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Abstract

The 2D Multi-Agent Path Finding (MAPF) problem aims at
finding collision-free paths for a number of agents, from a
set of start locations to a set of goal locations in a known
2D environment. MAPF has been studied in theoretical com-
puter science, robotics, and artificial intelligence over several
decades, due to its importance for robot navigation. It is cur-
rently experiencing significant scientific progress due to its
relevance for automated warehouses (such as those operated
by Amazon) and other important application areas. In this
paper, we demonstrate that some recently developed MAPF
algorithms apply more broadly than currently believed in the
MAPEF research community. In particular, we describe the 3D
Pipe Routing (PR) problem, which aims at placing collision-
free pipes from given start locations to given goal locations in
a known 3D environment. The MAPF and PR problems are
similar: a solution to a MAPF instance is a set of blocked
cells in x-y-t space, while a solution to the corresponding
PR instance is a set of blocked cells in x-y-z space. We
show how to use this similarity to apply several recently
developed MAPF algorithms to the PR problem, and discuss
their performance on real-world PR instances. This opens up
anew direction of industrial relevance for the MAPF research
community.

Introduction

The 3D Pipe Routing (PR) problem is a common industrial
problem that appears when designing the layout of indus-
trial plants, such as natural gas processing stations, water
treatment facilities, and the power plants used in ships and
submarines. Designing the layout of such a plant requires
finding 3D coordinates for every piece of equipment in the
plant (the equipment allocation problem), and finding a 3D
route for every pipe that connects two pieces of equipment
(the PR problem). The aim is to minimize the total cost of the
plant (which can run into multi-billion dollar budgets), while
ensuring safety and correct functionality. Figure 1 shows a
layout for part of a natural gas plant.

Differences in the quality of the final layout can have a
very significant impact on the cost of these plants, including
the cost of the pipes and associated support structures,
which are known to take the largest share: up to 80%
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Figure 1: Example layout for the acid gas removal unit in a
liquefied natural gas plant.

of the purchased equipment cost or 20% of the fixed-
capital investment (Peters and Timmerhaus 2004). However,
finding high-quality plant layouts is remarkably difficult
due to the size of these plants and the complexity of the
associated constraints. As a result, layouts are still designed
manually, taking multiple engineers many months (or even
years) to complete. This process is inefficient, costly, and the
results may vary in quality, since they largely depend on the
experience of the piping and layout engineers.

In this work, we focus on the PR problem, which shares
many similarities with 2D Multi-Agent Path Finding
(MAPF). A solution to the 2D MAPF problem is a set
of collision-free paths in x-y-t space where t is the time
dimension. A solution to the PR problem is a set of collision-
free paths in x-y-z space. We exploit the similarites to apply
recently developed priority-based MAPF algorithms to
the PR problem, with the goal of finding good solutions
quickly. We consider a variety of challenging real-world PR
problems provided by our industry partner, which have up to
several hundred pipes. Our approach improves convincingly
on a currently state-of-the-art PR technique from (Belov
et al. 2017), both in terms of success rate (we route more
pipes) and solution quality (we achieve smaller costs).



The Real-World Pipe Routing (PR) Problem

Current research into automatic plant layout commonly
divides it into two phases. The first phase performs equip-
ment allocation, that is, finds 3D positions for all necessary
equipment of the plant with respect to a set of operational
constraints. In this phase, the cost of the pipes is approxi-
mated using rough measures, such as Manhattan distances.
The second phase solves the PR problem directly, by finding
3D routes for the pipes that connect the input and output
nozzles of the already allocated equipment.

PR is made challenging by a variety of constraints, each
of which is necessary to satisfy operational, maintenance,
and safety criteria. In order to satisfy all these different con-
straints in a reasonable amount of time, most optimisation
methods for solving the PR problem route pipes one by one
(i.e., sequentially) according to a given order. In this section,
we describe the most important features of the PR problem
and the various simplifications made by the PlantLayout
system (Belov et al. 2018), a prototype industrial software
that provides us with a reference model.

The Routing Landscape. Obstacles can have any geo-
metric shape. PlantLayout approximates them by cuboids.
We distinguish between physical obstacles, such as equip-
ment, and logical ones, such as maintenance access zones.

