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Abstract—Equivalence checking is one of the most scalable and
useful verification techniques in industry. NULL Convention
Logic (NCL) circuits utilize dual-rail signals (i.e., two wires to
represent one bit of DATA), where the wires are inverses of each
other during a DATA wavefront. In this paper, a technique that
exploits this invariant at NCL register boundaries is proposed to
improve the efficiency of equivalence verification of NCL circuits.
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I. INTRODUCTION

NULL Convention Logic (NCL) [1] is one type of Quasi-
Delay Insensitive (QDI) asynchronous circuit design paradigm,
which has benefits over its synchronous counterpart by being
more robust to process, voltage, and temperature (PVT)
variations, allowing NCL circuits to operate in environments
with extreme high or low temperatures, or with large
temperature fluctuations, and with an ultra-low supply voltage
[2]. Hence, NCL circuits are ideal candidates for applications in
space exploration, the power industry, the automotive industry,
oil/gas exploration, medical imaging instrumentation, the laser
industry, superconducting computing and energy storage
systems, and wireless sensor nodes or other low voltage or low
power applications.

NCL circuits do not utilize a clock signal for
synchronization, instead NCL utilizes multi-rail logic, such as
dual-rail, along with a 4-phase handshaking protocol to achieve
delay-insensitivity. A dual-rail signal, D, consists of two wires,
D’ and D!, which may assume any value from the set {DATAO,
DATAIL, NULL}. The DATAO state (D’ = 1 and D' =0)
corresponds to a Boolean logic 0, the DATALI state (D’ = 0 and
D' =1) corresponds to a Boolean logic 1, and the NULL state
(D" = 0 and D’ =0) corresponds to the empty set meaning that
the value of D is not yet available. The two rails are mutually
exclusive, such that both rails can never be asserted
simultaneously; this state is defined as an ILLEGAL state.
Hence, when an NCL register is DATA, its rail' and rail® outputs
are inverses of each other, referred to herein as the Dual-Rail
Register Invariant.

One of the very effective formal verification techniques for
digital system design is equivalence checking. In commercial
design cycles, the design is continuously optimized for
performance, power, and area. Significant time and effort are
invested in design testing. If the design is further optimized, it is
not feasible to exhaustively test the design again. Equivalence
checking has been found to be very effective to address this
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problem as the verified design can be checked against the more
optimized design directly. Equivalence checking has been
previously extended to NCL circuits [3], where the NCL circuits
are checked for equivalence against their synchronous
counterparts. In this paper, the Dual-Rail Register Invariant is
exploited to speed up the previous equivalence checking method
for NCL circuits, which is demonstrated by using identical
benchmarks to show the improvement in verification times.

II. RELATED WORK

In the NCL equivalence checking method presented in [3],
the NCL netlist is first converted to a synchronous netlist. This
conversion has three steps. First, the NCL threshold gates are
replaced with their Boolean set function; and gate hysteresis is
ignored. Second, rail' of each dual-rail input is replaced with a
Boolean input; and each rail® input is generated by negating its
corresponding Boolean input. Third, the reset-to-NULL
registers (henceforth termed as Reg NULL) are removed, and
their inputs connected directly to their outputs. Each dual-rail
Reset-to-DATA register is replaced by a 2-bit synchronous
register. Well Founded Equivalence Bisimulation (WEB)
refinement [4] is used as the notion of equivalence to compare
the synchronous version of the NCL circuit and the synchronous
specification circuit. The WEB refinement property is checked
using an SMT solver. This approach was found to be very
scalable because the equivalence verification is performed at the
synchronous-level instead of directly verifying the NCL circuit,
which is difficult due to nondeterministic signal transitions in
NCL circuits. Section III presents the proposed Dual-Rail
Register Invariant technique that modifies the conversion
technique described above for the register components to
improve efficiency.

