
Online Monitoring for Safe Pedestrian-Vehicle Interactions

Peter Du, Zhe Huang†, Tianqi Liu†, Tianchen Ji†, Ke Xu†, Qichao Gao†,
Hussein Sibai, Katherine Driggs-Campbell, and Sayan Mitra

Abstract— As autonomous systems begin to operate amongst
humans, methods for safe interaction must be investigated.
We consider an example of a small autonomous vehicle in a
pedestrian zone that must safely maneuver around people in
a free-form fashion. We investigate two key questions: How
can we effectively integrate pedestrian intent estimation into
our autonomous stack? Can we develop an online monitoring
framework to give rigorous assurances on the safety of such
human-robot interactions? We present a pedestrian intent esti-
mation framework that can accurately predict future pedestrian
trajectories given multiple possible goal locations. We integrate
this into a reachability-based online monitoring and decision
making scheme that formally assesses the safety of these inter-
actions with nearly real-time performance (approximately 0.1s).
These techniques are both tested in simulation and integrated
on a test vehicle with a complete in-house autonomous stack,
demonstrating safe interaction in real-world experiments.

I. INTRODUCTION

Autonomous systems are quickly entering human domi-
nated fields in the form of drones and self-driving cars, and
becoming tangible technologies that will impact the human
experience. As these systems begin to share space and op-
erate among humans, safety becomes a primary concern [1],
[2]. Despite many successful demonstrations of autonomous
driving, safe interaction between autonomous vehicles and
other road users remains an open problem [3]–[5].

We consider two key factors currently impeding safe
interactive autonomy. First, designing interactive controllers
that consider predictions about human movement remains a
challenge due to the high variability in human behavior [6].
Second, providing formal guarantees for autonomous sys-
tems is challenging due to complexities introduced by many
intertwined modules in the autonomous stack as well as
multi-agent interactions [7].

One test case where this is particularly obvious is an
autonomous shuttle scenario, where an autonomous vehicle
operates on small roads and sidewalks and may encounter
pedestrians through free-form interaction. Such automated
systems have been developed for campus settings [8], [9]
and pedestrian zones [10], [11]. These systems typically
require and have heuristic decision-making for determining
safe interaction (e.g., if an obstacle is within some preset
distance, stop [12]). One common “lesson learned” is that

*This research is supported by research grants from the National Science
Foundation (FMITF:1918531) and the United States Air Force Office of
Scientific Research (FA9550-17-1-0236). We are grateful to the Illinois
Center for Autonomy, Coordinated Science Lab, and AutonomouStuff for
supporting our experimental infrastructure.

† Z. Huang, T. Liu, T. Ji, K. Xu, and Q. Gao contributed equally.
P. Du, Z. Huang, T. Liu, T. Ji, Q. Gao, H. Sibai, K. Driggs-Campbell,

and S. Mitra are with the Department of Electrical and Computer
Engineering at the University of Illinois at Urbana-Champaign. email:
{peterdu2,zheh4,tliu51,tj12,qgao10,sibai2,krdc,mitras}@illinois.edu

K. Xu is with the Department of Computer Science at the University of
Illinois at Urbana-Champaign. email: kexu6@illinois.edu

interacting with pedestrians is difficult due to their unpre-
dictability [9], [13]. As pedestrians are vulnerable agents
and have very few constraints on their motion, determining
methods for safe interaction is both critical for reducing
risk of accidents and improving efficiency by limiting over-
conservative performance. Further, many studies state that an
on-board safety driver or watchdog is necessary to monitor
the system operation [9], [11].

In this work, we present an initial foray into integrat-
ing human motion prediction with an autonomous system’s
control framework as well as an online monitoring system.
Leveraging data-driven verification approaches to provide
formal guarantees, we demonstrate how DryVR, an offline
reachability tool for hybrid dynamical systems [14], can be
used in an online setting to give a formal assessment of safety
as the autonomous vehicle drives in close proximity to a
human. In short, we present the following contributions:

1) Intent estimation. We present a particle filter-based
approach to predict human motion and provide future
trajectories as well as estimate their likelihoods over
multiple goals for each agent.

2) Safety monitoring. We develop a predictive reachability
analysis technique. This near-realtime, forward reach-
ability analysis allows the autonomous system to make
risk-aware decisions, and can help designers assess
safety of the overall system.

3) System integration. We demonstrate the feasibility of
our efforts on a complete autonomous system which
includes pedestrian tracking and intent prediction, lo-
calization, waypoint tracking control, and an online
reachability analysis module.

The paper is organized as follows. In Section II, we present
a literature review of works related to modeling pedestrian
intent and online monitoring, as applied to autonomous
systems. Then, we present an overview of our experimental
platform, in-house autonomous stack, and methodology for
pedestrian intent estimation in Section III. In Section IV, we
discuss our approach for online monitoring via reachability.
We conclude with an analysis of our integrated system and
discuss findings and future directions in Sections V and VI.

II. BACKGROUND

We present a brief literature review of techniques for
modeling pedestrian interactions for use in decision-making
and control frameworks as well as verification methods to
provide guarantees for autonomous systems.

