
 

  

Abstract— This article introduces a new system property called 
the closest feasible points (CFP) invariance to characterize 
systems with actuator saturation. Systems that possess this 
invariance property include diagonal matrices, completely 
decentralized (completely decoupled) linear dynamical systems, 
and dynamical systems with a nonsingular input-independent 
characteristic (decoupling) matrix that can be made diagonal with 
row or column rearrangements. However, a single-input single-
output system may not possess this property. This system property 
has implications and applications in control, where actuator 
saturation is common.  For example, when an actuator saturates, 
the closed-loop performance of a CFP non-invariant plant under 
a controller that is not a solution to a constrained optimal control 
problem, may degrade considerably. The definition of this 
property guides the derivation of optimal CFP non-invariance 
compensators that decrease the control performance degradation 
gracefully in CFP non-invariant plants. This work characterizes 
the plants for which clipping and direction preservation of 
controller outputs are optimal. 

I. INTRODUCTION 

An invariant is a property of a class of mathematical objects 
that does not change under certain transformations applied to 
the objects. It usually reflects an intrinsic property of the 
objects. Examples are as follows. The observability, 
detectability, controllability, and stabilizability of linear time-
invariant dynamical systems are invariant under invertible 
linear coordinate transformations [1]. The notion of 
invariance has also been defined for sets. A set is said to be 
positively invariant with respect to a dynamical system, if 
every solution of the dynamical system originating inside the 
set is globally defined and stays within the set at every time 
instant [2]. Controllability, observability, and stabilizability 
of linear systems are invariant with respect to expansion-
contraction processes under certain conditions [3–6].   

When a control signal (controller output), c, is sent to 
actuators (Fig. 1), the actuators implement the control signal 
as it is, only if the control signal is within the lower and upper 
limits of the actuators. Otherwise, at least an actuator 
saturates; that is, the actuator clips the control signal 
component before applying the plant input (𝑢) corresponding 
to the signal, to the plant. In this case, the control system 
performance may degrade significantly due to two 
phenomena: (a) integral windup when the controller is 
dynamical; and (b) the implemented plant input 
corresponding to the clipped control signal is not ‘optimal’. 
The former phenomenon is caused by the state variables of 
the dynamical controller not being properly informed of the 
actual controller action (plant input) applied to the plant under 
control [7, 8]. To decrease the former control performance 
degradation, anti-windup compensators have been proposed 
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to properly inform the states of a controller, of the actual 
controller action that the plant under control is subjected to 
[7, 8]. The latter phenomenon is due to the plant output 
response to the plant input corresponding to sat(𝑐) not being 
‘closet’ to the plant output response to the control signal, 𝑐. 
To address the latter control performance degradation, 
compensators have been proposed [9, 10]. Also, relevant to 
this work are the efforts that have been made to characterize 
the class of dynamical systems that can benefit most from 
constrained optimal control (e.g., model predictive control) 
[11, 12].  

This paper introduces a new system property called the 
closest feasible points (CFP) invariance that allows for the 
characterization of the systems that suffer from the latter 
control performance degradation. Indeed, this work describes 
a projection operation on a closed hyperrectangle, which is a 
convex compact subset of the Euclidian space. The projection 
operation is in general non-invariant under a transformation 
𝑆 (since the norm is not invariant under transformation), but 
this work identifies those transformations with respect to 
which the projection operation is invariant. Several 
implications and applications of this system property are 
considered. For continuous-time dynamical systems that do 
not possess this invariance property, an optimal CFP non-
invariance compensator is proposed. The ability of the 
compensators to gracefully decrease control quality 
degradation in the presence of actuator saturation is shown via 
numerical simulations of an example. 
 Section II describes the property. Section III applies special 
cases of the definition to three classes of systems to determine 
the subclasses under which CFPs are invariant. Section IV 
presents a CFP non-invariance (CFPN) compensator for 
continuous-time dynamical systems, and it compares the 
performances of the CFPN compensator with clipping and 
direction preservation, via numerical simulations.  

II. CLOSEST FEASIBLE POINTS INVARIANCE 

Let Ω = {𝑢| 𝑢𝑖,𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑖,𝑚𝑎𝑥, 𝑖 = 1,⋯ ,𝑚} ⊂ ℝ
𝑚 

— where 𝑢𝑖,𝑚𝑖𝑛  and  𝑢𝑖,𝑚𝑎𝑥 (𝑢𝑖,𝑚𝑖𝑛 < 𝑢𝑖,𝑚𝑎𝑥), 𝑖 =
1,⋯ ,𝑚, are finite scalars  — be the set of all feasible values 
that the plant input 𝑢 can take (Ω is a convex compact subset  
of the Euclidean space), 𝑐 ∈  ℝ𝑚 be the control signal, and 
𝑢𝐼 ∈ Ω represent the feasible plant input that is ‘closest’ to the 
control signal 𝑐, in the input hyperspace.  

Fig. 2 graphically explains the CFP invariance. Let 
𝑆:ℝ𝑚 → ℝ𝑞 represent a system, where 𝑚 ≤ 𝑞.  If for every 
control signal 𝑐 ∈  ℝ𝑚, the response of the system 𝑆 to the 𝑢𝐼; 
i.e.,  𝑆 ∗ 𝑢𝐼 , is ‘closest’ (in terms of a norm) to the response of 
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Fig.1.  Each actuator is assumed to be linear (when unsaturated) and static. 

  



 

the system to the control signal 𝑐; i.e.,  𝑆 ∗ 𝑐, then the closest 
feasible points are said to be invariant under the system 𝑆. 
Here, “∗” represents an operator. The next definition 
describes this property mathematically.  

