−1)−Rb > δ]

= Pr[RXt(wt−1)−Rb > δ|A]× Pr[A] + Pr[RXt(wt−1)−Rb > δ|Ā]× Pr[Ā]

≤ Pr[A] + Pr[RXt(wt−1)−Rb > δ|Ā]

where A is defined such that Pr[A] = Pr
[
RSte,t(wt−1)−R∗Ste,t ≥ E[RSte,t(wt−1)−R∗Ste,t]/(nte,t)

−α2
]
. Using

Markov’s inequality, we have Pr[A] ≤ (nte,t)
−α2 . On the other hand, again using Markov’s inequality we have,

Pr[RXt
(wt−1)−Rb > δ] ≤ E[RXt

(wt−1)−Rb]/δ
=
(
RSte,t(wt−1)−RSte,t(wb)

)
/δ

=
(

(RSte,t(wt−1)−R∗Ste,t)− (RSte,t(wb)−R∗Ste,t)
)
/δ

≤
(
RSte,t(wt−1)−R∗Ste,t

)
/δ

where wb is the parameters of the predictive model at the time we observed Rb. Thus, Pr
[
RXt

(wt−1)−Rb > δ|Ā
]
≤

E[RSte,t(wt−1)−R∗Ste,t]/(δ(nte,t)
α
2). Therefore, for 1/2 ≤ α ≤ 1 we have,

Pr[RXt
(wt−1)−Rb > δ] ≤

(
o(1) +

δ + 1

δ

)
n
− 1

4
te,t

The following lemma bounds the probability of entering the reactive state due to condition 3.

Lemma 8. In a stationary environment, at any time t the probability of entering the reactive state because of condition 3 is
bounded by (2 + o(1))n

− 1
4

te,t, where |Ste,t| = nte,t and Ste,t is the stream segment that the predictive model of DriftSurf is
trained over.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

Proof. Similar to the proof of Lemma 2.

Lemma 9. In a stationary environment, the probability of entering the reactive state at any time step t is bounded by
(4 + o(1))n

− 1
4

te,t, where |Ste,t| = nte,t and Ste,t is the stream segment that the predictive model of DriftSurf is trained over.

Proof. Using Lemma 2 and Lemma 8.

Lemma 3. In a stationary environment, if DriftSurf enters the reactive state, the probability of switching to the reactive
model at the end of the reactive state is bounded by O(e−(

β−r
3r)), where r is the length of the reactive state and β is the

number of time steps that the predictive model was around before entering the reactive state i.e. |S| = β ×m.

Proof. DriftSurf switches to the reactive model w′ at the end of a reactive state if condition 2 holds, i.e. if RT (wf) >
RT (w′), where wf is the state of the predictive model before entering the reactive state. The probability of this can be
written as follows:

Pr[RT (wf) > RT (w′)] = Pr[RT (wf)−R∗T > RT (w′)−R∗T]

= Pr[RT (wf)−R∗T > RT (w′)−R∗T |A] Pr[A]

+ Pr[RT (wf)−R∗T > RT (w′)−R∗T |Ā] Pr[Ā]

≤ Pr[A] + Pr[RT (wf)−R∗T > RT (w′)−R∗T |Ā]

where A is defined such that Pr[A] = Pr[
RT ′ (w̃′)−R

∗
T ′

RT (w′)−R∗T
> ρ

− 2
3 (β−r)m

rm], where T ′ ⊆ S such that |T ′| = |T | = rm, w̃′ is

the predictive model after training over T ′, and ρrm = 1−min(1
mr ,

µ
L). Pr[A] can be bounded as follows:

Pr[
RT ′(w̃′)−R∗T ′
RT (w′)−R∗T

> ρ
− 2

3 (β−r)m
rm] = Pr[RT ′(w̃′)−R∗T ′ > ρ

− 2
3 (β−r)m

rm (RT (w′)−R∗T)]

= Pr[RT ′(w̃′)−R∗T ′ > ρ
− 2

3 (β−r)m
rm (RT (w′)−R∗T)|A′] Pr[A′]

+ Pr[RT ′(w̃′)−R∗T ′ > ρ
− 2

3 (β−r)m
rm (RT (w′)−R∗T)|Ā′] Pr[Ā′]

≤ Pr[A′] + Pr[RT ′(w̃′)−R∗T ′ > ρ
− 2

3 (β−r)m
rm (RT (w′)−R∗T)|Ā′]

where A′ is defined such that Pr[A′] = Pr[ρ
−(β−r3)m
mr E[RT ′(w̃′)−R∗T ′] < RT (w′)−R∗T]. Using Markov’s inequality

we have Pr[A′] ≤ ρ(
β−r
3)m

mr and as a result Pr[A] ≤ 2ρ
(β−T

′
3)m

mr . Therefore, using property 4 of STRSAGA we have,

Pr[RT (wf) > RT (w′)] ≤ 3ρ
(β−r3)m
mr ≤ 3

(
1− 1

mr

)(β−r3)m

≤ 3

(
1

e

)(β−r3r)

We can now prove Corollary 1.

Corollary 1. In a stationary environment, at any time step t > 0 such that 4
√
n0,t > 6 4

√
2re1/3, the expected size of sample

set S for the predictive model in a stable state is larger than n0,t

4 , where n0,t is the total number of data points arrived until
time step t and r is the length of the reactive state.