A. Pedestrian Modeling

There are three main techniques used to predict pedestrian
trajectories: data-driven approaches like neural networks,



decision-making approaches like Markov models, and filter-
ing approaches like Kalman filters.

Neural networks, especially Long Short Term Memory
Networks (LSTM) [15]–[17], have been successfully im-
plemented to model social interactions between humans in
crowded scenarios by integrating neighbor information into
pedestrian trajectory prediction. Yi et al. encoded pedestrian
behavior into sparse displacement volumes, which are used
as input and output of the Behavior-CNN they proposed [18].
These methods are built on the assumption that the observa-
tion data provides perfect pedestrian positions, so they may
not guarantee robust performance under noisy measurements.

There has also been plenty of research where pedestrian
behavior modeling is treated as a sequential decision mak-
ing problem [19]–[22]. Jump-Markov process is proposed
in [19] to model pedestrian behavior, which assumes that
the goal is slowly time-varying and that the pedestrians
are rational. Partially Observable Markov Decision Process
(POMDP) [20] and Mixed Observability Markov Decision
Process (MOMDP) [21] are used to incorporate intents as
hidden variables. In different problem settings, intents may
be defined as goals [21], sub-goals [20], [23] or a policy
in a Markov Decision Process [19]. In our study, the intent
always refers to the desired goal of the pedestrian.

Filtering is one of the most common methods for state
estimation in real world applications. Filtering can be applied
to not only pedestrian tracking [24]–[26] but also pedestrian
movement prediction [27]–[30]. Moreover, particle filtering
integrated with intent hypotheses model pedestrian behavior
as a multi-hypotheses dynamical system, and thus capture the
switching feature of complicated pedestrian dynamics [29],
[30]. Thus, our work is built on [29] to provide effective
pedestrian intent estimation given noisy measurements.

B. Reachability Analysis and Safety Verification
The reachability problem asks, given a system model

A, an initial set of states Θ, and a particular target state
x∗, whether any behavior of A starting from Θ can reach
x∗? Reachability analysis has played a fundamental role in
both control theory and formal methods for cyber-physical
systems [31]–[34]. A key application of reachability analysis
that is relevant for this paper is in safety verification: If the
target x∗ is defined as an unsafe state, then answers to the
reachability question can determine whether the system A
can become unsafe starting from Θ.

It is well-known that the reachability problem is undecid-
able for general dynamical and hybrid system models [35].
Researchers have developed algorithms for relaxations of the
problem by considering (a) finite time horizon behaviors
of A, (b) allowing false-positives in the answers, and (c)
allowing answers with probabilistic guarantees. A series of
breakthroughs have led to the creation of software tools
and libraries that can perform effective reachability analysis.
For example, SpaceEX can perform reachability analysis
of linear hybrid systems with dozens of continuous dimen-
sions [36]; HyLAA has successfully verified sparse linear
models with thousands of dimensions [37], [38]. Nonlinear
models with hundreds of dimensions can now be verified
with tools like C2E2 [39], [40], Flow* [41], and CORA [42].
All of these approaches are geared towards off-line safety

verification and they have been applied to autonomous vehi-
cles [40], medical devices [43], and space operations [44].

Online reachability analysis can be used for predictive
safety monitoring and decision making for an autonomous
vehicle. In this setup, A is the model of the vehicle, and the
initial set Θ is instantiated to be the current state estimate
for this system (e.g., state of vehicle and pedestrians).
Then reachability analysis up to a look-ahead time horizon
TLook > 0 can predict whether the vehicle is going to be
unsafe within TLook time. For this analysis to be useful
the reachable set computation has to finish before the next
control decision, which is typically 10-100 milliseconds. We
will revisit these issues in Section IV.

The feasibility of online verification for automatic lane
change maneuvers on a Cadillac SRX was demonstrated
in [45], [46]. This analysis used linearized approximations of
the vehicle dynamics relative to the behaviors of all possible
surrounding cars. In contrast, our reachability analysis and
decision module uses pedestrian intents. Further, our data-
driven reachability analysis approach can directly handle
nonlinear vehicle models. In [47], a research platform that
is similar to ours was presented, where uncertainty of the
predicted behavior of the pedestrians is taken into account
but the vehicle dynamics is not used for reachability. In a
similar vein, [48] uses reachability analysis to check safety
of human-driven vehicles. This work also uses linearized
dynamics and does not implement the solution on a full
autonomous vehicle nor does it address pedestrian intent
detection. Several works use reachability for safe controller
synthesis, typically assuming perfect sensor information
within static environments [49], [50]. Finally, in [51], an
approach similar to ours is followed in the context of safety
relative to neighboring human driven vehicles.

III. AUTONOMY MODULES

We describe our autonomous testbed in terms of the
experimental hardware and the software components used
in our autonomous stack.

Waypoint 
Position & 

Heading Error

Pedestrian 
Detect. & 
Localization

GPS / 
Localization

Camera
Pedestrian 
Intent 

Estimation

Steering & 
Throttle 
Control

Vehicle 
Model

Steering, 
Speed, 

Odometry
Drive-by-wire

Decision 
Module

Reachability 
Analysis

Fig. 1: System architecture. The dark gray modules
constitute the key contributions of this work.

