
Causal Structure Discovery
from Distributions Arising from Mixtures of DAGs

Basil Saeed 1 Snigdha Panigrahi 2 Caroline Uhler 1 3

Abstract
We consider distributions arising from a mixture
of causal models, where each model is repre-
sented by a directed acyclic graph (DAG). We
provide a graphical representation of such mixture
distributions and prove that this representation en-
codes the conditional independence relations of
the mixture distribution. We then consider the
problem of structure learning based on samples
from such distributions. Since the mixing variable
is latent, we consider causal structure discovery
algorithms such as FCI that can deal with latent
variables. We show that such algorithms recover a
“union” of the component DAGs and can identify
variables whose conditional distribution across
the component DAGs vary. We demonstrate our
results on synthetic and real data showing that the
inferred graph identifies nodes that vary between
the different mixture components. As an imme-
diate application, we demonstrate how retrieval
of this causal information can be used to cluster
samples according to each mixture component.

1. INTRODUCTION
Determining causal structure from data is a central task in
many applications. (Friedman et al., 2000; Robins et al.,
2000; Heckerman et al., 1995) Causal structure can be mod-
eled using a directed acyclic graph (DAG), where the ver-
tices of the graph represent the variables of interest, and the
directed edges represent the direct causal effects between
these variables (Pearl, 2009). Assuming that the generating
distribution of the data factors according to the DAG struc-
ture provides a way to relate the conditional independence
relations in the distribution to separation statements in the
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DAG (known as d-separation) through the Markov prop-
erty (Lauritzen, 1996). When not all variables of interest can
be measured, DAGs are not sufficient to represent the ob-
served distribution, since latent variables may introduce con-
founding effects between the observed variables. Instead,
a family of mixed graphs known as a maximal ancestral
graphs (MAG) can be used to model the observed variables
by depicting the presence of latent confounders between
pairs of variables through bidirected edges (Richardson and
Spirtes, 2002).

With respect to learning the causal graph from data on the
nodes, the most ubiquitous methods infer d-separation re-
lations by estimating conditional independence relations
from the data; examples include the PC and GSP algorithms
in the fully observed setting, and the FCI algorithm in the
presence of latent variables (Spirtes et al., 2000; Solus et al.,
2017; Colombo et al., 2012). These algorithms require the
faithfulness assumption, which asserts that every conditional
independence relation in the disribution corresponds to a
d-separation relation in the graph. Note that even under this
assumption, the causal graph is in general not fully iden-
tifiable from observational data; it can in general only be
identified up to its Markov equivalence class (Spirtes et al.,
2000).

In various applications, data used for causal structure discov-
ery is heterogeneous in that it stems from different causal
models on the same set of variables. This is relevant for ex-
ample in biomedical applications, where the goal is to learn
a gene regulatory network based on gene expression data
from a disease that consists of multiple not well character-
ized subtypes (as is the case for many neurological diseases).
In such scenarios, the samples stem from a mixture of dif-
ferent causal models on the same set of variables, and the
causal effects of the mixture distribution can in general not
be faithfully represented by a single DAG. Furthermore,
a single DAG inferred from such samples cannot identify
differences between the component DAGs in the mixture,
which may be critical for personalized biomedical interven-
tions, and may lead to flawed conclusions downstream.

In this work, we consider distributions arising as mixtures
of causal DAGs. Our main contributions are as follows:

• We introduce the mixture graph to represent such mix-
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ture distributions. We prove that this graph encodes the
conditional independence relations in the mixture dis-
tribution through separation statements (Theorem 3.2)
and show that the separation statements in every such
graph can be realized by independence relations in
some mixture distribution (Proposition 3.5).

• We introduce the union graph, a graph defined from
the mixture graph. We prove that, under a faithfulness
assumption and an ordering assumption on the DAGs
in the mixture, the FCI algorithm applied to data from
mixtures of DAGs outputs the union graph (Theorem
4.4).

• We prove that the union graph can identify variables
whose conditional distribution across the component
DAGs changes (Proposition 4.6), and we demonstrate
the implication of this result for identifying critical
nodes and for clustering samples according to their
mixture component on synthetic data and real ge-
nomics data (Section 5).

2. PRELIMINARIES & RELATED WORK
2.1. Graphical representations: DAGs and MAGs

In this paper, we consider two types of graphs: directed
acyclic graphs (DAGs) and mixed graphs with directed
(→) and bidirected (↔) edges. We denote the former by
D = (V,E) and the latter by M = (V,D,B), where V
denotes the set of edges, and D and B the set of directed
and bidirected edges, respectively. A mixed graph is said to
be ancestral if it has no directed cycles, and whenever there
is a bidirected edge u ↔ v, then there is no directed path
from u to v (Richardson and Spirtes, 2002). While ancestral
graphs have been defined more generally to allow also for
undirected edges, in this work we will only make use of
graphs with directed and bidirected edges.

Throughout, we will use the notation chM(v), paM(v) and
anM(v) to denote the children, parents and ancestors, re-
spectively, of a node v in the graphM. Furthermore, we
use the standard definitions of path and directed path in a
graph; for these definitions, see e.g. Lauritzen (1996). We
will use the notation v ↔M u as a shorthand to denote “the
edge v ↔ u between nodes u, v in M”, and use similar
notations for other types of edges.

The standard notions of d-separation from DAGs can be
generalized to ancestral graphs by accounting for the new
possible ways to obtain a collider from bidirected edges
(Richardson and Spirtes, 2002). In ancestral graphs, unlike
in DAGs, it is possible to have a pair of nodes that are
not adjacent, but cannot be d-separated given any subset of
nodes. An ancestral graph where such pairs of nodes do
not occur is called maximal, and a non-maximal ancestral
graph can be made maximal by adding a bidirected edge

between any such pair of vertices. An ancestral graph that
is maximal is called a Maximal Ancestral Graph (MAG)
(Richardson and Spirtes, 2002).

Ancestral graphs are a useful representation of DAGs with
latent variables. Specifically, Richardson and Spirtes (2002)
showed that given a DAG D = (V ∪ L,E), with observed
nodes V and unobserved nodes L, satisfying a set of d-
separation statements of the form “A d-separated from B
given C” for disjoint A,B,C ⊆ V , then there exists an
ancestral graphM = (V,D,B) with the same d-separation
statements, called the marginal ancestral graph of D with
respect to L. Sadeghi et al. (2013) gave a local graphical
criterion to construct the marginal ancestral graph of a DAG
D. Throughout our paper, we will make use of this in the
special case where L consists of a single node of in-degree
0. The specialization of Sadeghi’s algorithm to this case is
provided in Algorithm 1.

Algorithm 1: Construction of the marginal ancestral graph

Input:DAG D = (V ∪ {y}, E), where y has in-degree 0.
Output: the marginal ancestral graph of D w.r.t. y.

(0) Initialize D = ∅, B = ∅
(1) For u, v ∈ chD(y): add u↔ v to B.
(2) For t, u, v such that (t→ u) ∈ E and (u↔ v) ∈ B:

if u ∈ anD(v), then add t→ v to D.
(3) For u, v such that u↔ v ∈ B: if u ∈ anD(v), then

remove u↔ v from B and add u→ v to D.
(4) Return the ancestral graphM = (V,D,B).

Although in general the marginal ancestral graph con-
structed using Sadeghi’s local criterion is not guaranteed to
be maximal, the relevant restriction considered in this paper,
i.e. when L consists of a single node with in-degree 0, is
always a MAG. This is stated in the following proposition;
a proof is provided in section A of the appendix.

Proposition 2.1. The output of Algorithm 1 is a MAG.

2.2. Markov Properties

Given a graph M with vertices V , we associate to each
vertex v ∈ V a random variable Xv and denote the joint
distribution of XV := (xv : v ∈ V ) by pXV . The Markov
property associates missing edges inM with conditional in-
dependence statements in pXV : a distribution pXV is said to
satisfy the Markov property with respect to a graphM if for
any disjointA,B,C ⊆ V such thatA andB are d-separated
given C inM, it holds that XA ⊥⊥ XB | XC in pXV (Lau-
ritzen, 1996). For DAGs, an equivalent condition to the
Markov property is for pXV to factorize as

pXV (xV ) =
∏
v∈V

p(xv|xpaG(v));
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see Lauritzen (1996). Considering also latent variables
L, Richardson and Spirtes (2002) showed that given a
distribution pXV ,XL that is Markov with respect to a
DAG D = (V ∪ L,E), the distribution pXV (xV ) =∑
xL
pXV ,XL(xV , xL) is Markov with respect to the

marginal ancestral graph of D with respect to L.

It is possible for two different DAGs D1,D2 over the same
vertex set to satisfy the same set of d-separation statements.
In this case, G1 and G2 are said to be Markov equivalent, and
the set of all DAGs that are Markov equivalent to a DAG D
is called the Markov Equivalence Class of D. These defi-
nitions trivially extend to MAGs. The Markov equivalence
class of a MAG can be represented by a partial ancestral
graph (PAG): the edges in such a graph have three types
of tips: arrowheads (←), tails (−) and circles ◦−, where
arrowhead (tail) signifies that this arrowhead exists in all
graphs in the Markov equivalence class (Zhang, 2008).