Proof. Lemma 9 and Lemma 3 (respectively) provide upper bounds on the probabilities of entering the reactive state and
the probability of switching to the reactive model at the end of a reactive state. We can find a lower bound on the probability
of |S| > mt

k for some value of k > 1 and therefore:

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

E[|S|] ≥ mt

k

t∏
j=(k−1

k)t

(
1− e−

j−r
3r

4
√
mj

)

≥ mt

k

1−
t∑

j=(k−1
k)t

e−
j−r
3r

4
√
mj

=
mt

k

1− e1/3

4
√
m

t∑
j=(k−1

k)t

1

ej/3rj1/4

≥ mt

k

1− e1/3

4
√
m

t∑
j=(k−1

k)t

1

(1 + j
3r)j1/4

≥ mt

k

1− 3re1/3

4
√
m

t∑
j=(k−1

k)t

1

j5/4

≥ mt

k

1− 3re1/3

4
√
m

 (1
4√2

)blog2(
k−1
k)tc − (1

4√2
)blog2 tc

1− 1
4√2

=
mt

k

(
1− 3re1/3

4
√
m

[
(1

4√2
)blog2 tc((k−1k)−1/4 − 1)

(1− 2−1/4)

])

=
mt

k

(
1− 3re1/3

(tm)1/4

[
(k−1k)−1/4 − 1

1− 2−1/4

])

where the second line uses Weierstrass’ inequality. Let k = 2 and 4
√
tm > 6 4

√
2re1/3, therefore E[|S|] ≥ tm

4 .

With the preceding lemmas, we can now establish the risk-competitiveness of DriftSurf in the stationary case. The full proof
is given in Section 5.

Lemma 4. In a stationary environment, DriftSurf is expected 7
41−α -risk-competitive to Aware, at any time step t > 0 in a

stable state such that 4
√
n0,t > 6 4

√
2re1/3, where r is the length of the reactive state.

Corollary 2 guarantees a minimum risk-competitiveness.

Corollary 2. At any time step t > 0, the size of sample set S for the predictive model in a stable state is larger than r ×m,
where r is the length of a reactive state. Therefore, DriftSurf is at worst 2(tr)α-risk-competitive with Aware.

Proof. The proof is similar to the proof of Lemma 4 and is a consequence of the algorithm’s design as DriftSurf may change
its predictive model only at the end of a reactive state, which lasts r time steps.

B.2. In Presence of an Abrupt Drift

For the case of abrupt drift, we first bound the recovery time for DriftSurf through Lemmas 10 and 5, and then establish
risk-competitiveness after recovery in Lemma 6. To simplify the analysis, we use two parameters, p and p∗, where p
represents the probability that DriftSurf enters a reactive state at a time step after the drift and p∗ represents the probability
that DriftSurf switches to the reactive model at the end of a reactive state. These two parameters are hard to analytically
estimate because they depend on the magnitudes and frequencies at which concept drifts occur (which in turn impact the age
of the stable model and consequently its risk), for which there is no agreed upon model. Additionally, the reactive and stable
models are trained over points drawn from different distributions, and so p∗, which is determined by the difference in risks
of the two models, may depend on the different approximation errors for each distribution (the approximation error is the

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

optimal expected risk within the function class F). By parameterizing p, p∗, we are able to show the general results in this
section without making too simplistic assumptions about concept drifts. (Note that such concerns did not arise in the simpler
setting of a stationary environment in Section B.1.)

Lemma 10. Suppose a drift happens at time td. With probability at least 1 − ε, the number of times DriftSurf enters the

reactive state before recovering from this drift is less than
√

1−ε
ε (1−p∗

p∗2).

Proof. Let X be a random variable denoting the number of times DriftSurf enters the reactive state after the drift at time td
and before recovering from it. Using Cantelli’s inequality for any real number λ > 0, we have:

Pr[X − µ ≥ λ] ≤ σ2

σ2 + λ2

where µ = E[X] = 1
p∗ and σ2 = Var [X] = 1−p∗

p∗2 . Let λ = k
p∗ , therefore,

Pr[X ≥ (k + 1)

p∗
] ≤ 1

1 + k2

1−p∗
≤ ε

Using Lemma 10, w.h.p. we can estimate the recovery time of DriftSurf as follows:

Lemma 11. Let X =
∑k
i=1Xi, where k ≥ 1 and Xi for i = 1, ..., k, are independent geometric random variables

distributed Xi ∼ Ge(p) and E[X] = k
p . For any λ ≥ 1, we have:

Pr

[
X ≥ λk

p

]
≤ e−k(λ2−ln 2)

Proof. Similar to the proof of Theorem 2.1 in (Janson, 2018) and by setting parameter t (defined in their proof) to p
2 .

We can now prove Lemma 5 from Section 5.2.

Lemma 5. Suppose a drift happens at time td. With probability 1 − ε, the recovery time of DriftSurf is bounded by

kr+ 2
p (ln 1

ε1
+ k ln 2), where k <

√
1−ε2
ε2

(1−p∗
p∗2) is the number of times DriftSurf enters the reactive state before recovering

from drift, and ε = ε1 + ε2.

Proof. Let X =
∑k
i=1Xi, where k ≥ 1 and Xi for i = 1, ..., k, are independent geometric random variables with

distributions: Xi ∼ Ge(p). Using Lemma 11 for λ = 1 we have:

Pr

[
X ≥ k

p

]
≤ e−k(1

2−ln 2)

Therefore, with probability at least 1− ε1, we have X < 2
p (ln 1

ε1
+ k ln 2). Consequently, w.h.p. the total number of time

steps before recovering from the drift will be less than kr + 2
p (ln 1

ε1
+ k ln 2). Besides, using Lemma 10 we have with

probability 1− ε2, k <
√

1−ε2
ε2

(1−p∗
p∗2).