Definition 1: Let ‖𝑐‖𝑝 denote a 𝑝-norm of a vector 𝑐 and  

𝑆:ℝ𝑚 → ℝ𝑞 represent a system, where 𝑚 ≤ 𝑞. If 

arg {min
𝑢∈Ω

‖𝑢 − 𝑐‖𝑝} = arg {min𝑢∈Ω
‖𝑆 ∗ 𝑢 − 𝑆 ∗ 𝑐‖𝑝}       (1)  

for every 𝑐 ∈ ℝ𝑚, then the 𝑝-norm closest feasible points are 
said to be invariant under the system 𝑆. Here, 

arg {min
𝑢∈Ω

‖𝑢 − 𝑐‖𝑝} 

represents the feasible plant input that is 𝑝-norm closest to 
the control signal 𝑐, in the input hyperspace. 

III. APPLICATION TO THREE CLASSES OF SYSTEMS 

Definition 1 with different types of norms can be applied to 
different classes of systems to identify the subclasses that 
possess the corresponding CFP invariance property. In this 
section, three classes of systems are considered, and to each 
class the definition with a specific type of the norm is applied. 

A. Linear Static Square Systems 

Theorem 1: Let the system 𝑆:ℝ𝑚 → ℝ𝑞 represent a full 
rank, 𝑞 × 𝑚 (𝑚 ≤ 𝑞) matrix and the 𝑝 norm in (1) be the L2 
norm (Euclidean norm). For every 𝑐 ∈  ℝ𝑚,  

arg {min
𝑢∈Ω

‖𝑆𝑢 − 𝑆𝑐‖2} = sat(𝑐) = arg {min𝑢∈Ω
‖𝑢 − 𝑐‖2}    (2) 

where  

sat(𝑐) = [
sat1(𝑐1)

⋮
sat𝑚(𝑐𝑚)

],                               (3) 

sat𝑖(𝑐𝑖) ≝ {

𝑢𝑖,𝑚𝑖𝑛, 𝑐𝑖 ≤ 𝑢𝑖,𝑚𝑖𝑛                
𝑐𝑖 ,        𝑢𝑖,𝑚𝑖𝑛 < 𝑐𝑖 < 𝑢𝑖,𝑚𝑎𝑥
𝑢𝑖,𝑚𝑎𝑥, 𝑢𝑖,𝑚𝑎𝑥 ≤ 𝑐𝑖                

, 𝑖 = 1,⋯ ,𝑚    

if the positive definite matrix 𝑆𝑇𝑆 is diagonal or can be made 
diagonal with row or column rearrangements.   

Proof: Let: 

 𝑢∗ = arg {min
𝑢∈Ω

‖𝑆𝑢 − 𝑆𝑐‖2} = arg {min𝑢∈Ω
‖𝑆𝑢 − 𝑆𝑐‖2

2
}. 

 In the case that the matrix 𝑆𝑇𝑆 is diagonal, the Lagrange 
function is: 

𝐿 =  ∑[𝑆𝑇𝑆]𝑖𝑖

𝑚

𝑖=1

(𝑢𝑖 − 𝑐𝑖)
2 +∑𝜇𝑖

𝑚

𝑖=1

(𝑢𝑖 − 𝑢𝑖,𝑚𝑎𝑥) + 

        ∑ 𝜇̃𝑖

𝑚

𝑖=1

(−𝑢𝑖 + 𝑢𝑖,𝑚𝑎𝑥)                    (4) 

where [𝑆𝑇𝑆]𝑖𝑗 is the ith-row jth-column element of the matrix 

𝑆𝑇𝑆, and 𝜇𝑖 , 𝜇̃𝑖 ≥ 0, 𝑖 = 1,⋯ ,𝑚 are the Lagrange 
multipliers. The necessary conditions of optimality (Karush–
Kuhn–Tucker conditions) [13] applied to this constrained 
minimization are: 

2[𝑆𝑇𝑆]𝑖𝑖(𝑢𝑖
∗ − 𝑐𝑖) + 𝜇𝑖 − 𝜇̃𝑖 = 0,   𝑖 = 1,⋯ ,𝑚           (5) 
𝜇𝑖 , 𝜇̃𝑖 ≥ 0,    𝑖 = 1,⋯ ,𝑚                        (6) 

𝜇𝑖(𝑢𝑖
∗ − 𝑢𝑖,𝑚𝑎𝑥) = 0,    𝑖 = 1,⋯ ,𝑚                   (7) 

𝜇̃𝑖(−𝑢𝑖
∗ + 𝑢𝑖,𝑚𝑖𝑛) = 0,    𝑖 = 1,⋯ ,𝑚                    (8) 

 𝑢𝑖,𝑚𝑖𝑛 ≤ 𝑢𝑖
∗ ≤ 𝑢𝑖,𝑚𝑎𝑥,    𝑖 = 1,⋯ ,𝑚                    (9) 

As the Hessian matrix of the Lagrange function is positive 
definite ([𝑆𝑇𝑆]𝑖𝑖 > 0,   𝑖 = 1,⋯ ,𝑚), the conditions of (5)–(9) 
are the necessary and sufficient conditions of optimality. 
Conditions of (7) and (8) indicate that for every 𝑖,  𝜇𝑖 and 
𝜇̃𝑖 cannot be nonzero simultaneously.  

• If  𝑢𝑖,𝑚𝑖𝑛 < 𝑐𝑖 < 𝑢𝑖,𝑚𝑎𝑥, according to (5), (6), (7) and 

(8) 𝜇𝑖 = 𝜇̃𝑖 = 0 and 𝑢𝑖
∗ = 𝑐𝑖 .  