2.3. Causal Structure Discovery

The goal of structure learning is to recover the graphD orM
from data generated from the distribution pXV . The Markov
condition is not sufficient for this task and a common as-
sumption is the so-called faithfulness assumption which
states that for any disjoint A,B,C ⊆ V , it holds that A
and B are d-separated given C whenever XA ⊥⊥ XB | XC

in pXV (Spirtes et al., 2000). The faithfulness assump-
tion allows making inference about the structure of D or
M from conditional independence tests on the data. Var-
ious algorithms have been proposed for this task that are
provably consistent, such as the PC, GES or GSP algo-
rithms for learning DAGs (Spirtes et al., 2000; Chickering,
2002; Solus et al., 2017), and the FCI algorithm for learning
MAGs (Colombo et al., 2012). Note that even under the
faithfulness assumption, it is in general only possible to re-
trieve the Markov equivalence class of a graphD orM from
data. In fact, this is the output of the above algorithms. For
example, FCI in general does not return a specific MAG, but
a PAG representing a Markov equivalence class of MAGs.

2.4. Causal Inference from Mixtures of DAGs

While the problem of learning appropriate representations
from data generated from mixtures of DAGs arises in vari-
ous applications, there exists only little work on theory and
methodology in this direction. Spirtes (1994) investigated
the conditional independence properties of such mixture dis-
tributions; he defined a cyclic graphical model and proved
that the mixture distribution is Markov with respect to it.
However, this graph does not capture the full set of condi-
tional independence relations for any reasonable mixture.
In fact, as we discuss later, this graph is similar to the union
graph defined in section 4, which also only provides partial
information about the structure of the component DAGs. To

capture the full set of independences in the mixture distri-
bution, a representation sparser than that of (Spirtes, 1994)
is necessary. Strobl (2019a;b) built on this work to define a
sparser graph, called the mother graph. However, we pro-
vide examples in section B of the appendix showing that the
Markov condition in general does not hold for this graph,
i.e., there can be d-separation statements in the graph that
do not correspond to conditional independence relations
in the mixture distribution. Finally, Thiesson et al. (2013)
suggested a heuristic approach based on the Expectation-
Maximization (EM) algorithm to learn the component DAGs
from the mixture data, when the expectation in the E-step
can be computed, as is the case for Gaussian distributions.

3. MIXTURE DAG AND MARKOV
PROPERTY

In this section, we provide our first main result: after for-
mally introducing distributions that arise as mixtures of
DAGs, we define the mixture DAG and prove in Theorem 3.2
and Proposition 3.5 that it is a valid representation of the
model, i.e., the DAG encodes the conditional independence
relations of the mixture distributions. More precisely, not
only is the Markov condition satisfied (i.e., all separation
statements in the mixture DAG correspond to conditional
independence relations in the mixture distribution), but in
addition, every mixture DAG is also realizable by a mixture
distribution (meaning that the mixture DAG cannot be made
sparser without losing the Markov property).

3.1. Mixture of Causal DAGs

To introduce the mixture model, we consider K DAGs
{D(1), . . . ,D(K)} with D(j) = (V (j), E(j)) such that
V = V (j) for all j ∈ {1, . . . ,K}, i.e., these K DAGs
are defined on the same set of vertices.

Associated with each component DAG D(j) is a random
vector XV whose joint distribution we denote by p(j)(xV ).
Let V INV denote the set of nodes that are invariant across
the K component DAGs, i.e., nodes whose conditional dis-
tribution in the factorization does not vary across the K
component DAGs; that is

V INV=
{
v∈V : p(j)(xv|xpaD(j) (v)) = p(k)(xv|xpaD(k) (v))

for all j, k ∈ {1, 2, · · · ,K}
}
.

(1)
Assuming that each distribution p(j)(xV ) admits a factor-
ization according to DAG D(j), we then obtain:

p(j)(xV ) =
∏

v∈V \V INV

p(j)(xv|xpaD(j) (v))
∏

v∈V INV

p(j)(xv|xpaD(j) (v))

=
∏

v∈V \V INV

p(j)(xv|xpaD(j) (v))
∏

v∈V INV

p(1)(xv|xpaD(1) (v))
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for all j = 1, 2, · · · ,K, i.e., each distribution decouples
into a component over the variables associated with the
invariant nodes V INV that remains the same across all K
distributions, and a varying component over the remaining
variables which may differ across the K DAGs.

Let J be a discrete variable taking values in {1, . . . ,K}
with probabilities pJ(j) for each j ∈ {1, . . . ,K}. Defining
a joint distribution pµ over XV ∪ J by

pµ(xV , j) := pJ(j) · p(j)(xV ), (2)

this joint distribution satisfies p(j)(xV ) = pµ(xV |J = j)
and the observed mixture distribution is obtained by
marginalizing pµ over the unobserved index variable J .
With a slight abuse of notation, we denote the resulting
mixture distribution also by pµ. Given samples from this
distribution, i.e., without knowledge of the membership of
each sample to its component DAG, in this paper, we ana-
lyze what can still be inferred regarding the structure of the
K component DAGs.

3.2. Mixture DAG and Markov Property

We now present the mixture DAG, a DAG that is represen-
tative of the independence relations induced amongst the
observed variables after marginalizing over the index vari-
able J in (2). Denoting the number of vertices in V by
|V |, then the mixture DAG is a graph on K · |V |+ 1 nodes
constructed by placing theK component DAGs next to each
other (this gives rise to a DAG on K · |V | nodes) and using
an additional node to represent the mixture. We now provide
the precise definition.

Definition 3.1 (Mixture DAG). Let v(j) denote vertex v in
DAG j and let [V ] := ∪1≤j≤KV (j) denote the vertices of
the K component DAGs. The mixture DAG, denoted by Dµ,
has nodes [V ] ∪ {y} and edges Eµ consisting of edges in
each component DAG, namely

K⋃
j=1

{
v(j) → ṽ(j) : v, ṽ ∈ V, v → ṽ ∈ E(j)

}
and additional edges from node y to particular nodes in [V ],
namely whose incoming directed edges are not the same
across all component DAGs, i.e.,

K⋃
j=1

{
y → v(j) : v ∈ V \ VINV}.

Figure 1 provides an example of the mixture DAG aris-
ing from K = 2 component DAGs D(j) on |V | = 4
nodes. Note that, while the results of this section hold even
when the DAGs D(j) have no common topological ordering
(meaning that there exists no ordering π such that for all 1 ≤

j ≤ K, v < u in π if and only if u 6∈ anD(j)(v)), the mix-
ture DAG is sparse (and hence provides information about
the component DAGs through separation statements) when
a common topological ordering exists (as in the example in
Figure 1). When there is no common topological ordering,
then the set VINV is generally smaller, since paD(j) 6= paD(k)

implies p(j)(xv|xpaD(j) (v)) 6= p(k)(xv|xpaD(k) (v)), which
implies a denser mixture DAG.

We emphasize here that the DAG in Definition 3.1 is not a
graphical model representation of the mixture distribution
in the standard sense. This is already clear from the fact that
the mixture DAG hasK · |V |+1 nodes, whereas the mixture
distribution is only |V |-dimensional. Yet, in the following
theorem we show that it is possible to read off conditional
independence relations that hold in the mixture distribution
pµ from the mixture graph in an intuitive manner. For
A ⊂ V , we use the notation [A] to denote all K copies
of the nodes in A, i.e., A = ∪1≤j≤KA(j).

Theorem 3.2 (Markov Property). Let A,B,C ⊆ V be dis-
joint. If [A] and [B] are d-separated given [C] in the mixture
DAG Dµ, then XA⊥⊥XB |XC in the mixture distribution pµ.

To illustrate this result, consider the example in Figure E.1.
Since [1] = {1(1), 1(2)} and [4] = {4(2), 4(2)} are d-
separated given ∅ in the mixture DAG, then the mixture
distribution pµ(x1, x2, x3, x4) satisfies X1 ⊥⊥ X4.

We note that while the graphical representation provided
by Strobl (2019b) (the mother graph) is similar to the mix-
ture DAG, it critically differs in how the component DAGs
are connected via the node y. Importantly, we show in Sec-
tion B in the Appendix that the mixture distribution pµ is
not Markov with respect to the mother graph1.

In the following, we provide a proof for Theorem 3.2. For
each 1 ≤ j ≤ K, let D̃(j) be the sub-DAG induced by
Dµ on the vertices V (j) ∪ {y} for j = 1, 2, · · · ,K. The
main ingredient of the proof is the following lemma, which
connects d-separation statements in the mixture DAG to con-
ditional independence relations in the mixture distribution
via d-separation statements in D̃(j).

Lemma 3.3. Let A,B,C ⊆ V be disjoint. If for all 1 ≤
j ≤ K it holds that

(a) A(j) and B(j) are d-separated given C(j), and;

(b) A(j) and y are d-separated given C(j) in D̃(j),

then XA ⊥⊥ J | XC in pµ, i.e., the following factorization
holds:

p(j)(xA, xB |xC) = p(1)(xA|xC)p(j)(xB |xC)
1Strobl (2019a;b) provides two different constructions; we

show that the Markov property does not hold in either.
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(a) D(1) (b) D(2) (c) Dµ (d) M(1) (e) M(2) (f) M∪

Figure 1: (a)-(b): component DAGs D(1) and D(2) for a mixture model with K = 2; (c): corresponding mixture DAG Dµ
(see Definition 3.1); (d)-(e): associated component MAGsM(1) andM(2) (see Section 4); (f): associated union graphM∪
(see Definition 4.2).

for all 1 ≤ j ≤ K.

We now provide the proof for Theorem 3.2.