With the preceding lemmas, we can now establish the risk-competitiveness of DriftSurf following an abrupt drift. The full
proof is given in Section 5.

Lemma 6. The predictive model of DriftSurf in the stable state is expected 15
81−α -risk-competitive with Aware with probability

at least 1− ε, at any time step i > td + l such that 4
√
m(t− td − l) ≥ max(6 4

√
2re1/3, 4

√
ml), where td is the time of the

drift, l = kr + 2
p (ln 1

ε1
+ k ln 2) where k <

√
1−ε2
ε2

(1−p∗
p∗2), and ε = ε1 + ε2.

C. Additional Details on the Experimental Setup
This section contains additional details on the algorithms, datasets, and training for the experimental evaluation.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

C.1. Algorithms Evaluated

In our experimental evaluation, we compare our algorithm DriftSurf to MDDM (Pesaranghader et al., 2018) and AUE
(Brzezinski & Stefanowski, 2013), as representatives of state-of-the-art drift-detection-based and ensemble-based algorithms,
respectively. The MDDM algorithm maintains a sliding window over the prediction results, which is a binary series
indicating for each data point whether the model’s predicted label matches the true label. MDDM signals a drift whenever a
weighted mean over the sliding window is worse than the best observed weighted mean so far by a specified threshold. Upon
signaling a drift, the current model is discarded and a new model is initialized starting at the current time step. Pesaranghader
et al. offer three variants of their algorithm, MDDM-A, MDDM-G, and MDDM-E, differing in the weighting scheme
applied over the sliding window. Pesaranghader et al. remark that “all three variants had comparable levels of accuracy”
across each dataset they tested and that “the optimal shape for the weighting function is data, context and application
dependent” (Pesaranghader et al., 2018). Generally, we do not know the type of drifts that will occur in advance, and
so in our experiments, we used the intermediate choice MDDM-G, corresponding to a geometric weighting. (We also
perform a sensitivity study among all three variants.) We reused the source code for MDDM-G available in the Tornado
framework from Pesaranghader et al., and we used their default parameters for their algorithm: the window size n = 100,
the confidence level δw = 10−6, and the geometric weighting factor r = 1.01.

The AUE algorithm (sometimes called AUE2 to distinguish from a preliminary published version of the algorithm) manages
an ensemble of k experts that are incrementally trained over the stream. After each batch of arrivals, AUE updates the
weight of each expert based on its prediction error, and drops the lowest weighted expert to introduce a new expert. The
prediction output from the ensemble is a weighted vote by its experts. We used the parameter k = 10 as the limit on the total
number of experts, following the choice made by Brzezinski and Stefanowski in their experimental evaluation (Brzezinski &
Stefanowski, 2013).

For the implementation of our algorithm DriftSurf, we used the following parameters. The length of the reactive state r = 4.
Regarding the conditions to enter the reactive state described in Section 4, the threshold for condition 1 is δ = 0.1, and the
threshold for condition 3 is δ′ = δ/2.

In our main experiment, on each dataset discussed below, we evaluate DriftSurf, MDDM (the MDDM-G variant), AUE, and
the Aware algorithm with oracle access to when drifts occur (discussed in Section 5). We also run additional experiments
for MDDM-A, MDDM-E, single-pass SGD, and an oblivious algorithm, which maintains a single model updated with
STRSAGA. The version of STRSAGA in the oblivious algorithm samples uniformly from its sample set at each iteration and
has no bias towards sampling more recent data arrivals.

When using STRSAGA or any other SGD-style optimization, we consider a parameter ρ that dictates the number of update
steps (specifically, gradient computations) that are available to train the model. The four adaptive learning algorithms
maintain a different number of models—DriftSurf uses 2, Aware and MDDM use 1, and AUE uses 10. This leads us to
consider two different possibilities for training at each time: (1) each algorithm can use ρ steps per model; or (2) each
algorithm has ρ steps in total that are divided equally across its models. The second approach accounts for the varying
computational efficiency of each algorithm and lets us examine the accuracy achieved when enforcing equal processing time.

C.2. Datasets

Our experiments use the 3 synthetic, 2 semi-synthetic and 3 real-world datasets shown in Table 1 and described below.
The selection of datasets included all datasets used in the experimental evaluations by Pesaranghader et al. on their
MDDM algorithm (namely, SINE1 and Electricity) and Brzezinski and Stefanowski on their AUE algorithm (SEA10,
Hyperplane-Slow, Hyperplane-Fast, Electricity, and Airlines).

• SEA (Bifet et al., 2010): This dataset is generated using the Massive Online Analysis (MOA) framework. There
are three attributes in [0, 10]. The label is determined by x1 + x2 ≤ θj where j corresponds to 4 different concepts,
θ1 = 9, θ2 = 8, θ3 = 7, θ4 = 9.5 (the third attribute x3 is not correlated with the label). We synthetically generated
25000 points from each concept in the order 3, 2, 4, 1, following the example from the MOA manual. We experimented
on four different datasets varying the amount of noise, SEA0, SEA10, SEA20, SEA30, corresponding to 0%, 10%,
20%, and 30% of the labels being swapped during the generation of the dataset.