• If  𝑢𝑖,𝑚𝑎𝑥 ≤ 𝑐𝑖, according to (5), (6), (7) and (8)  𝜇𝑖 ≠
0, 𝜇̃𝑖 = 0, and 𝑢𝑖

∗ = 𝑢𝑖,𝑚𝑎𝑥. 
• If 𝑐𝑖 ≤ 𝑢𝑖,𝑚𝑖𝑛, according to (5), (6), (7) and (8) 𝜇𝑖 = 0,
𝜇̃𝑖 ≠ 0, and 𝑢𝑖

∗ = 𝑢𝑖,𝑚𝑖𝑛. 
Therefore, 𝑢𝑖

∗ = sat𝑖(𝑐𝑖), 𝑖 = 1,⋯ ,𝑚. In other words: 

arg {min
𝑢∈Ω

‖𝑆𝑢 − 𝑆𝑐‖2} = 𝑢
∗ = sat(𝑐)                    (10) 

when 𝑆𝑇𝑆 is diagonal. (10) implies that:  

arg {min
𝑢∈Ω

‖𝑢 − 𝑐‖2}  = arg {min𝑢∈Ω
‖𝐼𝑢 − 𝐼𝑐‖2} = sat(𝑐) 

where 𝐼 is the identity matrix. Q.E.D.  
Given a control signal 𝑐, the locus of the plant inputs 𝑢 that 

yield a specific value of ‖𝑢 − 𝑐‖2 is a hypersphere (Fig.3). 

However, the locus of plant inputs 𝑢 that yield a specific value 
of  ‖𝑆𝑢 − 𝑆𝑐‖2 is in general a m-dimensional ellipsoid 

(hyperellipsoid) (Fig.4). The semiaxes of the hyperellipsoid 
are given by   𝑠𝑖 = 𝜎𝑖

−0.5 𝜗𝑖 , 𝑖 = 1,⋯ ,𝑚 (Fig.4) [14], where 
𝜗1, ⋯ , 𝜗𝑚 are the eigenvectors of 𝑆𝑇𝑆;   and 𝜎1, ⋯ , 𝜎𝑚 are the 
singular values of 𝑆. In other words, the eigenvectors 
determine directions of the semiaxes and the eigenvalues 
determine lengths of the semiaxes. These imply that the 
identity of (2) holds if the eigenvectors of 𝑆𝑇𝑆 are parallel to 
the standard basis vectors [14]. Recall that the eigenvectors of 
𝑆𝑇𝑆 are orthogonal, as 𝑆𝑇𝑆 is a positive definite, symmetric 
matrix. As 𝑆 and 𝐼 are both full rank, Ω is a Chebychev set 
with respect to both norms in (2).  

B. Control-Affine Nonlinear Continuous-Time Dynamical 
Square Systems 

Let 𝑆 be a control-affine nonlinear continuous-time 
dynamical system in the form: 

𝑆: {

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡),         𝑢 ∈ Ω ⊂ ℝ𝑚

𝑦(𝑡) = ℎ(𝑥(𝑡))                                                                  

(11) 

 
Fig. 3.  sat(𝑐) is the closest feasible point to 𝑐 for every 𝑐 ∈  ℝ𝑚. (a)  𝑐 ∈ Ω, 

(b) 𝑐 ∉ Ω . 

  

 
Fig. 2.  Graphical description of the CFP invariance. 𝑢𝐼 is the closest feasible 

plant input to the control signal 𝑐 ∈  ℝ𝑚. The response of the system to  𝑢𝐼 ,  
 𝑆 ∗ 𝑢𝐼 , is closest to the response of the system to the control signal 𝑐,  𝑆 ∗ 𝑐, 

for every 𝑐 ∈  ℝ𝑚. The hyperrectangle represents the convex compact set of 

all feasible inputs,  Ω. 

  



 

where  𝑦 ∈ ℝ𝑞,  𝑥 ∈ ℝ𝑛, and 𝑚 ≤ 𝑞. The following 
assumptions are made: the vector fields 𝑔1(𝑥),⋯ , 𝑔𝑚(𝑥), 
ℎ(𝑥), and 𝑓(𝑥) are smooth, where 𝑔𝑗(𝑥) represents the jth 

column of the matrix 𝑔(𝑥); every system output 𝑦𝑗 , 𝑗 =
1,⋯ , 𝑞, has a finite relative order (degree), 𝑟𝑗, which is the 

smallest integer for which the row vector 𝐿𝑔𝐿𝑓
𝑟𝑗−1ℎ𝑗(𝑥) ≠ 0; 

and the characteristic (decoupling) matrix of the system:  

𝑪(𝑥) = [

𝐿𝑔𝐿𝑓
𝑟1−1ℎ1(𝑥)

⋮

𝐿𝑔𝐿𝑓
𝑟𝑞−1ℎ𝑞(𝑥)

]                           (12) 

is full rank. Here, 𝐿𝑓 and 𝐿𝑔𝑗 are Lie derivatives (in the 

directions of the vectors 𝑓 and 𝑔𝑗 , respectively). 

For a control-affine nonlinear continuous-time dynamical 
system in the form of (11), consider the 𝑝 norm: 

‖𝑐(𝑡)‖𝑝 ≝ √∑ ∫ |𝑐ℓ(𝜏)|
2𝑑𝜏

𝑡+𝑇

𝑡
𝑚
ℓ=1                     (13) 

where the time horizon 𝑇 is sufficiently small. 
Theorem 2: For a control-affine nonlinear continuous-

time dynamical system in the form of (11), 

arg { min
𝑢(𝜏)∈Ω

‖𝑆 ∗ 𝑢(𝑡) − 𝑆 ∗ 𝑐(𝑡)‖𝑝} 

                                           = arg { min
𝑢(𝜏)∈Ω

‖𝑢(𝑡)−𝑐(𝑡)‖𝑝} 

where 𝜏 ∈ [𝑡, 𝑡 + 𝑇], if 𝑪𝑇𝑪 can be made diagonal with 
column or row rearrangements; that is, if the eigenvectors of 
𝑪𝑇𝑪 are parallel to the standard basis vectors.  