Proof. We start by showing that the conditions of
Lemma 3.3 are satisfied. First, note that [A] and [B] are
d-separated given [C] in Dµ implies that A(j) and B(j) are
d-separated given C(j) in D(j) for all j ∈ {1, 2, · · · ,K}.
Second, note that since y has in-degree 0, we cannot have
both a d-connecting path between [A] and y given [C] and
a d-connecting path between [B] and y given [C] in Dµ.
Hence, we may assume without loss of generality that [A]
and y are d-separated given [C] (otherwise, [B] and y are
d-separated given [C]).

We now use Lemma 3.3 to show that pµ(xA, xB |xC) fac-
torizes as fA(xA, xC)fB(xB , xC), which would prove that
XA ⊥⊥ XB |XC in pµ. By definition of the mixture distribu-
tion pµ in (2),

pµ(xA, xB |xC) =
K∑
j=1

p(j)(xA, xB |xC)pJ(j),

and hence as a consequence of Lemma 3.3 we obtain

pµ(xA, xB |xC) =
K∑
j=1

p(1)(xA|xC)p(j)(xB |xC)pJ(j)

= p(1)(xA|xC)
K∑
j=1

p(j)(xB |xC)pJ(j),

providing a factorization of the desired form and hence
completing the proof.

In Theorem 3.2, we established that every separation state-
ment in the mixture DAG corresponds to a conditional in-
dependence relation in the mixture distribution. Next, we
show that every mixture DAG is realizable, i.e., that for any
mixture DAG Dµ, there exists a distribution whose condi-
tional independence relations are faithfully represented by

the separation statements of the mixture graph. This implies
that the mixture DAG is the “correct” graphical represen-
tation of a mixture of DAGs and cannot be made sparser
without losing the Markov property.

3.3. Faithfulness

We define faithfulness of a mixture distribution pµ with re-
spect to a mixture DAG Dµ analogously to how faithfulness
is defined for a distribution with respect to a DAG model.

Definition 3.4 (Mixture Faithfulness). The mixture distri-
bution pµ whose density is of the form (2) is faithful with re-
spect to a mixture DAG Dµ if for any disjoint A,B,C ⊆ V
with XA ⊥⊥ XB |XC in pµ it holds that [A] and [B] are
d-separated given [C].

We next provide an example showing that mixture faith-
fulness is in general not implied by faithfulness of each
component distribution p(j)(·) with respect to the corre-
sponding DAG D(j). Hence, to establish realizability of
the mixture graph, it is not sufficient to rely on the fact that
for every DAG D(j), there exists a distribution p(j) that is
faithful to D(j).

Example 1. Consider the following two distributions
p(1)(xV ) and p(2)(xV ) on V = {1, 2, 3, 4} that factor ac-
cording to the DAGs in Figure 1, namely

p(1)(xV ) = p(1)(x1)p
(1)(x2|x1)p(1)(x3)p(1)(x4),

and

p(2)(xV ) = p(2)(x1)p
(2)(x2)p

(2)(x3|x4)p(2)(x4),

where

p(1)(x1) = N (x1; 0, 1), p(2)(x1) = N (x1; 0, 1),

p(1)(x2|x1) = N (x2;x1, 1), p(2)(x2) = N (x2; 0, 2),

p(1)(x3) = N (x3; 0, 1), p(2)(x3|x4) = N (x3;x4, 1),

p(1)(x4) = N (x4; 0, 1), p(2)(x4) = N (x4; 0, 1).
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Then, defining the mixture distibution by

pµ(xV ) =
2∑
j=1

p(j)(xV )p(j),

for some J ∼ pJ(j), we obtain that

pµ(x2, x3) =

∫
pµ(xV )dx1dx4

=

∫
pJ(1)p

(1)(x1)p
(1)(x2|x1)p(1)(x3)p(1)(x4)dx1dx4

+

∫
pJ(2)p

(2)(x1)p
(2)(x2)p

(2)(x3|x4)p(2)(x4)dx1dx4

= pJ(1) N (x2; 0, 2) N (x3; 0, 1)

+ pJ(2) N (x2; 0, 2) N (x3; 0, 2)

= N (x2; 0, 2)
(
pJ(1)N (x3; 0, 1) + pJ(2)N (x3; 0, 2)

)
= f(x2)g(x3),

which implies that X2 ⊥⊥ X3 in pµ, although in the mixture
DAG corresponding to pµ shown in Figure 1 the nodes 2
and 3 are d-connected via the path through y.

This example was carefully crafted; even a slight per-
turbation such as choosing p(2)(x2) = N (x2; 0, 2.001)
would have meant that pµ(x2, x3) does not factor, indi-
cating that mixture-faithfulness violations are rare. More
precisely, consider the family of Gaussian mixture mod-
els where each p(j) is a Gaussian distribution that is
faithful with respect to D(j). A violation of mixture-
faithfulness occurs if and only if

∑
j p

(j)(xA, xB |xC) fac-
tors as pµ(xA|xC)pµ(xB |xC), i.e.,∑
j

p(j)(xA, xB |xC) =
∑
i

p(i)(xA|xC)
∑
j

p(j)(xB |xC),

when A and B are d-connected given C in Dµ. This repre-
sents an equality constraint on the parameters of the Gaus-
sians p(j) for j ∈ {1, . . . ,K}. As a consequence, mixture-
faithfulness holds almost surely and any mixture DAG is
realizable by a mixture of Gaussians, thereby proving the
following result.

Proposition 3.5 (Realizability of Dµ). For any mixture
DAG Dµ, there exists a mixture distribution pµ that is faith-
ful with respect to Dµ.

4. LEARNING FROM MIXTURE DATA
Without knowing the membership of each sample to a com-
ponent DAG, we can in general not hope to learn the struc-
ture of each component DAG from the data. Since the
mixing variable is latent, an intuitive approach is to apply
the FCI algorithm to learn a MAG representation of the mix-
ture distribution. In this section, we will characterize the

(a) Dµ (b) M∪

Figure 2: An example of a mixture DAG (a) and its asso-
ciated union graph (b) as defined in 4.2. In this case, each
DAG D(j) has a common topological ordering, however,
the union MAG is not ancestral.

output of the FCI algorithm. In particular, we will show that
it identifies critical nodes in the component DAGs, namely
those whose conditional distributions across the component
DAGs vary.

A difficulty for structure discovery using MAG-based learn-
ing algorithms such as FCI, is that even under the mixture-
faithfulness assumption the conditional independence rela-
tions in a mixture distribution pµ may not be representable
by any MAG. We illustrate this in the following example
and then provide conditions to avoid this phenomenon.

Example 2. Consider the mixture DAG Dµ shown in Fig-
ure 2a. In the following, we show that there does not exist
any MAG M̃ over the variables V = {1, . . . , 5} that satis-
fies: A d-sep from B given C in M̃ if and only if [A] d-sep
from [B] given [C] inDµ. First, note that such a MAG would
need to have the skeleton as in the graph shown in Figure 2b
to respect the adjacencies inMµ. Otherwise it would have
an extra or missing d-separation with no analog in Mµ.
In addition, M̃ would also need to contain the colliders
4 → 5 ← 2 and 1 → 2 ← 5 to respect the d-separation
statements resulting from 4(2) → 5(2) ← y → 2(2) and
1(1) → 2(1) ← y → 5(1) respectively. This implies the
existence of 2↔ 5 in M̃. Furthermore, note that condition-
ing on either [2], [3] or [4] (or any subset of these) connects
[5] and [1] in Dµ which are d-separated given ∅. The only
orientation of arrowheads compatible with the skeleton de-
termined and these d-separation/connection statements is
2→ 3→ 4. Hence, 3 and 4 must be descendants of 2 in M̃.
Finally, the existence of an arrowhead 4←∗5 would violate
the separation: [5] d-separated from [1] given ∅. Hence,
2 ↔ 5 in M̃ and at the same time 2 ∈ anM̃(5), which
violates the ancestral property.

We now identify a class of mixture models for which
the d-separations in the mixture DAG are equivalent to d-
separation statements in a MAG.

Definition 4.1. Let M(1) . . . ,M(K) be the MAGs con-
structed via Algorithm 1 from the induced sub-DAGs D̃(j) =
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(V (j) ∪ {y}, Ẽ(j)) defined in Section 3.2. The MAGs
M(1), . . . ,M(K) are said to be compatible with the same
poset if there exists a partial order π on the set V such that
for all 1 ≤ j ≤ K it holds that
(a) u ∈ anM(j)(v)⇒ u <π v,

(b) u↔Mj
v ⇒ u 6≶π v.

Figures 1d and 1e show examples of MAGsM(j) that sat-
isfy this poset compatibility condition. One can further
check that the MAGsM(1) andM(2) associated with the
mixture DAG in Figure 2a do not satisfy this condition. This
example shows that there exist DAGsD(1), . . . ,D(K) with a
common topological ordering whose corresponding MAGs
M(1), . . . ,M(K) do not satisfy the poset compatibility con-
dition 4.1. On the other hand, it can be readily verified that
the poset compatibility assumption on the MAGs implies
that the associated component DAGs have a common topo-
logical ordering.

In the following, we show that poset compatibility ensures
that the set of d-separation statements in a mixture DAG
Dµ is representable by a MAG. We start by defining this
MAG, which we call the union graph. As the name sug-
gests, this graph is obtained as a union of all the edges of
M(1) . . . ,M(K).