• Hyperplane (Bifet et al., 2010): This dataset is generated using the MOA framework. For each data point, the label
corresponds to its half space for an underlying hyperplane, where each coordinate of the hyperplane changes by some

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

magnitude for each point in the stream, representing a continually gradually drifting concept. We experimented on two
variations, Hyperplane-Slow and Hyperplane-Fast, corresponding to a 0.001 and a 0.1 magnitude of change. In each
case, at each point in the stream, there is a 10% probability that the direction of the change is reversed.

• SINE1 (Pesaranghader et al., 2016): This dataset contains two attributes (x1, x2), uniformly distributed in [0, 1]. Label
of each data is determined using a sine curve as follows: x2 ≤ sin(x1). Labels are reversed at drift points.

• RCV1 (Lewis et al., 2004): This real world data set contains manually categorized newswire stories. The original order
of the data set we used was randomly permuted before inserting drift. At drift points, we introduce a sharp abrupt drift
by swapping each label.

• Covertype (Dua & Graff, 2017): This real world data set contains observation of a forest area obtained from US
Forest Service (USFS) Region 2 Resource Information System (RIS). Binary class labels are involved to represent the
corresponding forest cover type. The original order of the data set we used was randomly permuted before inserting
drift. At drift points, we introduce an abrupt drift by rotating each data point by 180◦ along the 1st and 8th attributes.
This particular rotation was chosen because it resulted in approximately 40% misclassification rate with respect to the
current predictive model.

• Airline(2008) (Ikonomovska): This real world data set contains records of flight schedules. Binary class labels are
involved to represent if a flight is delayed or not. Concept drift could appear as the result of changes in the flights
schedules, e.g. changes in day, time, and the length of flights. In our experiments, we used the first 58100 points of the
data set, and pre-processed the data by using one-hot encoding for categorical features and scaling numerical features
to be in the range [0, 1].

• Electricity (Harries, 1999): This real world data set contains records of the New South Wales Electricity Market in
Australia. Binary class labels are involved to represent the change of the price (i.e., up and down). The concept drift
may result from changes in consumption habits or unexpected events.

• Power Supply (Dau et al., 2019): This real world data set contains records of hourly power supply of an Italy electricity
company which records the power from two sources: power supply from main grid and power transformed from other
grids. Binary class labels are involved to represent which time of day the current power supply belongs to (i.e. am or
pm). The concept drifting in this stream may results from the change in season, weather or the differences between
working days and weekend.

The type of drift in each dataset is detailed in Table 4. When working with real datasets, precisely determining the time drift
occurs is somewhat guesswork. Brzezinski and Stefanowski remarked they “cannot unequivocally state when drifts occur or
if there is any drift” on the real datasets they considered (Brzezinski & Stefanowski, 2013). Still, we had to mark the drift
times for the implementation of Aware, which resets the model whenever drifts occur. We chose these times by observing
the misclassification rates of an oblivious algorithm that is not designed to adapt to drift, and noting for which time steps
there was a significant increase in misclassifications on the newly arrived batch.

Table 4. Details of drifts in datasets

DATASET DRIFT TYPE DRIFT TIMES

SYNTHETIC
SEA ABRUPT [25, 50, 75]
HYPERPLANE GRADUAL -
SINE1 ABRUPT [20, 40, 60, 80]

SEMI-
SYNTHETIC

RCV1 ABRUPT [30, 60]
COVERTYPE ABRUPT [30, 60]

REAL
AIRLINE - [31, 67]
ELECTRICITY - [20]
POWERSUPPLY - [17, 47, 76]

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

C.3. Training and Hyperparameters

On each dataset, the prediction task is binary classification. Each model w trained is a linear model, using STRSAGA to
optimize the L2-regularized logistic loss over the relevant stream segment. For a data point (x, y), the corresponding loss
function is f(x,y)(w) = log(1 + exp(−ywTx)) + µ

2 ||w||
2
2.

There are two hyperparameters used by STRSAGA, the regularization factor µ and the constant step size η. To set them, we
first took each dataset in static form (opposed to streaming) and applied a random permutation, partitioning an 80% split
for training and 20% for validation. (For the case of the semi-synthetic datasets where we introduced our own drift, the
hyperparameter selection was done prior to modifying the data.) We used grid search to determine the values of µ and η
that optimized the validation set error after running STRSAGA over the static training set for a number of iterations equal
to two times the number of data points. We searched for µ of the form 10−a for 1 ≤ a ≤ 7 and η of the form b × 10−c

for b ∈ {1, 2, 5} and 1 ≤ c ≤ 5. The parameters we chose are given in Table 5. In experiments where we used SGD for
training, we used the same constant step size η.

Table 5. Hyperparameters and batch sizes

DATASET REGULARIZATION µ STEP SIZE η BATCH SIZE m

SEA (ALL) 10−2 1× 10−3 1000
HYPER-SLOW 10−3 1× 10−1 1000
HYPER-FAST 10−3 1× 10−2 1000
SINE1 10−3 2× 10−1 100
RCV1 10−5 5× 10−1 202
COVERTYPE 10−4 5× 10−3 5810
AIRLINE 10−3 2× 10−2 581
ELECTRICITY 10−4 1× 10−1 1333
POWERSUPPLY 10−3 1× 10−1 299

In the streaming data setting studied in this paper (Section 3), the batch size is determined by the rate of arrival of new data
points, and hence not a hyperparameter to be tuned. For simplicity, we assume that data arrive over the course of b time
steps in equally-sized batches containing m = (dataset size)/b points, where b = 100 for all datasets other than Electricity.
For the case of Electricity, we defined the number of time steps b = 34 so that one time step corresponds to 28 days of the
collected data, and was a scale where we could visually observe drift in the results. The resulting batch sizes are shown in
the last column of Table 5.

