
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Exploiting Dual-Rail Register Invariants for

Equivalence Verification of NCL Circuits

Son N. Le

Electrical and Computer Engineering

North Dakota State University

Fargo, USA

son.ngoc.le@ndsu.edu

Sudarshan K. Srinivasan

Electrical and Computer Engineering

North Dakota State University

Fargo, USA

sudarshan.srinivasan@ndsu.edu

Scott C. Smith

Electrical Engineering and Computer Science

Texas A&M University - Kingsville

Kingsville, USA

scott.smith@tamuk.edu

Abstract—Equivalence checking is one of the most scalable and

useful verification techniques in industry. NULL Convention

Logic (NCL) circuits utilize dual-rail signals (i.e., two wires to

represent one bit of DATA), where the wires are inverses of each

other during a DATA wavefront. In this paper, a technique that

exploits this invariant at NCL register boundaries is proposed to

improve the efficiency of equivalence verification of NCL circuits.

Keywords—asynchronous circuits, formal verification, formal

methods, equivalence checking, NULL Convention Logic

I. INTRODUCTION

NULL Convention Logic (NCL) [1] is one type of Quasi-
Delay Insensitive (QDI) asynchronous circuit design paradigm,
which has benefits over its synchronous counterpart by being
more robust to process, voltage, and temperature (PVT)
variations, allowing NCL circuits to operate in environments
with extreme high or low temperatures, or with large
temperature fluctuations, and with an ultra-low supply voltage
[2]. Hence, NCL circuits are ideal candidates for applications in
space exploration, the power industry, the automotive industry,
oil/gas exploration, medical imaging instrumentation, the laser
industry, superconducting computing and energy storage
systems, and wireless sensor nodes or other low voltage or low
power applications.

NCL circuits do not utilize a clock signal for
synchronization, instead NCL utilizes multi-rail logic, such as
dual-rail, along with a 4-phase handshaking protocol to achieve
delay-insensitivity. A dual-rail signal, D, consists of two wires,
D0 and D1, which may assume any value from the set {DATA0,
DATA1, NULL}. The DATA0 state (D0 = 1 and D1 =0)
corresponds to a Boolean logic 0, the DATA1 state (D0 = 0 and
D1 =1) corresponds to a Boolean logic 1, and the NULL state
(D0 = 0 and D1 =0) corresponds to the empty set meaning that
the value of D is not yet available. The two rails are mutually
exclusive, such that both rails can never be asserted
simultaneously; this state is defined as an ILLEGAL state.
Hence, when an NCL register is DATA, its rail1 and rail0 outputs
are inverses of each other, referred to herein as the Dual-Rail
Register Invariant.

One of the very effective formal verification techniques for
digital system design is equivalence checking. In commercial
design cycles, the design is continuously optimized for
performance, power, and area. Significant time and effort are
invested in design testing. If the design is further optimized, it is
not feasible to exhaustively test the design again. Equivalence
checking has been found to be very effective to address this

problem as the verified design can be checked against the more
optimized design directly. Equivalence checking has been
previously extended to NCL circuits [3], where the NCL circuits
are checked for equivalence against their synchronous
counterparts. In this paper, the Dual-Rail Register Invariant is
exploited to speed up the previous equivalence checking method
for NCL circuits, which is demonstrated by using identical
benchmarks to show the improvement in verification times.

II. RELATED WORK

In the NCL equivalence checking method presented in [3],
the NCL netlist is first converted to a synchronous netlist. This
conversion has three steps. First, the NCL threshold gates are
replaced with their Boolean set function; and gate hysteresis is
ignored. Second, rail1 of each dual-rail input is replaced with a
Boolean input; and each rail0 input is generated by negating its
corresponding Boolean input. Third, the reset-to-NULL
registers (henceforth termed as Reg_NULL) are removed, and
their inputs connected directly to their outputs. Each dual-rail
Reset-to-DATA register is replaced by a 2-bit synchronous
register. Well Founded Equivalence Bisimulation (WEB)
refinement [4] is used as the notion of equivalence to compare
the synchronous version of the NCL circuit and the synchronous
specification circuit. The WEB refinement property is checked
using an SMT solver. This approach was found to be very
scalable because the equivalence verification is performed at the
synchronous-level instead of directly verifying the NCL circuit,
which is difficult due to nondeterministic signal transitions in
NCL circuits. Section III presents the proposed Dual-Rail
Register Invariant technique that modifies the conversion
technique described above for the register components to
improve efficiency.