A. Vehicle Hardware and Experimental Setup

Our vehicle is a Polaris GEM electric car outfitted with
sensing and computing hardware by AutonomouStuff (Fig-
ure 2). The sensors include a Velodyne LIDAR, a Radar,
GPS & Inertial Measurement Units, and a single Mako G-
319C forward facing camera. Our experimental arena is a
3,000 sq. ft. indoor open research space.



Fig. 2: Polaris GEM E2 in our testing arena.

B. Localization and Pedestrian Detection

We implemented a localization protocol that gives 2D
global coordinates of the vehicle using Decawave ultra-
wideband beacons and time-of-flight calculations. To im-
prove the precision and reduce the errors caused by noise,
Kalman filtering is applied on the position measurements
received from Decawave. In our testing, the localization
protocol can provide a 2D localization accuracy within 20
cm and message drop rates less than one per minute with
position data update rates of 3Hz. Our indoor testing facility
was unobstructed by walls and allowed for a clear line of
sight among the Decawave chips.

Fig. 3: Detected pedestrian and position estimates.

For pedestrian detection, we use YOLOv3: a state-of-the-
art real-time object detection system. Once a pedestrian is
detected on an input image, YOLOv3 places a bounding
box around it. To estimate the longitudinal distance y of
the detected pedestrian with respect to the vehicle, we use
the size of bounding box, focal length of the camera, and
assumed width of the pedestrian (0.47 m). The same is
done to estimate the lateral deviation x. The estimated x
and y-coordinates are converted from vehicle coordinates
to global coordinates using position data from the vehicle’s
localization. Using this approach, we get an observed error
on the pedestrian’s location that does not exceed 0.5m.

C. Pedestrian Intent Estimation (PIE) Module

The pedestrian intent module takes a pedestrian position
measurement in the global coordinate frame and produces a
future trajectory that ends at a predefined goal state. The
predicted trajectory is then fed into the decision module
(DM) to assess the safety of the driving scenario and advise
the controller accordingly.

The estimation algorithm assumes that the map informa-
tion and all possible pedestrian intents are given as a set of
possible goal locations. For example, in a crosswalk scenario,
the pedestrian may have two possible intents. One is to cross
the road, which is represented by an intent on the other side
of the road. The other is to go alongside the road, for which

the intent can be set as a location on the same side of the road
as the pedestrian. Based on this assumption, the sequential
measurements of the pedestrian are used to predict its intent.

An accurate pedestrian model is necessary to predict the
intent. The Generalized Potential Field Approach (GPFA) is
used to model the pedestrian behavior [52]. A set of sources
are created to represent the obstacles in the map and to
generate the repulsive force on the pedestrian, while a sink
is set at goal locations to attract the pedestrian. The sum of
forces is the acceleration, which is the control input ut to
the state space model of the pedestrian, giving the following
dynamical model:

xt = Fxt−1 +Gut−1 + wt

yt = Hxt−1 + vt
(1)

where F is the state transition matrix, G is the control
matrix, xt is the state vector (position and velocity) of the
pedestrian at time t, H is the measurement matrix, and yt is
the measurement of the pedestrian’s location. It is assumed
that the process noise wt and the measurement noise vt are
Gaussian white noise.

As the transition model involves a highly nonlinear GPFA,
we employ a Multi-hypothesis Particle Filter to estimate the
likely intent [29]. Initially, each particle sampled will be
assigned a hypothesis on pedestrian intent Ii. The number of
intents N considered in this paper is three, corresponding to
either crossing the vehicle’s path or heading parallel along
the path in either direction. The probability of assigning
different intents to a particle is the same, as 1/NI for
each intent. In the prediction step, each particle predicts
the pedestrian position at the next time stamp based on
the hypothesis of the intent to which it is assigned. In the
update step, the weights of particles are updated based on the
deviation of the position prediction from the measurement.

In contrast to the method presented in [29], the weights
of particles with the same intent hypothesis are summed
to generate the probability distribution of different intents
at that timestamp. Sequential importance re-sampling is
implemented after the weights are updated. The intent with
the highest probability is chosen to create the trajectory of
the pedestrian in the future using GPFA based on the current
measured position. In [29], the re-sampling step was not
needed due to the robustness requirement for changes of the
true intent of the pedestrian. However, no re-sampling would
make the intent estimation vulnerable to sample degeneracy
(i.e., only few particles with significant weights are kept
throughout the intent estimation process), which leads to
the loss of population nature of the particle filter. In fact,
sequential importance re-sampling makes use of the quantity
of particles to inherit the probability distribution inferred
from the last round and causes no harm to the algorithm’s
robustness. Another difference is that though many of the
model parameters are the same as in [29], [52], no additional
noise is manually added due to the sensor noise inherent
in the measurement. For online performance, we initially
generate 200 particles for each intent (600 total).