Pipe Diameter. Pipes have a certain diameter and require
some minimal distance to other objects. PlantLayout accu-
rately models this.

Circular Bends and Non-Axis-Parallel Segments.
Pipes can bend with a certain radius. Moreover, although
in practice most pipe segments are parallel to one of the
coordinate axes, a few are not. PlantLayout assumes pointed
bends and axis-parallel segments. However, to account for
the bend radius of (usually) 1.5D, where D is the pipe’s
diameter, each segment must be at least 3D long (1.5D for
nozzle segments).

Support Costs. A pipe has to be supported either by
the ground or by some other equipment. The further it is
from the supporting object or the ground, the higher the
support costs. Moreover, in practice, several pipes can be
supported together when their routes are close. PlantLayout
approximates the cost aspect by constraining every bend to
be at most 3 meters away from at least one equipment item
or the ground, and adding a height penalty for each bend
when it is not in a supporting structure, such as a pipe rack.

Bend Costs and Penalties. Bends are expensive in terms
of construction and operation. PlantLayout includes penalty
terms in the objective function of the routing method to
account for this.

Stress and Flexibility Analysis. Pipes may contract and
expand due to temperature changes in the environment
and the materials they transport. This poses stress on the
pipe, which needs to be accounted for using a stress and
flexibility analysis. There are several methods differing in
their complexity and precision (ASME International 2017).
While PlantLayout allows for an approximate control of pipe
stress during optimization, it was not used in this study.

Existing Methods for the PR Problem

In practice, the PR problem is solved iteratively under
considerations from various domains, including further op-
erational and construction aspects not listed above. In partic-
ular, there is a strong emphasis on the cooperative allocation
of pipes (e.g., reusing support structures), or pipes and
equipment together, going far beyond conflict-free routing
only. These aspects have not been studied enough, and we
leave them for future work. Below, we review methods
known in the research literature.

Most research into plant layout design focuses on the
equipment allocation phase (e.g., Xu and Papageorgiou; Xu
and Papageorgiou 2007; 2009). For small instances of the
problem, Sakti et al. (2016) successfully apply a satisfac-
tion (rather than optimisation) method that simultaneously
allocates equipment and routes the pipes. Authors consider
10 equipment pieces and up to 15 pipes (4 segments per pipe
on average). However, their method fails to find solutions for
instances with as few as 8 pipes. Realistic plants are much
larger. For example, Belov et al. (2018) consider an instance
of part of a Liquefied Natural Gas (LNG) plant, with 76
equipment pieces and 85 pipes within a 1250x500x200
grid graph. Instances with all equipment in the plant have
hundreds of equipment pieces and pipes.

A variety of search-based methods focus specifically on
PR. Some of these rely on meta-heuristics, such as the ant-
colony evolutionary algorithms considered by Furuholmen
et al. (2010) and Jiang et al. (2015). Another popular
approach involves prioritised planning (Cao et al. 2018),
wherein the pipes are ordered according to some fixed
priority and routed in order. Each higher-priority pipe then
becomes an obstacle for all lower-priority pipes.

Another approach to PR, similar to that of PlantLayout,
involves the use of combinatorial optimisation. Guirardello
and Swaney (2005) describe a detailed mixed-integer pro-
gramming (MIP) model for solving phase one of the plant
design layout problem, and they give a general overview
of a network-flow MIP model that can solve phase two
(i.e., PR). Their PR method involves the construction of a
reduced connection graph that limits the possible routes of
the pipes. The graph is used to route pipes one by one, as the
authors suggest that simultaneous routing is too costly. Since
this work gives only a high-level overview, some details
are omitted, including the construction of the graph. One
approach to building connection graphs is considered by
de Berg et al. (1992), who present a higher-dimensional
rectilinear shortest path model that considers bend costs.
Another approach is given by Zhu and Latombe (1991),
using cuboid free space decomposition and is also applied
to PR. However, even if these methods are used, it is not
clear how Guirardello and Swaney (2005) resolve situations
where pipes can interfere with each other. (Guirardello and
Swaney 2005 talk about “some tuning by hand” which might
be required for these cases.)

