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Abstract

We consider the task of learning a causal
graph in the presence of latent confounders
given i.i.d. samples from the model. While
current algorithms for causal structure dis-
covery in the presence of latent confounders
are constraint-based, we here propose a hy-
brid approach. We prove that under assump-
tions weaker than faithfulness, any sparsest
independence map (IMAP) of the distribu-
tion belongs to the Markov equivalence class
of the true model. This motivates the Spars-
est Poset formulation - that posets can be
mapped to minimal IMAPs of the true model
such that the sparsest of these IMAPs is
Markov equivalent to the true model. Mo-
tivated by this result, we propose a greedy
algorithm over the space of posets for causal
structure discovery in the presence of latent
confounders and compare its performance to
the current state-of-the-art algorithms FCI
and FCI+ on synthetic data.

1 INTRODUCTION

Determining the causal structure between variables
from observational data of these variables is a cen-
tral task in many applications (Friedman et al., 2000;
Robins et al., 2000; Heckerman et al., 1995). Causal
structure is often modelled by a directed acyclic graph
(DAG), where the nodes are associated with the vari-
ables of interest and the edges represent the direct
causal effects these variables have on one another.
In most realistic settings, only some of the variables
in an environment are observed at any given time,
i.e., only partial observations are available, leading
to confounding effects on the observed variables. In
such settings, a class of mixed graph models, called
maximal ancestral graphs (MAGs) containing directed

edges (representing direct causal effects), bidirected
edges (representing the effect of a latent confounder
on two variables) and undirected edges (representing
selection bias), have been proposed to model the struc-
ture among the observed variables (Richardson and
Spirtes, 2002). In this paper, we concentrate on latent
confounders and are concerned with the recovery of
mixed graphs containing directed and bidirected edges.

Current methods for estimating MAGs are constraint-
based generalizing the prominent PC algorithm for es-
timating DAGs in the fully observed setting (Spirtes
et al., 2000). This includes the Fast Causal Infer-
ence (FCI ) algorithm (Spirtes et al., 2000) and its
variants: the Really Fast Causal Inference (RFCI ) al-
gorithm (Colombo et al., 2012), and the FCI+ algo-
rithm (Claassen et al., 2013). These methods depend
on the faithfulness assumption to guarantee sound-
ness and completeness, which has been shown to be
restrictive (Uhler et al., 2013). In settings without la-
tent confounders, studies have shown that score-based
approaches, including the prominent GES algorithm
(Chickering, 2002), achieve superior performance to
constraint-based approaches (Nandy et al., 2018). In
purely constraint-based approaches such as PC, mis-
takes made in early stages of the algorithm tend to
propagate and lead to later mistakes. Score-based ap-
proaches (which are usually greedy) are often more re-
silient to error propagation, since early mistakes only
affect the local structure of the search space but do
not affect the scores of later graphs. This motivates
the development of an algorithm for causal structure
discovery in the presence of latent confounders that
shares this resilience with score-based approaches.

In this paper, we propose the sparsest poset (SPo) al-
gorithm for causal structure discovery in the presence
of latent confounders. Since this algorithm uses both a
scoring criterion and conditional independence testing
to learn the model, we refer to it as a hybrid method.
The key idea that we use is that every MAG containing
only directed and bidirected edges is consistent with
a partial order of the observed variables (poset) and
hence the problem of causal structure discovery can
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be recast as the problem of learning a poset. In par-
ticular, our main contributions are as follows:

• We define a map that associates to each partial
order of the observed variables a MAG, so that the
sample-generating distribution is Markov to it.

• We prove that the sparsest such MAG is Markov
equivalent to the true graph under conditions that
are strictly weaker than faithfulness.

• We propose a greedy search over the space of
posets based on the legitimate mark changes by
Zhang and Spirtes (2012) to move effectively be-
tween MAGs associated with different posets to
find the poset yielding the sparsest graph.

• By comparing the performance and speed of our
algorithm to FCI and FCI(+) on synthetic data,
we show that it is competitive to current stat-
of-the-art methods for causal structure discovery
with latent confounders.

2 PRELIMINARIES AND
RELATED WORK

In the following, we review relevant concepts and re-
lated work; see also Appendix A.

2.1 Directed Maximal Ancestral Graphs

All graphs in this paper can have directed and bidi-
rected edges. Let G = (V,D,B) be a graph with ver-
tices V , directed (→) edges D, and bidirected (↔)
edges B. We use skel(G) to denote the skeleton of
G, i.e., the undirected graph obtained by replacing all
edges with undirected edges. We denote the number of
edges of G by |G| := |D|+ |B|. We use paG(i), spG(i),
and anG(i) respectively to denote the parents, spouses,
and ancestors of a node i in G, where we use the typ-
ical definitions as in Lauritzen (1996). G is said to
be ancestral if it has no directed cycles, and whenever
there is a bidirected edge i ↔ j in G, there is no di-
rected path from i to j (Richardson and Spirtes, 2002).
While ancestral graphs have been defined to also allow
for undirected edges, we restrict our treatment to an-
cestral graphs with only directed and bidirected edges,
which we will call directed ancestral graphs.

Richardson and Spirtes (2002) generalized the stan-
dard notions of d-separation and d-connectedness for
DAGs (see e.g. (Lauritzen, 1996)) to m-separation
and m-connectedness for ancestral graphs. We write
A ⊥⊥G B | C to indicate that A and B are m-separated
given C in G. We denote the set of all m-separation re-
lations of a graph G by I(G). Unlike for DAGs, in the
case of ancestral graphs it is possible to have a pair of

non-adjacent vertices i and j without an m-separation
relation of the form i ⊥⊥G j | S for any S ⊆ V \ {i, j}
(see Richardson and Spirtes (2002)). An ancestral
graph is maximal if every non-adjacent pair i and j
satisfies i ⊥⊥G j | S for some S ⊆ V \ {i, j}. Richard-
son and Spirtes (2002) showed that associated to every
graph G is a unique maximal supergraph, denoted G,
with the same set of m-separation statements. They
also give an efficient procedure for computing G from
G. We refer to a directed ancestral graph that is max-
imal as a directed maximal ancestral graph (DMAG).