Definition 4.2 (Union Graph). The union graph M∪ :=
(V,D∪, B∪) has vertices V , directed edges

D∪ = {v → u : u, v ∈ V, ∃jvj →M(j) uj};

and the set of bidirected edges

B∪ = {v ↔ u : v, u ∈ V, ∃jvj ↔M(j) uj}.

We remark that Spirtes (1994) studied a similar graph and
proved the Markov property for a DAG with vertices V ∪{y}
and directed edges given by the union of D(1), . . . ,D(K).

An example of a union graph is given in Figure 1f. In gen-
eral, the union graph may neither be maximal nor ancestral
(see Figure 2b for an example). However, as we show in the
following lemma, whose proof is given in Section D in the
Appendix, under the poset compatibility assumption, it is
guaranteed to be both.

Lemma 4.3. Under the assumption that the component
MAGsM(1) . . . ,M(K) are compatible with the same poset,
the union graph is maximal and ancestral.

We now state the main results of this section, characteriz-
ing the output of FCI when run on distributions arising as
mixtures of DAGs.

Theorem 4.4. Let A,B,C ⊆ V be disjoint. If the compo-
nent MAGs satisfy the poset compatibility assumption, then
A and B are d-separated given C inM∪, if and only if [A]
and [B] are d-separated given [C] in Dµ.

The proof is provided in Section E in the Appendix. The
following corollary follows directly from the asymptotic
consistence of FCI (Colombo et al., 2012).

Corollary 4.5. If the mixture distribution pµ is faithful with
respect to a mixture DAG whose component MAGs satisfy
the compatibility assumption, then FCI is consistent, i.e., it
outputs the Markov Equivalence Class of the corresponding
union MAGM∪.

We end this section by pointing out important structural
properties of the union graph, which can be used to recover
key structural information about component DAGs in the
mixture.

Proposition 4.6. A bidirected edge u ↔ v in the union
graph M∪ implies that u ∈ V \ VINV, i.e., there exist
i, j ∈ {1, 2, . . . ,K} such that paD(j)(u) 6= paD(i)(u).
Additionally, under mixture-faithfulness this implies that
p(j)(xu|xpaD(j) (u)) 6= p(i)(xu|xpaD(i) (u)).

Proof. A bidirected edge inM∪ implies a bidirected edge
inM(j) for some j, which implies that y is connected across
in Dµ.

Hence bidirected edges identify nodes in the component
DAGs whose conditional distribution varies across mixture
components. As we show in the following section, these
nodes are natural candidates for features when clustering
the samples.

5. EXPERIMENTS
In this section, we present results of experiments conducted
on both synthetic and real data.

5.1. Synthetic Data

In the following, we demonstrate the effectiveness of learn-
ing the union graph from mixture data, analyze the perfor-
mance when estimating V \ VINV using Proposition 4.6,
and investigate the performance of clustering using mixture
data when V \ VINV are used as features.

We generated K component DAGs each with |V | = 10
nodes and the same topological ordering from an Erdös-
Rényi model with expected degree d = 1.5/K so that the
nodes in the union graph have an expected degree of less
than 1.5. From these DAGs, the corresponding MAGsM(j)

were computed using Algorithm 1. If the MAGs were not
compatible with the same poset, the DAGs were discarded
to ensure poset-compatibility (2 out of 270 graphs were
discarded at this sparsity level).

Data was sampled from each DAG based on a linear
structural equation model with additive Gaussian noise,
where each edge weight (u, v) was sampled uniformly in
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(a) (b)
(c)

(d)

(e)
(f)

Figure 3: (a) shows the average normalized structural Hamming distance between the PAG P̂∪ estimated using the mixture
data, and P̃∪ estimated using data sampled fromM∪; (b) shows the true and false positive rate in estimating V \ VINV; (c)
shows the performance of clustering using [V \ VINV] when this set has no descendants in Dµ, while (d) shows the same plot
when [V \ VINV] has descendants in Dµ; (e) shows the output of FCI on genes in the apoptosis pathway using the ovarian
cancer mixture data without knowledge of the cluster membership for each sample, while (f) shows the difference graph
of (Wang et al., 2018) on the same set of genes when the cluster membership of each sample is known.

[−2,−0.25] ∪ [0.25, 2] (to ensure that it was bounded away
from zero) and set to be same for the edges (u(j), v(j)) for
all 1 ≤ j ≤ K if this edge existed in DAG D(j). The mean
for the Gaussian noise was sampled uniformly in [−2, 2]
with standard deviation 1. From each of the K DAGs, we
generated n/K observations, yielding a total of n samples
from the mixture distribution.

Learning the Union MAG. To evaluate Corollary 4.5, we
ran FCI on this synthetic data using Gaussian conditional
independence tests (despite the true distribution being a
mixture of Gaussians) with threshold α. The output is a
PAG P̂∪ representing the Markov equivalence class of the
union graph. As comparison, we computed the true union
graphM∪ based on the MAGsM(j), generated n samples
from this graph (using a structural equation model with the
same parameters as in the mixture) and ran FCI on these
samples to obtain an estimate P̃∪ for the PAG of the union
graph. This offsets the estimation errors that are intrinsic to
FCI. The difference between the PAGs P̂∪ and P̃∪ was mea-

sured via a normalized structural Hamming distance; the
structural Hamming distance (SHD) between PAGs counts
the occurrences of ◦→ in one of the PAGs versus ◦− in the
other, plus the number of adjacencies present in one graph
but not the other. The normalization is done by dividing
over the possible number of errors for the realization at hand
to keep the value between 0 and 1 and make the numbers
comparable. Figure 3a shows the normalized SHD aver-
aged over 30 realizations of synthetic datasets. We used
K = 4 and n = 5000 in this plot; in Section F in the Ap-
pendix, we provide additional plots for K ∈ {2, 6} and
n ∈ {1000, 10000}.

Identifying Nodes that Vary Across Component DAGs.
To evaluate Proposition 4.6 on synthetic data, we estimated
V \ VINV by determining all nodes incident to bidirected
edges in the PAG P̂∪ obtained using FCI on the synthetic
data. This set was compared to the ground truth; Figure 3b
shows true positive and false positive rates for varying sig-
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nificance levels,2 averaged over 30 realizations. We used
K = 4 and n = 5000 in this plot. in Section F in the
Appendix, we show additional plots for K ∈ {2, 6} and
n ∈ {1000, 10000}.

Clustering. Recall that, under mixture-faithfulness,
XV \VINV represents the set of nodes whose conditionals
vary across the component DAGs. This motivates using
the nodes XV \VINV and their descendents as features to clus-
ter the samples since these are the only nodes with different
marginals across the mixture components. Since FCI in gen-
eral cannot identify all the descendents of XV \VINV , we used
just the set XV \VINV for clustering. As a proof-of-concept to
demonstrate that these features can be useful, we considered
two settings, one in which [V \ VINV] has no descendants in
Dµ (see Figure 3c), and another one in which this set has
descendants (Figure 3d).

In both settings, we used K̃-means clustering for various
values of K̃. To compare the quality of clustering of us-
ing [V \ VINV] versus all nodes as features, we used the
V-measure score from Rosenberg and Hirschberg (2007)
which is based on ground truth cluster assignments; a higher
V-measure score represents better performance. As per what
is expected from our theoretical results, Figure 3c shows
that clustering based on the reduced number of features
[V \VINV] results in higher quality clusters as compared to us-
ing all features for clustering in the setting where [V \VINV]
has no descendants in Dµ, while otherwise both feature sets
perform equally well.

5.2. Real Data

Ovarian Cancer. We applied this framework to gene ex-
pression data from ovarian cancer in K = 2 patient groups
(with 93 and 168 observations, respectively) with different
survival rates (Tothill et al., 2008). We followed the analysis
of Wang et al. (2018), where the difference-DAG was esti-
mated for the two groups based on the apoptosis pathway
consisting of |V | = 10 genes. The resulting difference-
DAG is shown in Figure 3f. While the difference-DAG
can identify edges that are different between the two DAGs
D(1) and D(2) and hence provides more information than
the union graph, computing the difference-DAG requires
knowledge of the membership of each observation to the
two disease subgroups, which is not available for many
diseases. The estimated PAG P̃∪ based on the combined
samples from the two patient groups is shown in Figure 3e.
It was estimated using FCI with stability selection. FCI
identified BIRC3 as the node with the highest number of
incident bidirected edges; BIRC3 is known to be one of the

2We do not use an ROC since while increasing the threshold
monotonically increases the true positive rate of the estimated
adjacencies, it in general does not monotonically increase the
number of correctly inferred edge orientations.

major disregulated genes in ovarian cancer and an inhibitor
of apoptosis (Johnstone et al., 2008; Jönsson et al., 2014).

T cell activation. We also applied our framework to single-
cell gene expression data of naive and activated T cells
(i.e. K = 2, with 298 and 377 samples, respectively)
from Singer et al. (2016). Following the analysis in Wang
et al. (2018), we performed the analysis on 60 genes that had
a fold expression change above 10. The FCI output on these
60 nodes is shown in Section F.2 in the Appendix. The fol-
lowing nodes have the highest number of incident bidirected
edges, indicating that they may play important roles in T cell
activation: CDC6, CDC20, SHCBP1, NKG2A, GZMB4 and
KIF2C. All these genes have been discribed before as criti-
cal. CDC6 and CDC20 are essential regulators of the cell
division cycle. Shorter cell cycle time for increased prolifer-
ation is a hallmark of T cell activation (Qiao et al., 2016;
Borlado and Méndez, 2008). SHCBP1 has been shown to
be tightly linked to cell proliferation and strongly correlates
with proliferative stages of T cell development (Schmandt
et al., 1999; Buckley et al., 2014). NKG2A functions to
limit excessive activation, prevent apoptosis, and preserve
the specific T cell response (Rapaport et al., 2015). GZMB4
has been shown to regulate antiviral T cell response (Salti
et al., 2011). Finally, the gene KIF2C encodes a Kinesin-like
protein that functions as a microtubule-dependent molecular
motor. It is over-expressed in a variety of solid tumors and
induces frequent T cell responses (Gnjatic et al., 2010).