Proof: For the system of (11), as 𝑇 is sufficiently small, 
given the value of the vector of state variables at the present 
time instant 𝑡, 𝑥(𝑡), the system output responses to 𝑐(𝑡) and 
𝑢(𝑡), denoted by 𝑦̅(𝜏) and each 𝑦(𝜏), respectively, are 
obtained by using truncated Taylor series expansions of the 
system output responses around the current time, 𝑡:  

𝑦̅𝑖(𝜏) = ∑ 𝐿𝑓
𝑙  ℎ𝑖(𝑥(𝑡))

𝑟𝑖
𝑙=0

(𝜏−𝑡)𝑙

𝑙!
+           

(𝜏−𝑡)𝑟𝑖

𝑟𝑖!
𝐿𝑔𝐿𝑓

𝑟𝑖−1ℎ𝑖(𝑥(𝑡))𝑐(𝑡) + h. o. t. ,   𝑖 = 1,⋯ , 𝑞            

(14) 

𝑦𝑖(𝜏) = ∑ 𝐿𝑓
𝑙  ℎ𝑖(𝑥(𝑡))

𝑟𝑖
𝑙=0

(𝜏−𝑡)𝑙

𝑙!
+ 

(𝜏−𝑡)𝑟𝑖

𝑟𝑖!
𝐿𝑔𝐿𝑓

𝑟𝑖−1ℎ𝑖(𝑥(𝑡))𝑢(𝑡) + h. o. t.,    𝑖 = 1,⋯ , 𝑞           

(15) 
where 𝜏 ∈ [𝑡, 𝑡 + 𝑇]. Using (14) and (15), 

min
𝑢(𝜏)∈Ω

‖𝑆 ∗ 𝑢(𝑡) − 𝑆 ∗ 𝑐(𝑡)‖𝑝 = min
𝑢(𝜏)∈Ω

‖𝑦(𝑡)−𝑦̅(𝑡)‖
𝑝

= min
𝑢(𝜏)∈Ω

{√∑ [𝐿𝑔𝐿𝑓
𝑟𝑖−1ℎ𝑖(𝑥(𝑡))[𝑢(𝑡) − 𝑐(𝑡)]𝜎𝑖]

2𝑞

𝑖=1
} (16)

= min
𝑢(𝜏)∈Ω

‖𝑸𝑪(𝑥(𝑡))𝑢(𝑡) − 𝑸𝑪(𝑥(𝑡))𝑐(𝑡)‖
2
 

where 𝑸 = diag{𝜎𝑖},         

𝜎𝑖 = √∫ (
(𝜏 − 𝑡)𝑟𝑖

𝑟𝑖!
)

2

𝑑𝜏
𝑡+𝑇

𝑡

=
1

𝑟𝑖!

𝑇𝑟𝑖+0.5

√2𝑟𝑖 + 1
,    𝑖 = 1,⋯ , 𝑞 

When 𝑪𝑇𝑪 can be made diagonal with column or row 
rearrangements; that is, the eigenvectors of 𝑪𝑇𝑪 are parallel 
to the standard basis vectors, according to Theorem 1: 

arg { min
𝑢(𝜏)∈Ω

‖𝑸𝑪(𝑥(𝑡))𝑢(𝑡) − 𝑸𝑪(𝑥(𝑡))𝑐(𝑡)‖
2
} = sat(𝑐(𝑡)) 

(17) 

as 𝑸 is diagonal. Also, 

‖𝑢(𝑡)−𝑐(𝑡)‖𝑝 = √∑ ∫ |𝑢ℓ(𝜏) − 𝑐ℓ(𝜏)|
2𝑑𝜏

𝑡+𝑇

𝑡

𝑚

ℓ=1
 

= √∑ 𝑇|𝑢ℓ(𝑡) − 𝑐ℓ(𝑡)|
2

𝑚

ℓ=1
= √𝑇‖𝑢(𝑡)−𝑐(𝑡)‖2 

Thus, 

min
𝑢(𝜏)∈Ω

‖𝑢(𝑡)−𝑐(𝑡)‖𝑝 = min
𝑢(𝜏)∈Ω

√𝑇‖𝑢(𝑡)−𝑐(𝑡)‖2   

        = min
𝑢(𝜏)∈Ω

‖𝑢(𝑡)−𝑐(𝑡)‖2 = min
𝑢(𝜏)∈Ω

‖𝐼𝑢(𝑡)−𝐼𝑐(𝑡)‖2 

And according to Theorem 1: 

arg { min
𝑢(𝜏)∈Ω

‖𝐼𝑢(𝑡)−𝐼𝑐(𝑡)‖2} = sat(𝑐(𝑡)). 

Thus,  

arg { min
𝑢(𝜏)∈Ω

‖𝑢(𝑡)−𝑐(𝑡)‖𝑝} = sat(𝑐(𝑡)). 

 Q.E.D.  
Remark 1: Theorem 2 states that the 𝑝-norm closest 

feasible points are invariant under a control-affine nonlinear 
continuous-time dynamical system in the form of (11), if its  
𝑪𝑇𝑪 can be made diagonal with column or row 
rearrangements. Requiring 𝑪𝑇𝑪 to become diagonal with 
column or row rearrangements does not require 𝑪𝑇𝑪 to be 
independent of the state variables, 𝑥. In other words, the 
eigenvectors of 𝑪𝑇𝑪 need to be parallel to the standard basis 
vectors at every time instant 𝑡, while the eigenvalues of 𝑪𝑇𝑪 
may depend on 𝑥. 