III. EQUIVALENCE VERIFICATION

The 3x3 unsigned NCL multiplier that implements the function
p(5:0) = xi(2:0) x yi(2:0), as shown in Fig. 1 without its
completion logic, will be used as the example circuit to show the
circuit transformation done in the previous work and contrast
that to the proposed Dual-Rail Register Invariant. It is comprised
of several components including dual-rail inputs and outputs,
input-complete NCL AND functions (represented with a C
inside the AND symbol), input-incomplete NCL AND functions
(represented with an I inside the AND symbol), NCL Half-
Adders (HA) and Full-Adders (FA), and dual-rail Reset-to-
NULL registers (REG_NULL).
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Fig. 1. 3x3 NCL multiplier circuit [3]

To accompany the circuit in Fig. 1, its netlist, and the netlist
of the previous work’s circuit transformation, are shown in
Fig. 2(a) and 2(b), respectively. In Fig. 2(a), the first two lines
indicate all primary inputs and primary outputs, respectively.
Lines 3-44 correspond to the NCL C/L threshold gates, where
the first column is the type of gate, the second column lists the
gate’s inputs, in comma separated format starting with input A4,
and the last column is the gate’s output. Lines 45-64 correspond
to 1-bit NCL registers, where the first column is the reset type
of the register, the second column denotes the register’s level
(i.e., the depth of the path through registers without considering
the C/L in-between; for the 3x3 multiplier example, there are
3 stages of registers, with levels 1, 2, and 3, starting from the
input registers), the third and fourth columns are the register’s
rail’ and rail' data inputs, respectively, the fifth and sixth
columns are the register’s Ki input and Ko output, respectively,
and the seventh and eighth columns are the register’s rail® and
rail' data outputs, respectively. Lines 65-72 correspond to the
C-elements (i.e., THnn gates) used in the handshaking control
circuitry, where the first column is Cn, with # indicating the
number of inputs to the C-element, the second column lists the
inputs in comma separated format, and the last column is the
C-element’s output.

A. Previous Circuit Transformation

For Fig. 2(b), each NCL gate from Fig. 2(a) is replaced with
its corresponding Boolean gate without hysteresis, and the dual-
rail primary inputs are replaced by their respective rail' input,
which are then complemented by inserting invertors (lines 3-8)
to generate their corresponding rail’ signals. The Reg NULL

components are removed by connecting their inputs to their
outputs; and the handshaking C-elements are also removed.

B. Proposed Dual-Rail Register Invariant

Instead of removing the Reg NULL components by
connecting their inputs to their outputs, the proposed Dual-Rail
Register Invariant removes the Reg NULL components by
connecting their rail' inputs to their corresponding rail' outputs,
and then generates each rail’ output by inverting its
corresponding rail! input. This transformation is possible due to
the inherent NCL property where the rail' and rail® values are
inverses of each other in the DATA phase. Note that both this
inverse signal property and correctness of the NULL phase are
checked as part of the NCL formal verification method
presented in [3]. The proposed Dual-Rail Register Invariant
allows the SMT solver to trim the circuit by removing all logic
solely used to generate the Reg NULL rail® inputs, replacing
this instead with a single inverter, as shown in Fig. 2(c).

C. Proof Obligation

The proof obligation for equivalence verification is the same
for the original approach and the proposed approach that
exploits the Dual-Rail Register Invariant. We now describe the
proof obligation. Consider an NCL circuit with p inputs and ¢
outputs. Note that NCL inputs and outputs are dual-rail. The
corresponding synchronous circuit will have p Boolean inputs
and g Boolean outputs. We step both the specification
synchronous circuit and the NCL-reduced synchronous circuit,
with the same symbolic inputs i/, ..., ¥, to generate outputs
Ogync', ..., Ogu, and Onct!, ..., Onci?, respectively. The proof
obligation itself is constructed using the predicates from
Table 1: {py A p1 } = 5. Dy corresponds to the symbolic step of
the NCL reduced synchronous circuit, and p; corresponds to the
symbolic step of the synchronous specification circuit. p, is the
equivalence predicate, which states that the rail"’s of the NCL
reduced synchronous outputs should be equal to the
synchronous specification circuit outputs.