6. DISCUSSION
In this paper, we provided a graphical representation (via
the mixture DAG) of distributions that arise as mixtures of
causal DAGs. We showed that the mixture DAG not only
satisfies the Markov property with respect to such mixture
distributions, but is also always realizable by a mixture dis-
tribution, meaning that it cannot be made sparser without
losing the Markov property. In addition, we characterized
the output of the prominent FCI algorithm when applied to
data from such mixture distributions. The FCI algorithm
is a natural candidate in this setting due to the presence of
the latent mixing variable. In particular, we proved that
the FCI algorithm can identify nodes whose conditionals
vary across the different component DAGs and showed how
this property can be used to infer the cluster membership
for each sample. This is relevant for many applications, as
for example when studying diseases consisting of multiple
not well characterized subtypes. In such studies, genomic
perturbation experiments can not be performed relatively
routinely, leading to high-throughput interventional data.
In future work it would be interesting to study how inter-
ventional data could be used to enhance causal inference
based on mixtures of DAGs or which interventions to per-
form in order to enhance identifiability of pathways that are
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shared among the different subtypes as well as those that are
different across the subtypes for personalized interventions.
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APPENDIX

A. Proof of Proposition 2.1
We begin by recalling the definition of an inducing path from Richardson and Spirtes (2002), specialized to ancestral graphs.

Definition A.1. A path v1, . . . , vn in an ancestral graph G is inducing if v1 and vn are not adjacent in G and for all
i ∈ {2, . . . , n− 1}, we have

vi−1 ↔ vi ↔ vi+1 and vi ∈ anG({v1, vn}).

Richardson and Spirtes (2002) showed the following condition for an ancestral graph to be maximal.

Lemma A.2 ((Richardson and Spirtes, 2002)). An ancestral graphM is maximal if and only if G does not contain any
inducing paths.

This allows us to prove Proposition 2.1.

Proof of Proposition 2.1. We show that the graph resulting from Algorithm 1 does not contain inducing paths. LetM be
the output of the algorithm. Suppose we have vertices v1, . . . , vn where vi−1 ↔ vi ↔ vi+1 for all i ∈ {2, . . . , n− 1} in
M. Then by step 1 of the algorithm, we must have v1, . . . , vn ∈ chDµ(y), implying that v1 ↔M vn, and hence the path is
not inducing.

B. Counter-example for the Markov property of the mother graph
In the following, we provide a counter-example for the Markov property of the mother-graph representation introduced
by Strobl (2019b;a). We first remark that the Markov property in Strobl (2019a) generalizes that of Strobl (2019b) in the
following sense: if the Markov property of the latter is satisfied, then the former is satisfied. Hence, we here provide a
counter-example for the former, which can serve as a counter-example for both.

(a) D(1) (b) D(2) (c) Dm

Figure B.1: (c) shows the mother graph Dm associated with the DAGs D(1) and D(2) in (a) and (b).

We start by recalling a few definitions from Strobl (2019b) using notation native to our development. Given a mixture
of DAGs with distribution pµ where p(j) factorizes according to D(j), the mother graph Dm = (Vm, Dm) has nodes
Vm := [V ] ∪ {y(1), . . . , y(K)} and directed edges

Dm :=
⋃

1≤j≤K

{y(j) → v(j) : v ∈ V \ VINV} ∪ {u(j) → v(j) : u→D(j) v}.

An example of the mother graph is shown in Figure B.1. A variable c(j) ∈ [V ] in the mother graph is called an m-collider if
and only if at least one of the following conditions hold:

• a(j) → c(j) ← b(j), where a, b ∈ V ∪ {y}

• a(j) → c(j) ← y(j) and y(k) → c(k) ← b(k) where a, b ∈ V .

An m-path exists between [A] and [B] in the mother graph if and only if there exists a sequence of triples between [A] and
[B] such that at least one of the following two conditions is true for each triple in the sequence:
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• a(j)∗−∗c(j)∗−∗b(j) with a, b, c ∈ V ∪ {y}

• a(j) → c(j) ← y(j) and y(k) → c(k) ← b(k) where a, b, c ∈ V .

Finally, [A] and [B] are said to be m-d-connected given [C] if and only if there exists an m-path between [A] and [B] such
that the following two conditions hold:

• c(j) ∈ [C] for every m-collider on the path, where c ∈ V

• a(j) 6∈ [C] for every non-m-collider on the path, where c ∈ V ∪ {y}.

Now, the Markov property for the mother graph states that if [A] and [B] are not m-d connected given [C] in the mother
graph, then XA ⊥⊥ XB | XC in pµ (Strobl, 2019b;a).

We now provide a counter example for this Markov property. For this, consider the mother graph in Figure B.1c over
V = {1, 2, 3, 4}. Note that according to the definition of m-d-connection, [{1}] and [{4}] are not m-d-connected given
[{2, 3}]. Hence, the Markov property should imply that X1 ⊥⊥ X4|X2, X3 in any mixture distribution whose mother graph
is as shown. In the following, construct a mixture distribution where this is not satisfied.

For simplicity, let pJ(1) = pJ(2) =
1
2 . Define p(1)(xV ) as

p(1)(x1) = N (x1; 0, 1),

p(1)(x2|x1) = N (x2;x1, 1),

p(1)(x3) = N (x3; 0, 1),

p(1)(x4) = N (x4; 0, 1),

and p(2)(xV ) as

p(2)(x1) = N (x1; 0, 1),

p(2)(x2) = N (x2; 0, 1),

p(2)(x3|x4) = N (x3;x4, 1),

p(2)(x4) = N (x4; 0, 1).

Clearly, p(1)(xV ) and p(2)(xV ) factorize according to D(1) of Figure B.1a and D(2) of Figure B.1b, respectively. Now,

pµ(x1, x2, x3, x4) =
∑

j∈{1,2}

pJ(j)p
(j)(x1, x2, x3, x4)

=
1

2

1

(2π)2

(
e−

x21
2 e−

x23
2 e−

x24
2 e−

(x2−x1)2

2 + e−
x21
2 e−

x22
2 e−

x24
2 e−

(x3−x4)2

2

)
=

1

2

1

(2π)2
e−

x21
2 e−

x22
2 e−

x23
2 e−

x24
2

(
ex2x1e−

x21
2 + ex3x4e−

x24
2

)
,

which cannot be written as
f(x1, x2, x3)g(x2, x3, x4)

for any f, g, implying that X1 6⊥⊥ X4 | X2, X3 in pµ.

C. Proof of Lemma 3.3
Proof of Lemma 3.3. By the assumption, p(j1)(xV ) factors according to D(j1). Hence, it is sufficient to define a distribution
p̃XV ,J(xv, j) over XV ∪ {J} that factors according to D̃(j), with J ∈ {j1, j2} for an arbitrarily chosen j2 ∈ {1, . . . ,K} \
{j1}, such that

p̃XV |J(xV |j1) = p(j1)(xV ).
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Then, the factorization with respect to D̃(j1) along with the two d-separation statements in the hypothesis of the lemma
would imply

p(j1)(xA, xB |xC) =
∑
xV \(A∪B∪C)

p(j1)(xV )∑
xV \C

p(j1)(xV )

=

∑
xV \(A∪B∪C)

p̃(xV |j1)∑
xV \C

p̃(xV |j1)

= p̃(xA, xB |xC , j1)
= p̃(xA|xC)p̃(xB |xC , j1).

To complete the proof, we define such a distribution p̃. First let Vy := chD̃(j1)(y) and note that

p̃(xV , j) = p̃J(j)
∏
v∈V

p̃(xv|xpaD̃(j1) (v), j)

= p̃J(j)
∏
v∈Vy

p̃(xv|xpaD(j1) (v), j)
∏

v∈V \Vy

p̃(xv|xpaD(j1) (v)).

Define

p̃J(j) :=

{
pJ(j1) j = j1

1− pJ(j1) j = j2
,

p̃(xv|xpaD(j) (v)) := p(xv|xpaD(j) (v)) ∀v ∈ V \ Vy.

Now, for each v ∈ Vy , define
U(v) := paD(j1)(v) ∩ paD(j2)(v)

and
D(v) := paD(j2)(v) \ paD(j1)(v),

and choose an arbitrary fixed value for xpaD(i)(v)
\ paD(j)(v)

and denote it by x′d(v).

Then define for all v ∈ Vy ,

p̃(xv|xpaD(j) (v), j) :=

{
pXv|Xpa

D(j1) (v)
,J(xv|xpaD(j1) (v), j1) j = j1

pXv|XU(v),XD(v),J(xv|xU(v), x
′
d(v), j2) j = j2

.

Now, one easily checks that this distribution indeed satisfies the factorization property, which completes the proof.

D. Proof of Lemma 4.3
The ancestral property follows directly since we impose the order compatibility assumption of Definition 4.1. In the
following, we show maximality using the definition of inducing path and the associated maximality condition in Section A.