D. Additional Experimental Results
This section contains experimental results under both training strategies of equal computational power for each model and
equal computational power for each algorithm, which is divided among its models. Additionally, we report results for
single-pass SGD and an oblivious algorithm using STRSAGA, results for DriftSurf without the greedy approach during the
reactive state, and results for each algorithm when SGD is used as the update process instead of STRSAGA.

D.1. Equal Computational Power for each Model

We present the misclassification rates at each time step over the new batch in Figure 5, and the average misclassification
rate over all time steps is summarized in Table 6. (These results are a superset of those presented in Figures 2 and 3 and
Table 2 from Section 6). Here, we used the training strategy where at every time step, each algorithm uses ρ = 2m update
steps for each of its models. Let us note a few general trends. The advantage of DriftSurf over MDDM is most evident
on the noisy versions of SEA (also shown in Figure 6), and on CoverType and PowerSupply. The drift detection method
MDDM encounters false positives that lead to unnecessary resetting of the predictive model, while DriftSurf avoids the
performance loss after most of the false positives by catching them via the reactive state. In particular, the CoverType dataset
was especially problematic for MDDM, which continually signaled a drift.

For true drifts when immediately switching to a new model is desirable, we observe, most evident on SINE1 and RCV1,
that MDDM is the fastest to adapt, followed shortly by DriftSurf, and with AUE lagging behind. CoverType also is a clear
example where DriftSurf adapts faster than AUE (but MDDM suffered as previously mentioned). For these drifts, MDDM

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

naturally leads because it is using a new model when it accurately detects the drift, while DriftSurf always takes at least
one time step to switch because it waits until it sees a batch where the new (reactive) model outperforms the older (stable)
model. Finally, AUE also takes at least one time step, because its ensemble members are weighted based on the previous
performance, but it can take longer, because even if the older, inaccurate models are low-weighted, they are not weighted
zero, and shortly after a drift, most of the models in the ensemble are trained on old data and can still negatively impact the
predictions.

There are two major advantages of DriftSurf and AUE not immediately switching to the latest model: (i) there are drifts for
which switching to a new model is not desired because the older model can still provide good accuracy, and (ii) delaying the
switch to a new model can be desired if the new model has poor accuracy immediately after the drift while it warms up.
Regarding the first point, observe the drift in SEA10 at t = 25 and the drift in Electricity. There is a notable degradation in
accuracy of each algorithm at the time of the drift, but resetting the model as Aware does is a poor choice. We even observe
that the oblivious algorithm (OBL) (which trains a model from the beginning of time and is not designed to adapt to drifts)
outperforms Aware on these datasets. Despite the initial degradation in accuracy at the time of drift, we find that the older
model is able to converge again after the drift, even while the older model is trained on data from both before and after
the drift. Meanwhile, training a new model from scratch as Aware does is not worth the initial start-up cost when the older
model performs well.

The reader may be skeptical specifically of Aware’s reset to a random model for predictions at the time step drift occurs—
practically, wouldn’t it be preferable to use the previously-learned model for the first time step, and then switch to the
new model? We considered this alternative implementation of Aware, and observed that across each dataset, the average
misclassification rate of the alternative Aware was better by at most 1.1 percentage points than the version of Aware reported
in Table 6, and was worse on SINE1 and RCV1. There was no case where the alternative Aware outperformed any algorithm
in the table that Aware did not already outperform.

The second advantage previously mentioned, of delaying the switch to the new model, is best exemplified on Airline.
Immediately after the two drifts, DriftSurf is the best performer, followed by AUE, and then MDDM and Aware. Immediately
after the drift, DriftSurf continues to use the older, stable model, which outperforms a newly created model (compare DriftSurf
to Aware), because a new model needs a few time steps to train before it is a better choice, and then DriftSurf switches later.
AUE is of intermediate error in the time steps immediately after the drift, because it does place greater weight on the better
performing, older models, but is still worse than placing unit weight on an old model.

Finally, the Hyperplane-slow and Hyperplane-fast warrant their own discussion. These two datasets represent a continually
drifting concept throughout the entire stream. For Hyperplane-slow, AUE is the best performing algorithm, while for
Hyperplane-fast, MDDM is the best performing. The advantage that AUE and MDDM have over DriftSurf in these datasets
is that AUE adds a new model at every time step, and MDDM has the capability of switching to a new model at any time
step, and therefore, they can better fit the most recent data in the stream. On the other hand, DriftSurf is only able to create
a new model upon transitioning to the reactive state, so DriftSurf does not have the capability of creating new models at
time steps during its reactive state. DriftSurf is not designed for the setting where creating a new model at every time step is
desirable, but nonetheless, the accuracy of DriftSurf is still comparable.