Ultimately, this module produces the estimated pedes-
trian trajectory as a sequence of location-time pairs τ =
{〈p1, t1〉, . . . , 〈pk, tk〉}, where the final point is the estimated
goal location. The algorithm runs at 5 Hz, which is sufficient



Fig. 4: Pedestrian intent estimation for scenario with three
goals (red, yellow, green). Left: Predicted trajectory. Right:

Probability distribution of pedestrian intents.

for the online monitoring application. Figure 4 shows an
example of the algorithm output on a public dataset [53].
There are three possible intents in this case (shown in red,
yellow, and green). The pedestrian trajectory is in dark blue
and the predicted trajectory is in light blue. Our methodology
is well tuned and validated on this public dataset [53],
accurately predicting the intent and effectively producing the
future trajectory.

D. Velocity and Waypoint Following Control

We developed a control module to generate throttle and
steering commands to navigate the vehicle autonomously.
The control module is integrated into our ROS framework
to interface with the other modules of the GEM vehicle
platform as well as the PACMod drive-by-wire system (see
Figure 1). We use two standard PID controllers, one for
maintaining the vehicle at a desired speed vr (set by the
user), and a second one for steering the vehicle through a
sequence of predefined waypoints. Spline curve fitting is used
to get a planned path through the waypoints. The lateral
deviation of the vehicle from the path is obtained at each
timestep, and used to generate a steering velocity command
with the PID steering velocity controller.

The speed controller reads the current vehicle speed and
outputs acceleration commands to track the reference speed
vr. It takes an additional input from the reachability-based
decision module (DM), which chooses the mode of operation
between brake and trackspeed , based on the the safety of the
predicted behavior of the car. If the DM chose the trackspeed
mode, the PID speed controller sets the acceleration a of
the vehicle to track vr. If the DM chose the brake mode
instead, the speed controller releases the throttle and applies
the brakes to bring the vehicle to a stop. In both modes,
the steering velocity output u is taken from the PID steering
controller to track the planned path.

In summary, the inputs to the control module include
the state of the vehicle shown in Section IV, reference
constant speed vr, lateral deviation from the planned path,
as well as a chosen mode of operation from the reachability-
based decision module DM. The outputs include the throttle
(acceleration/braking) a and steering velocity control u.

IV. ONLINE PREDICTIVE REACHABILITY ANALYSIS
MODULE (OPRA)

In this section, we discuss how our predictive online
reachability analysis module works to inform the controller,
and helps avoid collisions with pedestrians.

A. Online Reachability
Recall from Section II, that for online safety verification

or monitoring, the estimated current states Θ of the vehicle
and the pedestrian(s) are propagated forward in time for a
look-ahead period TLook , according to the model A, to check
whether there can be a loss of safe separation within that
time. For this to be effective, the online reachability analysis
must be: (1) accurate—to reduce false positives, and (2)
quick—to allow for timely recovery and mitigating actions.
Specifically, for TLook = 3 to 5 seconds look-ahead, the
reachability analysis must finish within 10-100 milliseconds.
Current offline reachability algorithms for hybrid systems
need minutes of computation time for 6 to 12-dimensional
nonlinear models. Making the problem more challenging,
the uncertainties in the initial position, heading, and speed,
defining the set Θ may be considerable because of estimation
errors (see Sec. III-A). The larger these errors are, the larger
Θ needs to be to achieve the same level of confidence in that
it contains the actual initial state of the car, and consequently
achieve the same level of confidence that the corresponding
reach set contains the future state of the car. Further, there
may be multiple pedestrian and vehicle trajectories to prop-
agate forward and multiple modes to evaluate. In this paper,
we identify a restricted class of scenarios, and for those, we
show how this is achieved in our OPRA.

Given a dynamical system A over a state space X and
having an input space U , a mode space P , a dynamics
function f : X × U → X , a closed loop controller function
g : X × P → U , a set of possible initial states Θ ⊆ X ,
a mode p ∈ P , and a look-ahead time T > 0, a state
x ∈ X is reachable if there exists an execution of A
starting from Θ, having a fixed mode p, and of duration
at most T , that reaches x. The set of reachable states is
written as ReachA(Θ, p, T ) ⊆ X . Our design of OPRA
uses the data-driven reachability approach as implemented
in the DryVR [40] and C2E2 [39] tools. Roughly speaking,
simulation data generated from a model or an executable for
A, is used together with sensitivity analysis of A to compute
over-approximations of ReachA(Θ, p, T ). We are able to
achieve the online-level computation times (as shown in
Table I) by using a few tricks that may be broadly applicable:
(a) we fixed the function β quantifying sensitivity off-line,
(b) we capped the number of simulation traces used—this
sacrifices precision for lowering computation, (c) we use
low-dimensional dynamical vehicle models that are adequate
for simple safety requirements like separation. The loss of
accuracy from these approximations is partly mitigated by
computing multiple reach sets from different initial sets
corresponding to different levels of uncertainty or confidence
in state estimation.

In more detail, our reachability analysis procedure is
adopted from the algorithm developed in [14]. First, in an
off-line procedure, the sensitivity function β of the system
is learned from sampling system trajectories. This function



bounds the distance between trajectories (or solutions) of A
starting from different initial states. For this step, we use the
DryVR tool of [14].