Proof of Lemma 4.3. Suppose we have a path v1 ↔ v2 ↔ . . . vn−1 ↔ vn in M∪. Then, for all m ∈ {1, . . . , n − 1},
we must have some j ∈ {1, . . . ,K} such that v(j)m ↔ v

(j)
m+1 inM(j), implying that for all m, we must have a j such

that v(j)m , v
(j)
m+1 ∈ chD(j)(y) and hence a j such that v(j)m , v

(j)
m+1 ∈ chDµ(y). But by construction of Dµ, this implies

that v(j)m v
(j)
m+1 ∈ chDµ(y) for all j ∈ {1, . . . ,K}. Therefore, for any j, we have v(j)1 · · · , v

(j)
n ∈ chD(j)(y), and hence

Algorithm 1 adds an edge between v(j)1 and v(j)n inM(j), resulting in an edge between v1 and vn inM∪. Therefore, the
path v1, . . . , vn is not inducing inM∪.
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(a) Mµ (b) M(1) (c) M(2) (d) M∪

Figure E.1

E. Proof of Theorem 4.4
Since we assume that A,B,C ⊆ V , i.e., these sets do not contain y, then [A] and [B] are d-separated in Dµ given [C] if and
only if they are d-separated in the marginal MAG of Dµ w.r.t. {y} obtained from Algorithm 1. We refer to this MAG as the
mixture MAG and denote it byMµ. We will make use of this MAG in parts of the following proof since it simplifies the
arguments.

One thing to note aboutMµ is that if we remove the edges of the form u(j)◦−◦v(i) for u, v ∈ V and i 6= j, then we obtain
a bijection between the edges ofMµ and the union of all the edges ofM(j) for all j. Figure E.1 illustrates this for an
example. Hence, we can alternatively think of the union graph as having directed edges

D∪ := {u→ v : u, v ∈ V, ∃i u(i) →Mµ
v(i)},

and bidirected edges
B∪ := {u↔ v : u, v ∈ V, ∃i u(i) ↔Mµ

v(i)}.

We prove Theorem 4.4 in 3 main steps. First, in Lemma E.5 we show that for any d-connecting path between a and b given
C inM∪, we can find a d-connecting path between a(i) and b(k) given [C] inMµ. Second, in Lemma E.7 we show the
converse: that for any d-connecting path a(i) and b(k) given [C] inMµ, we can find a d-connecting path between a and b
given C inM∪. Finally, in Lemma E.8 we show that this equivalence implies that for any disjoint sets A,B,C ⊆ V , A and
B are d-separated inM∪ if and only if [A] and [B] are d-separated inMµ given [C].

The proof strategy in Lemmas E.5 and E.7 relies on concatenating d-connecting paths given C of the form P1 = 〈v1, . . . , vn〉
and P2 = 〈vn . . . , vm〉 together to create longer d-connecting paths given C of the form P = 〈v1, . . . , vm〉. When doing so,
we must take care to ensure that vn is active on the longer path, i.e., we must ensure that vn is a collider on the path P if and
only if vn ∈ C.

E.1. A connecting path inM∪ implies an analogus one inMµ

We begin by proving some auxiliary results for step 1.

Lemma E.1 (Bidirected Connections). If a(i) ↔Mµ b(k) for any i, k ∈ {1, . . . ,K}, then a(i) ↔Mµ b(j) for all j ∈
{1, . . . ,K} \ {i}.

Proof. a(i) ↔Mµ b
(k) implies that a(i), b(k) ∈ chDµ(y). By construction of Dµ, this implies a(j), b(j) ∈ chDµ(y) for

all j ∈ {1, . . . ,K}, and hence step 1 of Algorithm 1 will add the bidirected edges a(i) ↔ b(j) for all j ∈ {1, . . . ,K}.
Step 3 will only remove it if a(i) and a(j) are ancestors of one another in Dµ, which could happen only if j = i. Hence,
a(i) ↔Mµ

b(j) for all j ∈ {1, . . . ,K} \ {i}.

Lemma E.2 (Bidirected district). Assume a(i) ↔Mµ
b(j) and c(k) ↔Mµ

d(l).

• If i 6= l, then a(i) ↔Mµ
d(l).

• If i = l, then

– a(i) ↔Mµ d
(l) if neither a(i), d(l) is an ancestor of another inMµ,
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– a(i) →Mµ
d(l) if a(i) ∈ anMµ

(d(l)); or

– a(i) ←Mµ
d(l) if d(l) ∈ anMµ

(a(i)).

Proof. a(i) ↔Mµ
b(j) and c(k) ↔Mµ

d(l) implies that a(ι), b(ι), c(ι), d(ι) ∈ chDµ(y) for all ι ∈ {1, . . . ,K}. Hence, step 1
of Algorithm 1 will add a(i) ↔Mµ

d(l). If i 6= l, then a(i) and d(l) cannot be ancestors of one another, implying that step 3
will not remove this bidirected edge. If i = l, then the edge will be removed and replaced with the appropriate directed edge
if one of a(i) or d(l) is an ancestor of the other. Otherwise, the bidirected edge will remain.

Lemma E.3 (Arrow tip lemma). Under the ordering assumption in Definition 4.1, if a directed edge a→M∪ b exists in
M∪, then we must have aj →Mµ

bj for some j inMµ. If a bidirected edge a↔M∪ b exists inM∪, then we must have
aj ↔Mµ

bj for some j inMµ.

Proof. The proof follows directly from the definition of the union graph.

Lemma E.4 (Changing Arrowtips Lemma). Under the ordering assumption in Definition 4.1, if a(j)∗→Mµ
b(j) but not

a(k)∗→Mµ
b(k) (same type of edge) for some j 6= k, then we must have b(j) ↔ b(k).

Proof. The ordering assumption does not allow a(j) →Mµ
b(j) and a(k) ↔Mµ

b(k) (and vice versa). Hence, we must only
look at the existence of a(j)∗→b(j) and the in-existence of an edge between a(k) and b(k).

First, we note that if step 1 of Algorithm 1 defining Mµ adds b(j) ↔ b(k), then it will remain since step 2 does not
modify edges but only adds them, while step 3 will never remove an edge b(j) ↔ b(k) since neither can be an ancestor or a
descendant of the other in Dµ.

Now, if a(j) →D(j) b(j) but not a(k) →D(k) b(k) for some k, then we must have b ∈ V \ V I and hence b(ι) ∈ chDµ(y) for
all ι ∈ {1, . . . ,K} by construction of Dµ. Therefore, step 1 of Algorithm 1 will add b(j) ↔ b(k).

For the other case we must check that a(j)◦→b(j) was added by the algorithm that createdMµ. In all steps, the algorithm
will only add such an edge if b ∈ V \ VINV and hence b(j) ↔ b(k) must have been added in step 1.

Lemma E.5 (Step 1). Under the ordering compatibility assumption in Definition 4.1, if there is a connecting path between
a and b given some C ⊆ V \ {a, b} inM∪ ending in an arrow head (or tail respectively) incident to b, then there is a
connecting path between a(i) and b(k) given [C] inMµ for some i, k ∈ {1, . . . ,K} that also ends in an arrow head (or tail
respectively) towards b(k).

Proof. We use induction on the number of edges in the connecting path inM∪. The base case for 1 edge follows directly
from Lemma E.3.

Now assume we have a d-connecting path given C consisting of m + 1 edges inM∪: P∪ = 〈a, . . . , d, b〉 ending in an
arrow head (or tail respectively). Consider the sub-path 〈a, . . . , d〉 with m edges. By the inductive hypothesis, there is a
path Pµ = 〈a(i), . . . , d(j)〉 inMµ that is d-connecting given [C], for some i, j, ending in the same tip. In the following, we
show that we can always find a path of the form 〈d(j), . . . , b(k)〉 for some k that can be joined together with Pµ to create a
path 〈a(i), b(k)〉 that is d-connecting given [C]. We do this by considering all the different cases for the tips of the edges
c∗−∗M∪d and d∗−∗M∪b.

Before discussing the different cases, note that if the edge d(j)∗−∗Mµ
b(k) exists and is of the same type as the edge

d∗−∗M∪b, then we can create the desired d-connecting path P̃µ from a(j) to b(i) given [C] by concatenating this edge with
Pµ, since:

d is active on Q∪ ⇒
(
d is a collider on Q∪ ⇔ d ∈ C

)
⇒
(
d(j) is a collider on P̃µ ⇔ d(j) ∈ [C]

)
⇒ d(j) is active on P̃µ,



Causal Structure Discovery from Distributions Arising from Mixtures of DAGs

where the second implication follows because the path Pµ ends in the correct type of arrow tip by the inductive hypothesis
(I.H.). Hence, in what follows, it is sufficient to

assume either d(j)∗−∗b(k) is not inMµ or is not the same edge type as d∗−∗b inM∪. (S.3)

(i) case c∗→d←∗b inM∪:

Since d is a collider on the path Q∪, we must have d ∈ C, and hence d(j) ∈ [C] for all j. Hence the path Pµ is of
the form 〈a(i), . . . , γ(ι), d(j)〉, where γ(ι)∗→d(j) for some γ ∈ V and ι ∈ {1, . . . ,K} by the I.H. Furthermore, by
Lemma E.3, we must have d(ι)←∗Mµb

(k) for some ι, k ∈ {1, . . . ,K}. Since we assumed in (S.3) that this isn’t true
for ι = j, then by Lemma E.4 we must have d(j) ↔ d(ι), creating the path ∗→d(j) ↔ d(ι)←∗b(k) that is d-connected
given [C] (recall d(j), d(ι) ∈ [C]). Concatenating d(j) ↔ d(ι)←◦b(k) to Pµ gives the desired d-connecting path
〈a(i), . . . , d(j), d(ι), b(k)〉.