Table 6. Total average of misclassification rate (ρ = 2m for each model)

DATASET Aware DriftSurf MDDM-G MDDM-A MDDM-E AUE 1PASS-SGD OBL

SEA0 0.139 0.088 0.088 0.090 0.087 0.094 0.118 0.105
SEA10 0.199 0.158 0.176 0.166 0.172 0.163 0.191 0.174
SEA20 0.267 0.245 0.288 0.278 0.289 0.248 0.274 0.253
SEA30 0.350 0.335 0.363 0.358 0.352 0.339 0.356 0.339
HYPER-SLOW 0.118 0.117 0.117 0.117 0.116 0.113 0.123 0.160
HYPER-FAST 0.192 0.173 0.162 0.163 0.164 0.178 0.173 0.281
SINE1 0.169 0.189 0.177 0.175 0.178 0.211 0.223 0.480
RCV1 0.118 0.126 0.129 0.130 0.130 0.167 0.276 0.468
COVERTYPE 0.267 0.267 0.313 0.311 0.313 0.278 0.298 0.321
AIRLINE 0.338 0.334 0.347 0.346 0.348 0.334 0.343 0.359
ELECTRICITY 0.315 0.315 0.340 0.339 0.341 0.300 0.346 0.291
POWERSUPPLY 0.309 0.294 0.320 0.315 0.329 0.300 0.306 0.310

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

20 40 60 80 100
Time

0.1

0.2

0.3

0.4

0.5

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(a) SEA0

20 40 60 80 100
Time

0.1

0.2

0.3

0.4

0.5

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(b) SEA10

20 40 60 80 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(c) SEA20

20 40 60 80 100
Time

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(d) SEA30

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(e) SINE1

20 40 60 80 100
Time

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(f) HyperPlane-slow

20 40 60 80 100
Time

0.10

0.15

0.20

0.25

0.30

0.35

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(g) HyperPlane-fast

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(h) RCV1

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(i) CoverType

20 40 60 80 100
Time

0.2

0.3

0.4

0.5

0.6

0.7

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(j) PowerSupply

5 10 15 20 25 30
Time

0.2

0.3

0.4

0.5

0.6

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(k) Electricity

20 40 60 80 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(l) Airline

Figure 5. Misclassification rate over time (ρ = 2m for each model)

Table 6 includes results for MDDM-G (what we use generally for MDDM), as well as two other MDDM variants, MDDM-A
and MDDM-E, for a more thorough comparison. The average misclassification rates were similar across each dataset, with
no single MDDM variant that consistently outperformed the others. Given the poor peformance of MDDM on CoverType,
we re-did the experiment on CoverType with two other drift detection methods, DDM (Gama et al., 2004) and EDDM
(Baena-Garcı́a et al., 2006) to investigate further. In Figure 7, we observed DDM accurately detected the two drifts, but
EDDM also suffered with continual false positives.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

0.00 0.05 0.10 0.15 0.20 0.25 0.30
noise rate

0.10

0.15

0.20

0.25

0.30

0.35

M
isc

la
ss
ifi
ca

tio
n
ra
te

MDDM
AUE
DriftSurf

Figure 6. Total average of misclassification rate for SEA dataset with different levels of noise

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca

tio
n
ra
te

MDDM-A
DriftSurf

(a) MDDM-A

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca

tio
n
ra
te

MDDM-E
DriftSurf

(b) MDDM-E

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca

tio
n
ra
te

DDM
DriftSurf

(c) DDM

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca

tio
n
ra
te

EDDM
DriftSurf

(d) EDDM

Figure 7. Covertype dataset, different drift detectors (ρ = 2m for each model)

D.2. Equal Computational Power for each Algorithm

Next, we present results for the training strategy where each algorithm has access to ρ update steps in total that are divided
among all its models so that the computation time of each algorithm is identical. For the case ρ = 4m, the misclassification
rate at each time step is shown in Figure 8, and the average over time is in Table 7. For the case ρ = 2m, the misclassification
rate at each time is shown in Figure 9, and the average over time is in Table 8.

Let us discuss a few differences from the previous case where each model was trained with ρ steps. Across every dataset, we
observe lower accuracy for AUE, and especially so after drifts. This is because AUE is an ensemble of 10 models, and so
each model is trained with only 1/5 of the steps that the models of DriftSurf get, and only 1/10 of the models for MDDM and
Aware. DriftSurf now dominates AUE in average misclassification rate on each dataset except for PowerSupply; given AUE’s
good performance on PowerSupply in the divided ρ case, we expect that DriftSurf’s outperformance of AUE in the previous
case in Table 6 to be due to random fluctuation.

We observe DriftSurf compares favorably to MDDM on the same datasets as it did in the undivided ρ case. However,
MDDM’s advantages are magnified on SINE1 and RCV1, the datasets with sharp drifts that were clear to detect, and when
immediate switching to the new model was desired. On PowerSupply, we observe that the false positives are not as punitive
for MDDM as before, because its relative additional training per model means that its new models catch up faster. For
Hyperplane, the relative additional training for MDDM was advantageous in the ρ = 4m case, but in the ρ = 2m case,
the advantage of MDDM on Hyperplane-slow vanished and it was comparable to DriftSurf. We suspect that when fewer
computational steps are available, it is no longer desirable to create new models (which take longer to warm up) so frequently
as MDDM did in the ρ = 4m case where it outperformed DriftSurf.