For the online computation, consider an initial state esti-
mate Θ with radius r. This set is partitioned into m regions.
For each region i, a numerical simulation ξ(xi, t) of A
starting from a representative state xi is computed up to
the look-ahead time TLook. The over-approximation of the
reach set ReachA(Θ, p, TLook ) is computed by bloating each
simulation ξ(xi, t) with β, and then taking the union of all
these sets. It has been shown in earlier works that [39], [54],
provided the sensitivity function is accurate, the computed
reachable set can be made arbitrarily precise by increasing
m. The output ReachA(Θ, p, TLook ) is used to detect sepa-
ration with the pedestrian’s predicted paths by the decision
module. Different r can be chosen based on the desired level
of confidence. If we want a higher level of confidence, a
larger r will be preferable, which will increase the covered
region of the initial set and consequently, the reach set
ReachA(Θ, p, TLook ). Thus, the risk of actual trajectory of
the vehicle not being covered by the reach set will be
mitigated.

Vehicle model: We use the standard 5-dimensional
bicycle model for the vehicle, which has been shown to
accurately forecast an autonomous vehicle state [55], where
f is given by:

ẋ = v cos θ, ẏ = v sin θ, φ̇ = u, v̇ = a, θ̇ =
v

L
tan(φ)

where u is the input steering angular velocity and a is the
input acceleration that are determined by the velocity and
waypoint following controller g of Section III-D, (x, y) is
the position, v is the speed, θ is the steering angle, φ is
its heading angle and L is the length of the car. Hence,
the state space X = R5, the control space U = R2, and
the set of modes is {trackspeed , brake}. The mode affects
the dynamics indirectly by determining the control inputs
computed in Section III-D. In the brake mode, we set the
reference speed to zero and apply the resulting PID control,
as there is no brakes to apply in the bicycle model as opposed
to the real car.

State estimation uncertainties: There are several
sources of errors and uncertainties in measuring the initial
state of the above system. For example, the position of the
car and the pedestrian have uncertainties arising from the
localization system. We define a nested sequence of initial
sets Θ1 ⊂ Θ2 ⊂ . . .Θk—increasingly conservative and with
increasing levels of confidence. For each Θi we compute
corresponding over-approximations of ReachA(Θi, p, T ) us-
ing the above procedure starting from Θi. From the mono-
tonicity of ReachA, it follows that ReachA(Θ1, p, T ) ⊆
ReachA(Θ2, p, T ) ⊆ . . .ReachA(Θk, p, T ), and therefore, if
ReachA(Θi, p, T ) is verified safe, then so are the smaller
sets. Thus, if ReachA(Θi, p, T ) is verified safe in the DM,
then computation stops.

B. Evaluation of online reachability

Implementing these strategies with a look-ahead time of
TLook = 3 seconds gave us a maximum reachability compu-
tation time of only 0.1 seconds on the vehicle’s computers as

TABLE I: Reach Set Computation Time

TLook (s) 3.0 3.5 4.0 4.5 5.0

Compute Time (s) 0.096 0.103 0.129 0.136 0.163

TABLE II: Reach Set Accuracy

TLook (s) 3.0 3.5 4.0 4.5 5.0

High Conf. (%) 98.905 98.338 98.617 97.825 96.851

Med Conf. (%) 98.161 96.629 97.138 95.917 94.874

Low Conf. (%) 95.825 94.078 94.672 93.416 92.078

shown in Table I. We can see as well, from the same table,
that the computation time of reach sets increases linearly
with the look-ahead time. This shows the promise of our
approach particularly because our current implementation of
OPRA does not yet exploit parallelism of the simulation step
of the algorithm.

The results in Table II show that the bicycle vehicle
dynamics and the reach set obtained accurately predict the
behavior of the real car. Even with the lowest confidence
reach sets obtained from the smallest initial sets considered
and longest look-ahead time, we acheived 92% accuracy,
while the maximum is about 99%. To calculate the accuracy
of the reach sets generated by the OPRA, we replay several
simulations offline and check at each timestep t of the
simulation whether the reach set contains the real trajectory
of the vehicle. We consider the computed reach set to be
“accurate” for a given timestep t if this is true.

C. Decision Module

For any initial set of states Θ, mode p, and look-ahead time
TLook > 0, if the intersection R∩U of an over-approximation
R ⊇ ReachA(Θ, p, TLook ) and an unsafe set U , is empty,
then we can safely decide that the system is safe up to time
TLook . On the other hand, if R∩U 6= ∅ then we cannot infer
that there necessarily exists an unsafe execution.

The decision module (DM) runs the reachability module
OPRA on the mode trackspeed and checks if the resulting
over-approximation of the reach set R is safe when the
unsafe set U is the union of the reach sets of all surrounding
pedestrians. Their reach sets are computed by bloating the
trajectories obtained from the PIE module using a constant
sensitivity function equal to r, where r is the radius of
the initial set representing the uncertain position of the
pedestrian. If R ∩ U 6= ∅, the decision module DM sets the
mode for the controller to brake to avoid possible collision.
Otherwise, it sets it to trackspeed .

The decision module DM can run the reachability module
OPRA on mode brake as well, to check if there is a
possibility of unavoidable collision, and alert the pedestrian.
It can also compute the reach sets using initial sets with
different radii to get different levels of confidence in safety.