Consider the following conintuous-time system examples: 

{

𝑥̇1 = −2𝑥1 + 𝑥2 + 𝑢1 − 10𝑢2                      
𝑥̇2 =  6𝑥1 − 3𝑥2 + 0.1𝑢1 + 2𝑢2                    
𝑦1 = 𝑥1 + 5𝑥2                                                                         
𝑦2 = −0.1𝑥1 + 𝑥2                                            

             (18) 

{

𝑥̇1 = −2𝑥1 + 𝑥2 + 𝑢1 − 10𝑢2                   
𝑥̇2 =  6𝑥1 − 3𝑥2 + 0.1𝑢1 + 2𝑢2                
𝑦1 = 𝑥1                                                           
𝑦2 = 𝑥2                                                           

                 (19) 

 

 

 
Fig. 4. The response of the system 𝑆 to 𝑢𝐼 = sat(𝑐) is closest to the response 

of the system to 𝑐 for every for every 𝑐 ∈  ℝ𝑚, if the eigenvectors of 𝑆𝑇𝑆 

are parallel to the standard basis vectors. In other words, 𝑢𝑂 = 𝑢𝐼,  if the 

eigenvectors of 𝑆𝑇𝑆 are parallel to the standard basis vectors.  

  



 

The system of (18) has the CFP invariace property, but that of 
(19) does not, as their characteristic (decoupling) matrices, 
respectively, are: 

[
1.5 0
0 3

],    [
1 −10
0.1 2

]. 

C. Nonlinear Discrete-Time Dynamical Square Systems 

Let 𝑆 be a delay-free nonlinear discrete-time dynamical 
system of the form: 

𝑆:  {
𝑥(𝑘 + 1) = Φ(𝑥(𝑘), 𝑢(𝑘)),         𝑢 ∈ Ω ⊂ ℝ𝑚

𝑦(𝑘) = ℎ(𝑥(𝑘))                                     
        (20) 

where  𝑦 ∈ ℝ𝑞,  𝑥 ∈ ℝ𝑛, and 𝑚 ≤ 𝑞.  The following 
assumptions are made: the vector fields Φ(𝑥, 𝑢) and ℎ(𝑥) are 
smooth; every system output 𝑦𝑗 has a finite relative order 

(degree), 𝑅𝑗, which is the smallest integer for which 

𝑦𝑗(𝑘 + 𝑅𝑗) explicitly depends on 𝑢(𝑘); and the characteristic 

(decoupling) matrix of the system: 

𝑪̅(𝑥(𝑘), 𝑢(𝑘)) =
𝜕

𝜕𝑢
[

ℎ1
𝑅1(𝑥(𝑘), 𝑢(𝑘))

⋮

ℎ𝑞
𝑅𝑞(𝑥(𝑘), 𝑢(𝑘))

]                   (21) 

is full rank, where: 

ℎ𝑖
0(𝑥(𝑘)) ≝ ℎ𝑖(𝑥(𝑘))  = 𝑦𝑖(𝑘),      𝑖 = 1,⋯ , 𝑞                (22) 

ℎ𝑖
1(𝑥(𝑘)) ≝ ℎ𝑖

0(𝑥(𝑘 + 1)) =   

 ℎ𝑖
0 (Φ(𝑥(𝑘), 𝑢(𝑘))) = 𝑦𝑖(𝑘 + 1),    𝑖 = 1,⋯ , 𝑞       (23) 

ℎ𝑖
𝑅𝑖−1(𝑥(𝑘)) ≝ ℎ𝑖

𝑅𝑖−2(𝑥(𝑘 + 1)) =   

ℎ𝑖
𝑅𝑖−2 (Φ(𝑥(𝑘), 𝑢(𝑘))) = 𝑦𝑖(𝑘 + 𝑅𝑖 − 1), 𝑖 = 1,⋯ , 𝑞  (24) 

ℎ𝑖
𝑅𝑖(𝑥(𝑘), 𝑢(𝑘)) ≝  ℎ𝑖

𝑅𝑖−1(𝑥(𝑘 + 1)) =                                      

ℎ𝑖
𝑅𝑖−1 (Φ(𝑥(𝑘), 𝑢(𝑘))) = 𝑦𝑖(𝑘 + 𝑅𝑖),    𝑖 = 1,⋯ , 𝑞       (25) 

As the system of (20) is delay-free, 𝑅𝑖 = 1, 𝑖 = 1,⋯ , 𝑞. For 
a nonlinear discrete-time dynamical system in the form of 
(20), we consider the norm: 

‖𝑐(𝑘)‖𝑝 ≝ √∑ ∑ [𝑐ℓ(𝑘 + 𝑗)]
21

𝑗=0
𝑚
ℓ=1                      (26) 

Theorem 3: For a nonlinear discrete-time dynamical 
system in the form of (20), 

arg { min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑆 ∗ 𝑢(𝑘) − 𝑆 ∗ 𝑐(𝑘)‖𝑝}  =  

arg { min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑢(𝑘)−𝑐(𝑘)‖𝑝} 

if the characteristic (decoupling) matrix, 𝑪̅, is independent of 
𝑢 and 𝑪̅𝑇𝑪̅ can be made diagonal with column and row 
rearrangements.  

