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Abstract

We consider the problem of estimating an
undirected Gaussian graphical model when
the underlying distribution is multivariate to-
tally positive of order 2 (MTP2), a strong
form of positive dependence. Such distribu-
tions are relevant for example for portfolio se-
lection, since assets are usually positively de-
pendent. A large body of methods have been
proposed for learning undirected graphical
models without the MTP2 constraint. A ma-
jor limitation of these methods is that their
structure recovery guarantees in the high-
dimensional setting usually require a particu-
lar choice of a tuning parameter, which is un-
known a priori in real world applications. We
here propose a new method to estimate the
underlying undirected graphical model under
MTP2 and show that it is provably consis-
tent in structure recovery without adjusting
the tuning parameters. This is achieved by
a constraint-based estimator that infers the
structure of the underlying graphical model
by testing the signs of the empirical partial
correlation coefficients. We evaluate the per-
formance of our estimator in simulations and
on financial data.

1 Introduction

Gaining insights into complex phenomena often re-
quires characterizing the relationships among a large
number of variables. Gaussian graphical models offer a
powerful framework for representing high-dimensional
distributions by capturing the conditional dependen-
cies between the variables of interest in the form of a

network. These models have been extensively used in
a wide variety of domains ranging from speech recogni-
tion (Johnson et al., 2012b) to genomics (Kishino and
Waddell, 2000) and finance (Wang et al., 2011).

In this paper we consider the problem of learning a
Gaussian graphical model under the constraint that
the distribution is multivariate totally positive of or-
der 2 (MTP2), or equivalently, that all partial corre-
lations are non-negative. Such models are also known
as attractive Gaussian random fields. MTP2 was first
studied in (Bølviken, 1982; Fortuin et al., 1971; Karlin
and Rinott, 1980, 1983) and later also in the context of
graphical models (Fallat et al., 2017; Lauritzen et al.,
2019). MTP2 is a strong form of positive dependence,
which is relevant for modeling in various applications
including phylogenetics or portfolio selection, where
the shared ancestry or latent global market variable
often lead to positive dependence among the observed
variables (Müller and Scarsini, 2005; Zwiernik, 2015).

Due to the explosion of data where the number of vari-
ables p is comparable to or larger than the number of
samples N , the problem of learning undirected Gaus-
sian graphical models in the high-dimensional setting
has been a central topic in machine learning, statistics
and optimization. There are two main classes of al-
gorithms for structure estimation for Gaussian graph-
ical models in the high-dimensional setting. A first
class of algorithms attempts to explicitly recover which
edges exist in the graphical model, for example using
conditional independence tests (Anandkumar et al.,
2012; Soh and Tatikonda, 2018) or neighborhood se-
lection (Meinshausen and Bühlmann, 2006). A sec-
ond class of algorithms instead focuses on estimating
the precision matrix. The most prominent of these
algorithms is graphical lasso (Banerjee et al., 2008;
Friedman et al., 2008; Ravikumar et al., 2011; Yuan
and Lin, 2007), which applies an `1 penalty to the
log-likelihood function to estimate the precision ma-
trix. Other algorithms include linear programming
based approaches such as graphical Dantzig (Yuan,
2010) and CLIME (Cai et al., 2011, 2016); optimiza-
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tion with non-convex penalties like (Fan et al., 2009;
Lam and Fan, 2009; Loh and Wainwright, 2017); as
well as greedy methods like (Johnson et al., 2012a;
Shen et al., 2012).

The main limitation of all aforementioned approaches
is the requirement of a specific tuning parameter to
obtain consistency guarantees in estimating the edges
of the underlying graphical model. In most real-world
applications, the correct tuning parameter is unknown
and difficult to discover. To make the estimate less
sensitive to misspecification of tuning parameters, Liu
and Wang (2017) and Sun and Zhang (2013) pro-
posed estimating high-dimensional precision matrices
using square-root lasso (Belloni et al., 2011) and scaled
lasso (Sun and Zhang, 2012) respectively. These esti-
mators have the advantage that their theoretical guar-
antees do not rely on an unknown tuning parame-
ter, thereby allowing them to consistently estimate
precision matrices without tuning parameter adjust-
ment. While the estimated precision matrices from
these methods are guaranteed to converge to the true
precision matrix, the zero patterns of the estimated
matrices are not guaranteed to recover the underlying
graph.

The algorithms described above are for learning the
underlying undirected graph in general Gaussian mod-
els. In this paper, we consider the special setting
of MTP2 Gaussian models. Several algorithms have
been proposed that are able to exploit the additional
structure imposed by MTP2 with the goal of obtain-
ing stronger results than for general Gaussian graph-
ical models. In particular, Lauritzen et al. (2019)
showed that the MLE exists whenever the sample size
N > 2 (independent of the number of variables p),
which is striking given that N > p is required for the
MLE to exist in general Gaussian graphical models.
Since the MLE under MTP2 is not a consistent es-
timator for the structure of the graph (Slawski and
Hein, 2015), Slawski and Hein (2015) considered ap-
plying thresholding to entries in the MLE, but this
procedure requires a tuning parameter and does not
have consistency guarantees.

The three main contributions of this paper are:

1) we provide a new algorithm for learning Gaussian
graphical models under MTP2 that is based on
conditional independence testing;

2) we prove that this algorithm does not require ad-
justing any tuning parameters for the theoretical
consistency guarantees in structure recovery;

3) we show that our algorithm compares favorably
to other methods for learning graphical models
on both simulated data and financial data.

2 Preliminaries and Related Work

Gaussian graphical models: Given a graph G =
([p], E) with vertex set [p] = {1, · · · , p} and edge set E
we associate to each node i in G a random variable Xi.
A distribution P on the nodes [p] forms an undirected
graphical model with respect to G if

Xi ⊥⊥ Xj | X[p]\{i,j} for all (i, j) /∈ E. (1)

When P is Gaussian with mean zero, covariance ma-
trix Σ and precision matrix Θ := Σ−1, the setting we
concentrate on in this paper, then (1) is equivalent
to Θij = 0 for all (i, j) /∈ E. By the Hammersley-
Clifford Theorem, for strictly positive densities such
as the Gaussian, (1) is equivalent to

Xi ⊥⊥ Xj | XS for all S ⊆ [p]\{i, j} that separate i, j,

where i, j are separated by S in G when i and j are
in different connected components of G after remov-
ing the nodes S from G. In the Gaussian setting,
Xi ⊥⊥ Xj | XS if and only if the corresponding par-
tial correlation coefficient ρij|S is zero, which can be
calculated from submatrices of Σ, namely

ρij|S =− ((ΣM,M )−1)i,j√
((ΣM,M )−1)i,i((ΣM,M )−1)j,j

,

whereM = S ∪ {i, j}.

MTP2 distributions: A density function f on Rp
is MTP2 if

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y) for all x, y ∈ Rp,

where ∨,∧ denote the coordinate-wise minimum and
maximum respectively (Fortuin et al., 1971; Karlin and
Rinott, 1980). In particular, a Gaussian distribution
is MTP2 if and only if its precision matrix Θ is an
M -matrix, i.e. Θij ≤ 0 for all i 6= j (Bølviken, 1982;
Karlin and Rinott, 1983). This implies that all partial
correlation coefficients are non-negative, i.e., ρij|S ≥ 0
for all i, j, S (Karlin and Rinott, 1983). In addition,
for MTP2 distributions it holds that Xi ⊥⊥ Xj | XS

if and only if i, j are separated in G given S (Fallat
et al., 2017). Hence i, j are connected in G given S if
and only if ρij|S > 0.