Lastly, the results from Tables I and II show that DM
can operate accurately in real time to ensure safety while
preserving a smooth ride with little unnecessary braking.



Desired Lane

Predicted pedestrian trajectory

High confidence car reachtube
Medium confidence car reachtube
Low confidence car reachtube

Predicted car trajectory

𝑥(𝑚)

Safe 
Scenario

Real Vehicle

𝑥(𝑚)

y(
𝑚
)

y(
𝑚
)

𝑥(𝑚)

y(
𝑚
)

𝑥(𝑚)

y(
𝑚
)Unsafe 

Scenario

Simulation

Fig. 5: Experimental results showing predicted pedestrian trajectories and vehicle reachtubes. Left two graphs show
experiments done in simulation. Right two graphs show experiments performed on real vehicle.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our monitoring
system, both in simulation and on our test vehicle.

A. Simulation

We created a simulation environment in Gazebo (shown in
Fig. 6) to test our vehicle controllers and online reachability
analysis module before deployment on a physical system.1
The scenario used consists of a vehicle following a curved
path with a pedestrian walking in close proximity.

Fig. 6: Gazebo simulation environment

Fig. 5 shows the results of the reachability analysis com-
puted by the OPRA. It generates three sets of reach sets
corresponding to high, medium, and low confidence levels.
The different levels of confidence can be used to encode the
uncertainty associated with the vehicle’s starting state. The
graphs in the upper and lower left hand side of Fig. 5 show
simulation results. In the first case, the pedestrian moves
parallel to the vehicle’s path and the OPRA predicts that the
future trajectory of the vehicle will be safe and allows it
to continue. In the second case, the pedestrian crosses the
vehicles path and the OPRA sends a signal to the controller
telling the vehicle to brake.

B. Real-World Testing

To demonstrate our complete pipeline (with off the shelf
components and in-house autonomous modules), we run our
autonomous system in two test cases. Fig. 5 shows two
examples of the our integrated system on a real vehicle. In
both cases, as the vehicle comes around the curved lane in
the test arena, a pedestrian is detected and tracked.

1Gazebo vehicle model adapted from [56].

The PIE module estimates the goal location and passes the
predicted trajectory to the OPRA. In the lower right portion
of Fig. 5, the predicted trajectory shows the pedestrian walk-
ing near the lane without intersecting the vehicle’s path. As a
result, the vehicle proceeds to safely move past the pedestrian
without braking at any point during the experiment. In the
upper right portion of Fig. 5, the predicted trajectory suggests
that the pedestrian will cross the lane. The OPRA decides
this situation is unsafe as a collision is likely and signals the
controller to brake.

The OPRA gets estimates of the pedestrian’s intent and
vehicle state and performs reachability analysis to infer
whether the system is safe up to a look-ahead time TLook .
As discussed earlier, the state estimates can have large and
fluctuating errors and thus we use nested uncertainty bounds
with different levels of confidence. These confidence levels
are illustrated in the high, medium, and low confidence reach
sets in Figure 5. Depending on the level of risk one can
tolerate, the decision to brake can be made using a higher
or lower confidence reach set.

Similar to what we observed in simulation, our experi-
ments on a real vehicle, for a look-ahead time of TLook = 3
seconds, saw reachability computation times of less than 0.1
seconds on average. Increasing the number of reach sets by
using initial sets with different confidence levels or allowing
reach set refinements can give more precise monitoring at
the cost of increased computation.

VI. DISCUSSION

We present an integrated autonomous system that uses
a novel pedestrian intent estimator to safely maneuver
amongst humans. We added another layer of safety and
risk assessment by developing a reachability-based online
monitoring scheme that formally assesses the safety of these
interactions with nearly real-time performance (∼ 0.1s).
These techniques are tested in simulation and integrated on
a test vehicle with a complete in-house autonomous stack,
demonstrating effective and safe interaction in real-world
experiments.

In our current experiments, we make many assumptions
and control many aspects of the system to ensure the baseline
performance is functional. However, in reality, any of the
submodules may fail. For example, we only tested scenarios



where the PIE correctly predicted the pedestrian. Given
that no model can perfectly predict a human, we hope to
explore scenarios where the prediction is incorrect, making
the need for an online monitor more pressing. We note
that similar statements hold for the vision and localization
modules. We also found that timing and synchronization of
the components were difficult and had a noticeable impact on
the safety assessment. We hope to include such inaccuracies
and uncertainties in future iterations of our online monitor.

REFERENCES

[1] A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, J. F. Fisac, S. Deglurkar,
A. D. Dragan, and C. J. Tomlin, “A scalable framework for real-time
multi-robot, multi-human collision avoidance,” in IEEE International
Conference on Robotics and Automation (ICRA), 2019.

[2] J. F. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J.
Tomlin, and A. D. Dragan, “Probabilistically safe robot planning with
confidence-based human predictions,” in Robotics Science and Systems
(RSS), 2018.

[3] S. M. Thornton, F. E. Lewis, V. Zhang, M. J. Kochenderfer, and
J. C. Gerdes, “Value sensitive design for autonomous vehicle motion
planning,” in IEEE Intelligent Vehicles Symposium (IV), 2018.