IV. RESULTS

For comparison, the same unsigned NCL Multiply and
Accumulate (MAC) circuits as in [3], with increasing operand
sizes to show scalability, were used. These implement the
function acci = acci + xi x yi, as shown in Fig. 3 for a 4+2x2
NCL MAC, without its completion logic. As shown in the
Fig. 3 example, each MAC’s C/L is partitioned into 2 stages by
inserting a Reset-to-NULL register between the last carry-save
adder and the final ripple-carry adder; and the feedback loop

TABLE L EQUIVALENCE CHECKING PREDICATES
Pn Predicate
Po (Onct!, ..., Onci?) = NCLStep(i', ..., )
D1 (Ogncl, ..., Ognc?) = SyncStep(i’, ..., i)
b2 e
/\(Taill(ONCLn) = Osyncn)
n=1
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Fig. 2. (a) 3x3 NCL multiplier netlist (b) converted netlist using method in [3] (c) converted netlist using proposed Dual-Rail Register Invariant




TABLE I 'VERIFICATION RESULTS
Circuit Speedup
8+ 4 x4MAC 1.14
12+ 6 x 6 MAC 117
16 + 8 x 8 MAC 275
20+ 10 x 10 MAC 131
22+ 11 x 11 MAC 3.63
24 +12 x12 MAC TO/67,599 sec
16 + 8 X 8 MAC — 5 Reg 3.44
20 + 10 X 10 MAC — 5 Reg 146

contains 4 registers for increased performance. Note that the
proposed Dual-Rail Register Invariant can also be applied to
Reset-to-DATA registers, resulting in their replacement with a
single synchronous register, plus an inverter to generate the rail®
output, instead of the previous conversion technique that
required 2 synchronous registers, as described in Section II.

The Z3 SMT solver [5] was used to check for equivalence,
but any combinational equivalence checker could be used.
Table II lists the verification results, where the first column
indicates the MAC size, and the second column is speedup (i.e.,
equivalence verification time using the method described in [3]
divided by equivalence verification time using the proposed
Dual-Rail Register Invariant). Timeout (TO) denotes that the
verification time exceeded one day. The last 2 rows in Table II
are for MACs with an additional Reset-to-NULL register
inserted between the partial product generation circuitry (i.e.,
AND functions) and the first carry-save adder.

The results show speedups ranging from 14% - 263% for
the various 4-register MACS, and an additional speedup of 25%
and 11% when adding an extra 5™ register stage in the 16+8x8
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and 20+10x10 MACs, respectively. Note that the 24+12x12
MAC timed out using the previous approach in [3], but was
successfully verified in less than 1 day utilizing the proposed
Dual-Rail Register Invariant.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes the Dual-Rail Register Invariant
technique to speedup equivalence checking of NCL circuit
implementations with respect to their Boolean/synchronous
specifications. It has been shown to significantly reduce
equivalence checking times, and to further speedup equivalence
checking when additional pipeline stages are added to the NCL
circuit, as this allows for more usage of the technique.

The proposed Dual-Rail Register Invariant technique is
also applicable to speedup equivalence verification of Sleep
Convention Logic (SCL) circuits [6], as the circuit
transformation and safety verification are the same for SCL and
NCL, only liveness verification differs [7].

Future work includes investigating additional refinements
and invariants to potentially further reduce verification time,
such as applying the dual-rail invariant described herein, to
generate rail’ as the inverse of rail!, at the outputs of every NCL
C/L function (e.g., HA, FA, AND), instead of only at register
boundaries. This would require NCL C/L functions to be
reconstructed from a flattened NCL gate netlist, where the two
wires of a dual-rail signal are disassociated. Additionally, the
invariant check from [3], which ensures that the rail' and rail®
outputs of each NCL register are always inverses of each other
during the DATA phase, would also need to be checked at the
output of each NCL C/L function, instead of only at the register
boundaries.
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