MTP2 distributions are relevant for various applica-
tions. In particular, Gaussian tree models with la-
tent variables are MTP2 up to sign (Lauritzen et al.,
2019); this includes the important class of single fac-
tor analysis models. As an example, in (Slawski and
Hein, 2015) MTP2 was used for data measuring stu-
dents’ performance on different math subjects, an ap-
plication where a factor analysis model with a sin-
gle latent factor measuring general mathematical abil-
ity seems fitting. In addition, factor analysis mod-
els are used frequently in psychology and finance; the
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MTP2 constraint has been applied to a dataset from
psychology in (Lauritzen et al., 2019) and auctions
in (Hubbard et al., 2012). MTP2 was also used in
the modelling of global stock prices, motivated by
the fact that asset price changes are usually posi-
tively correlated (Agrawal et al., 2019); in particular,
the authors reported that the correlation matrix of
the daily returns of 5 global stocks is an inverse M-
matrix (Agrawal et al., 2019, Figure 1). In the same
paper, the authors also showed that using a covariance
matrix among stocks estimated under MTP2 achieves
better performance at portfolio selection than other
state-of-the-art methods.

Algorithms for learning Gaussian graphical
models: An algorithm is called consistent if the es-
timated graph converges to the true graph G as the
sample size N goes to infinity. CMIT, an algorithm
proposed in (Anandkumar et al., 2012), is most re-
lated to the approach in this paper. Starting in the
complete graph, edge (i, j) is removed if there exists
S ⊆ [p] \ {i, j} with |S| ≤ η (for a tuning parameter η
that represents the maximum degree of the underlying
graph) such that the corresponding empirical partial
correlation coefficient satisfies |ρ̂ij|S | ≤ λN,p. For con-
sistent estimation, the tuning parameter λN,p needs to
be selected carefully depending on the sample size N
and number of nodes p. Intuitively, if (i, j) /∈ G, then
ρij|S = 0 for all S that separate (i, j). Since ρ̂ij|S con-
centrates around ρij|S , it holds with high probability
that there exists S ⊆ [p]\{i, j} for which |ρ̂ij|S | ≤ λN,p,
so that edge (i, j) is removed from G. Other estimators
such as graphical lasso (Ravikumar et al., 2011) and
neighborhood selection (Meinshausen and Bühlmann,
2006) also require a tuning parameter: λN,p represents
the coefficient of the `1 penalty and critically depends
on N and p for consistent estimation. Finally, with re-
spect to estimation specifically under the MTP2 con-
straint, the authors in (Slawski and Hein, 2015) pro-
pose thresholding the MLE Ω̂ of the precision matrix,
which can be obtained by solving the following convex
optimization problem:

Ω̂ := min
Ω�0, Ωij≤0 ∀i6=j

− log det(Ω) + trace(ΩΣ̂), (2)

where Σ̂ is the sample covariance matrix. The thresh-
old quantile q is a tuning parameter, and apart from
empirical evidence that thresholding works well, there
are no known theoretical consistency guarantees for
this procedure.

In addition to relying on a specific tuning parame-
ter for consistent estimation, existing estimators re-
quire additional conditions with respect to the un-
derlying distribution. The consistency guarantees of
graphical lasso (Ravikumar et al., 2011) and moment

matching approaches such as CLIME (Cai et al., 2011)
require that the diagonal elements of Σ are upper
bounded by a constant and that the minimum edge
weight mini6=j,Θij 6=0 |Θij | ≥ C

√
log(p)/N for some

positive constant C. Consistency of CMIT (Anand-
kumar et al., 2012) also requires the minimum edge
weight condition. Consistency of CLIME requires a
bounded matrix L1 norm of the precision matrix Θ,
which implies that all diagonal elements of Θ are
bounded.

Learning a precision matrix without adjust-
ing any tuning parameters: Another recent line
of work similar to ours considers estimating high-
dimensional Gaussian precision matrices without the
tuning of parameters. The most prominent such
approach is TIGER (Liu and Wang, 2017) and re-
lated works include scaled and organic lasso (Sun and
Zhang, 2012; Yu and Bien, 2019). These estimators
have the desirable property that the estimated preci-
sion matrix Θ̂ is guaranteed to converge to the true Θ
without requiring any adjustment of the regularization
parameter. However, the support of the estimated Θ̂
is not guaranteed to converge to the underlying graph
G (see e.g. Theorem 4.3 of (Liu and Wang, 2017)),
which is the particular task we are interested in this
paper.

3 Algorithm and Consistency
Guarantees

Algorithm 1 is our proposed procedure for learning a
Gaussian graphical model under the MTP2 constraint.
In the following, we first describe Algorithm 1 in detail
and then prove its consistency without the need of
performing any adjustment of tuning parameters.

Similar to CMIT (Anandkumar et al., 2012), Algo-
rithm 1 starts with the fully connected graph Ĝ and
sequentially removes edges based on conditional inde-
pendence tests. The algorithm iterates with respect
to a parameter ` that starts at ` = 0. In each it-
eration, for all pairs of nodes i, j such that the edge
(i, j) ∈ Ĝ and node i has at least ` neighbors (denoted
by adji(Ĝ)), the algorithm considers all combinations
of subsets S of adji(Ĝ) excluding j that have size ` and
all nodes k 6= i, j that are not in S. For each combina-
tion of subset S and node k, it calculates the empirical
partial correlation coefficient ρ̂ij|S∪{k}. Importantly,
ρ̂ij|S∪{k} is calculated only on a subset (which we refer
to as a batch) of sizeM := Nγ that we draw randomly
from the N samples. If any of these empirical partial
correlation coefficients are negative, then edge i− j is
deleted from Ĝ (and no further tests are performed on
(i, j)). Each iteration of the algorithm increases ` by 1
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Algorithm 1 Structure learning under total positivity

Input: Matrix of observations X̂ ∈ RN×p with sample size N on p nodes.
Output: Estimated graph Ĝ.
1: Set Ĝ as the completely connected graph over the vertex set [p]; set ` := −1;
2: repeat
3: set ` = `+ 1;
4: repeat
5: select a (new) ordered pair (i, j) that are adjacent in Ĝ and such that |adji(Ĝ) \ {j}| ≥ `;
6: repeat
7: choose a (new) subset S ⊆ adji(Ĝ)\{j} with |S| = ` and then choose a (new) node k ∈ [p]\S ∪{i, j};

8: calculate the empirical partial coefficient ρ̂ij|S∪{k} using randomly drawn data with batch size M :=

Nγ ; if ρ̂ij|S∪{k} < 0, delete i− j from Ĝ;
9: until edge i− j is deleted from Ĝ or all S and k are considered;

10: until all ordered pairs i, j that are adjacent in Ĝ with |adji(Ĝ) \ {j}| ≥ ` are considered;
11: until for each i, j, adji(Ĝ) \ {j} < `.

and the algorithm terminates when for all nodes i, j
such that (i, j) ∈ Ĝ, the neighborhood of i excluding
j has size strictly less than `.

The basic intuition behind Algorithm 1 is that if there
is an edge i− j in G, then all partial correlations ρij|S
are positive because of the basic properties of MTP2.
In the limit of large N , this implies that all ρ̂ij|S are
positive. On the other hand, when i and j are not
connected in the true underlying graph, then there ex-
ists a list of conditioning sets S1, · · · , SK such that
ρij|Sk = 0 for all 1 ≤ k ≤ K. When K is large
enough, then intuitively there should exist 1 ≤ k ≤ K
such that ρ̂ij|Sk < 0 with high probability. However,
since for overlapping conditioning sets the empirical
partial correlations are highly correlated, we use sep-
arate batches of data for their estimation. This leads
to a procedure for learning the underlying Gaussian
graphical model by deleting edges based on the signs
of empirical partial correlation coefficients.

Having provided the high level intuition behind Algo-
rithm 1, we now prove its consistency under common
assumptions on the underlying data generating pro-
cess. Let d denote the maximum degree of the true
underlying graph G. For any positive semidefinite ma-
trix A, let λmin(A) and λmax(A) denote the minimum
and maximum eigenvalues of A respectively.
Condition 3.1. There exist positive constants σmin

and σmax such that for any subset of nodes S ⊆ [p]
with |S| ≤ d+4, the true underlying covariance matrix
satisfies

λmin(ΣS) ≥ σmin and λmax(ΣS) ≤ σmax.