[4] B. Chen, D. Zhao, and H. Peng, “Evaluation of automated vehicles en-
countering pedestrians at unsignalized crossings,” in IEEE Intelligent
Vehicles Symposium (IV), 2017.

[5] K. Driggs-Campbell, V. Govindarajan, and R. Bajcsy, “Integrating
intuitive driver models in autonomous planning for interactive ma-
neuvers,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 12, pp. 3461–3472, 2017.

[6] K. Driggs-Campbell, R. Dong, and R. Bajcsy, “Robust, informative
human-in-the-loop predictions via empirical reachable sets,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 300–309, 2018.

[7] V. Govindarajan, K. Driggs-Campbell, and R. Bajcsy, “Data-driven
reachability analysis for human-in-the-loop systems,” in IEEE Con-
ference on Decision and Control (CDC), 2017.

[8] P. Rodrı́guez, “Safety of pedestrians and cyclists when interacting with
automated vehicles—a case study of the wepods,” Ph.D. dissertation,
Master thesis, TU Eindhoven, 2017.

[9] J. W. Van der Wiel, “Automated shuttles on public roads: Lessons
learned,” in ITS European Congress, 2017.

[10] G. Eden, B. Nanchen, R. Ramseyer, and F. Evéquoz, “On the road
with an autonomous passenger shuttle: Integration in public spaces,”
in CHI Extended Abstracts on Human Factors in Computing Systems,
2017.

[11] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard,
“Autonomous robot navigation in highly populated pedestrian zones,”
Journal of Field Robotics, vol. 32, no. 4, pp. 565–589, 2015.

[12] S. Nordhoff, J. de Winter, R. Madigan, N. Merat, B. van Arem,
and R. Happee, “User acceptance of automated shuttles in Berlin-
Schöneberg: A questionnaire study,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 58, pp. 843–854, 2018.

[13] E. Trulls, A. Corominas Murtra, J. Pérez-Ibarz, G. Ferrer, D. Vasquez,
J. M. Mirats-Tur, and A. Sanfeliu, “Autonomous navigation for mobile
service robots in urban pedestrian environments,” Journal of Field
Robotics, vol. 28, no. 3, pp. 329–354, 2011.

[14] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “Dryvr:data-driven
verification and compositional reasoning for automotive systems,” in
Computer Aided Verification, 2017.

[15] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016.

[16] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “So-
cial gan: Socially acceptable trajectories with generative adversarial
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[17] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, “Sr-lstm: State
refinement for lstm towards pedestrian trajectory prediction,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2019.

[18] S. Yi, H. Li, and X. Wang, “Pedestrian behavior understanding and
prediction with deep neural networks,” in European Conference on
Computer Vision, 2016.

[19] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-aware
long-term prediction of pedestrian motion,” in IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[20] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware
online pomdp planning for autonomous driving in a crowd,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[21] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu, W. S. Lee, and
D. Rus, “Intention-aware motion planning,” in Algorithmic foundations
of robotics X. Springer, 2013, pp. 475–491.

[22] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activ-
ity forecasting,” in Computer Vision – ECCV 2012, A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 201–214.

[23] T. Ikeda, Y. Chigodo, D. Rea, F. Zanlungo, M. Shiomi, and T. Kanda,
“Modeling and prediction of pedestrian behavior based on the sub-goal
concept,” Robotics, vol. 10, 2013.

[24] H. Wang, H. Lenz, A. Szabo, J. Bamberger, and U. D. Hanebeck,
“Wlan-based pedestrian tracking using particle filters and low-cost
mems sensors,” in IEEE 4th workshop on positioning, navigation and
communication, 2007.

[25] M. Meuter, U. Iurgel, S.-B. Park, and A. Kummert, “The unscented
kalman filter for pedestrian tracking from a moving host,” in IEEE
Intelligent Vehicles Symposium (IV), 2008.

[26] X. Wang and Z. Tang, “Modified particle filter-based infrared pedes-
trian tracking,” Infrared Physics & Technology, vol. 53, no. 4, pp.
280–287, 2010.

[27] N. Schneider and D. M. Gavrila, “Pedestrian path prediction with re-
cursive bayesian filters: A comparative study,” in German Conference
on Pattern Recognition. Springer, 2013, pp. 174–183.

[28] E. Rehder and H. Kloeden, “Goal-directed pedestrian prediction,”
in IEEE International Conference on Computer Vision Workshop
(ICCVW), 2015.

[29] F. Particke, M. Hiller, C. Feist, and J. Thielecke, “Improvements in
pedestrian movement prediction by considering multiple intentions
in a multi-hypotheses filter,” in IEEE/ION Position, Location and
Navigation Symposium (PLANS), 2018.

[30] F. Particke, C. Hofmann, M. Hiller, H. Bey, C. Feist, and J. Thielecke,
“Entropy-based intention change detection with a multi-hypotheses
filter,” in IEEE International Conference on Information Fusion (FU-
SION), 2018, pp. 610–616.

[31] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[32] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach, 1st ed. Springer, 2009.