For the remaining cases, we begin by recalling that the edge d∗−∗M∪b must exist since d(k)∗−∗Mµ
b(k) for some k by

Lemma E.3. Now, let α(j) be the node on the path Pµ closest to a(i) such that all nodes between α(j) and d(j) have the
same index j, i.e., all of these are contained in the same MAGM(j). This means that the node preceding α(j) on this path,
call it γ(κ), either has a different index (i.e., a part of a differentM(κ)), or α(j) = a(i).

Call P (j)
µ = 〈α(j), . . . , d(j)〉 the subpath of Pµ from α(j) to d(j). This path is completely contained inM(j). If it is possible

to find a path P (k)
µ = 〈α(k), . . . , d(k)〉 inM(k) that is analogous to P (j)

µ (same types of edges), then we can replace the
segment P (j)

µ of Pµ with P (k)
µ to obtain a connecting path between a(i) and d(k) given [C]. Then, concatenating d(k)∗−∗b(k)

gives us the desired connecting path from a(i) to b(k) given [C] inMµ.

Hence, in checking the remaining cases, we further

assume that it is not possible to find a path P (k)
µ inM(k). (S.4)

Therefore, walking along the path P (j)
µ backwards starting at d(j) until α(j), we will eventually find an edge β(j)∗−∗δ(j)

such that β(k)∗−∗δ(k) is not an edge. Take the first such edge. Now, if this edge was β(j) ↔ δ(j), then by Lemma E.1, we
must have β(j) ↔ δ(k), implying that we can concatenate the subpath of Pµ of the form 〈a(i), . . . , β(j)〉 with β(j) ↔ δ(k)

and the subpath of P (k)
µ of the form 〈δ(k), . . . , b(k)〉 to create the desired d-connecting path given [C]. Next we look at the

situations where we do not have β(j) ↔ δ(j), considering each remaining case on the arrowheads of c∗−∗d∗−∗b inM∪
separately.

(ii) case c← d→ b inM∪: This case is depicted in Figure E.2a. If the first edge found is of the form β(j) ← δ(j) where
β(k) ← δ(k) is not present (see Figure E.2b), then by Lemmas E.4 and E.2, we must have β(j) ↔ b(k) (Figure E.2d).
Replacing the segment 〈β(j), . . . , d(j)〉 of Pµ with β(j) ↔ b(k) gives the desired path.

Otherwise, if we have β(j) → δ(j) instead (Figure E.2c), then Lemmas E.4 and E.2 again say that we must have
δ(j) ↔ b(k) (Figure E.2e). The subpath of Pµ of the form 〈δ(j), c(j)〉 shown in Figure E.2e is connecting given [C]
by the I.H. Starting at δ(j) and walking towards c(j), we can find a collider that is in [C] (shown in Figure E.2f).
This collider must be a descendant of δ(j) Hence, δ(j) is active given [C] on the path β(j) → δ(j) ↔ b(k) since it is
a collider whose descendant is in [C]. Replacing the segment 〈β(j), . . . , d(j)〉 in Pµ with this path gives the desired
connecting path given [C].

(iii) case c → d → b inM∪: Proceeding similarly, if the edge found is of the form β(j) ← δ(j), then we must have
β(j) ↔ b(k) similar to before and for the same reasons. Furthermore, we can find a d-connecting path by performing a
concatenation similar to the one we did before: replace the segment 〈β(j), . . . , d(j)〉 of Pµ with β(j) ↔Mµ b

(k). This
is illustrated in Figure E.3a,

If, otherwise, the edge found is of the form β(j) → δ(j). We can conclude that we have the bidirected edge δ(j) ↔ d(k)

by applying the Lemmas E.2 and E.4 again.
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If there is a collider on the subpath between 〈δ(j), . . . , c(j)〉, then any such collider must be in [C] since Pµ is d-
connecting given [C] (see Figure E.3b). Furthermore, one of these colliders will be a descendant of δ(j), and we can
apply similar logic to that in Case (ii) to show that the path obtained by replacing the segment 〈β(j), . . . , d(j)〉 of Pµ
with δ(j) ↔ d(k) is d-connecting given [C].

Otherwise, no such collider exists between δ(j) and c(j) and hence c(j) is a descendant of δ(j) (see Figure E.3c).
Therefore, b(k) is a descendant of δ(k) by the ordering compatibility assumption, and Algorithm 1 adds the directed
edge δ(k) → b(k) since δ(k) and b(k) will both be in chDµ(y). This further implies that δ(j), b(j) ∈ chDµ(y), so
Algorithm 1 will add an edge between these two nodes. The ordering assumption once again ensures that this edge is
of the form δ(j) → b(j).

(iv) case c← d← b inM∪. Proceeding similarly, if we have the edge β(j) → δ(j), then we can follow the same logic to
create the d-connecting path (see Figure E.4a).

Otherwise, β(j) ← δ(j), and we have the bidirected edge β(j) ↔ d(k), and we again check for colliders between β(j)

and d(j).

If there is a collider, it will be both in [C] and a descendant of d(k) inMµ, and we can find the desired d-connecting
path with the same logic followed previously (see Figure E.4b).

If there is no such collider, then β(j) will be a descendant of d(j), and using a similar argument to that used for
Figure E.3c, we can conclude that we have directed edges β(j) ←Mµ

d(j) and β(k) ←Mµ
d(k) (see Figure E.4c). In

such a scenario, we can repeat the logic for the node β in place of the node c: we continue walking along the path
P

(j)
µ starting from β(j) until α(j) is reached or until we find another edge along this path that does not exist on P (k)

µ . If
the former happens first, we deal with the case like we would have if P (k)

µ and P (j)
µ had identical edges. If the latter

happens first, then we recursively repeat the logic of case (iv).

This completes the proof.

E.2. A d-connecting path inMµ implies an analogous d-connecting path inM∪

Again, we begin with some auxiliary results.

(a)

(b)

(c)

(d)

(e)

(f)

Figure E.2: An illustration of the logic in the proof of Lemma E.5, case (ii). We do not plot all possible edges in order
to reduce clutter. Instead, we plot non-edges using an x superimposed on a dashed line. Furthermore, we indicate paths
between two nodes with a squiggly line. (a), (b) and (c) show the relevant segment of the path Pµ in blue; (d), (e) and (f)
show the segment that replaces 〈β(j), . . . , d(j)〉 on Pµ to create the desired d-connecting path in blue.
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(a) (b) (c)

Figure E.3: An illustration of the d-connecting paths constructed by following the logic of case (iii) in the proof of
Lemma E.5. In each of (a), (b) and (c), the segment that replaces 〈β(j), . . . , d(j)〉 on Pµ to create the desired d-connecting
path is colored in blue.

(a) (b) (c)

Figure E.4: An illustration of the d-connecting paths constructed by following the logic of case (iv) in the proof of lemma E.5.
In each of (a) and (b), the segment that replaces 〈β(j), . . . , d(j)〉 on Pµ to create the desired d-connecting path is colored in
blue.

Lemma E.6 (At most 1 bidirected edge). If there exists a connecting path between a(i) and b(k) given some [C] where
a, b ∈ V and C ⊆ V \ {a, b} inMµ, then there must exist a path P̃µ between a(i) and b(k) that is also connecting given
[C] that contains at most one bidirected edge.

Proof. Since a(i) and b(k) are connected given [C] inMµ, then they must also be connected given [C] inDµ. Let Pµ denote
the path connecting a(i) to b(k) given [C] inDµ. Let Pµ = 〈a(i), u1, . . . , u(l)〉 and let ux, uz be the first and last occurrences
of the vertex y on Pµ, respectively, if any. Since y has an in-degree of 0, neither ux nor uz can be a collider. Hence, we can
concatentate the paths P1 = 〈a(i), . . . , ux〉 and P2 = 〈uz, . . . , b(k)〉 to get a connecting path given [C] in Dµ.

Now, if ux−1 is neither an ancestor nor a descendant of dz+1, then in Mµ, we will have the path
a(i), . . . , ux−1, uz+1, . . . , b

(k) by virtue of Algorithm 1, since it adds a bidirected edge between any pair of children
of y. This is a path from a(i) to b(k) that is also connected given [C] that contains only 1 bidirected edge.

Otherwise, (W.L.O.G) ux−1 ∈ anDµ(uz+1), i.e., there is a directed path from ux−1 to uz+1 in Dµ. Step 3 of Algorithm 1
adds the edge ux−1 → uz+1 to Mµ to create the path P̃µ := 〈a(i), . . . , ux−1, uz+1, . . . , b

(k)〉. This path is from a(i)

to b(k) and passes through no bidirected edges. If this path is active, then we are done. If this path is not active, then,
since 〈a(i) . . . , ux−1〉 and 〈uz+1, . . . , b

(k) are active, P̃µ must be inactive by virtue of ux−1 ∈ [C]. But since Pµ in Dµ is
connecting, this implies that ux−1 must have been a collider on that path, hence we have the edge ux−2 → ux−1 in Dµ
andMµ. Step 2 of Algorithm 1 adds ux−2 → uz+1 in such a case. Then, the path 〈a(i), . . . , ux−1, uz+1, . . . , b

(k)〉 must be
connecting from a(i) to b(k) given [C], which completes the proof.