Note that since λmax(ΣS) ≤ trace(ΣS) and |S| ≤ d+4,
it is straightforward to show that a sufficient condition
for λmax(ΣS) ≤ σmax is that all diagonal entries of Σ

scale as a constant. This condition is also required by
many existing methods including graphical lasso and
CLIME; see Section 2.

Similarly, a sufficient condition for λmin(ΣS) ≥ σmin is
that all diagonal entries of Θ scale as a constant (see
the Supplementary Material for a proof); this assump-
tion is also required by CLIME.
Condition 3.2. There exists a positive constant cρ
such that for any two nodes i, j ∈ [p], if (i, j) ∈ G,
then ρi,j|[p]\{i,j} ≥ cρ

√
(log p)/(N3/4).

Condition 3.2 is a standard condition for controlling
the minimum edge weight in G as required, for exam-
ple, by graphical lasso. While the minimum threshold
in our condition scales as

√
(log p)/(N3/4), graphical

lasso only requires
√

(log p)/N (but instead requires a
particular choice of tuning parameter and the incoher-
ence condition).

Condition 3.3. The size of p satisfies that p ≥ N 1
8 +

d+ 2.

Condition 3.3 implies that the high-dimensional con-
sistency guarantees of Algorithm 1 cannot be directly
generalized to the low-dimensional setting where p
scales as a constant. We now provide the main result
of our paper, namely consistency of Algorithm 1.
Theorem 3.4. Assume that the maximum neighbour-
hood size d scales as a constant and let Conditions 3.1-
3.3 be satisfied with cρ sufficiently large. Then for any
γ ∈ ( 3

4 , 1), there exist positive constants τ and C that
depend on (cρ, σmax, σmin, d, γ) such that with proba-

bility at least 1 − p−τ − p2e−CN
1−γ
2
∧(4γ−3)

, the graph
estimated by Algorithm 1 is the same as the underlying
graph G.
Remark 3.1. The consistency guarantees of our algo-
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rithm hold for any γ ∈ ( 3
4 , 1). This means that our

algorithm does not require tuning of the parameter γ
to consistently estimate the underlying graph G. Note
that this is in contrast to other methods like graphical
lasso or CLIME, where the consistency guarantees re-
quire a specific choice of the tuning parameter in the
algorithm, which is unknown a priori. This is advan-
tageous, since our algorithm can consistently estimate
the graph without running any computationally ex-
pensive tuning parameter selection approaches, such as
stability selection (Meinshausen and Bühlmann, 2010).
By setting 1−γ

2 = (4γ − 3), we obtain that the theo-
retically optimal value is γ = 7/9, as this leads to the
best asymptotic rate. However, as seen in Section 4,
in practice different values of γ can lead to different
results. In particular, higher values of γ empirically
lead to removing less edges since the overlap between
batches is higher and thus the empirical partial corre-
lation coefficients are more correlated with each other.
Remark 3.2. In applications where domain knowledge
regarding the graph sparsity is available, γ can still be
tuned to incorporate such knowledge to improve esti-
mation accuracy. We see it as a benefit of our method
that a tuning parameter can be used when one has
access to domain knowledge, but doesn’t have to be
tuned in order to obtain consistent estimates, since it
is provably consistent for all γ ∈ ( 3

4 , 1).

Proof of Theorem 3.4: In the following, we pro-
vide an overview of the proof of our main result. The-
orems 3.5 and 3.6 show that at iteration ` = d + 1,
the graph Ĝ estimated by Algorithm 1 is exactly the
same as the underlying graph G. The proof is then
completed by showing that Algorithm 1 stops exactly
at iteration ` = d + 1. All proofs are provided in the
Supplementary Material.

We start with Theorem 3.5, which bounds the false
negative rate of Algorithm 1, i.e. showing that all edges
(i, j) in the true graph G are retained.
Theorem 3.5 (False negative rate). Under Condi-
tions 3.1 and 3.2 and cρ sufficiently large, there exists
a positive constant τ that depends on (cρ, σmax, σmin, d)

such that with probability at least 1−p−τ , the graph Ĝ
estimated by Algorithm 1 at iteration ` = d+1 contains
all edges (i, j) ∈ G.

The proof of Theorem 3.5 is based on concentration in-
equalities in estimating partial correlation coefficients.
The high-level intuition behind the proof is that be-
cause the empirical partial correlation coefficients con-
centrate exponentially around the true partial correla-
tion coefficients, then with high probability if an edge
exists, no empirical partial correlation coefficient will
be negative; as a consequence, Algorithm 1 will not
eliminate the edge.

The following theorem bounds the false positive rate ;
namely, it shows that with high probability Algo-
rithm 1 will delete all edges (i, j) that are not in the
true graph G.

Theorem 3.6 (False positive rate). Under the same
conditions as Theorem 3.4, there exists positive con-
stants C, τ that depend on (cρ, σmax, σmin, d, γ) such
that with probability at least 1−p−τ −p2e−C

1−γ
2 ∧4γ−3,

the graph Ĝ estimated by Algorithm 1 at iteration
` = d+ 1 does not contain any edges (i, j) /∈ G.

The proof of Theorem 3.6 relies heavily on the follow-
ing lemma that considers the orthant probability of
partial correlation coefficients. Recall in Algorithm 1
that for a particular edge i− j in the estimated graph
Ĝ at a given iteration, we calculate a series of empirical
partial correlation coefficients with different condition-
ing sets. The only way Algorithm 1 will not delete the
edge is if all empirical partial correlation coefficients
are ≥ 0. Thus given 2 nodes i, j for which (i, j) /∈ G,
we need to upper bound the orthant probability that
all empirical partial correlation coefficients computed
by Algorithm 1 are non-negative. As we will discuss
next, the use of batches is critical for this result.

Lemma 3.7. Consider a pair of nodes (i, j) /∈ G.
Assume that there exists K := N

1−γ
2 sets of nodes

S1, · · · , SK ⊆ [p] \ {i, j} with |Sk| ≤ d+ 2 that satisfy
ρij|Sk = 0. Then there exists positive constants C and
N0 that depends on (σmax, σmin, d) such that

Pr(ρ̂ij|Sk > 0 ∀k ∈ [K]) ≤ exp(−CN
1−γ
2 ∧4γ−3).

(3)

To provide intuition for the proof of Lemma 3.7, con-
sider a scenario where the batch sizeM is chosen small
enough such that the batches used to estimate the dif-
ferent ρ̂ij|Sk ’s have no overlap. Since in this case all
ρ̂ij|Sk ’s are independent, the bound in Lemma 3.7 can
easily be proven, namely: for some positive constant
δ < 1, it holds that

Pr(ρ̂ij|Sk > 0 ∀k ∈ [K]) =
K∏
k=1

Pr(ρ̂ij|Sk > 0)

≤ δK = exp
(
− log(1/δ) ·N

1−γ
2

)
.

However, for small batch size M the empirical partial
correlation coefficients ρ̂ij|S don’t concentrate around
ρij|S , which may result in false negatives. In the proof
of Lemma 3.7 we show that choosing a batch size of
M = Nγ guarantees the required concentration re-
sult as well as a sufficiently weak dependence among
the empirical partial correlation coefficients ρ̂ij|Sk ’s to
obtain the exponential upper bound in (3) as in the
independent case. Lemma 3.7 implies Theorem 3.6
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(a) Random graphs (b) Chain graphs (c) Grid graphs

Figure 1: Comparison of different algorithms evaluated on MCC across (a) random, (b) chain, (c) grid graphs
with p = 100 and N ∈ {25, 50, 100, 200, 500, 1000}. For each graph and choice of p and N , results are shown as
an average across 20 trials. The shaded areas correspond to ±1 standard deviation of MCC over 20 trials.

by taking uniform control over all edges (i, j) 6∈ G.
Finally, to complete the proof of Theorem 3.4, it re-
mains to show that Algorithm 1 terminates at iteration
` = d+ 1.