In Table 7, we also present results for a variation on AUE that is limited to only two experts, which we refer to as AUE
(k = 2). In our comparison of each algorithm when enforcing equal computation time, dividing the ρ steps equally among a
total of ten experts in the original AUE is unsurprisingly detrimental to its performance. An alternative comparison is to
reduce the total number of experts so that in AUE (k = 2), each of the two experts is updated with ρ = 2m steps, identical
to DriftSurf. We observe that AUE (k = 2) performs better than AUE on four datasets: Hyperplane-slow, Hyperplane-fast,
SINE1, and Electricity. We previously mentioned that for Hyperplane, the continual drift means always using the latest

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

available model works well, and we mentioned that for Electricity, the drift that does not require adaptation means always
using the oldest available model works well. Therefore, on these datasets, the additional eight experts of the original AUE
have little utility and AUE (k = 2) performs better. The reason for improvement of AUE (k = 2) on SINE1 is less clear, but
we suspect that the additional experts of the original AUE penalize the accuracy immediately after the abrupt drifts when it
is desirable to assign the most weight to the newest expert.

Table 7. Total average of misclassification rate (ρ = 4m divided among all models of each algorithm)

DATASET Aware DriftSurf MDDM-G AUE AUE (k=2)

SEA0 0.110 0.082 0.095 0.181 0.226
SEA10 0.175 0.167 0.163 0.217 0.269
SEA20 0.243 0.246 0.257 0.275 0.320
SEA30 0.328 0.328 0.342 0.346 0.365
HYPER-SLOW 0.145 0.145 0.133 0.149 0.120
HYPER-FAST 0.222 0.173 0.154 0.234 0.154
SINE1 0.155 0.188 0.16 0.269 0.18
RCV1 0.109 0.131 0.112 0.305 0.404
COVERTYPE 0.26 0.264 0.3 0.301 0.314
AIRLINE 0.331 0.331 0.339 0.36 0.366
ELECTRICITY 0.305 0.322 0.325 0.351 0.326
POWERSUPPLY 0.307 0.307 0.288 0.286 0.393

Table 8. Total average of misclassification rate (ρ = 2m divided among all models of each algorithm)

DATASET Aware DriftSurf MDDM-G AUE

SEA0 0.13 0.096 0.089 0.204
SEA10 0.183 0.157 0.182 0.234
SEA20 0.257 0.244 0.275 0.288
SEA30 0.343 0.335 0.366 0.35
HYPER-SLOW 0.117 0.117 0.118 0.189
HYPER-FAST 0.191 0.196 0.163 0.273
SINE1 0.177 0.218 0.179 0.304
RCV1 0.13 0.174 0.127 0.4
COVERTYPE 0.266 0.274 0.311 0.316
AIRLINE 0.336 0.353 0.353 0.372
ELECTRICITY 0.308 0.339 0.339 0.367
POWERSUPPLY 0.313 0.316 0.310 0.307

D.3. Comparison to 1PASS-SGD and Oblivious

Figure 10 shows the comparison to 1PASS-SGD and the oblivious algorithm (OBL) for the RCV1 and Electricity datasets at
each time. The time average misclassification rate for each dataset are in Table 6. In the case of the large, abrupt drift in
RCV1, we observe that 1PASS-SGD and especially oblivious have poor performance after drift. The oblivious algorithm
continues to re-sample the data from the older distributions, and leads to a model with random, or worse than random,
accuracy on the current distribution. Even for 1PASS-SGD, which only trains over data from the most recent time step,
we observe its convergence rate is slow after a drift, where its previous training on the old data still hinders it. On the
Electricity data with a more subtle drift, we observe that oblivious is actually the best performing algorithm, as discussed
earlier, because data from all over time can be trained and fit by a single model. However, 1PASS-SGD still has lower
accuracy because, as a single pass method, it uses only m update steps at each time even when ρ = 2m are available to the
other algorithms, and also because SGD has a slower convergence rate than the variance-reduced method STRSAGA.

D.4. Evaluation of Greedy Reactive State

One design choice in the DriftSurf algorithm is that during the reactive state, the predictive model follows a greedy approach—
the choice of the predictive model at the current time is the model that had the better performance in the previous time
step—and then at the end of the reactive state, the decision is made whether or not to use the reactive model going forward.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

20 40 60 80 100
Time

0.1

0.2

0.3

0.4

0.5

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(a) SEA0

20 40 60 80 100
Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(b) SEA10

20 40 60 80 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(c) SEA20

20 40 60 80 100
Time

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(d) SEA30

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(e) SINE1

20 40 60 80 100
Time

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(f) HyperPlane-slow

20 40 60 80 100
Time

0.10

0.15

0.20

0.25

0.30

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(g) HyperPlane-fast

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(h) RCV1

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(i) CoverType

20 40 60 80 100
Time

0.2

0.3

0.4

0.5

0.6

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(j) PowerSupply

5 10 15 20 25 30
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(k) Electricity

20 40 60 80 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(l) Airline

Figure 8. Misclassification rate over time (ρ = 4m divided among all models of each algorithm)

The natural alternative choice is that switching to the new reactive model can happen only at the end of the reactive state,
and the stable model is the predictive model throughout the reactive state; we call this DriftSurf (no-greedy). In Figure 11
and Table 9 we show the comparison of DriftSurf to DriftSurf (no-greedy). We observe that DriftSurf performs similar or
better across each dataset, with the biggest improvements on SINE1 and RCV1, datasets that we earlier noted where MDDM
and Aware perform well because there it is desirable to immediately switch to the new model after the large, abrupt drift.
Figure 11 shows the delayed switch of DriftSurf (no-greedy) to the new model in the presence of drift until only the end of

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

20 40 60 80 100
Time

0.05

0.10

0.15

0.20

0.25

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(a) SEA0

20 40 60 80 100
Time

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(b) SEA10

20 40 60 80 100
Time

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(c) SEA20

20 40 60 80 100
Time

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(d) SEA30

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(e) SINE1

20 40 60 80 100
Time

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(f) HyperPlane-slow

20 40 60 80 100
Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(g) HyperPlane-fast

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(h) RCV1

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(i) CoverType

20 40 60 80 100
Time

0.2

0.3

0.4

0.5

0.6

0.7

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(j) PowerSupply

5 10 15 20 25 30
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(k) Electricity

20 40 60 80 100
Time

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
MDDM
AUE
DriftSurf

(l) Airline

Figure 9. Misclassification rate over time (ρ = 2m divided among all models of each algorithm)

the reactive state.