In this work, we employ a general PR method first
considered by Belov et al. (2017). This approach relies on
a high-level model of the PR problem written in the solver-
independent language MiniZinc (Nethercote et al. 2007).
The model can be solved with a variety of optimisation tech-



nologies, including MIP, and it allows routing several pipes
simultaneously, although this approach becomes quickly
intractable. We apply this method as a single-agent solver
in the context of Priority-Based Search (Ma et al. 2019), a
recent technique developed for Multi-Agent Path Finding
(MAPF). We show that these two approaches (prioritised
search at the high-level and realistic single PR at the low-
level) can find state-of-the-art solutions to industrial prob-
lems with up to hundreds of pipes.

Prioritised Planning

Definition 1. We call an assignment of routes to pipes a
plan. A complete plan is a plan where all pipes have routes.
A maximal plan is either complete, or not allowing further
routes under the active priority ordering (because of lack of
space). A feasible plan is a conflict-free maximal plan.

Prioritised planning (Erdmann and Lozano-Pérez 1987) is
a broad family of multi-agent coordination techniques which
all share the same basic principles. First, agents are planned
for sequentially, each from its start location to its target
location. Second, during pathfinding search, each agent is
required to avoid all other agents previously planned for.

Although incomplete in general (see Figure 2), prioritised
planning algorithms appear widely in the literature and
have been used in a variety of different contexts, including
PR (Guirardello and Swaney 2005; Belov et al. 2017; Cao et
al. 2018). One of the main advantages is performance: with
k agents to coordinate, a feasible plan can be available after
just k single-agent searches. This has allowed practitioners
to develop scalable approaches to otherwise intractable
problems with hundreds of moving agents (Silver 2005).
The cost of a plan can depend on the priority ordering,
and there are k! possible orders in total. Various ordering
heuristics have been considered, including for PR (Belov et
al. 2017). However, choosing a good set of priorities remains
a challenging problem sometimes left to human experts (Cao
et al. 2018).

Priority-Based Search (PBS)
PBS (Ma et al. 2019) is a recent coordination algorithm that
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Figure 2: Prioritised planning example. For the same layout,
left is the X Z-projection (side-view) and right is the XY -
projection (top-view). Blocked cells are marked with x on
the left. Assume this obstacle structure is replicated along
the Y direction. There are two pipes, red and black, with
their start-goal locations in holes 1-3 and 2-4 (counting
from the left), respectively. C; and Cs mark conflict points.
Prioritised planning always fails in this case, irrespective of
the ordering. An optimal plan (made clear on the right) has
the two pipes swap priorities at the conflict points.

computes priority orderings online instead of a priori. We
give herein a brief description, since the algorithm is central
to our work. Note that in the below descriptions each agent is
a pipe and each path is a trajectory in three dimensions: from
one distinguished nozzle called the start to another nozzle
called the target. While the major difference to (Ma et al.
2019) is the low-level subproblem, which is the PR problem,
we made some other changes highlighted below.

Search Space. PBS is a branch-and-bound algorithm.
It searches a binary Conflict Tree (CT), where each node
corresponds to a complete plan. The root of the CT tree
corresponds to a plan where every agent ignores all the rest
and follows one of its own individually optimal shortest
paths. Notice that none of the agents have priorities at this
point.

Conflicts. When PBS expands a CT node, it first checks
whether the proposed plan contains any collisions among
the agents. Such collisions are called conflicts. If there are
conflicts, PBS chooses a conflict according to some policy
and then works to resolve the impasse by branching the
current plan.

Branching. To resolve a conflict between agents ¢ and
j,> PBS generates two new child CT nodes: one with added
constraint (¢ < j) indicating that agent ¢ has higher priority
than agent j, and the other one with added constraint (j <
i), which gives j higher priority. The conflict is resolved at
each child node by computing a new individually optimal
path for the lower priority agent. The other agents all retain
their current paths in both child nodes.

Pathfinding. To plan a new individually optimal path,
we apply the optimisation method from (Belov et al. 2017).
This method uses a high-level MiniZinc model of the PR
problem, which specifies all associated costs and operational
constraints. We instantiate the model by adding as obstacles
the set of all plant equipment, together with the path of
every pipe that corresponds to a higher priority agent. We
also introduce a set of additional obstacles, called fake
nozzles, which correspond to the shortest possible start and
target nozzle segments of the pipes that have yet to be
routed. In our setting, fake nozzles occupy a length twice
the diameter of the corresponding pipe. We use MIP solver
Gurobi (Gurobi Optimization 2020) to solve the model, that
is, to plan a path that minimises the overall cost computed
using the length and diameter of the pipe, the number of
bends, and any associated supports.