Proof of Theorem 3.4. It follows from Theorem 3.5
and Theorem 3.6 that with probability at least 1 −
p−τ − p2e−CN

1−γ
2
∧4γ−3

, the graph estimated by Algo-
rithm 1 at iteration ` = d + 1 is exactly the same
as G. Since the maximum degree of G is at most
d, it matches the stopping criterion of Algorithm 1.
As a consequence, Algorithm 1 terminates at iteration
` = d+ 1.

4 Empirical Evaluation

In the following, we evaluate the performance of
our algorithm for structure recovery in MTP2 Gaus-
sian graphical models in the high-dimensional, sparse
regime. We first compare the performance of Al-
gorithm 1 to various other methods on syntheti-
cally generated datasets and then present an ap-
plication to graphical model estimation on financial
data. The code to reproduce our experimental re-
sults is available at https://github.com/puma314/
MTP2-no-tuning-parameter.

4.1 Synthetic Data

Given a precision matrix Θ ∈ Rp×p, we generate N
i.i.d. samples x(1), . . . , x(N) ∼ N (0,Θ−1). We let
Σ̂ = 1

N

∑N
i=1(x(i))(x(i))T denote the sample covari-

ance matrix. To analyze the performance of our algo-
rithm in various scenarios, we vary N for p = 100. In
addition, we consider three different sparsity patterns
in the underlying precision matrix Θ that are similarly

considered by Slawski and Hein (2015), namely:

Grid: Let B be the adjacency matrix of a 2d-grid
of size √p. Let δ := 1.05 · λ1(B), Θ̃ := δI − B and
Θ = DΘ̃D, where D is a diagonal matrix such that
Σ = Θ−1 has unit diagonal entries.

Random: Same as for grid above, but with B replaced
with a symmetric matrix having 0 diagonal and one
percent non-zero off diagonal entries uniform on [0, 1]
chosen uniformly at random.

Chain: We let Σ∗ := (σ∗jk) = (0.9|j−k|), j, k =

1, . . . , p. Then we take Ω := (Σ∗)−1.

Our primary interest in comparing different algo-
rithms is their performance at recovering the under-
lying graph structure associated with Θ. Similarly as
in (Slawski and Hein, 2015), in Figure 1 we evaluate
their performance using Matthew’s correlation coeffi-
cient (MCC):

MCC =

TP · TN− FP · FN
((TP + FP)(TP + FN)(TN + FP)(TN + FN))

1/2
,

where TP, TN, FP and FP denote the number of true
positives, true negatives, false positives and false nega-
tives respectively. Intuitively, MCC measures the cor-
relation between the presence of edges in the true and
estimated graphs. Thus, a higher MCC score means
less number of false positives and false negatives. Since
MCC combines true positive rates (TPR) and false
positive rates (FPR), we think it is a compelling met-
ric. MCC has also been used in similar work (Slawski
and Hein, 2015). In the appendix, we also provide
evaluation results based on TPR and FPR.

Choice of Parameters: We fix p = 100 and vary N =
25, 50, 100, 200, 500, 1000 to analyze how the ratio p/N

https://github.com/puma314/MTP2-no-tuning-parameter
https://github.com/puma314/MTP2-no-tuning-parameter
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(a) ROC curve (b) MCC (c) True positive rate

Figure 2: (a) ROC curves, (b) MCC, and (c) true positive rate versus normalized tuning parameter for random
graphs with p = 100 and N = 500 across 30 trials. The shaded regions correspond to ±1 standard deviation of
MCC (TPR resp.) across 30 trials.

affects performance for the various algorithms. For
each setup and value of N , we do 20 trials of each
algorithm and report the average of the MCCs across
the trials.

Methods Compared: We benchmark our algorithm
against a variety of state-of-the-art methods for struc-
ture learning in Gaussian graphical models (see Sec-
tion 2) for a range of tuning parameters:

• SH: Slawski and Hein (Slawski and Hein, 2015)
considered the same problem as in this paper. For
comparison to their algorithm we use the same
range of tuning parameters as considered by them,
namely q ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}.

• glasso: For graphical lasso (Friedman
et al., 2008) we vary the sparsity parame-
ter around the the theoretically motivated
tuning parameter of

√
log(p)/n, namely

λ ∈ {0.055, 0.16, 0.45, 1.26, 3.55, 10}.

• nbsel: For neighborhood selection (Meinshausen
and Bühlmann, 2006) we use the same λ values
as for glasso.

• TIGER: For TIGER (Liu and Wang, 2017), we

use the theoretically optimal value λ := π
√

log(p)
n .

• CMIT: This algorithm (Anandkumar et al.,
2012) has two tuning parameters. Since the run-
time is pη+2 in the maximal size of the condition-
ing set η, we set η = 1 for computational reasons.
For λ, we use the the same values as for glasso.

• Our algorithm: We use the asymptotically opti-
mal choice of γ = 7/9 (see Remark 3.1) and also
compare to γ = 0.85, which falls in the allowable
range (0.75, 1).

For the comparison based on MCC in Figure 1, we use
stability selection (Meinshausen and Bühlmann, 2010),
where an algorithm is run multiple times with differ-
ent subsamples of the data for each tuning parameter
and an edge is included in the estimated graph if it is
selected often enough (we used 80%).

Discussion: Figure 1 compares the performance
of the various methods based on MCC for random
graphs, chain graphs and grid graphs. Compared with
the algorithm that has similar theoretical properties as
ours, namely TIGER, our algorithm has better over-
all performance across all simulation set-ups. For the
other state-of-the-art methods, Figure 1(a) shows that
our algorithm is able to offer a significant improvement
for random graphs over competing methods. Also on
chain graphs (Figure 1(b)) our algorithm is competi-
tive with the other algorithms, with SH and nbsel per-
forming comparably. For the grid graph (Figure 1(c)),
for N ≤ 200 SH with stability selection outperforms
our algorithm with γ = 7/9. However, it is important
to note that stability selection is a major advantage
for the compared algorithms and comes at a signifi-
cant computational cost. Moreover, by varying γ in
our algorithm its performance can be increased and
becomes competitive to SH with stability selection.
Both points are discussed in more detail in the Supple-
mentary Material. Another interesting phenomenon is
that in Figure 1(c), our algorithm with γ = 0.85 per-
forms better than the “theoretically optimal” γ = 7/9,
which may seem to contradict our theoretical results.
Notice, however, that “theoretical optimality” holds for
N → ∞. In the finite sample regime considered here
factors such as σmin, σmax and d can influence the op-
timal choice.

To evaluate the sensitivity of the various algorithms
to their respective tuning parameters, we generate
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an ROC curve for each algorithm on random graphs
with p = 100 and N ∈ {25, 50, 100, 200, 500, 1000}, of
which N = 500 is shown in Figure 2(a); see the Sup-
plementary Material for more details and plots. All
algorithms perform similarly in terms of their ROC
curves. Note that since our algorithm can only choose
γ from the range (0.75, 1), its false positive rate is up-
per bounded and thus it is impossible to get a full
“ROC” curve. Figure 2(b) and (c) show the MCC
and true positive rate (TPR) for each algorithm as
a function of the tuning parameter normalized to vary
between [0, 1]. Our algorithm is the least sensitive to
variations in the tuning parameter, as it has one of the
smallest ranges in both MCC and TPR (the y-axes) as
compared to the other algorithms. Our algorithm also
shows the smallest standard deviations in MCC and
in TPR, showing its consistency across trials (espe-
cially compared to SH ). We here concentrate on TPR
since the variation in FPR between all algorithms is
small across trials. Taken together, it is quite striking
that our algorithm with fixed γ generally outperforms
methods with stability selection.

4.2 Application to Financial Data

We now examine an application of our algorithm to fi-
nancial data. The MTP2 constraint is relevant for such
data, since the presence of a latent global market vari-
able leads to positive dependence among stocks (Hen-
nessy and Lapan, 2002; Müller and Scarsini, 2005). We
consider the daily closing prices for p = 452 stocks that
were consistently in the S& P 500 index from January
1, 2003 to January 1, 2018, which results in a sample
size of N = 1257. Due to computational limitations of
stability selection primarily with CMIT, we performed
the analysis on the first p = 100 of the 452 stocks.
The 100 stocks are categorized into 10 sectors, known
as the Global Industry Classification Standard (GICS)
sectors. This dataset is gathered from Yahoo Finance
and has also been analyzed in (Liu et al., 2012).