III. EQUIVALENCE VERIFICATION

The 3×3 unsigned NCL multiplier that implements the function
p(5:0) = xi(2:0) × yi(2:0), as shown in Fig. 1 without its
completion logic, will be used as the example circuit to show the
circuit transformation done in the previous work and contrast
that to the proposed Dual-Rail Register Invariant. It is comprised
of several components including dual-rail inputs and outputs,
input-complete NCL AND functions (represented with a C
inside the AND symbol), input-incomplete NCL AND functions
(represented with an I inside the AND symbol), NCL Half-
Adders (HA) and Full-Adders (FA), and dual-rail Reset-to-
NULL registers (REG_NULL).

Fig. 1. 3×3 NCL multiplier circuit [3]

To accompany the circuit in Fig. 1, its netlist, and the netlist
of the previous work’s circuit transformation, are shown in
Fig. 2(a) and 2(b), respectively. In Fig. 2(a), the first two lines
indicate all primary inputs and primary outputs, respectively.
Lines 3-44 correspond to the NCL C/L threshold gates, where
the first column is the type of gate, the second column lists the
gate’s inputs, in comma separated format starting with input A,
and the last column is the gate’s output. Lines 45-64 correspond
to 1-bit NCL registers, where the first column is the reset type
of the register, the second column denotes the register’s level
(i.e., the depth of the path through registers without considering
the C/L in-between; for the 3×3 multiplier example, there are
3 stages of registers, with levels 1, 2, and 3, starting from the
input registers), the third and fourth columns are the register’s
rail0 and rail1 data inputs, respectively, the fifth and sixth
columns are the register’s Ki input and Ko output, respectively,
and the seventh and eighth columns are the register’s rail0 and
rail1 data outputs, respectively. Lines 65-72 correspond to the
C-elements (i.e., THnn gates) used in the handshaking control
circuitry, where the first column is Cn, with n indicating the
number of inputs to the C-element, the second column lists the
inputs in comma separated format, and the last column is the
C-element’s output.

A. Previous Circuit Transformation

For Fig. 2(b), each NCL gate from Fig. 2(a) is replaced with
its corresponding Boolean gate without hysteresis, and the dual-
rail primary inputs are replaced by their respective rail1 input,
which are then complemented by inserting invertors (lines 3-8)
to generate their corresponding rail0 signals. The Reg_NULL

components are removed by connecting their inputs to their
outputs; and the handshaking C-elements are also removed.

B. Proposed Dual-Rail Register Invariant

Instead of removing the Reg_NULL components by
connecting their inputs to their outputs, the proposed Dual-Rail
Register Invariant removes the Reg_NULL components by
connecting their rail1 inputs to their corresponding rail1 outputs,
and then generates each rail0 output by inverting its
corresponding rail1 input. This transformation is possible due to
the inherent NCL property where the rail1 and rail0 values are
inverses of each other in the DATA phase. Note that both this
inverse signal property and correctness of the NULL phase are
checked as part of the NCL formal verification method
presented in [3]. The proposed Dual-Rail Register Invariant
allows the SMT solver to trim the circuit by removing all logic
solely used to generate the Reg_NULL rail0 inputs, replacing
this instead with a single inverter, as shown in Fig. 2(c).

C. Proof Obligation

 The proof obligation for equivalence verification is the same
for the original approach and the proposed approach that
exploits the Dual-Rail Register Invariant. We now describe the
proof obligation. Consider an NCL circuit with p inputs and q
outputs. Note that NCL inputs and outputs are dual-rail. The
corresponding synchronous circuit will have p Boolean inputs
and q Boolean outputs. We step both the specification
synchronous circuit and the NCL-reduced synchronous circuit,
with the same symbolic inputs i1, …, ip, to generate outputs
Osync

1, …, Osync
q, and ONCL

1, …, ONCL
q, respectively. The proof

obligation itself is constructed using the predicates from
Table 1: {𝑝0 ∧ 𝑝1 } → 𝑝2. 𝑝0 corresponds to the symbolic step of
the NCL reduced synchronous circuit, and 𝑝1 corresponds to the
symbolic step of the synchronous specification circuit. 𝑝2 is the
equivalence predicate, which states that the rail1’s of the NCL
reduced synchronous outputs should be equal to the
synchronous specification circuit outputs.