Tree Traversal. PBS explores the CT by performing a
depth-first traversal. The algorithm continues down a given
branch, as long as the order specified by the set of constraints
that appear on the path from the root CT node to the
current CT node is consistent, i.e., has no directed cycles.
When looking for a new path for a lower priority agent, the
pathfinder can fail. This indicates there is no path for the set
of specified constraints. In contrast to (Ma et al. 2019), we
allow a certain number of failed pipes, limited by parameter
maxMissing, and only backtrack if that number is exceeded.
PBS also backtracks when the current node is a feasible plan,
to try to improve it.

Termination. The search terminates when a user-
specified time limit is reached, or when the search exhausts



Algorithm 1: PBS for Pipe Routing

Algorithm 2: Function OneDive

Data: Equipment layout and pipes to be routed with no priority set
Input: conflictPolicy, maxMissing, timeOut
Root.plan, Root.constraints < IndependentRouting(), ()
STACK < {Root}
bestPlan <
while STACK # () and (!timeOut or bestPlan = () do
N <— pop(STACK) /I Depth-first search
if Quality(N.plan) < Quality(bestPlan) then
if N.plan has no conflicts then
‘ bestPlan <— N.plan
else
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[
=53

nodes <— Branch(N, conflictPolicy, maxMissing)

-
o

Insert nodes into STACK in non-increasing order of their quality

-
»

Function Branch (N, conflictPolicy, maxMissing) :
C < GetConflictPair(N.plan, conflictPolicy)
newNodes < 0

foreach p involved in C (let the other pipe be ¢) do

=
a B W

if N.constraints are consistent with (p < ¢) then

—
=2

child <— empty node

—
o

child.plan <— N.plan

child.constraints <— N.constraints U {p < q}

child.plan.q < GetPath(child, q)

if child.plan.q # (O or maxMissing > NumberFailed(child.plan) then
newNodes <— newNodes U {child}

D =
SR E8C

I
“w

return newNodes

the tree.

Differences to the PBS of (Ma et al. 2019). Algorithm 1
provides a detailed pseudo-code description of our proposed
PBS implementation. While very similar in principle to (Ma
et al. 2019), it has a number of important differences. First,
we consider feasible plans with unrouted/missing pipes.
This is because we do not know if all pipes can be success-
fully routed in a conflict-free way. Parameter maxMissing is
the largest allowed number of missing pipes. Correspond-
ingly, the quality of a plan is measured not only by its total
cost, but primarily by the number of successfully routed
pipes. Second, we do not terminate after the first conflict-
free plan, but try to improve it. In doing this, we store
the best feasible plan computed thus far as an incumbent
(Line 8). We use the incumbent to bound the quality of the
current node and never explore any branch where the quality
of the candidate plan is equal to or worse than the incumbent
(Line 6); that is, where the number of missing pipes is not
smaller and, if equal, the cost is not smaller. And third, we
parameterise the algorithm with a conflict policy, that is, a
heuristic that helps PBS to decide which conflict it should
branch on next.

We now describe the role of several important PBS
functions, which we again adapt for PR.

Function GetPath(N, p) looks for an individually optimal
route for pipe p that avoids all equipment, fake nozzles,
and all locations occupied by pipes with higher priority (as
defined by the current tentative plan at node N). When no
feasible route exists, GetPath(N,p) returns () and the current
plan has one more missing pipe.

Function IndependentRouting() returns a set of indepen-
dently optimal routes for all pipes/agents. Equipment must

Input: plan, routesFixed, conflictPolicy, fixPolicy, bestPlan
1 while plan has any conflicts do
C < GetConflictPair(plan, conflictPolicy)
routeToFix < SelectRouteToFix(C, fixPolicy)
routesFixed < routesFixed U routeToFix
routesToReroute <— FindConflictedRoutes(plan, routeToFix)
plan < plan \ routesToReroute
for route € routesToReroute do
plan < plan U GetPath(routesFixed, route)
if Quality(bestPlan) < Quality(plan) then
‘ return ()

(== RN B N N I )

=
=

// Cannot improve bestPlan

11 return plan

still be avoided, as well as fake nozzles.