A common task in finance is to estimate the covari-
ance structure between the log returns of stocks. Let
S

(t)
j denote the closing price of stock j on day t

and let X(t)
j := log(S

(t)
j /S

(t−1)
j ) denote the log re-

turn of stock j from day t − 1 to t. Denoting by
X := (X1, . . . , X100)T the random vector of daily log
returns of the 100 stocks in the data set, then our
goal is to estimate the undirected graphical model
of X. We do this by treating the 1257 data points
X(t) := (X

(t)
1 , . . . , X

(t)
100) corresponding to the days

t = 1, . . . , 1257 as i.i.d. realizations of the random vec-
tor X.

As in Section 4.1, we compare our method to
SH, glasso (using both stability selection and cross-

Method Modularity
Coefficient

Our Algorithm (γ = 7./9.) 0.482
Slawski-Hein with st. sel. 0.418

Neighborhood selection with st. sel. 0.350
Graphical Lasso with st. sel. 0.

Cross-validated graphical lasso 0.253
CMIT with st. sel. -0.0088

CMIT with best hyperparameter -0.0085
TIGER -0.5

Table 1: Modularity scores of the estimated graphs;
higher score indicates better clustering performance;
“st. sel” stands for “stability selection”. For our al-
gorithm we used the theoretically optimal value of
γ = 7/9.

validation), nbsel, CMIT (using both stability selec-
tion and the hyperparameter with the best perfor-
mance) and TIGER. Note that here we cannot as-
sess the performance of the various methods using
MCC since the graph structure of the true underlying
graphical model is unknown. Instead, we assess each
estimated graph based on its modularity coefficient,
namely the performance at grouping stocks from the
same sector together. Table 1 shows that our method
using fixed γ = 7/9 outperforms all other methods in
grouping the stocks. For further details on the analysis
see the Supplementary Material.

5 Discussion

In this paper, we proposed a tuning-parameter free,
constraint-based estimator for learning the structure
of the underlying Gaussian graphical model under
the constraint of MTP2. We proved consistency of
our algorithm in the high-dimensional setting without
relying on an unknown tuning parameter. We fur-
ther benchmarked our algorithm against existing algo-
rithms in the literature with both simulated and real
financial data, thereby showing that it outperforms ex-
isting algorithms in both settings. A limitation of our
algorithm is that its time complexity scales as O(pd);
it would be interesting in future work to develop a
more computationally efficient algorithm for graphi-
cal model estimation under MTP2. Another limita-
tion is that our algorithm is only provably consistent
in the high-dimensional setting. However, the strong
empirical performance of our algorithm as compared
to existing algorithms is quite striking, given in partic-
ular these results are from fixed γ. To our knowledge,
this is the first tuning-parameter free algorithm for
structure recovery in Gaussian graphical models with
consistency guarantees.
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A Additional discussion of Condition 3.1

In this section, we explain why a sufficient condition for “λmin(ΣS) ≥ σmin” is that all diagonal entries of Θ scale
as constants:

When all diagonal entries of Θ scale as constants, standard results on the Schur complement yield that all diagonal
entries in (ΣS)−1 also scale as constants. Hence, λmax((ΣS)−1) ≤ trace((ΣS)−1) =

∑
i∈S [(ΣS)−1]ii is also upper

bounded by a constant (since |S| ≤ d+ 4). By combining this with the fact that λmin(ΣS) = λ−1
max(Σ−1

S ), we can
conclude that λmin(ΣS) ≥ σmin for a positive constant σmin.

B Proof of Lemma 3.7

B.1 Characterization of maximal overlaps

Our proof of Lemma 3.7 relies on the following lemma that characterizes the size of maximal overlaps between
any two batches.

Lemma B.1 (Tail-bounds on maximum overlap of subsets). Consider a set of data B := {x(i)}Ni=1 with size N .
Let B1, · · · , BK ⊆ B denote K subsets where each Bk is created by uniformly drawing M samples from the set
B, then ∀ε > 0,

Pr

(
max
i,j
|Bi ∪Bj | <

M2

N
+ εN

)
≥ 1− exp(−2ε2N + 2 logK).

Proof. By union bound, we have for any T > 0,

Pr(max
i,j
|Bi ∩Bj | > T ) ≤

(
K

2

)
Pr(|Bi ∩Bj | > T ). (4)

For any i 6= j, let the random variable y` := 1{x(`) ∈ Bi} · 1{x(`) ∈ Bj}, it follows that |Bi ∩Bj | =
∑N
l=1 y` and

thus

Pr (|Bi ∩Bj | > T ) = Pr

(
N∑
`=1

y` > T

)
. (5)

In addition, y` is a binary variable satisfying Pr(y` = 1) =
(
M
N

)2.
In this case, it suffices to provide an upper bound on the probability Pr

(∑N
`=1 y` > T

)
. Using basic results in

combinatorics, one can rewrite the conditional probability Pr(y` = 1|y`′ = 1) as follows:

Pr(y` = 1|y`′ = 1) =
|{Bi : x(`′), x(`) ∈ Bi}| · |{Bj : x(`′), x(`) ∈ Bj}|

|{Bi : x(`′) ∈ Bi}| · |{Bj : x(`′) ∈ Bj}|
=

(
N−2
M−2

)2(
N−1
M−1

)2 .
It follows that

Pr(y` = 1|y`′ = 1) =

(
N−2
M−2

)2(
N−1
M−1

)2 =

(
M − 1

N − 1

)2

≤
(
M

N

)2

= Pr(y` = 1),

which means for any ` 6= `′, the random variables y` and y`′ are negatively correlated. By applying Chernoff-
Hoeffding bounds on sum of negatively associated random variables (see e.g. (Dubhashi et al., 1996, Theorem 14)),
we obtain

Pr

(
N∑
`=1

(y` − E(y`)) > εN

)
≤ exp(−2ε2N). (6)

Combining (4), (5) and (6) and that E (y`) = M2

N2 , we obtain the statement in the lemma.
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B.2 Proof of Lemma 3.7

Notations and proof ideas for Lemma 3.7. To simplify notation, we denote each ρ̂ij|Sk as ρ̂k and denote the
subset of data points used to estimate ρ̂k as Bk. Let Σ̂k ∈ R|Sk|+2×|Sk|+2 denote the sample covariance matrix of
the nodes Sk ∪ {i, j}. Note that here Σ̂k is estimated from the data in Bk. Let σ̂k denote the vectorized form of
Σ̂k and let σk denote the expectation of σ̂k. Standard results in calculating partial correlation coefficients show
that ρ̂k can be taken as a function of σ̂k, which we denote as

ρ̂k = gk(σ̂k).

Moreover, since the derivatives of all orders of gk(·) at the point σ̂k can be expressed as polynomials of σ̂k and
its inverse (see e.g. Eq. 36 in Wasserman et al. (2014) and the two equations after that), gk(·) is infinitely
differentiable whenever the inputs are non-singular matrices. Let `k denote the first order derivative of gk at the
point σk. It follows that `k(σ̂k − σk) is the first order approximation of gk(σ̂k). Let the residual

rk := gk(σ̂k)− `k(σ̂k − σk). (7)

Let ‖σ̂k−σk‖∞ denote the `∞ norm of the vector σ̂k−σk. Standard results in Taylor expansion show that when
‖σ̂k − σk‖∞ is negligible, one can rewrite the residual as

rk =
1

2
(σ̂k − σk)THk(σ̃k)(σ̂k − σk),

where Hk(·) is the Hessian matrix of gk and σ̃k is some point in the middle between σ̂k and σk. Let ρ :=
(ρ̂1, · · · , ρ̂K)T , L := (`1(σ̂1 − σ1), · · · , `K(σ̂K − σK))T and R := (r1, · · · , rK)T . Since each σ̂k is estimated using
a subset of data with batch sizeM , there may be overlaps between the set of data used to calculate different σ̂k’s.
Let σ̂(1)

k denote the sample covariance matrix estimated from the data in Bk \
(
∪

k′ 6=k
Bk′
)
and let σ̂(2)

k denote the

sample covariance matrix estimated from the data in the overlaps, i.e., the data in Bk ∩
(
∪

k′ 6=k
Bk′
)
. Then one

can decompose σ̂k as σ̂k = M−Tk
M σ̂

(1)
k + Tk

M σ̂
(2)
k , where Tk is the size of data in the overlaps. It is obvious that the

σ̂
(1)
k ’s are independent from each other. Based on the above decomposition, we denote L = L(1) + L(2), where

L(1) :=
(M − Tk

M
`1(σ̂

(1)
1 − σ1), · · · , M − Tk

M
`K(σ̂

(1)
K − σK)

)T
and

L(2) :=
(Tk
M
`1(σ̂

(2)
1 − σ1), · · · , Tk

M
`K(σ̂

(2)
K − σK)

)T
.