2.2 Markov Properties of DMAGs

Given a DMAG G = (V,D,B), we associate to each
vertex i ∈ V a random variable Xi such that the ran-
dom vector XV = (Xi : i ∈ V ) has joint distribution P.
This distribution can be connected to the separation
relations in G via the Markov property (Richardson,
1999); namely, P is Markov with respect to the DMAG
G if every m−separation relation in G implies the cor-
responding conditional independence relation in P, i.e.

A ⊥⊥G B | C ⇒ XA ⊥⊥P XB | XC

for all disjoint A,B,C ⊆ V, where ⊥⊥P denotes inde-
pendence in P. Denoting by I(P) the set of all CI
relations in P, the Markov property is then equivalent
to I(G) ⊆ I(P). In this case, G is called an indepen-
dence map (IMAP) of P; G is called a minimal IMAP
of P if there is no edge of G that can be deleted while
keeping G both maximal and an IMAP of P.

Graphs G and H are said to be Markov equivalent
if I(G) = I(H). The set of all graphs that are
Markov equivalent to a given G will be denotedM(G).
Spirtes and Richardson (1996) provided a combina-
torial characterization of graphs in the same Markov
equivalence class (MEC). To do this, they used the
notion of discriminating paths for a vertex k: a path
γ = 〈i, . . . , k, j〉 between non-adjacent i and j is dis-
criminating for k if every node between i and k is both
a collider and a parent of j, and there is at least one
node between i and k. Spirtes and Richardson (1996)
show that G and H are Markov equivalent if and only
if they have the same skeleta, the same v-structures,
and if for any path γ that is discriminating for k in
both G and H, k is a collider on γ in G if and only if
k is a collider on γ for H.

Zhang and Spirtes (2012) provided a transformational
characterization for the Markov equivalence class of a
DMAG that will play an essential role in this paper.
For this, they called the transformation of the edge
i → j in G into i ↔ j, or of the edge i ↔ j to i → j
a legitimate mark change if there is no other directed
path from i to j in G, paG(i) ⊆ paG(j), spG(i)\{j} ⊆
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paG(j) ∪ spG(j), and there is no discriminating path
for i on which j is the endpoint adjacent to i. They
showed that G and H are Markov equivalent if and
only if there is a sequence of legitimate mark changes
from G to H.

2.3 Causal Structure Discovery Algorithms

The problem of causal structure discovery in the set-
ting of latent confounders is to recover the Markov
equivalence class of the underlying DMAG G∗ from
samples on the observed variables. In particular, when
the sample size n→∞, the problem is to recover the
Markov equivalence class of the DMAG G∗ from I(P).
The most prominent existing algorithms for learning
DMAGs1 are the Fast Casual Inference (FCI) algo-
rithm (Spirtes et al., 2000) and its variants, most no-
tably FCI+ (Claassen et al., 2013), which has polyno-
mial time complexity for sparse graphs while retain-
ing large-sample consistency. All of these methods are
constraint-based; they start by estimating the skeleton
of the graph based on the results of CI tests, then use
the results of those CI tests to determine some edge
orientations. However, constraint-based methods re-
quire the faithfulness assumption (Zhang and Spirtes,
2002), which is restrictive in practice, and faithfulness
violations lead to the removal of too many edges Uhler
et al. (2013).

In the DAG setting (i.e., no latent confounders) it
has been shown that score-based approaches may re-
quire weaker assumptions for consistency (Van de
Geer et al., 2013; Raskutti and Uhler, 2018) and usu-
ally achieve superior performance for a given sample
size (Nandy et al., 2018). This motivates the devel-
opment of an algorithm for causal structure discov-
ery that shares these properties with score-based ap-
proaches, and works in the presence of latent con-
founders. Existing score-based approaches that can
handle latent confounders require parametric assump-
tions. For example, Shpitser et al. (2012) requires dis-
creteness and Tsirlis et al. (2018); Nowzohour et al.
(2017) requires Gaussianity.

A particular approach that will play an important role
in this paper is the Sparsest Permutation algorithm,
introduced in Raskutti and Uhler (2018), which as-
sociates to each permutation π a DAG Gπ, which
is a minimal IMAP of the data-generating distribu-
tion. The Sparsest Permutation algorithm is a hy-
brid method, combining aspects of the constraint- and
score-based paradigms. Like many constraint-based
methods, it does not require parametric assumptions,

1In fact, all of these methods are able to estimate
MAGs, which may include undirected edges to model se-
lection bias.

and like many score-based methods, it seems resilient
to error-propagation. Since under restricted faith-
fulness assumptions the sparsest such Gπ is Markov
equivalent to the true DAG G∗, this motivates a greedy
search over the space of permutations to determine the
sparsest Gπ. In fact, in Solus et al. (2017) the authors
proved that starting in any minimal IMAP there ex-
ists a sequence of minimal IMAPs connecting it to the
true DAG G∗ by legitimate mark changes such that
the number of edges is weakly decreasing. Hence the
Greedy Sparsest Permutation (GSP) algorithm is con-
sistent for causal structure discovery in the fully ob-
served setting.

In the following section, we generalize the sparsest
permutation algorithm to the setting with latent con-
founders by using posets instead of permutations. In
particular, we show that under restricted faithfulness
assumptions the DMAG associated with the Spars-
est Poset is Markov equivalent to the true DMAG.
This motivates the introduction of a greedy search over
posets, which we term Greedy Sparsest Poset (GSPo)
algorithm and introduce in Section 4. Finally, in Sec-
tion 5 we analyze its performance and compare it to
the FCI algorithms on synthetic data.

3 SPARSEST POSET

This section contains our main results. We first in-
troduce the restricted faithfulness notion required for
our results and show that it is strictly weaker than
the standard faithfulness assumption. Then we intro-
duce a map from posets to DMAGs which are minimal
IMAPs of the data-generating distribution, and show
that the sparsest DMAG in the image of this map is
Markov equivalent to the true DMAG G∗.