D.5. Using SGD as the Update Process

As mentioned earlier we choose STRSAGA as the update process because of two main reasons: (i) STRSAGA is designed
in a way that can handle different arrival distributions, and (ii) it achieves a faster convergence rate because of using

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

M
isc
la
ss
ifi
ca
tio
n
ra
te

Aware
1PASS-SGD
OBL
DriftSurf

(a) RCV1

5 10 15 20 25 30
Time

0.2

0.3

0.4

0.5

0.6

M
isc

la
ss
ifi
ca
tio

n
ra
te

Aware
1PASS-SGD
OBL
DriftSurf

(b) Electricity

Figure 10. Misclassification rate over time (ρ = 2m for each model)

20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

M
isc

la
ss
ifi
ca

tio
n
ra
te

DriftSurf
DriftSurf(no-greedy)

Figure 11. Misclassification rate over time
for RCV1 - DriftSurf vs DriftSurf (no-
greedy) (ρ = 2m for each model)

Table 9. Total average of misclassification rate - DriftSurf vs DriftSurf (no-greedy) (ρ = 2m for each model)

DATASET DriftSurf DriftSurf (NO-GREEDY)

SEA0 0.088 0.092
SEA10 0.158 0.159
SEA20 0.245 0.243
SEA30 0.335 0.338
HYPER-SLOW 0.117 0.118
HYPER-FAST 0.173 0.175
SINE1 0.189 0.237
RCV1 0.126 0.157
COVERTYPE 0.267 0.273
AIRLINE 0.334 0.335
ELECTRICITY 0.315 0.325
POWERSUPPLY 0.294 0.305

variance-reduced update step. In the next experiment, we want to study the impact of the choice of the update process
in the final results. We re-run the previous experiments using SGD instead of STRSAGA. Table 10 shows the average
misclassification rate for the case where ρ = 2m update steps are used for each model, and Table 11 is for the case where
ρ = 2m steps are used by each algorithm and divided among its models.

As the results presented in Table 10 suggest, AUE, unlike the previous experiment, outperforms MDDM and DriftSurf for
the majority of the studied datasets. The reason is hidden in the high variance nature of SGD. MDDM and DriftSurf both
use performance-degradation for drift detection. Such drift detection is sensitive to the high variance during the training
which may be mistaken for drift in the underlying distribution. However, comparing the results of DriftSurf and MDDM
shows the advantage of going though a reactive state before restarting the model in reducing the false positive rate of drift
detection. AUE, on the other hand, overcomes the high variance of SGD by using a bag of experts and making ensemble
based decisions.

Similar to the previous experiments, to examine the accuracy achieved when enforcing equal processing time, we repeated
the experiment for the case where ρ = 2m steps are used by each algorithm and divided among its models. Reported results
in Table 11 suggest that in such condition AUE is not able to overcome the high variance problem of SGD because it does
not have enough resources to train all of its experts to the converging point.

STRSAGA because of its variance-reduced update step achieves a faster convergence rate in comparison to SGD. Difference
between the reported results in Table 2 and Table 10 confirms the advantage of using STRSAGA over SGD as the update
process.

DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift

Table 10. Total average of misclassification rate - update process: SGD (ρ = 2m for each model)

DATASET Aware DriftSurf MDDM-G AUE

SEA0 0.169 0.119 0.127 0.123
SEA10 0.212 0.187 0.214 0.187
SEA20 0.291 0.263 0.293 0.262
SEA30 0.362 0.358 0.372 0.341
HYPER-SLOW 0.167 0.144 0.146 0.125
HYPER-FAST 0.272 0.196 0.174 0.196
SINE1 0.192 0.235 0.205 0.242
RCV1 0.147 0.171 0.157 0.206
COVERTYPE 0.274 0.274 0.326 0.287
AIRLINE 0.358 0.353 0.359 0.344
ELECTRICITY 0.335 0.314 0.348 0.299
POWERSUPPLY 0.355 0.319 0.375 0.299

Table 11. Total average of misclassification rate - update process: SGD (ρ = 2m divided among all models of each algorithm)

DATASET Aware DriftSurf MDDM-G AUE

SEA0 0.172 0.124 0.121 0.192
SEA10 0.225 0.187 0.231 0.248
SEA20 0.296 0.277 0.302 0.297
SEA30 0.365 0.352 0.366 0.353
HYPER-SLOW 0.164 0.153 0.147 0.160
HYPER-FAST 0.270 0.215 0.177 0.272
SINE1 0.190 0.237 0.204 0.307
RCV1 0.147 0.209 0.160 0.438
COVERTYPE 0.274 0.283 0.324 0.315
AIRLINE 0.353 0.363 0.366 0.370
ELECTRICITY 0.329 0.353 0.354 0.353
POWERSUPPLY 0.342 0.318 0.401 0.323