Function Quality(S) returns, for a partial or complete plan
S, a tuple (num_missing, ¢). Here, num_missing is the num-
ber of pipes that could not be routed, and c is the total cost
of the routed pipes. When comparing two plans, we do so
lexicographically using the precedence operators < and =,
where 51 < S5 (57 X S2) means the plan S; is better (not
worse) than Sy. We define Quality()) = (0o, 00).

Function GetConflictPair(S, conflictPolicy) picks a pair of
conflicting pipes from .S, using the conflict policy conflict-
Policy. We consider two conflict policies implemented as
distributions:

1. Uniform distribution.

2. Weights proportional to the costs of the two conflicting
pipes.

Thus, both conflict policies are random, and any conflict can

be selected, but conflict policy 2 prefers those with ‘big’

pipes involved.

Sampling the Conflict Tree (CT)

In addition to PBS, we consider several sampling-based
approaches to explore the PBS CT.

FixOrder is our reference algorithm from (Belov et al.
2017). It routes pipes sequentially according to an a priori
fixed priority ordering based on non-increasing estimated
total costs.

OneDive is a version of PBS that explores a single branch
of the CT. Algorithm 2 gives a pseudo-code description.
Given an infeasible plan, OneDive fixes the paths of some
agents (deemed higher priority according to the policy) and
replans all remaining agents (deemed lower priority) whose
paths are in conflict with the higher priority set. It exits
prematurely whenever it discovers that it cannot improve
the reference plan provided (Line 10). OneDive employs the
following additional two functions.

Function SelectRouteToFix(C, fixPolicy) uses, for a given
conflict C = (4, j), the given fixing policy fixPolicy to return
either pipe ¢ or pipe j with some probability. We again
consider two distributions:



Algorithm 3: Randomized Restart

Input: timeOut, conflictPolicy, fixPolicy

routes <— IndependentRouting()

bestRoutes < ()

repeat
currentRoutes <— OneDive(routes, (), conflictPolicy, fixPolicy, bestRoutes)
if Quality(currentRoutes) < Quality(bestRoutes) then
‘ bestRoutes <— currentRoutes

until timeOut;

I T N R S

return bestRoutes

Algorithm 4: Hill Climbing
Input: bestRoutes, timeOut, destructionPercent, conflictPolicy, fixPolicy

1 routes <— IndependentRouting()

2 while ltimeOut do

3 | routesToRepair <— SelectUnfixRoutes(bestRoutes, destructionPercent)

4 currentRoutes <— OneDive(routes, bestRoutes \ routesToRepair,
conflictPolicy, fixPolicy, bestRoutes)

5 | if Quality(currentRoutes) < Quality(bestRoutes) then

6 ‘ bestRoutes <— currentRoutes

7 return bestRoutes

1. Uniform distribution (both pipes equally preferred).
2. Weights proportional to the costs of the two pipes.

Similar to the conflict policies, any pipe can be selected with
both fixing policies, but fixing policy 2 prefers larger/costlier

pipes.

Function FindConflictedRoutes(routes, r) returns, for a
given route r in routes, all other routes conflicting with r.

Randomized Restart (RR) performs, similar to (Cohen
et al. 2018), OneDive at least once, with given conflict
and pipe selection policies, and returns a best found plan,
as shown in Algorithm 3.

Hill Climbing (HC) accepts an initial feasible plan.
Then, a certain portion of the routes are discarded, and
the agents are replanned using OneDive, as described in
Algorithm 4. We distinguish two versions: HC(OneDive)
and HC(FixOrder), where the initial solution is obtained
by OneDive or FixOrder, respectively. HC depends on the
following function:

Function SelectUnfixRoutes(routes, destructionPercent)
selects routes to be rerouted in the current Hill Climbing
iteration. First, any agents without currently assigned paths
(i.e., missing pipes) are selected, and then more routes are
selected at random until the destructionPercent percentage
of routes are selected. The selected pipes are rerouted
using OneDive (with the non-selected routes being fixed
as obstacles). This procedure is performed iteratively. It
shares similarities with Large Neighbourhood Search (Shaw
1998), a meta-heuristic approach popularly used for vehicle
routing problems.