3.1 Restricted Faithfulness

An important assumption for constraint-based meth-
ods to recover G∗ from I(P) is the faithfulness assump-
tion, which asserts that I(P) = I(G∗). In practice,
this assumption is very sensitive to hypothesis testing
errors for inferring CI relations from data and almost-
violations are frequent (Uhler et al., 2013). This mo-
tivates studying restricted versions of the faithfulness
assumption Ramsey et al. (2012); Raskutti and Uh-
ler (2018). In the following, we introduce a restricted
faithfulness assumption for DMAGs, which we show is
sufficient for learning DMAGs.

Definition 1. A distribution P is restricted-faithful to
a DMAG G = (V,D,B) if it is Markov to G satisfying

1. Adjacency-faithfulness: If (i, j) ∈ B ∪ D, then
Xi 6⊥⊥P Xj | XS for any S ⊆ V \ {i, j};
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Xi = XpaG∗ (i)
+ εi, i 6= 6

X6 = X3 −X5 + ε6

(a) Structural equation model (b) G∗

Figure 1: A structural equation model giving rise to a
joint distribution P that is restricted-faithful, but not
faithful, to the graph G∗.

2. Orientation-faithfulness: If i−k−j is contained in
the skeleton of G and i is m-connected to j given
some subset S ⊆ V \ {i, j}, then Xi 6⊥⊥P Xj | XS.

3. Discriminating-faithfulness: If 〈i, . . . , k, j〉 is a
discriminating path in G and i is m-connected
to j given some subset S ⊆ V \ {i, j}, then
Xi 6⊥⊥P Xj | XS.

It is clear that faithfulness implies restricted-
faithfulness. Moreover, restricted-faithfulness is a
strictly weaker condition - there exist joint distribu-
tions P that are restricted-faithful to a DMAG that
are not faithful. For example, let P be given by the
structural equation model in Figure 1a, where each
εi ∼ N (0, 1). Then P is restricted-faithful, but not
faithful to the graph G∗ displayed in Figure 1b. To
see that P is not faithful to G∗, note that X1 ⊥⊥P X6

even though 1 and 6 are not m-separated in G∗.

3.2 Sparsest Poset

In this section, we show that the Markov equivalence
class of a DMAG G∗ = (V,D∗, B∗) can be determined
from I(P) under the restricted faithfulness assumption
by casting this problem into an minimization problem
over the space of partial orders of the set V . We do
this by mapping the space of these partial orders to
minimal IMAPs of G∗ and minimizing a cost that is a
function of such an IMAP.

A partial order on a set V is a relation ≤ on V that is
reflexive, transitive, and antisymmetric. Two elements
i, j ∈ V are said to be incomparable if neither i ≤ j
nor j ≤ i holds. We denote this symbolically by i 6≶ j.
A set V equipped with a specified partial order ≤ is
called a partially ordered set (poset), denoted (V,≤).
Then, V is called the ground set of the poset. The
empty poset is the poset (V,≤) such that all i, j ∈ V
are incomparable. We denote the set of all posets with
a ground set V by P(V ). Given a poset π = (V,≤)
and s1, . . . , sk ∈ V , define

preπ(s1, . . . , sk) := {x ∈ V : x ≤ si for some 1 ≤ i ≤ k}.

Associated to each directed ancestral graph G =

(V,D,B) is a partial order ≤G on V , defined by

i ≤G j ⇔ i ∈ anG(j).

Note that the ancestral property implies that if i↔G

j, then i 6≶G j. We denote the poset (V,≤G) by po(G).
The map G 7→ (V,≤G) gives a bijection from the set of
complete DMAGs, i.e., DMAGs whose skeleta are com-
plete graphs, to P(V ), the set of posets with ground
set V . Since not all DMAGs are complete, the set of
DMAGs on V is strictly larger than P(V ).

This relationship between ancestral graphs and posets
motivates describing the sparsest IMAP of a distribu-
tion P that is restricted-faithful to a DMAG G∗ in
terms of posets by mapping every poset to an IMAP.
This will lead to the concept of sparsest posets ; the
posets of P(V ) that are mapped to DMAGs inM(G∗).
To obtain the map, we need the following definition.

Definition 2. Given a joint distribution P on the
random vector XV and a poset π = (V,≤π). Define
AG(π,P) as the ancestral graph with directed edge set

{i→ j : i ≤π j,Xi 6⊥⊥P Xj | Xpreπ(i,j)\{i,j}}

and bidirected edge set

{i↔ j : i 6≶π j,Xi 6⊥⊥P Xj | Xpreπ(i,j)\{i,j}}.

When ≤π is a total order, i.e. a partial order where
the relations i ≤π j or j ≤π i hold for all i, j, then
AG(π,P) defines a map from permutations to DAGs
and is the one used in the GSP algorithm (Raskutti
and Uhler, 2018). The authors showed in this case
that AG(π,P) is a minimal IMAP for P for all total
orders ≤π. Unfortunately, as shown in the following
example, AG(π,P) may not be an IMAP of P when
≤π is allowed to be an arbitrary partial order.

Example 1. Let P be a joint distribution that is
restricted-faithful to the DMAG G∗ shown in Fig-
ure 2a. Let π be the poset with ground set {1, 2, 3, 4}
and relations 2 ≤ 3, 1 ≤ 4, and i 6≶ j otherwise.
Then AG(π,P), shown in Figure 2b, is not an IMAP
of P. To see this, note that 4 ⊥⊥AG(π,P) 3 | {2}, but
X4 6⊥⊥P X3 | {X2} since 4 ↔ 2 ← 1 → 3 is a {2}-
connecting path in G∗.

However, we show in the following proposition, which
is proven in Appendix B, that one can construct a
minimal IMAP of P for any poset π using the map
AG(·, ·) by defining

GP
π := AG(po(AG(π,P)),P).

where P and π are as in Definition 2. Recall that
G denotes the maximal closure of G. We want Gπ
to be maximal since the results of Zhang and Spirtes
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1

4

2

3

(a) G∗

1

4

2

3

(b) AG(π,P)

Figure 2: Graphs for Example 1. P is faithful to G∗

but AG(π,P) is not an IMAP of P.