In addition, for any vector a, we write a ≥ 0 whenever all elements of the vector a are greater than or equal to
zero.

Let the random event

B :=
{

(B1, · · · , BK) : max
k,k′∈[K]

|Bk ∩Bk′ | ≤ 2
M2

N

}
.

By applying Lemma B.1, it follows that there exists some positive constant C that depends on γ such that
Pr(B) ≥ 1− exp(−CN4γ−3). By combining this with the decomposition, we have

Pr(ρ ≥ 0) = Pr(ρ ≥ 0,B) + Pr(ρ ≥ 0,¬B) ≤ Pr(ρ ≥ 0 | B) Pr(B) + Pr(¬B)

≤ Pr(ρ ≥ 0 | B) + Pr(¬B),

where ¬B denotes the complement of the random event B. It is sufficient to prove Lemma 3.7 by proving

Pr(ρ ≥ 0 | B) ≤ exp(−CN
1−γ
2 ) (8)

for some positive constant C that depends on σmax, σmin and d. In other words, it remains to prove that
Pr(ρ ≥ 0) ≤ exp(−CN

1−γ
2 ) when we are under a particular subsampling assignment (B1, · · · , BK) that is in the

random event B.
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Preliminary lemmas for Lemma 3.7.

Since the only remaining task is to deal with Eq. (8), for the remainder of the proof of Lemma 3.7 we can assume
that we are under a particular subsampling assignment (B1, · · · , BK) in B. To simplify notation we omit “ | B”
in the remainder of the proof.

Lemma B.2. For all ε > 0, there exists some positive constant C that depends on d, σmax and σmin such that
the following inequality holds:

Pr(‖σ̂k − σk‖∞ > ε) ≤ 2(d+ 2)2e−CMε2 .

Proof. This is a direct consequence of (Wasserman et al., 2014, Lemma 7) and the Gaussianity of the underlying
distribution.

Lemma B.3. For all ε > 0, there exist positive constants C1 and C2 that depend on σmax, σmin and d such that

Pr(‖R‖∞ ≤ ε) ≥ 1− 2(d+ 2)2e
1−γ
2 logN−C1Mε − 2(d+ 2)2e

1−γ
2 logN−C2

√
M .

Proof. For each rk, let C1−C3 denote a positive constant that depends on σmin, σmax and d and may vary from
line to line. We have that

Pr(|rk| > ε) = Pr(|rk| > ε, ‖σ̂k − σk‖∞ ≤M−1/4) + Pr(|rk| > ε, ‖σ̂k − σk‖∞ ≥M−1/4)

≤ Pr((|rk| > ε, ‖σ̂k − σk‖∞ ≤M−1/4) + Pr(‖σ̂k − σk‖∞ ≥M−1/4). (9)

Under the random event where ‖σ̂k − σk‖∞ ≤M−1/4, standard results in Taylor expansion show that rk can be
expressed in the form rk = (σ̂k − σk)THk(σ̃k)(σ̂k − σk). Thus one can rewrite (9) as

Pr(|rk| > ε) ≤ Pr
(∣∣∣1

2
(σ̂k − σk)THk(σ̃k)(σ̂k − σk)

∣∣∣ > ε, ‖σ̂k − σk‖∞ ≤M−1/4
)

+ Pr(‖σ̂k − σk‖∞ ≥M−1/4).

Under the random event ‖σ̂k − σk‖∞ ≤M−1/4, σ̃k is in the middle of σ̂k and σk. It follows that ‖σ̃k − σk‖∞ ≤
M−1/4. By combining this with the fact that the Hessian function Hk(·) is infinitely differentiable at the point
σk, there exists some positive constant C1 such that ‖Hk(σ̃k)−Hk(σk)‖∞ ≤ C1. Using that ‖Hk(σk)‖∞ is also
bounded by a positive constant (since it is a function of σk, see e.g. (Wasserman et al., 2014, Section 6.5) and
(Magnus and Neudecker, 1988, Page 185) for the explicit form), we further obtain that ‖Hk(σ̃k)‖∞ ≤ C1. As a
consequence, one can further rewrite (9) as

Pr(|rk| > ε) ≤ Pr(d
√
C1‖σ̂k − σk‖∞ >

√
ε, ‖σ̂k − σk‖∞ ≤M−1/4)

+ Pr(‖σ̂k − σk‖∞ ≥M−1/4)

≤ Pr(d
√
C1‖σ̂k − σk‖∞ >

√
ε) + Pr(‖σ̂k − σk‖∞ ≥M−1/4).

By applying Lemma B.2, we conclude that Pr(|rk| > ε) ≤ 2(d + 2)2e−C2Mε + 2(d + 2)2e−C3

√
M . By taking the

union bound over all k ∈ [K], we obtain the desired statement in the lemma.

Lemma B.4. Let T := maxk Tk. For all ε > 0, there exists some positive constant C that depends on σmax,
σmin and d such that

Pr(‖L(2)‖∞ ≤ ε) ≥ 1− 2(d+ 2)2e
1−γ
2 logN−CM2

T ε2 .

Proof. For each σ̂(2)
k , it follows from Lemma B.2 that for all ε > 0, there exists some positive constant C that

depends on σmax, σmin as well as d such that

Pr(|`k(σ̂
(2)
k − σk)| > ε) ≤ Pr(‖`k‖1‖σ̂(2)

k − σk‖∞ > ε) ≤ 2(d+ 2)2e−CTkε
2

,
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where the term ‖`k‖1 is absorbed into the positive constant C since ‖`k‖1 is a constant that depends on σmax, σmin

and d. By taking the union bound and using that Tk ≤ T , we obtain

Pr(‖L(2)‖∞ > ε) ≤
K∑
k=1

Pr
(Tk
M
|`k(σ̂

(2)
k − σk)| > ε

)
≤ 2(d+ 2)2N

1−γ
2 e
−CM2

Tk
ε2

≤ 2(d+ 2)2N
1−γ
2 e−C

M2

T ε2 ,

which completes the proof.

With these preparations we can now prove Lemma 3.7.

Proof of Lemma 3.7. Let C1−C6 denote positive constants that depend on σmin, σmax and d and may vary from
line to line. For any ε > 0, standard results in probability yield that

Pr(ρ ≥ 0) = Pr(ρ ≥ 0, ‖R‖∞ ≤ ε) + Pr(ρ ≥ 0, ‖R‖∞ ≥ ε)
≤ Pr(L + R ≥ 0, ‖R‖∞ ≤ ε) + Pr(‖R‖∞ ≥ ε)
≤ Pr(L ≥ −ε, ‖R‖∞ ≤ ε) + Pr(‖R‖∞ ≥ ε) ≤ Pr(L ≥ −ε) + Pr(‖R‖∞ ≥ ε).

Then using the decomposition that L = L(1) + L(2), it follows from the same derivation as the above inequality
that for any ε > 0,

Pr(ρ ≥ 0) ≤ Pr(L ≥ −ε) + Pr(‖R‖∞ ≥ ε)
≤ Pr(L(1) ≥ −2ε) + Pr(‖L(2)‖∞ ≥ ε) + Pr(‖R‖∞ ≥ ε).