Table 1: Instance details. EP is the number of equipment pieces,
LO is the number of logical obstacles, P is number of pipes to be
routed, BB is bounding box of the routing landscape, in meters, p is
the density of space occupation by obstacles, in percent, and ¢ is the
runtime limit, in seconds, allowed per instance for any algorithm,
chosen as 120s times the number of pipes.

Instance | EP |[LO| P BB p t
Small| 4 | 7| 8 | 11 x10x 12 [15.5%| 960
Medium 1| 12 | 12| 23 |28 x 18.4 x 9.0|20.8% | 2760
Medium 2| 12 | 12| 23 | 19 x 13.3 x 18 |21.5% | 2760
Medium 3| 12 | 12| 23 | 18.4 x 11 x 28 |17.3% | 2760
Medium4| 12 | 12|36 | 19 x 11 x 24 [19.1% | 4320
AGRU| 53 |24 | 66 | 86 x 49 x40 [13.9% | 7920
LNG Train | 166 | 47 | 207 | 192 x 60 x 60 |[21.8% |24840

Experiments

We test the performance of the algorithms on both industry-
size instances with up to 207 pipes, as well as on smaller
specially constructed synthetic instances with up to a few
dozen pipes. We benchmark the efficiency of the heuristic
randomization policies, as well as the overall runtime pro-
files of the algorithms.

Instances

Our synthetic instances were constructed to challenge the
algorithms due to their small congested spaces with a high
density of pipes. The number of pipes ranges from 8 to 36
per instance, while the pipe diameter is 1000mm. We have a
Small instance with just 8 pipes, and four Medium instances,
three of them with 23 pipes and the last one with 36 pipes.

We also have two industrial instances from plants in-
tended to extract Liquefied Natural Gas. Instance AGRU
(Acid Gas Removal Unit) has 66 pipes, with diameters rang-
ing from 50mm to 750mm. Instance LNG Train includes
207 pipes with diameters ranging from 50mm to 1500mm.

Details for all instances, including the associated runtime
limits used for the experiments, are specified in Table 1.
The 3D layouts of the instances are shown in Figure 3. The
Medium 1,2 and 3 instances have the same set of equipment
and connections but different equipment layout.

Algorithms and Implementation

We test several high-level PR algorithms with various op-
tions. Our reference in all cases is FixOrder, the fixed
priority ordering algorithm used in (Belov et al. 2017),
where pipes are routed sequentially according to their non-
increasing estimated total cost.

Algorithm RR(c, f) represents PBS with randomised
restarts, where parameters ¢ and f indicate specific conflict
and fixing policies. Algorithm HC represents Hill Climbing
with conflictPolicy = 2 and destructionPercent = 50%. We
distinguish HC(OneDive) and HC(FixOrder), depending
on the initial plan provided. We also run the PBS algorithm
with maxMissing = 0, which we denote as PBS, and with
maxMissing = oo, which we denote as PBS-MP. Recall
that the maxMissing variable indicates how many pipes can
be left without any route in a tentative plan.



(d)

(@

Figure 3: Layouts for the different instances. Subfigures (a)—(d) show the layouts for the Small, Medium 4, AGRU and LNG
Train instances, respectively, while Subfigures (e)—(g) show those for the Medium 1-3 instances. Blue boxes in the Small
instance are boundary access zones, while yellow boxes are placeholders for “skirts” (support basements).

For low-level routing, we use the algorithm of Belov
et al. (2017), executed with MiniZinc 2.4.2 and the MIP
backend Gurobi 9.0.1. For each pipe, only 6 bends are
initially allowed during the search, with this number being
increased if no route is found. The most difficult part of this
algorithm resides in the non-overlapping constraints among
pipe segments and obstacles. Each pipe is routed with a
runtime limit of 180 seconds after the first feasible route (the
runtime until then is not limited). This algorithm does not
represent the routing landscape as a grid, as is common for
MAPF. Instead, it uses variables to specify bend locations.
These variables use a space discretisation with a granularity
of 1cm in our experiments.