1
2

3
4

5

(a) G∗

1
2

3
4

5

(b) AG(po(AG(π,P),P)

Figure 3: Graphs for Example 2. P is faithful to G∗

but AG(po(AG(π,P),P) is not maximal.

(2012) regarding legitimate mark changes apply only
to maximal ancestral graphs. To simplify notation, we
use Gπ instead of GP

π when P is clear from context.

Proposition 1. Let P be a joint distribution on V
that is restricted-faithful to a DMAG. Then Gπ is a
minimal IMAP of P for any poset π ∈ P(V ).

As we show in the following example, including the
maximal closure in the definition of Gπ is required
since it may otherwise not be maximal.

Example 2. Let P be a joint distribution faithful to
the graph G∗ displayed in Figure 3a. Let π be the
poset with ground set V = {1, 2, 3, 4, 5} and order-
ing relations 1 ≤ 2, 3 ≤ 4, 5 ≤ 4, and i 6≶ j
otherwise. Then AG(po(AG(π,P)),P), displayed in
Figure 3b, is not maximal. To see this, note that
AG(po(AG(π,P)),P) lacks an edge between 2 and 4,
while there is no set S ⊆ V \ {2, 4} that m-separates 2
and 4 in AG(π(AG(π,P),P).

Having defined a map from posets to minimal IMAPs
for DMAGs, we are almost ready to state our result
on the consistency of the sparsest poset. The following
theorem establishes that under restricted-faithfulness
all sparsest IMAPs of G∗ are Markov equivalent to G∗.

Theorem 1. Given a distribution P and a DMAG G∗

that is an IMAP of P, let

G ∈ arg min
{H: H is an IMAP of P}

|H|. (1)

(a) If P is adjacency-faithful to G∗, then skel(G) =
skel(G∗).

(b) If P is restricted-faithful to G∗, then G ∈M(G∗).

The proof of this theorem is given in Appendix C; it
involves using the adjacency faithfulness condition to
obtain skel(G) ⊇ skel(G∗) for any IMAP G. Then we
show that the IMAP condition on G, under restricted-
faithfulness of P, forces a graph with the same skele-
ton as G∗ to have matching unshielded colliders and
matching discriminating paths when these discrimi-
nating paths are present in both of these graphs.

The following proposition establishes that G∗ is in the
image of π 7→ Gπ; its proof is given in Appendix D.
Thus, when restricting our search over IMAPs to the
the image of this map, the optimum is still in our fea-
sible set.

Proposition 2. Let P be restricted-faithful to DMAG
G∗. If G ∈M(G∗), and π = po(G), then Gπ = G.

We are now ready to state our main result.

Theorem 2 (Sparsest Poset). Let P be a distribution
on V that is restricted faithful to a DMAG G∗. If

τ ∈ arg min
π∈P(V )

|Gπ|,

then Gτ is Markov equivalent to G∗.

Proof. Propositions 1 and 2 together imply that there
is an IMAP H = Gπ for some π such that |H| = |G∗|.
Theorem 1 then gives the desired result.

4 GREEDY SPARSEST POSET

Theorem 2 formulates the problem of finding a graph
G∗ from P as a discrete optimization problem over
P(V ), the set of all posets on the ground set V . In this
section, we discuss solving this optimization problem
by imposing a graph structure on P(V ) and then per-
forming a greedy search along the edges of the graph.
Note that Theorem 2 does not guarantee that a greedy
approach returns an optimum. Supported by simula-
tions, we will conjecture that this is indeed the case.

4.1 Greedy Sparsest Poset

Perhaps the most natural graph structure on P(V )
is known as the Hasse diagram of the poset of posets
(Bouc, 2013), which we denote by HP(V ). One obtains
this by adding an edge to connect posets (V,≤1) and
(V,≤2) whenever there exists a unique pair i, j ∈ V
such that i ≤1 j, but i 6≶2 j. Figure 4a gives an
example of HP(V ) when V = {1, 2, 3}. For more details
about Hasse diagrams, see Stanley (2011).

Algorithm 1 is a greedy search along the edges of
HP(V ) to determine a poset π yielding the sparsest
Gπ. Figure 4b shows an example run of Algorithm 1
when I(P) = {X1 ⊥⊥P X2 | X3}, where each poset
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(a) HP(V ) for V = {1, 2, 3}. (b) A relabeling of HP(V ) be replacing each π with its
corresponding Gπ when I(P) = {X1 ⊥⊥P X2 | X3}.

Figure 4: (a) shows HP(V ) for V = {1, 2, 3}. Each of the large squares represents a poset π ∈ P (V ). We represent
each π by having i lie above j only if j ≤π i. For example, the square in the upper left corner represents the
poset with relations 1 ≤π 2 ≤π 3 while the bottom most square represents the empty poset. Posets (V,≤1) and
(V,≤2) are connected by an edge whenever there exists a unique pair i, j ∈ V such that i ≤1 j, but i 6≶2 j. (b)
shows a relabeling of HP(V ) by replacing each π with Gπ when I(P) = {X1 ⊥⊥P X2 | X3}. The number of edges
of each Gπ is indicated in the bottom right corner of the square containing it. The direction of edges indicates a
strict decrease in the number of edges from one graph to the next. A possible path that algorithm 1 could take
starting at the bottom square is highlighted in blue, with the graph returned colored green.

π is replaced by its corresponding Gπ, along with a
possible path taken when starting at the empty poset.

As the example in Figure 4b shows, Gπ = Gτ can
happen for π 6= τ . To achieve better run-time per-
formance, one might optimize directly over the set
{Gπ : π ∈ P(V )} rather than P(V ), thus avoid-
ing moving between posets that give rise to the same
graph, similar as in GSP (Solus et al., 2017; Moham-
madi et al., 2018). We propose to do this by moving
from Gπ to GpoG′ where G′ is obtained from Gπ via
a legitimate mark change, the definition of which we
now restate.