Proof:  Using (22) to (25),  
‖𝑆 ∗ 𝑢(𝑘) − 𝑆 ∗ 𝑐(𝑘)‖𝑝 = ‖𝑦(𝑘)−𝑦̅(𝑘)‖𝑝 =    

= {∑ [ℎℓ
0(𝑥(𝑘)) − ℎℓ

0(𝑥(𝑘))]
2𝑞

ℓ=1
+ 

{∑ ∑[𝑦ℓ(𝑘 + 𝑗) − 𝑦̅ℓ(𝑘 + 𝑗)]
2

1

𝑗=0

𝑞

ℓ=1
}

0.5

 

∑ [ℎℓ
1(𝑥(𝑘), 𝑢(𝑘)) − ℎℓ

1(𝑥(𝑘), 𝑐(𝑘))]
2𝑞

ℓ=1
}
0.5

= 

√∑ [ℎℓ
1(𝑥(𝑘), 𝑢(𝑘)) − ℎℓ

1(𝑥(𝑘), 𝑐(𝑘))]
2𝑞

ℓ=1
= 

‖[

ℎ1
1(𝑥(𝑘), 𝑢(𝑘))

⋮
ℎ𝑞
1(𝑥(𝑘), 𝑢(𝑘))

]− [

ℎ1
1(𝑥(𝑘), 𝑐(𝑘))

⋮
ℎ𝑞
1(𝑥(𝑘), 𝑐(𝑘))

]‖

2

. 

As the characteristic (decoupling) matrix is independent of 𝑢,  

‖[

ℎ1
1(𝑥(𝑘), 𝑢(𝑘))

⋮
ℎ𝑞
1(𝑥(𝑘), 𝑢(𝑘))

]− [

ℎ1
1(𝑥(𝑘), 𝑐(𝑘))

⋮
ℎ𝑞
1(𝑥(𝑘), 𝑐(𝑘))

]‖

2

 

                       = ‖𝑪̅(𝑥(𝑘))𝑢(𝑘) − 𝑪̅(𝑥(𝑘))𝑐(𝑘)‖
2
 

Thus, 

min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑆 ∗ 𝑢(𝑘) − 𝑆 ∗ 𝑐(𝑘)‖𝑝 =                                       

min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑪̅(𝑥(𝑘))[𝑢(𝑘) − 𝑐(𝑘)]‖
2
     (27) 

According to Theorem 1, as 𝑪̅𝑇𝑪̅ can be made diagonal with 
row and column rearrangements, 

arg { min
𝑢(𝑘)∈Ω

‖𝑪̅(𝑥(𝑘))[𝑢(𝑘) − 𝑐(𝑘)]‖
2
} = sat(𝑐(𝑘)). 

As the performance index in (27) is independent of 𝑢(𝑘 + 1), 
𝑢(𝑘) = sat(𝑐(𝑘)) and every  𝑢(𝑘 + 1) ∈ Ω is a solution of 
the minimization problem of (27). Therefore, 𝑢(𝑘) =
sat(𝑐(𝑘)) and  𝑢(𝑘 + 1) =  sat(𝑐(𝑘 + 1)) is a solution of the 
minimization problem. In other words, 

min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑪̅(𝑥(𝑘))[𝑢(𝑘) − 𝑐(𝑘)]‖
2
= 

= [sat(𝑐(𝑘))    sat(𝑐(𝑘))]𝑇 
As 

min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑢(𝑘)−𝑐(𝑘)‖𝑝= 

min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

√∑ ∑[𝑢ℓ(𝑘 + 𝑗) − 𝑐ℓ(𝑘 + 𝑗)]
2

1

𝑗=0

𝑚

ℓ=1
= 

min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

√∑ [𝑈ℓ(𝑘) − 𝐶ℓ(𝑘)]
2

𝑚

ℓ=1
     

                                      = min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑈(𝑘)−𝐶(𝑘)‖2, 

where 𝑈(𝑘) = [𝑢(𝑘)   𝑢(𝑘 + 1)]𝑇 and 𝐶(𝑘) = [𝑐(𝑘)   𝑐(𝑘 +
1)]𝑇 . 

arg { min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑈(𝑘)−𝐶(𝑘)‖𝑝} =  

      arg { min
𝑢(𝑘),𝑢(𝑘+1)∈Ω

‖𝑈(𝑘)−𝐶(𝑘)‖2} =

                                            [sat(𝑐(𝑘))   sat(𝑐(𝑘))]𝑇. 
Q.E.D. 

Remark 2: Theorem 3 states that the 𝑝-norm closest 
feasible points are invariant under a nonlinear discrete-time 
dynamical system in the form of (20), if the characteristic 
(decoupling) matrix of the system is independent of 𝑢 and 
𝑪̅𝑇𝑪̅ can be made diagonal with column or row 
rearrangements. Requiring the characteristic (decoupling) 
matrix of a system to be independent of 𝑢 and 𝑪̅𝑇𝑪̅ to become 
diagonal with column or row rearrangements does not require 
the matrix to be independent of the state variables, 𝑥. In other 
words, the eigenvectors of 𝑪̅𝑇𝑪̅ need to be parallel to the 
standard basis vectors at every time instant 𝑡, while the 
eigenvalues of 𝑪̅𝑇𝑪̅ may depend on 𝑥. 