All PBS algorithms are implemented in C++. Our ma-
chine has a 3.4GHz Intel i7-4770 processor with 16GB
1600MHz RAM and Ubuntu Linux 18.04. For repeatability,
we used the same random seed across all algorithms and
instances.

Evaluation Criteria
For the performance evaluation, we focus on two aspects:

e Plan quality measures the effectiveness by the number of
missing pipes (as compared to independent routing) and
the total cost. The cost is represented by a cost gap to the
cost of independent routing. For example, suppose that
the total cost of independent routing is X and the total
cost of a final layout found by an algorithm is Y. Then,
we evaluate the cost gap as Y/ X — 1. Note that this cost
gap is only informative when the number of successfully
routed pipes is the same as in the independent routing.

Table 2: Evaluation of the conflict and fixing policies. P is
the number of pipes in the instance. IP is the number of pipes
successfully routed with independent routing. M and cost
gap (%) characterize the best found plan for each algorithm.
M is the number of missing pipes in a final plan, compared
to independent routing. A value of M=0 means the plan has
the same number of unrouted pipes as independent routing.

RR(1,2) RR(2,2) RR(2,1)
Instance | P |IP| M gap | M gap| M gap
Small| 8§ [ 8| 0 189 0 13.1| 0 217
Medium 1 {23 |23 0 191 1 39 1 16.1
Medium4 |36 |36 2 94 1 116 1 78
Average 0.67 15.8]0.67 9.5 [0.67 15.2

o Runtime measures the efficiency. We limit the total
runtime for each algorithm. For algorithm performance
reporting, we use the time points when improved plans
are found. We focus on the best plan found at any point
in time. The runtime limits per instance for all algorithms
are provided in Table 1.

Heuristic Methods and Randomization Policies

First, we benchmark the conflict and fixing policies using
algorithm RR(c, f). To do this, we compare each policy
against a uniform random alternative.

Conflict policy (c). We use policy 1 to denote the uniform
random approach, and policy 2 to denote the randomized



Small Instance: 8 pipes

Industry Instance[ARGU]: 66 pipes

Industry Instance[LNG Train]: 207 pipes
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Figure 4: Dynamic performance graphs for all instances, except for the Medium 4 instance. For every instance, the upper part
of a plot shows the development of the cost gap of an algorithm’s best found plan, while the lower part shows the development
of the number of missing pipes M, as compared to independent routing.

selection weighted by the cost of the two conflicting pipes.
The fixing policy in this experiment is set to 2. Thus, we
compare RR(1,2) and RR(2,2).

The results appear in Table 2. We used three exemplary
instances. For the Medium 1 instance, policy 1 routed one
more pipe than policy 2, which is not what we expected.
For the Medium 4 instance, while policy 2 missed only one
pipe, policy 1 missed two pipes. From the average data, we
can conclude that policy 2 obtains a better quality.

Fixing policy (f). We use policy 1 to denote the uniform
random approach to choosing which of two conflicting pipes
to fix, and policy 2 to denote the randomised selection using
the costs of the two pipes as weights. In this experiment, the
conflict policy is set to 2, comparing RR(2,1) with RR(2,2).
Results in Table 2 show that there is no difference in terms
of the number of routed pipes. However, policy 2 produces
plans with smaller cost gaps. This supports our intuition
that the cost-based selection is on average better than the
uniformly random selection. Based on these results, we use
the cost-based policies as default for all algorithms. Thus,
from now on, RR means RR(2,2).

Comparison of Algorithms

Figure 4 shows performance results for the algorithms on
all instances, except for the Medium 4 instance. The legend
is given in Figure 4(c). The X axis of each plot shows the
runtime in seconds. The Y axis in the upper part of each

plot shows the cost gap, while, in the lower part, it shows
the number of missing pipes M compared to independent
routing. The cost gaps of two plans can only be meaningfully
compared if they have an equal number of missing pipes.

Synthetic Instances. All algorithms find plans for the Small
instance with a complete set of pipes (their lower graphs
converge to height 0). The best gap of 1.3% is achieved by
RR and HC(OneDive). For all instances, most algorithms
improve their initial number of missing pipes M. While
the plans get closer to being complete when M improves,
the cost gap can increase. For example, for the Medium
2 instance, most heuristics start with M > 2, including
FixOrder, which produces just a single plan. All other
algorithms, except for PBS-MP, improve that number to 1
or 0 pipes missing.