Definition 3 (Zhang and Spirtes (2012)). Given a
DMAG G, a legitimate mark change of G is the process

Algorithm 1

Input: I(P), with P restricted-faithful to G∗; a
starting poset π0.
Output: A minimal IMAP of G∗.
Set π = π0;
Via depth-first search on HP(V ) with root π, find a
path π1 := π, . . . , πk := τ such that πi is adjacent
to πi+1 in HP , |Gπi | ≥ |Gπi+1

| and |Gπ| > |Gτ |.
If such πk exists, set π to πk, and repeat this step.
Otherwise, return Gπ.

of turning an edge i→ j to i↔ j, or vice-versa, when

1. there is no directed path from i to j aside from
possibly i→ j;

2. if k → i, then k → j. If k ↔ i, then k ↔ j or
k → j;

3. there is no discriminating path 〈k, . . . , i, j〉.

Zhang and Spirtes (2012) showed that DMAGs G and
H are Markov equivalent if and only if G can be
transformed into H via a sequence of legitimate mark
changes. This is analogous to the result by Chicker-
ing (1995) that DAGs G and H are Markov equiva-
lent if and only if G can be transformed into H via a
sequence of covered edge flips, which are exactly the
moves used by GSP (Solus et al., 2017; Mohammadi
et al., 2018). Using this notion of edge change gives a
different search space, defined in terms of the IMAPs
Gπ. Namely, given a distribution P, define LP to be
the directed graph with vertex set {Gπ : π ∈ P(V )}
with an arc from Gπ to Gτ when there exists a graph
G′, obtainable from Gπ via a single legitimate mark
change, such that τ = po(G′).

Figure 5 shows the outgoing edges of a particular min-
imal IMAP Gπ in LP when P is faithful to G∗ of Fig-
ure 2a. As shown, there are two possible legitimate
mark changes that can be performed on Gπ shown as
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Figure 5: Example of the outgoing edges (in bold)
of the node Gπ in LP where P is faithful to G∗ from
Figure 2b. The graphs G′1 and G′2 are obtained from
Gπ via legitimate mark changes of the colored dashed
edges. The posets τ1, τ2 are po(G′1), po(G′2) respec-
tively so LP has edges from Gπ to Gτ1 and Gτ2 .

dashed. Changing the bidirected dashed edge, for ex-
ample, would result in G′1 with τ1 = po(G′1). Hence,
there is an outgoing edge from Gπ to Gτ1 in LP.

Algorithm 2 is the resulting greedy search for the
sparsest Gπ over LP. We call this algorithm the greedy
sparsest poset algorithm (GSPo). We conjecture, sup-
ported by simulations on the order of 100,000s of ex-
amples (see Appendix E), that GSPo is consistent un-
der the restricted-faithfulness assumption (using a suf-
ficiently large depth d in the search), i.e., it yields a
DMAG that is Markov equivalent to G∗ no matter the
starting point. This conjecture generalizes the con-
sistency result proven for GSP in the fully observed
setting (Solus et al., 2017).

Conjecture 1. Let P be a probability distribution that
is restricted-faithful to a DMAG G∗. If π0 is any poset,
then there exists a directed path π0 → π1 → · · · →
πk in LP such that Gπk is sparsest, and such that πi
always has weakly fewer edges than πi−1.

4.2 Implementation

A crucial practical consideration for GSPo is the choice
of the starting poset π0, since a sparser initial IMAP
would be favorable. The empty poset ∅ provides a sim-
ple starting place, with G∅ = {i↔ j | Xi 6⊥⊥P Xj}, but
in general will not be sparse. An effective alternative
is to start at a sparse DAG that is a minimal IMAP
(e.g., given by a permutation), either by running a
DAG-learning algorithm such as GSP or by simply us-
ing the same starting heuristic as GSP based on the
minimum-degree (MD) algorithm (Solus et al., 2017).
We compare these initialization schemes in Section 5.

Algorithm 2 Greedy Sparsest Poset (GSPo)

Input: I(P), with P restricted-faithful to G∗; start-
ing poset π0; maximum depth d.
Output: A minimal IMAP of P.
Set π = π0;
Via depth-first search with root π and depth at most
d, find path π0, . . . , πk such that πi and πi+1 are
adjacent in LP, |Gπi | ≥ |Gπi+1

| and |Gπ0
| > |Gπk |.

If such πk exists, set π to πk, and repeat this step.
Otherwise, return Gπ.

5 EXPERIMENTAL RESULTS

In this section, we compare the performance of GSPo
to FCI and FCI+ in recovering DMAGs from samples
of the observed nodes. In each simulation, we sample
100 Erdös-Rényi DAGs on p+K nodes with s expected
neighbors per node, then form DMAGs by marginal-
izing over the first K nodes, to obtain DMAGs on p
nodes. If i, j is an edge i → j in the DAG, we assign
an edge weight wij drawn uniformly at random from
[−1,−.25] ∪ [.25, 1]; we set wij = 0 otherwise. Finally,
we generate n samples from the structural equation
model X = W>X + ε where ε ∼ N (0, IK+p) and re-
move the first K columns of the data matrix.

In each run of GSPo, we set the depth parameter d to
4, and run the algorithm 5 times for each graph (using
different initializations). For DAGs, a depth of 4 has
been used to reflect the empirically-observed average
size of the MECs (Gillispie and Perlman, 2001; Solus
et al., 2017). Although we are not aware of results on
the average size of the MECs of DMAGs, we found
little benefit in using values larger than 4.

In Figure 6, we chose p = 10, K = 3, and s = 3.
The resulting graphs have on average about 4 neigh-
bors per node, and have varying proportions of bidi-
rected edges, from 0% bidirected to 75% bidirected,
with roughly 30% bidirected on average.