Lemma E.7 (A Connecting Path inMµ implies a connecting path inM∪). Under the assumptionin Defintion 4.1, if there
is a connecting path between a(i) and b(k) given some [C] inMµ for some i, k ∈ {1, . . . ,K}, where C ⊆ V \ {a, b}, then
there is a connecting path between a and b given C inM∪.

Proof. By Lemma E.6, we must have a connecting path inMµ between a(i) and b(k) given [C] that passes through at most
1 bidirected edge. If there exist paths that pass through no bidirected edges, take any such path. Otherwise, take any path
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(a) (b) (c) (d)

Figure E.5: An illustration of the logic for case (i) for the proof of Lemma E.7. In (a) and (c), we color in blue the relevant
segments of the d-connecting path inMµ, while in (b) and (d), we color in blue the relevant segments of the constructed
d-connecting path inM∪.

that passes through 1 bidirected edge. Call this path Pµ = 〈a(i) =: u
(i)
0 , u

(i)
1 , . . . , u

(k)
m := b(k)〉.

By the structure ofMµ discussed in the beginning of this section, only a bidirected edge can connect a node u(i)x to a node
u
(k)
x+1 inMµ for i 6= k. Hence, if there is no bidirected edge on this path, then all the nodes u(i)0 , . . . , u

(i)
m will be contained

in the same MAGM(i). Each edge along this d-connecting path given [C] will show up inM∪, and hence we can create a
path 〈u0, . . . , um〉 that is d-connecting given C inM∪.

In the case where Pµ contains a bidirected edge, let us label the nodes incident as u(i)x ↔ u
(k)
x+1. The segments 〈u(i)0 , . . . , u

(i)
x 〉

and 〈u(k)x+1, . . . , u
(k)
m 〉 will each be contained inM(i) andM(k) respectively, and hence we can find d-connecting paths

〈u0, . . . , ux〉 and 〈ux+1, . . . , um〉 inM∪ that are each d-connecting given C. We must now show that we can connect these
paths to create a d-connecting path given C from u0 = a to um = b inM∪.

Of course, there is no difficulty if the bidirected edge ux ↔ ux+1 appears inM∪, since we can connect these two subpaths
with this bidirected edge and have the desired connecting path. The difficulty is when this edge does not appear. From the
definition ofM∪, we can see that this only happens when the bidirected edge connects u(i)x and u(k)x+1 for i 6= k, i.e., the
bidirected edge is not contained in any MAGM(j) for any j. We split the remainder into two cases.

(i) case ux = ux+1. If u(i)x and u(k)x+1 are both colliders on Pµ, then we must have ux, ux+1 ∈ C. Then c = d will be an
active collider given C inM∪ on the path obtained by concatenating 〈u0, . . . , ux〉 and 〈ux+1, . . . , um〉 inM∪, and
hence we have our d-connecting path given C. We therefore assume, W.L.O.G., that u(i)x is not a collider on Pµ.

If there is a path 〈u(k)0 , . . . , u
(k)
x 〉 inMµ where every pair of adjacent vertices u(k)n , u

(k)
n+1 on this path are connected by

the same edge type as the pair u(i)n , u
(i)
n+1 in Pµ, then we can replace the segment of 〈u(i)0 , . . . , u

(i)
x 〉 of Pµ with 〈u(k)0 to

u
(k)
x 〉 to obtain a path that is d-connecting given [C] and contained completely inM(k), meaning that we can find the

desired d-connecting path given C inM∪. If no such path exists inMµ, then starting at u(i)x and walking backwards
along Pµ towards u(i)0 , we will find an edge u(i)z ∗−∗Mµ

u
(i)
z+1 where u(k)z ∗−∗Mµ

u
(k)
z+1 is not an edge. Take the first such

edge found (i.e., the edge closest to u(i)x that satisfies this; see Figure E.5a).

If u(i)z →Mµ
u
(i)
z+1, then by Lemmas E.4 and E.2, there is a bidirected edge u(i)z+1 ↔Mµ

u
(k)
x , implying that step 1

of Algorithm 1 adds another bidirected edge u(k)z+1 ↔ u
(k)
x . If u(i)z+1 is not a descendant of u(i)x , then the bidirected

edge u(k)z+1 ↔Mµ
u
(k)
x would not be removed by step 3 of Algorithm 1 and hence will appear inMµ. Furthermore,

we will have collliders α(i) and γ(i) between u(i)z+1 and u(i)x that are in [C] that will be descendants of u(i)z+1 and u(i)x
respectively. The ordering assumption ensures that α and γ are descendants of uz+1 and ux inM∪, respectively.
Hence, the path 〈u0, . . . , uz+1, ux, . . . , um〉 inM∪ is d-connecting inM∪ given C. Figures E.5a and E.5b illustrate
this.

Now we check the case where u(i)z ← u
(i)
z+1. If u(i)z is not a descendant of u(i)x , then we can construct a path in

M∪ by a similar argument to the above. If u(i)z is a descendant of u(i)x , then by Lemma E.2, there is a directed edge
u
(i)
z ←Mµ u

(i)
x , which appears as uz ←M∪ ux. We can use this to construct a path inM∪ as shown in Figures E.5c
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(a) (b) (c) (d)

Figure E.6: An illustration of the logic for case (ii) for the proof of Lemma E.7. In (a) and (c), we color in blue the relevant
segments of the d-connecting path inMµ, while in (b) and (d), we color in blue the relevant segments of the constructed
d-connecting path inM∪.

and E.5d. This path is active since u(i)x is not a collider, and hence u(i)x 6∈ [C], implying that ux 6∈ C.

(ii) case ux 6= ux+1: Step 1 of Algorithm 1 adds the bidirected edge u(k)x ↔ u
(k)
x+1, which will show up inM∪ as an edge

ux ↔ ux+1 unless it is removed by step 3; so this is the only case we must check. Assume W.L.O.G. that this edge is
removed by step 3 because u(k)x is a descendant of u(k)x+1 inDµ and therefore inMµ. Then a directed edge u(i)x ← u

(i)
x+1

will be added instead, which appears inM∪ as ux ← ux+1. The only case where we cannot join 〈u0, . . . , ux〉 and
〈ux+1, . . . , um inM∪ together using this directed edge ux ← ux+1 to create a d-connected path given C is when
u
(k)
x+1 is in [C], and hence is a collider on Pµ. This implies that we have u(k)x+1 ←Mµ

u
(k)
x+2. in which case step 2 of

Algorithm 1 would have added the edge u(k)x+1 ← u
(k)
x+2, which appears as ux+1 ←M∪ ux+2. This edge can be used to

create the d-connecting path given C given by 〈u0, . . . , ux, ux+2, . . . , um〉 inM∪. This is illustrated in Figure E.6
and completes the proof.

E.3. The main result

Finally, we use the results of the first two steps to prove the following.

Theorem E.8. Under the assumption in Definition 4.1, for any disjoint A,B,C ⊆ V , [A] and [B] are d-separated given
[C] in Dµ if and only if A and B are d-separated given C inM∪.

Proof. SinceMµ is the marginal MAG in Dµ with respect to the vertex y, the d-separation statements involving subsets not
including y are the same in both. By proposition 2.1,Mµ is a MAG, hence d-separation inMµ is compositional (Sadeghi
and Lauritzen, 2014); therefore for A,B,C ⊆ V disjoint it holds that{

[A] sep from [B] inMµ given [C]
}

⇔
{
ai sep from bk inMµ given [C] for all ai ∈ [A], bk ∈ [B]

}
.

Now Lemmas E.5 and E.7 imply{
ai sep from bk inMµ given [C] for all ai ∈ [A], bk ∈ [B]

}
⇔
{
a sep from b given C for all a ∈ A, b ∈ B

}
.

Finally, sinceM∪ is a MAG, applying compositionality gives{
a sep from binM∪ given C for all a ∈ A, b ∈ B

}
⇔
{
A sep from B given C inM∪

}
,

which completes the proof.
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F. Additional Experimental Results
F.1. Synthetic Data

In the following, we present figures for the experiments described in Section 5 for additional values of K and n. Figure F.1
shows the normalized SHD plot in evaluating the union graph as described in the main paper, while Figure F.2 shows the
true and false positives in predicted V \ VINV. Finally, Figure F.3 shows the result of K-means clustering.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure F.1: Normalized SHD evaluating the estimation of the union graph from mixture data using FCI for K ∈ {2, 4, 6}
and n ∈ {1000, 5000, 10000}.



Causal Structure Discovery from Distributions Arising from Mixtures of DAGs

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure F.2: True and false positive rates in estimating V \ VINV using Proposition 4.6 applied to the PAG P̂∪ estimated by
running FCI on the mxiture data. The figures show the results for K ∈ {2, 4, 6} and n ∈ {1000, 5000, 10000}.



Causal Structure Discovery from Distributions Arising from Mixtures of DAGs

(a) (b) (c)

(d) (e) (f)

Figure F.3: A comparison of clustering when all the variables are used as features vs. when only the variables in the estimated
set V \ VINV are used as features. In generating figures (a), (b) and (c), V \ VINV has descendants in the generating model,
while in figures (d), (e) and (f), V \ VINV has no descendants.
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F.2. Real Data

Here, we present the output of FCI on the T cell mixture data referenced in section 5.2.

Figure F.4: The PAG learned using FCI on the T cell mixture data. The inferred arrowheads are shown in red, while the
inferred arrowtails are shown as blue brackets.
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