Industry Instances. For the AGRU instance, FixOrder
failed to route two pipes but all other algorithms succeeded
to route all pipes. For the LNG Train instance, all algorithms
succeeded to route all pipes. For both instances, the best final
cost was smaller than FixOrder’s cost despite having more
pipes for the AGRU.

Overall, we observe that, in many cases, the new algo-
rithms improve upon FixOrder with respect to the number
of successfully routed pipes or the cost. Interestingly, even
the first plans obtained by the algorithms are mostly better.
This comes at a price since they are more runtime intensive
than FixOrder. Subsequent iterations or branching usually



Table 3: Result summary: best final plans. P is the number of pipes in the instance. /P is the number of pipes successfully routed
independently. M and cost gap (%) characterize the best found plan for each algorithm. For independent routing and FixOrder,
t is the runtime in seconds. For the iterative heuristics and PBS, Dm is the maximal dive depth, Ni the number of iterations and

Nn the number of nodes.

Indep FixOrder RR HC(OneDive) |HC(FixOrder) PBS PBS-MP
Instance| P |IP t |M gap t |M gap Ni|M gap Ni (M gap Ni |M gap Nn Dm|M gap Nn Dm
Smalll 8 | 8 6 |0 153 8 |0 13 107/0 13 1820 23 167 |0 20 9 8 |0 20 9 8
Medium 12323 35 |1 65 45 |0 18 40|0 18.1 47 |0 114 58 |0 12.2 275 49 |0 12.2 275 49
Medium2| 23|23 32 |4 -3 55 |1 68 33|0 7.1 48 |0 51 49 [0 99 296 67|12 -6 316 69
Medium 3|23 (23 29 |0 74 37 (0 35 420 14 77 |0 14 80 |0 22 126 380 2.2 126 38
Medium 4|36 |36 67 |1 199 115|2 435 10(0 439 17 |0 36.6 16 |0 23.7 360 1142 11 332 127
AGRU| 66 |66 288 |2 09 268|0 2.1 45|/0 0.7 43 |0 13 36 |0 03 58 57|0 03 58 57
LNG Train|207|206 36580 10.3 3205|0 44 7 |0 53 9 |0 5 9 |0 24 607 172]10 2.4 607 172
further improve the results. Table 3 provides more data on Acknowledgements

the best final plans, including for the Medium 4 instance.

Significance. It should be noted that improvements of
several percent in cost can mean savings of millions of
dollars in practice, due to the high costs of plant construction
and operation. The new algorithms achieve these improve-
ments with longer runtimes compared to a reference method.
Unlike MAPF, where deliberation time is limited, plant
layout is a multi-year problem and runtimes measured on
the scale of minutes and even hours are not prohibitive.

Conclusion

We consider 3D Pipe Routing (PR), an important and
challenging industrial problem which appears in the
context of designing industrial plant equipment. To solve
PR we develop a range of heuristic techniques in the
family of Priority-Based Search (PBS): a recent prioritised
planning method developed for Multi-Agent Pathfinding
(MAPF) (Ma et al. 2019).

Given enough time, we find that PBS can often produce
best known solutions to challenging industrial instances with
up to hundreds of pipes. To compute solutions faster we also
consider a number of local-search variants including ran-
domised restarts, for sampling the PBS conflict tree, and hill
climbing, where PBS starts from and attempts to improve a
best known candidate plan. Experimental results show that
these approaches can improve not only performance vs PBS
but also plan quality, routing more pipes faster and at lower
cost.

A variety of directions exist for future work e.g., the
inclusion of meta-heuristics which can allow the search to
escape local optima and/or guide the search toward more
promising plans. In practice, pipes are also often routed
together, reusing support structures. Thus, it can be fruitful
to combine equipment allocation and pipe routing so as to
avoid the issue of unroutable pipes. Although current meth-
ods are faster than manual routing there exists substantial
scope for improvement.

The research at Monash University was funded by Wood-
side Energy Ltd. We thank all our Woodside collaborators,
particularly Solomon Faka, for the many useful discussions,
as well as for the enlightening visit to their LNG plant.

The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1724392, 1409987, 1817189, 1837779, and
1935721.
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