Figure 6a shows performance of GSPo with three ini-
tialization schemes as compared to FCI and FCI+ on
recovering the skeleton of the true MAG. Regardless
of the initialization scheme, GSPo generally estimates
denser graphs than FCI and FCI+, with the densest
graphs estimated when starting at the empty poset.
The performance of initializing GSPo by the MD al-
gorithm and GSP are comparable, so for simplicity we
recommend initializing by the MD algorithm. While
FCI and FCI+ achieve better performance in the low
false positive rate regime, GSPo begins to surpass FCI
and FCI+ in the middle regime. This indicates that
even with a large number of samples, FCI(+) suffers
from near-faithfulness violations, which leads to mis-
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(a) Skeleton edge recovery (ROC) (b) Skeleton Edge Recovery (SHD) (c) Median Runtime

Figure 6: In (a) and (b), p = 10, K = 3, and s = 3. In (a), each variant of GSPo was run on 8 α values from
10−10 to .7, and each variant of FCI was run on 7 α values from 10−20 to .5. The best α for each algorithm
was selected for (b); the corresponding point is marked by ? in (a). These values were α = .1 for each variant of
GSPo and for FCI+, and α = .7 for FCI. In (c), p = 10, 20, 30, 40, 50, K = 3, and s = 3. Again the best α was
selected for (c), except for FCI, which was run with α = 10−3 since higher α values were extremely slow.

takenly removing edges. ROC curves for p = 50 nodes
are reported in Appendix F, with similar findings.

Figure 6b shows the structural Hamming distance
(SHD)2 of the skeleton of the true DMAG to the skele-
ton of the DMAG estimated by each algorithm. For
each algorithm, the value of α was picked from among
the values used in Figure 6a in order to minimize the
average SHD over all sample sizes; the corresponding
values are marked by stars on the ROC curves. All
variants of GSPo outperform both variants of FCI for
all sample sizes in terms of SHD.

Figure 6c shows the median computation time required
for each algorithm for graphs of varying number of
vertices. Average computation time is in Appendix F.
For each algorithm, we chose the parameter α based
on the best-performing value in Figure 6b; FCI we
were limited to α = 10−3 due to its poor scaling for
dense graphs. Thus, the median runtime for FCI is a
conservative lower bound. We observe that GSPo with
GSP initialization is faster than FCI or FCI+ for small
graphs, but slower than FCI+ as the number of nodes
increases. Given that CI tests in the construction of
Gπ involve all ancestors of pairs of nodes, this poor
scaling is expected. Fortunately, this suggests that
improvements along the lines of those in FCI+ may
bring the scaling of GSPo in line with that of FCI+.

6 DISCUSSION

We provided a new characterization of the Markov
equivalence class of a DMAG in terms of the set of
sparsest minimal IMAPs, which allows structure learn-
ing in the presence of latent confounders to be ex-

2the SHD between two undirected graphs is equal to the
minimum number of edge additions/deletions required to
transform from one graph to another

pressed as a discrete optimization problem. To restrict
the search space for this problem, we introduced a map
from posets to minimal IMAPs whose image contains
the true DMAG. Then, we proposed a greedy algo-
rithm in the space of minimal IMAPs to determine
the sparsest minimal IMAP and hence a graph that
is Markov equivalent to the true DMAG. This algo-
rithm extends the Greedy Sparsest Permutation algo-
rithm (Solus et al., 2017) for learning DAGs to the
setting with latent confounders, thereby providing a
general hybrid approach for causal structure discovery
in this setting. We also demonstrated that it outper-
forms the current constraint-based methods FCI and
FCI+ in some relevant settings.

Consistency of our greedy algorithm remains an open
question, and is an interesting issue for future work.
Furthermore, it may be possible to improve the statis-
tical and computational performance of GSPo through
modifications such as: more efficiently obtaining min-
imal IMAPs after legitimate mark changes, using dy-
namic connectivity algorithms to keep track of ances-
tral relations, and better heuristics for initialization.

By introducing a method for structure learning for
DMAGs that is not a variant of FCI, we open the
door to comparisons between the behavior of differ-
ent types of methods on issues besides just statistical
and computational performance, such as behavior of
the algorithms under misspecification of parametric or
modeling assumptions (e.g., non-i.i.d. data or non-
Gaussianity when using partial correlation tests). It
would also be interesting to use the idea of an ordering-
based search as provided in this paper for the prob-
lem of learning general MAGs (i.e., including selection
bias). To the best of our knowledge, there is no known
transformational characterization for Markov equiva-
lence classes of general MAGs yet, which is a key ingre-
dient in the development of such a greedy algorithm.
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APPENDIX

A Graph Theory

This section provides additional graph-theoretic nota-
tions that are standard in the literature and are pro-
vided for ease of access. Let G = (V,D,B) be a graph.
If there is any edge between i and j, they are called ad-
jacent which we may denote i ∼ j. Otherwise they are
called non-adjacent and we write i 6∼ j. We will use
◦ as a “wildcard” for edge marks, i.e. i ◦→j denotes
that either i → j or i ↔ j. We will use subscripts on
these vertex relations as a shorthand way to indicate
the presence or absence of an edge, or the presence of
a particular kind of edge. For example, i ↔G j and
k 6∼G l respectively indicate that G has a bidirected
edge between i and j, and no edge between k and l.
A graph with only directed edges is called a directed
graph.

A path γ = 〈v1, v2, . . . , vk〉 is a sequence of distinct
nodes that such that vi and vi+1 are adjacent. A cycle
is a path together with any type of edge between vk
and vk+1 = v1. A path or a cycle is called directed if all
edges are directed toward later nodes, i.e. vi → vi+1.

We extend the notation paG(i), spG(i), and anG(i) to
allow arguments that are subsets of vertices by taking
unions. For example, when S ⊆ V , we have

paG(S) := ∪i∈S paG(i).

We add an asterisk to denote that the arguments are
not included in the set, e.g.

pa∗G(S) := paG(S) \ S.

The colliders on a path γ are the nodes where two ar-
rowheads meet, i.e., vi is a collider if vi−1 ◦→vi←◦ vi+1.
A triple of nodes (i, j, k) is called a v-structure if j is
a collider on the path 〈i, j, k〉 and i 6∼ k.

B Proof of Proposition 1

We will prove Proposition 1 via a sequence of interme-
diate Lemmas. Since our goal is to prove that all the
m-separation statements of a given DMAG are satis-
fied by a given P, it will be helpful to have the follow-
ing lemma which reduces the number of m-separation
statements we must consider.