Then by choosing ε = 1
2
√
M
, it follows directly from Lemmas B.3 and B.4 that there exist positive constants

C1, C2 and C3 such that

Pr(ρ ≥ 0) ≤Pr(L(1) ≥ − 1√
M

) + 2(d+ 2)2e
1−γ
2 logN−C1

√
M (10)

+ 2(d+ 2)2e
1−γ
2 logN−C2

√
M + 2(d+ 2)2e

1−γ
2 logN−C3

M
T .

Using that the subsampling assignment is from the random event B, it follows that T ≤ 2M2

N · N
1−γ
2 . By

combining this with (10) and the fact that M = Nγ , we obtain

Pr(ρ ≥ 0) ≤ Pr(L(1) ≥ − 1√
M

) + elog(2(d+2)2)+ 1−γ
2 logN−C1N

γ/2

(11)

+ elog(2(d+2)2)+ 1−γ
2 logN−C2N

γ/2

+ elog(2(d+2)2)+ 1−γ
2 logN−C3N

1−γ
2 .

Then using logN = o(Nγ/2∧ 1−γ
2 ) and log(2(d+ 2)2) = o(Nγ/2∧ 1−γ

2 ), we can absorb the terms log(2(d+ 2)2) and
1−γ

2 logN into Nγ/2 and N
1−γ
2 respectively and obtain

Pr(ρ ≥ 0) ≤ Pr(L(1) ≥ − 1√
M

) + e−C1N
γ/2

+ e−C2N
1−γ
2 .

It remains to bound the term Pr(L(1) ≥ − 1√
M

). Since all the σ̂(1)
k ’s are independent random vectors, we have

Pr(L(1) ≥ − 1√
M

) =
K∏
k=1

Pr(
M − Tk
M

`k(σ̂
(1)
k − σk) ≥ − 1√

M
)

≤
K∏
k=1

Pr(`k(σ̂
(1)
k − σk) ≥ − 2√

M
),
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where the last inequality is based on the fact that Tk � M on the event B and therefore M−Tk
M ≥ 1

2 . Let
νk := M · var(`k(σ̂

(1)
k − σk)). By further applying the standard Berry-Essen theorem, we obtain

|Pr(`k(σ̂
(1)
k − σk) ≥ − 2√

M
)− Pr(Z ≥ −2/

√
νk)| ≤ C5/

√
M,

where Z represents a standard Gaussian random variable. Using that `k(σ̂
(1)
k −σk) can be expressed as the mean

of M − Tk independent random variables and that Tk �M , we obtain that there exists some positive constant
C4 such that for all k ∈ [K], νk ≥ C4. Hence, Pr(Z ≥ −2/

√
νk) ≤ Pr(Z ≥ −2/

√
C4) and

Pr(`k(σ̂
(1)
k − σk) ≥ − 2√

M
) ≤ Pr(Z ≥ −2/

√
C4) + C5/

√
M ≤ C6

for some positive constant C6 < 1. Hence, one can rewrite (11) as

Pr(ρ ≥ 0) ≤ (C6)K + e−C1N
γ/2

+ e−C2N
1−γ
2 ,

which finally yields

Pr(ρ ≥ 0) ≤ e−(log 1
C6

)·N
1−γ
2

+ e−C1N
γ/2

+ e−C2N
1−γ
2

under the random event B, which completes the proof.

C Proof of Theorem 3.6

Proof of Theorem 3.6. For any i 6= j, without loss of generality, we assume that |adji(G)| ≤ |adjj(G)|. Also, let
Sij := adji(G) \ {j}. We denote the random event A by:

A :=
{
for any (i, j) 6∈ G, ∃t ∈ [p] \ Sij ∪ {i, j} such that ρ̂i,j|Sij∪{t} ≤ 0

}
.

Similarly, for each (i, j) 6∈ G, we let

Aij :=
{
∃t ∈ [p] \ Sij ∪ {i, j} such that ρ̂i,j|Sij∪{t} ≤ 0

}
.

Let t1, · · · , tK ∈ [p]\Sij∪{i, j} denote a list of nodes with sizeK = N
1−γ
2 (this is a valid choice since Condition 3.3

gives us that p ≥ N
1−γ
2 + d + 2 for any γ ∈ ( 3

4 , 1)). It is straightforward to show that ρij|Sij∪{tk} = 0 for all
k ∈ [K]. Then by setting each Sk in Lemma 3.7 as Sk := Sij ∪ {tk}, it follows from Lemma 3.7 that with
probability at least 1 − exp(−CN

1−γ
2 ∧4γ−3), there exists some tk such that ρ̂i,j|Sij∪{tk} ≤ 0, which yields

Pr(Aij) ≥ 1 − exp(−CN
1−γ
2 ∧4γ−3). By taking the union bound over all the edges (i, j) 6∈ G, we obtain that

Pr(A) ≥ 1− p2e−C
1−γ
2 ∧4γ−3.

Thus, to complete the proof of the theorem, it remains to prove that under the random event A, all edges (i, j) 6∈ G
are deleted by Algorithm 1 when the algorithm is at iteration ` = d+1. We prove this by contradiction. Suppose
there exists an edge (i, j) 6∈ G that is not deleted by the algorithm at ` = d + 1. By applying Theorem 3.5, we
obtain that the estimated graph Ĝ in the iteration ` = |adji(G)| satisfies adji(G) ⊆ adji(Ĝ) and as a consequence
the edge (i, j) will be selected at Step 5 of Algorithm 1 at iteration ` = |adji(G)|. Then by choosing the S
at Step 7 to be Sij and using that we are on the event A, we obtain that there exists a node k such that
ρ̂ij|S∪{k} ≤ 0. As a consequence, the edge (i, j) will be deleted at Step 8. This contradicts the fact that the edge
(i, j) exists in the final output, which completes the proof.

D Proof of Theorem 3.5

Lemma D.1. Consider a Gaussian random vector X = (X1, · · · , Xp)
T that follows an MTP2 distribution. Then

for any i, j ∈ [p] and any S ⊆ [p] \ {i, j}, it holds that ρij|S ≥ ρij|[p]\{i,j}.
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Proof. For ρij|S , if we let M = Si,j , we have

ρij|S = − ((ΣM )−1)iM ,jM√
((ΣM )−1)iM ,iM ((ΣM )−1)jM ,jM

.

Using that the precision matrix Θ is an M-matrix, it follows from basic calculations using Schur complements
that ((ΣM )−1)iM ,iM ≤ Θii, ((ΣM )−1)jM ,jM ≤ Θjj and ((ΣM )−1)iM ,jM ≤ Θij ≤ 0. By combining this with the
fact that ρij|[p]\{i,j} = − Θij√

ΘiiΘjj
, we obtain the lemma.

With this, we can now provide the proof of Theorem 3.5.

Proof. For any edge (i, j) ∈ G and any conditioning set S ⊆ [p] \ {i, j} with |S| ≤ d + 2, by using the same
decomposition as in (11), we can decompose the random variable ρ̂ij|S as

ρ̂ij|S = ρij|S + `ij|S + rij|S ,

where the random variable `ij|S is the first order approximation of ρ̂ij|S − ρij|S and rij|S is the residual. It
follows from Lemma B.2 and the proof of Lemma B.3 that there exists some positive constant τ such that with
probability at least 1− p−(τ+d+4),

|ρ̂ij|S − ρij|S | ≤ C1

√
(τ + d+ 4)

log p

Nγ
,

where C1 is some positive constant that depends on σmin, σmax and d. By further taking union bound over all
(i, j) ∈ G and all S ⊆ [p] \ {i, j} with |S| ≤ d+ 2, it follows that

Pr

{
∀(i, j) ∈ G, ∀S ⊆ [p] \ {i, j} with |S| ≤ d+ 2, |ρ̂ij|S − ρij|S | ≤ C1

√
(τ + d+ 4)

log p

Nγ

}
≥ 1− p−τ .