Consider the following three dynamical system examples:   

{
𝑥(𝑘 + 1) = 0.995𝑥(𝑘)  +  0.1𝑢(𝑘)  + 0.1cos(3𝑢(𝑘))  (28) 

         𝑦(𝑘) = 𝑥(𝑘)                                                                                          
       

 



 

 

{
 

 
𝑥1(𝑘 + 1) =  −3𝑥1(𝑘) + 𝑥2

3(𝑘) − 3𝑢1(𝑘) + 30𝑢2(𝑘)

𝑥2(𝑘 + 1) =  𝑥1
2(𝑘) − 𝑥2(𝑘) + 9𝑢1(𝑘) + 𝑢2(𝑘)           

𝑦1(𝑘) =  𝑥1(𝑘)                                                        
𝑦2(𝑘) = 𝑥2(𝑘)                                                         

   (29) 

{
 

 
𝑥1(𝑘 + 1) =  −3𝑥1(𝑘) + 𝑥2

3(𝑘) − 3𝑢1(𝑘) + 30𝑢2(𝑘)

𝑥2(𝑘 + 1) =  𝑥1
2(𝑘) − 𝑥2(𝑘) + 9𝑢1(𝑘) + 𝑢2(𝑘)           

𝑦1(𝑘) =  𝑥1(𝑘) − 30 𝑥2(𝑘)                                  
𝑦2(𝑘) =  3𝑥1(𝑘) + 𝑥2(𝑘)                                      

   (30) 

The systems of (28) and (29) do not have this CFP invariace 
property but that of (30) has, because their characteristic 
(decoupling) matrices, respectively, are: 

0.1 − 0.3sin(3𝑢),   [
−3 30
9 1

],  [
−273 0
0 91

]. 

Note that the system of (28) is single-input single-output, but 
it lacks the CFP invariance property. 

IV. CLOSEST-FEASIBLE-POINTS NON-INVARIANCE 

COMPENSATOR 

As pointed out in the Introduction, in the presence of 
actuator saturation, the performance of a control system may 
degrade significantly due to: (a) integral windup when the 
controller is dynamical; and (b) CFP non-invariance (CFPN), 
that is, the closest feasible points being non-invariant under 
the plant that is subjected to control.  

The definition of the CFP invariance guides how to derive 
a CFPN compensator (CFPNC) that optimally mitigates the 
control performance degradation due to the CFPN of a plant. 
Given a control signal, 𝑐, such a compensator calculates the 
optimal feasible plant input, 𝑢𝑂 ,  that yields a plant output 
response closest to the plant output response to  𝑐.  In the case 
that the controller is dynamical, the states of the controller 
must be informed of the calculated optimal feasible plant 
input properly (Fig.5), as it is common in every anti-integral-
windup scheme.  

Following the approaches used in [10], for continuous-time 
systems in the form of (11), given a control signal and a 
measurement of state variables a time instant 𝑡, 𝑐(𝑡) and 𝑥(𝑡), 
an optimal feasible plant input that yields a plant output 
response closest to the plant output response to 𝑐(𝑡) is 
proposed to be calculated by solving the following 
constrained minimization problem at each time instant 𝑡: 
min
𝑢(𝑡)∈Ω

‖𝑆 ∗ 𝑢(𝑡) − 𝑆 ∗ 𝑐(𝑡)‖𝑝 = min
𝑢(𝑡)∈Ω

‖𝑦(𝑡) − 𝑦̅(𝑡)‖
𝑝
    (31) 

where  

            ‖𝑦(𝑡)‖
𝑝
≝ √∑ 𝑤ℓ ∫ |𝑦ℓ(𝜏)|

2𝑑𝜏
𝑡+𝑇

𝑡

𝑞
ℓ=1                   (32) 

𝑇 is a sufficiently small time-horizon, and 𝑤1, ⋯ , 𝑤𝑞 are 

positive scalar constants, which allow one to adjust the effects 
of input constraints on controlled variables; the higher is the 
value of a weight, the higher is the importance of the 
controlled variable tied to the weight, and the less will be the 
effects of the input constraints on the controlled variable.  

Corollary 1: For continuous-time systems in the form of 
(11): 
min
𝑢(𝑡)∈Ω

‖𝑆 ∗ 𝑢(𝑡) − 𝑆 ∗ 𝑐(𝑡)‖𝑝  = min
𝑢(𝑡)∈Ω

‖𝑦(𝑡) − 𝑦̅(𝑡)‖
𝑝
=      

  = min
𝑢(𝑡)∈Ω

‖𝑸̃𝑪(𝑥(𝑡))𝑢(𝑡) − 𝑸̃𝑪(𝑥(𝑡))𝑐(𝑡)‖
2
       (33) 

where 𝑸̃ = diag{𝜎𝑖√𝑤𝑖}.                      
Proof:  Similarly to the Proof of Theorem 2, when the time 

horizon, 𝑇, is sufficiently small, using (14) and (15), one can 
write: 

‖𝑦(𝑡)−𝑦̅(𝑡)‖
𝑝
 

             = {√∑ 𝑤𝑖 [𝐿𝑔𝐿𝑓
𝑟𝑖−1ℎ𝑖(𝑥(𝑡))[𝑢(𝑡) − 𝑐(𝑡)]𝜎𝑖]

2𝑞

𝑖=1
}   

                                   = ‖𝑸̃𝑪(𝑥(𝑡))𝑢(𝑡) − 𝑸̃𝑪(𝑥(𝑡))𝑐(𝑡)‖
2
 

Q.E.D.  
Thus, given a control signal and a measurement of state 

variables a time instant 𝑡, 𝑐(𝑡) and 𝑥(𝑡), the constrained 
optimization of (33) can be solved to obtain the optimal 
feasible plant input corresponding to the control signal 𝑐(𝑡).  
This constrained optimization problem can be solved easily 
using the computationally efficient, globally-converging, 
simple method [15]:  

𝑢ℓ+1 = sat(𝑑−1𝑃(𝑢ℓ − 𝑐) + 𝑢ℓ),    ℓ = 0,1,⋯      𝑢0 = 𝑐 

where 𝑃 = [𝑝𝑖𝑗] = 𝑪
𝑇𝑪 and 𝑑 =  √∑ ∑ 𝑝𝑖𝑗

2𝑚
𝑗=1

𝑚
𝑖=1 . 