Lemma 1. Let G∗ and H be DMAGs. Then G∗ ≤
H if and only if whenever i 6∼H j, i is anH({i, j}-
separated from j in G∗, i.e. i ⊥⊥G∗ j | anH({i, j}).

Proof. This is an immediate consequence of Theorem 3
in (Sadeghi and Lauritzen, 2014).

Throughout the rest of this section, let it be under-
stood that G∗ is a DMAG that is restricted-faithful to
some fixed joint distribution P. We will not repeat this
assumption. Moreover, we will suppress P in our no-
tation and write Gπ instead of Gπ and AG(π) instead
of AG(π,P). Also, note that when H is a DMAG,
po(H) = po(H) since H is obtained from H by adding
only bidirected edges (Richardson and Spirtes, 2002).
We will make repeated tacit use of this fact.

Lemma 2. Let π be a partial order on the random
variables of P such that Gπ = AG(π). Then Gπ is an
IMAP of P.

Proof. Lemma 1 implies that it suffices to show that
whenever i 6∼Gπ j, Xi ⊥⊥P Xj | Xan∗Gπ (i,j)

. So assume

i 6∼Gπ j. Since Gπ = AG(po(AG(π))), i 6∼Gπ j implies
Xi ⊥⊥P Xj | Xpre∗

po(AG(π))
(i,j). But now we are done

since pre∗po(AG(π))(i, j) = an∗AG(π)(i, j) = an∗
AG(π)

(i, j)

and we are assuming Gπ = AG(π).

Lemma 3. Let π be a partial order on the random
variables of P. Then po(Gπ) = po(AG(π)).

Proof. We must show

po(AG(po(AG(π)))) = po(AG(π))

If i ≤ j in po(AG(po(AG(π)))), then there exists a di-
rected path i = i0 → · · · → ik = j in AG(po(AG(π)))
and so i = i0 ≤ · · · ≤ ik = j in po(AG(π)).

We now proceed to show that if i ≤ j in po(AG(π)),
then the same is true in po(AG(po(AG(π)))). We
do this by showing that if i →AG(π) j, then
i →AG(po(AG(π))) j. So for the sake of contradiction,
assume that i →AG(π) j but not i →AG(po(AG(π)))

j. By the definition of AG, this implies that
i 6∼AG(po(AG(π))) j and so i is m-separated from j given
an∗AG(π)(i, j) in G∗. But i →AG(π) j implies that i is

m-connected to j given pre∗π(i, j) in G∗. Let P be an
m-connecting path from i to j given pre∗π(i, j) in G∗.
Since an∗AG(π)(i, j) ⊆ pre∗π(i, j), we can write

pre∗π(i, j) = an∗AG(π)(i, j) ∪ S

for some nonempty set S, disjoint from an∗AG(π)(i, j).

Since i is m-separated from j given an∗AG(π)(i, j) in
G∗, P must contain a collider with a descendent in
S, but no descendant in an∗AG(π)(i, j). Let d be such
a collider that is closest to j along P and let s be a
po(G∗)-minimal descendent of d from S.

We now construct a path Q in G∗ that m-connects j
and s given pre∗π(j, s). Since S ⊆ preπ(j), this would
imply existence of the edge s →AG(π) j, contradict-
ing s ∈ S. If s = d, we let Q be the subpath of P
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from j to s. Otherwise, we let Q be obtained by con-
catenating the subpath of P from j to d, followed by
a directed path from d to s. Since P is m-connecting
given pre∗π(i, j) and i, s ≤ j in π, it follows that when Q
is a subpath of P , Q is m-connecting given pre∗π(j, s).
When Q additionally has a directed path from d to
s, Q is m-connecting given pre∗π(j, s) since the non-P
segment has no colliders, and assumptions on d and
po(G∗)-minimality of s imply that no element of this
segment is in an∗AG(π)(s, j).

Proof of Proposition 1. Define τ := po(AG(π)). Since
po(H) = po(H) for any DMAG H, we have

Gτ = AG(po(Gπ)).

Lemma 3 implies that this is equal to AG(po(AG(π))),
which is equal to both Gπ and AG(τ). Thus we have
shown that Gπ = Gτ = AG(τ) and so Lemma 2 im-
plies that Gπ is an IMAP of P.

We now show that Gπ is a minimal IMAP of P, i.e.
that removing any edge results in a directed ancestral
graph that is either not maximal, or not an IMAP
of P. Let i, j be such that i ∼Gπ j and let G′ be the
graph obtained from Gπ by removing the edge between
i and j. If G′ is still maximal, then Lemma 1 implies
that i is m-separated from j given an∗G′(i, j) in G′. If
G∗ ≤ G′, then i is m-separated from j given an∗G′(i, j)
in G∗. Note that an∗G′(i, j) = an∗Gπ (i, j), and that
Lemma 2 implies that an∗Gπ (i, j) = pre∗po(AG(π))(i, j).

But if i were pre∗po(AG(π))(i, j)-separated from j in G∗,

then Xi ⊥⊥P Xj | Xpre∗
po(AG(π))

(i,j) and so i 6∼AG(π) j.

This would imply that AG(π) is a subgraph of G′.
Since G′ is maximal, Gπ would be a subgraph as well
contradicting i ∼Gπ j.

C Proof of Theorem 1

We begin by proving the following lemma, which ex-
tends classic results for the case of DAGs and deals
with discriminating paths.

Lemma 4. Let G∗ and H be DMAGs and let P be a
distribution that is Markov to both G∗ and H.If P is
adjacency-faithful to G∗, then

(a) skel(G∗) ⊆ skel(H).

If P is furthermore orientation-faithful to G∗, then

(b) If i ◦→k←◦ j is a v-structure in G∗, then either
i ◦→k←◦ j is a v-structure in H or i ∼H j.

(c) If i ◦→k←◦ j is a v-structure in H, then either
i ◦→k←◦ j is a v-structure in G∗, or i 6∼G∗ k or
j 6∼G∗ k.