[33] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. S. Sastry,
“Dynamical properties of hybrid automata,” IEEE Transactions on
Automatic Control, vol. 48, no. 1, pp. 2–17, 2003.

[34] A. M. Bayen, E. Cruck, and C. Tomlin, “Guaranteed overapproxima-
tions of unsafe sets for continuous and hybrid systems: solving the
hamilton-jacobi equation using viability techniques,” in HSCC, ser.
LNCS, C. Tomlin and M. R. Greenstreet, Eds., vol. 2289. Springer,
2002, pp. 90–104.

[35] T. A. Henzinger and P. -H. Ho, “Algorithmic analysis of nonlinear
hybrid systems,” in Proceedings of the 7th International Conference
On Computer Aided Verification, 1995, pp. 225–238.

[36] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, G. Gopalakrishnan and S. Qadeer,
Eds., vol. 6806. Springer, 2011, pp. 379–395.

[37] S. Bak and P. S. Duggirala, “Hylaa: A tool for computing simulation-
equivalent reachability for linear systems,” in Proceedings of the
20th International Conference on Hybrid Systems: Computation and
Control. ACM, 2017, pp. 173–178.

[38] S. Bak, H. Tran, and T. T. Johnson, “Numerical verification of affine
systems with up to a billion dimensions,” in ACM International
Conference on Hybrid Systems: Computation and Control, HSCC,
2019.

[39] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of
annotated models from executions,” in EMSOFT, 2013.

[40] C. Fan, B. Qi, and S. Mitra, “Data-driven formal reasoning and their
applications in safety analysis of vehicle autonomy features,” IEEE
Design & Test, vol. 35, no. 3, pp. 31–38, 2018.

[41] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, N. Sharygina and H. Veith, Eds.
Springer Berlin Heidelberg, 2013, vol. 8044, pp. 258–263.

[42] M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic
in CORA 2016,” in Proc. of the 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems, 2016, pp. 91–105.



[43] X. Chen, S. Dutta, and S. Sankaranarayanan, “Formal verification
of a multi-basal insulin infusion control model,” in ARCH17. 4th
International Workshop on Applied Verification of Continuous and
Hybrid Systems, 2017, pp. 75–91.

[44] N. Chan and S. Mitra, “Verified hybrid LQ control for autonomous
spacecraft rendezvous,” in IEEE Conference on Decision and Control,
CDC, 2017.

[45] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Trans. Robotics, vol. 30,
no. 4, pp. 903–918, 2014.

[46] M. Althoff and J. M. Dolan, “Set-based computation of vehicle
behaviors for the online verification of autonomous vehicles,” in IEEE
Conference on Intelligent Transportation Systems (ITSC), 2011.

[47] L. Ferranti, B. Brito, E. Pool, Y. Zheng, R. M. Ensing, R. Happee,
B. Shyrokau, J. F. P. Kooij, J. Alonso-Mora, and D. M. Gavrila,
“Safevru: A research platform for the interaction of self-driving
vehicles with vulnerable road users,” in IEEE Intelligent Vehicles
Symposium (IV), 2019.

[48] P. Falcone, M. Ali, and J. Sjoberg, “Predictive threat assessment via
reachability analysis and set invariance theory,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 4, pp. 1352–1361, Dec
2011.

[49] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An
efficient reachability-based framework for provably safe autonomous
navigation in unknown environments,” CoRR, vol. abs/1905.00532,
2019.

[50] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, July 2019.

[51] K. Leung, E. Schmerling, M. Chen, J. Talbot, J. C. Gerdes, and
M. Pavone, “On infusing reachability-based safety assurance within
probabilistic planning frameworks for human-robot vehicle interac-
tions,” in International Symposium on Experimental Robotics, 2018.

[52] F. Particke, L. Patino-Studencki, J. Thielecke, and C. Feist, “Pedestrian
tracking using a generalized potential field approach.” in VISIGRAPP
(6: VISAPP), 2017, pp. 509–514.

[53] B. Majecka, “Edinburgh informatics forum pedestrian database,” URl:
http://homepages. inf. ed. ac. uk/rbf/FORUMTRACKING, 2010.

[54] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification (CAV 2010), ser.
Lecture Notes in Computer Science. Springer, 2010, vol. 6174, pp.
167–170.

[55] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
IEEE Intelligent Vehicles Symposium (IV), 2015.

[56] “Polaris urdf,” https://wiki.aalto.fi/download/attachments/151495770/
Final report project 12.pdf?api=v2, accessed: 2020-02-28.

https://wiki.aalto.fi/download/attachments/151495770/Final_report_project_12.pdf?api=v2
https://wiki.aalto.fi/download/attachments/151495770/Final_report_project_12.pdf?api=v2

	Introduction
	Background
	Pedestrian Modeling
	Reachability Analysis and Safety Verification

	Autonomy Modules
	Vehicle Hardware and Experimental Setup
	Localization and Pedestrian Detection
	Pedestrian Intent Estimation (PIE) Module
	Velocity and Waypoint Following Control

	Online Predictive Reachability Analysis Module (OPRA)
	Online Reachability
	Evaluation of online reachability
	Decision Module

	Experimental Results
	Simulation
	Real-World Testing

	Discussion
	References