As a consequence, by assuming that cρ in Condition 3.2 is sufficiently large such that cρ > C1

√
d+ 4 and choosing

τ such that τ <
( cρ
C1

)2 − d − 4, it follows from Lemma D.1 that with probability at least 1− p−τ , ρ̂ij|S > 0 for
all the (i, j, S)’s where (i, j) ∈ G and |S| ≤ d+ 2. Hence, we obtain that the edges (i, j) ∈ G will not be deleted
by Algorithm 1, which completes the proof.

E Additional comments on empirical evaluation

E.1 Stability selection

Overview of stability selection: Stability selection (Meinshausen and Bühlmann, 2006) is a well-known
technique for enhancing existing variable selection algorithms with tuning parameters. Stability selection works
by taking an existing algorithm with a tuning parameter and running it multiple times on different subsamples
of the data with various reasonable values for the tuning parameter. A variable is selected if there exists a tuning
parameter for which it is selected often enough (in our case we use the threshold π = 0.8, meaning a variable
must be present in at least 80% of trials for a given tuning parameter). Because for each tuning parameter,
the algorithm is run many times on different subsamples of the data, stability selection is very computationally
expensive. It is important to note that stability selection is better than simply choosing the best tuning parameter
for a given algorithm, as it is able to combine information across various tuning parameters where appropriate
and adapt to different settings.

The advantages of stability selection: As can be seen from Figure 1(c), the purple line corresponds to the
SH algorithm with stability selection and the pink line corresponds to the SH algorithm where the best tuning
parameter is chosen for each different N (i.e. the y-axis contains the best MCC across all tuning parameters).
Note that the pink line is not a realistic scenario, as in a real-world application we would not have access to the
evaluation metric on the test dataset as we do in this simulated example. However this example is instructive in
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(a) Random graphs (b) Chain graphs (c) Grid graphs

Figure E.1: Comparison of different algorithms evaluated on TPR.

showing that even when a particular algorithm is evaluated with the best possible tuning parameter, stability
selection is able to outperform it, showing that stability selection truly offers a tremendous advantage for the
performance of algorithms with tuning parameters. Thus it is remarkable that our algorithm with theoretically
optimal γ is able to compete with other algorithms using stability selection.

Variation of γ and our algorithm with stability selection: It is also worth noting that although our
algorithm doesn’t have a “tuning parameter" in a traditional sense (i.e. our consistency guarantees are valid for
all γ ∈ (0.75, 1)), it is still possible to perform stability selection with our algorithm by using various choices
of γ in the valid range. In particular, we see from Figure 1(c) that our algorithm with γ = 0.85 out-performs
the theoretically “optimal" value of γ = 7/9. Thus in practice, because different values of γ lead to different
performance (and in some cases better performance than the theoretically optimal value), our algorithm would
likely be improved by performing stability selection. This would likely offer an improvement in performance for
our algorithm at the expense of higher computational costs. Although it is worth noting that in our experiments
our algorithm without stability selection performed quite competitively.

E.2 FPR and TPR

In Figures E.1 and E.2 we report performance of various methods based on the false positive rate (FPR) and true
positive rate (TPR) respectively. From these figures we can get similar conclusion as using the MCC measure.
In particular, it is important to note that although the TPR of CMIT is higher than our algorithm across all
simulation set ups, its FPR is also high, which makes the overall performance less compelling than our algorithm.
The performance of TIGER is worse than our method in terms of both TPR and FPR.

E.3 ROC Curves

To generate the ROC curve for each setting of N , we sample 30 different random graphs (random as defined in
Section 4)) and then draw N samples from a multivariate normal with the resulting precision matrix. For each
of the 30 trials, we get an ROC curve for each algorithm based on the range of tuning parameters tried. To get
a mean ROC curve for each algorithm, we average together the 30 trials. The averaged ROC curves are shown
Figure 2(a) as well as Figure E.3. The range of tuning parameters tried for each algorithm is listed below:

• SH: 20 equally spaced points for q ∈ [0.00, 1.0].

• glasso, nbsel: 20 equally spaced points in log space for λ ∈ [10−6, 101.2].

• CMIT: For computational reasons, we always set η = 1. However the tuning threshold λ is varied as 20
equally spaced points in log space between λ ∈ [10−4, 101.2].

• Our algorithm: We varied γ ∈ [0.75, 0.95] for 10 equally spaced points in this interval.
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(a) Random graphs (b) Chain graphs (c) Grid graphs

Figure E.2: Comparison of different algorithms evaluated on FPR.

(a) ROC Curve N = 50 (b) ROC Curve N = 100 (c) ROC Curve N = 200

Figure E.3: ROC curves for N = 50, 100, 200 respectively averaged across 30 trials of a random graph with
p = 100.

E.4 Normalization of Tuning Parameters

For each algorithm there is a reasonable range of tuning parameters that one might consider while attempting to
perform structure recovery for Gaussian graphical models with the particular algorithm in practice. For glasso

and nbsel it is well known that λ = O

(√
log p
N

)
is theoretically optimal (Friedman et al., 2008; Meinshausen

and Bühlmann, 2006). For all of the experiments shown in Figure 2, we have that p = 100 and N = 500,

giving
√

log p
N ≈ 0.1. To test the sensitivity of these algorithms’ performance to choice of λ close to this optimal

quantity, we let the minimum and maximum λ for both of these algorithms be a factor of 5 within 0.1. Thus,
λmin(glasso) = λmin(nbsel) = 0.02 and λmax(glasso) = λmax(nbsel) = 0.5. We ran both algorithms with a variety of
tuning parameters in this range and mapped the tuning parameters linearly to [0, 1] so that 0.02 is mapped to
0 and 0.5 is mapped to 1 in the normalized tuning parameter x-axis in Figures 2(b) and (c). For CMIT, the

threshold is also optimal for O
(√

log p
N

)
, so we chose η = 1 for computational reasons and let the threshold vary

similarly as glasso and nbsel and be mapped to [0, 1] similarly for normalization.

For SH, we let the threshold q ∈ [0.7, 1.] as that is the range of threshold quantiles that the authors used in
their paper (Slawski and Hein, 2015). Once again, we performed a linear transformation such that the interval
of tuning parameters gets mapped to the unit interval.
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For our algorithm, we let γ ∈ [0.75, 0.95] and also mapped this interval to [0, 1] for normalizing the γ “tuning
parameter". We decided this was an appropriate range for γ since the Algorithm is consistent for γ ∈ (0.75, 1).
We make a minor note that in our mapping, we let smaller values of γ correspond to higher values of the
normalized tuning parameter (still a linear mapping, simply a reflection of the x-axis) since as γ decreases, it
performs similarly to providing more regularization since more edges are removed. In general, an increase in the
normalized tuning parameter corresponds to more regularization.

Throughout, we wanted to use a reasonable range of tuning parameters for all algorithms to map onto the unit
interval after normalization, so that we could have a fair comparison of the sensitivity of different algorithms’
performance to their respective choice of tuning parameters.

F Real data analysis

In this analysis, we consider the following metric that evaluates the community structure of a graph.

Modularity. Given an estimated graph G := ([p], E) with vertex set [p] and edge set E, let A denote the adjacency
matrix of G. For each stock j let cj denote the sector to which stock j belongs and let kj denote the number of
neighbors of stock j in G. Then the modularity coefficient Q is given by

Q =
1

2|E|
∑
i,j∈[p]

(
Aij −

kikj
2|E|

)
δ(ci, cj),

where δ(·, ·) denotes the δ-function with δ(i, j) = 1 if i = j and 0 otherwise.

The modularity coefficient measures the difference between the fraction of edges in the estimated graph that are
within a sector as compared to the fraction that would be expected from a random graph. A high coefficient Q
means that stocks from the same sector are more likely to be grouped together in the estimated graph, while a
low Q means that the community structure of the estimated graph does not deviate significantly from that of a
random graph. Table 1 in the main paper shows the modularity scores of the graphs estimated from the various
methods; our method using fixed γ = 7/9 outperforms all the other methods.
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