Finally, if P is also discriminating-faithful to G∗, then

(d) If γ := 〈i, . . . , k, j〉 is a discriminating path in both
H and G∗, then k is a collider in γ in H iff k is
a collider in γ in G∗.

Proof. (a) If i 6∼H j, then by the pairwise Markov
property (Richardson and Spirtes, 2002), Xi ⊥⊥P Xj |
Xan∗H(i,j), and by adjacency-faithfulness, i 6∼G∗ j in
G∗.

(b) Let i 6∼H j, so Xi ⊥⊥P Xj | Xan∗H({i,j}). Suppose
k is a parent of either i or j. Since k ∈ an∗H({i, j}),
i is m-connected to j in G∗ given an∗H({i, j}) by the
path i ◦→k←◦ j, and thus Xi 6⊥⊥P Xj | XanH({i,j}) by
orientation faithfulness. Hence, H is not an I-MAP of
P.

(c) Suppose i ∼G k and j ∼G k. We have Xi ⊥⊥P
Xj | Xan∗H({i,j}), and thus by orientation faithfulness i
and j are m-separated given an∗H({i, j}) in G∗. Since
H is ancestral, k 6∈ an∗H({i, j}). Thus, to ensure the
required m-separation in G, k must be a collider in G
on the path i− k − j.

(d) Assume γ = 〈i, C1, . . . , Cl, k, j〉. If k is a non-
collider in γ in G∗, then i is m-connected to j given S
for every S containing C1, . . . , Cl but not k. Discrim-
inating faithfulness implies Xi 6⊥⊥P Xj | XS for every
such S. Then k must also be a non-collider in γ in H,
since otherwise there would exist some S containing
C1, . . . , Cl but not k such that i is m-separated from j
given S in H∗, contradicting I(H) ⊆ I(P). If K is a
collider in γ in G∗, then i is m-connected to j given S
for every S containing C1, . . . , Cl, k. Again, discrimi-
nating faithfulness implies Xi 6⊥⊥P Xj | XS for every
such S. Then K must also be a collider in γ in H,
since otherwise there would exist some S containing
C1, . . . , Cl, k such that i is m-separated from j given
S in H∗.

We proceed to proving the theorem.

Proof of Theorem 1. (a) is implied by Lemma 4(a).

Since restricted faithfulness implies adjacency faithful-
ness, skel(G) = skel(G∗). It remains to show that G
and G∗ have the same v-structures, and that if γ is a
discriminating path for k in both G and G∗, then k is
a collider on γ in G iff it is a collider on γ in G∗.

Equality of skeletons together with Lemma 4(b) and
(c) imply that G and H have the same v-structures.
If γ := 〈i, C1, . . . , Cl, k, j〉 is a discriminating path in
both G∗ and G, then Lemma 4(d) implies that k is a
collider in γ in G∗ iff k is a collider in γ in G.
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Figure E.1: Average performance over 100 MAGs for
each algorithm, when p = 50, K = 12, and s = 3.
Each variant of GSPo was run on 8 α values from 10−10

to .7, and each variant of FCI was run on 7 α values
from 10−20 to .5

D Proof of Proposition 2

Proof. It is sufficient to show this for G = G∗, since
Markov equivalence implies that I(G) = I(G∗). Sup-
pose G = (V,D,B). Let π = po(G). We have already
shown that Gπ is an IMAP. Therefore, it is sufficient
to show the converse, i.e., that if Xi ⊥⊥P Xj | S then
i ⊥⊥Gπ j | S.

By Theorem 4.2 of Richardson and Spirtes (2002),
for any i, j ∈ V adjacent, i 6⊥⊥Gπ j| an∗Gπ (i, j). The
faithfulness condition would then imply that Xi 6⊥⊥P
Xj |Xpre∗π(i,j)

.

E Conjecture Simulations

In figure E.4, we display a scatter plot of the number
of edges of the graphs that we tested our algorithm on,
without failure. The plot includes over 200,000 points,
corresponding to 200,000 generated graphs of various
parameters. For each of these, graphs, we have tested
the oracle version of our algorithm, i.e., I(P) = I(G∗),
and it converged to a graph in the Markov equivalence
class of the true graph. We have not found a single
counterexample to the conjecture thus far.

F Additional Simulations

In this section, we followed the same procedure for
DMAG sampling procedure as described in Section 5.
Fig. E.1 gives the precision-recall curve for the same
settings as in Fig. 6a in Section 5.

In Figure E.2, we use p = 50 nodes, K = 12 latent

Figure E.2: Average performance over 100 MAGs for
each algorithm, when p = 50, K = 12, and s = 3.
Each variant of GSPo was run on 8 α values from 10−10

to .7, and each variant of FCI was run on 7 α values
from 10−20 to .5

Figure E.3: Average runtime over 100 MAGs for p =
10, 20, 30, 40, 50, K = 3, and s = 3. Each variant of
GSPo and FCI+ were run with α = .1, while FCI was
run with α = 10−3 due to the extremely long runtime
of higher α values.

variables, and s = 3 expected neighbors per node in
the DAG before marginalization. For 100 graphs, we
find that this results in MAGs with an average of 43%
bidirected edges, ranging from 14% to 71% bidirected
edges, and an average of 5 neighbors per node in the
MAGs. Due to the slow runtime of FCI, GSPo with
empty initialization, and FCI+ with high α values, our
comparison between the algorithms for larger graphs is
limited, and mainly serves to demonstrate that GSPo
has similar performance on larger graphs for the same
range of α values.

In Figure E.3, we use the same set of DMAGs as used



Ordering-Based Causal Structure Learning in the Presence of Latent Variables

Figure E.4: A scatter plot of the number of edges of the graphs that we tested the oracle version of our algorithm
on. The plot includes over 200,000 points, representing graphs with varying number of bidirected edges and total
number of edges.

in 6c, in particular, p = 10, 20, 30, 40, 50, K = 3,
and s = 3, but report the average computation time
instead of the median computation time. We can ob-
serve that GSPo with the empty initialization and
FCI both have much higher average computation times
than median computation times, indicating that they
are more susceptible to outlier instances from our sam-
pled MAGs.
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