In the case that the 𝑝-norm closest feasible points are 
invariant under a dynamical system in the form of (11); that 
is, the eigenvectors of 𝐶𝑇𝐶 are parallel to the standard basis 
vectors at every time instant 𝑡,  

arg { min
𝑢(𝑡)∈Ω

‖𝑸̃𝑪(𝑥(𝑡))𝑢(𝑡) − 𝑸̃𝑪(𝑥(𝑡))𝑐(𝑡)‖
2
} = sat(𝑐(𝑡)) 

indicating that in this special case, clipping is optimal; that is, 
sat(𝑐) is optimal in the sense of (31).  

Example. Consider the plant of (19) with the input 
constraints:  𝑢1,𝑚𝑖𝑛 = −1, 𝑢1,𝑚𝑎𝑥 = +1, 𝑢2,𝑚𝑖𝑛 = −2,
𝑎𝑛𝑑 𝑢2,𝑚𝑎𝑥 = +2.  This plant, which lacks the CFP 

invariance property, is controlled using the static I-O 
linearizing state feedback: 

{
𝑐1 = (2𝐴 + 10𝐵)/3      
𝑐2 = (−0.1𝐴 + 𝐵)/3  

                                (34) 

where 

𝐴 =
𝑦𝑠𝑝,1 − 𝑥1

𝛽1
+ 2𝑥1 − 𝑥2,   𝐵 =

𝑦𝑠𝑝,2 − 𝑥2
𝛽2

− 6𝑥1 + 3𝑥2     

which induces the closed-loop plant output responses: 𝛽1𝑦̇1 +
 𝑦1 = 𝑦𝑠𝑝,1  and 𝛽2𝑦̇2 + 𝑦2 = 𝑦𝑠𝑝,2  in the absence of 

constraints. As the state feedback of (34) has no dynamics, the 
control quality does not degrade due to integral windup when 
an actuator saturates. 
 Other existing methods of calculating a feasible 𝑢 based on 
a control signal (controller output), 𝑐, are clipping [7, 8]: 

𝑢 = sat(𝑐),                                    (35) 
and direction preservation [16]:   

𝑢𝑗 = 𝑢𝑗,𝑠𝑠 + (𝑐𝑗−𝑢𝑗,𝑠𝑠) min{𝜌1, ⋯ , 𝜌𝑚},   𝑗 = 1,⋯ ,𝑚     (36) 

where, 

𝜌𝑗 = [sat𝑗(𝑐𝑗)−𝑢𝑗,𝑠𝑠]/[𝑐𝑗−𝑢𝑗,𝑠𝑠],     𝑗 = 1,⋯ ,𝑚 

and 𝑢𝑗,𝑠𝑠 is the steady-state (equilibrium) value of 𝑢𝑗.  
Fig.6 compares three cases for which feasible plant inputs 

are calculated by the CFPN compensator,  clipping, and 
direction preservation, given a controller output 𝑐. Direction 
preservation yields an optimal plant input in the sense of (33) 

 
Fig. 5.  Calculation of an optimal feasible plant input based on an 

unconstrained controller output (control signal) using a CFPN compensator. 

The feedback is needed to prevent integral windup, if the controller has 

dynamics. 

  



 

when the controller output vector and an eigenvector of 𝑪𝑇𝑪 
are coincidant (Fig.6), while clipping yields an optimal plant 
input in the sense of (33) when the eigenvectors of 𝑪𝑇𝑪 are 
parallel to the standard basis vectors (Fig.6).   
 Fig. 7 depicts the input and output responses of the plant 
under the state feedback of (34) in four cases: (a) when there 
are no constraints; and (b), (c) and (d) when the input 
constraints are present and the CFPNC of (32), clipping, (35), 
and direction preservation, (36), are implemented separately. 
As can be seen in Fig. 7, for this plant that lacks the CFP 
invariance property, the control performances are very 
different in the three cases (b), (c) and (d). As expected, the 
CFPN compensator provides the constrained plant output 
response that is closest to the unconstrainted one. Under 
direction preservation it takes a long time for the controlled 
variables to reach their setpoint values, and under clipping the 
initial conditions are not in the domain of attraction of the 
closed-loop control system; in this case, under the CFPN 
compensator and direction preservation, the domain of 

attraction of the closed-loop system is larger.  

V. CONCLUSION 

This paper introduced a new system property called the 
closest feasible points invariance to characterize systems with 
actuator limits. A few system classes and norm types were 
considered, and in two of these cases implications and 
applications of this property in control were explored and 
discussed. The presence or absence of this invariance property 
in a system has no relation with the dimension of the system. 
The definition of this property guided the derivation of a CFP 
non-invariance compensator that gracefully decreases the 
control quality degradation in continuous-time plants that lack 
the CFP invariance property. This work also characterized the 
plants for which clipping and direction preservation of 
controller outputs are optimal.  
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Fig. 7.  Input and output profiles of the plant of (19) under the state 

feedback of (34). Uncons = no input constraints. DirP = direction 

preservation. 𝛽1 = 𝛽2 = 0.5, 𝑦𝑠𝑝,2 = 1, 𝑦𝑠𝑝,2 = 2, 𝑢1,𝑠𝑠 = 𝑢2,𝑠𝑠 = 0, 

𝑥1(0) = −1, and 𝑥2(0) = 0. 
 

 
Fig. 6.  A comparison of feasible plant inputs calculated by the CFPNC, 

clipping, and direction preservation, given a controller output 𝑐.  (a) sat(𝑐) ≠
DirP(𝑐) ≠ CFPNC(𝑐);  (b) sat(𝑐) = CFPNC(𝑐) ≠ DirP(𝑐); (𝑐)  DirP(𝑐) =
CFPNC(𝑐)  ≠ sat(𝑐). 



  

 