IV. RESULTS

For comparison, the same unsigned NCL Multiply and

Accumulate (MAC) circuits as in [3], with increasing operand

sizes to show scalability, were used. These implement the

function acci = acci + xi × yi, as shown in Fig. 3 for a 4+2×2

NCL MAC, without its completion logic. As shown in the

Fig. 3 example, each MAC’s C/L is partitioned into 2 stages by

inserting a Reset-to-NULL register between the last carry-save

adder and the final ripple-carry adder; and the feedback loop

TABLE I. EQUIVALENCE CHECKING PREDICATES

pn Predicate

𝑝0 (ONCL
1, …, ONCL

q) = NCLStep(i1, …, ip)

𝑝1 (Osync
1, …, Osync

q) = SyncStep(i1, …, ip)

𝑝2

⋀(𝑟𝑎𝑖𝑙1(𝑜𝑁𝐶𝐿
𝑛) = 𝑜𝑠𝑦𝑛𝑐

𝑛)

𝑛=𝑞

𝑛=1

x0x1x2y0

REG_NULL
(4)

REG_NULL
(3)

REG_NULL
(2)

REG_NULL
(1)

y1y2

REG_NULL
(6)

REG_NULL
(5)

yi1yi2 xi2yi0 xi0xi1

x1 y0y2 x0 y1x0 x0 y0x2 y0y2 x1 y1x1x2 y2 y1x2

HA

t0t1

FA

c1

t2t3

HA

s1

t0t1

t2t3

t4

t4

FA

t5 c2

HA

s2

FA

m7

t6t7

m6

c4

c5

p0p1p2p3

REG_NULL(18) REG_NULL (17) REG_NULL (16) REG_NULL (15)

p4p5

REG_NULL (20) REG_NULL (19)

z5 z4 z3

m2 m1 m0

REG_NULL
(10)

REG_NULL
(9)

REG_NULL
(8)

REG_NULL
(7)

REG_NULL
(12)

REG_NULL
(11)

REG_NULL
(13)

REG_NULL
(14)

z0

c3

m3m4
m5

z1z2

Input
Registers

Intermediate
Registers

Output
Registers

C/L Unit 1

C/L Unit 2

CIICIIIIC

1. xi0_0, xi0_1, xi1_0, xi1_1, , yi1_0, yi1_1,yi2_0, yi2_1
2. p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3. th22 x0_1,y0_1 m0_1
4. thand0 y0_0,x0_0,y0_1,x0_1 m0_0
5. th22 x0_1,y1_1 t0_1
6. th12 x0_0,y1_0 t0_0
7. th22 x0_1,y2_1 t4_1
8. th12 x0_0,y2_0 t4_0
9. th22 x1_1,y0_1 t1_1
10. th12 x1_0,y0_0 t1_0
11. th22 x1_1,y1_1 t2_1
12. thand0 y1_0,x1_0,y1_1,x1_1 t2_0
13. th22 x1_1,y2_1 t6_1
14. th12 x1_0,y2_0 t6_0
15. th22 x2_1,y0_1 t3_1
16. th12 x2_0,y0_0 t3_0
17. th22 x2_1,y1_1 t5_1
18. th12 x2_0,y1_0 t5_0
19. th22 x2_1,y2_1 t7_1
20. thand0 y2_0,x2_0,y2_1,x2_1 t7_0
21. th24comp t0_0,t1_0,t0_1,t1_1 m1_1
22. th24comp t0_0,t1_1,t1_0,t0_1 m1_0
23. th22 t0_1, t1_1 c1_1
24. th12 t0_0,t1_0 c1_0
25. th23 t3_0,t2_0,c1_0 c2_0
26. th23 t3_1,t2_1,c1_1 c2_1
27. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
28. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
29. th24comp s1_0,t4_0,s1_1,t4_1 m2_1
30. th24comp s1_0,t4_1,t4_0,s1_1 m2_0
31. th22 s1_1,t4_1 c3_1
32. th12 s1_0,t4_0 c3_0
33. th23 m5_0,m4_0,m3_0 c4_0
34. th23 m5_1,m4_1,m3_1 c4_1
35. th34w2 c4_0,m5_1,m4_1,m3_1 s2_1
36. th34w2 c4_1,m5_0,m4_0,m3_0 s2_0
37. th24comp s2_0,m6_0,s2_1,m6_1 z3_1
38. th24comp s2_0,m6_1,m6_0,s2_1 z3_0
39. th22 s2_1,m6_1 c5_1
40. th12 s2_0,m6_0 c5_0
41. th23 m7_0,c4_0,c5_0 z5_0
42. th23 m7_1,c4_1,c5_1 z5_1
43. th34w2 z5_0,m7_1,c4_1,c5_1 z4_1
44. th34w2 z5_1,m7_0,c4_0,c5_0 z4_0
45. Reg_NULL 1 xi0_0 xi0_1 KO3 ko1 x0_0 x0_1
46. Reg_NULL 1 xi1_0 xi1_1 KO3 ko2 x1_0 x1_1
47. Reg_NULL 1 xi2_0 xi2_1 KO3 ko3 x2_0 x2_1
48. Reg_NULL 1 yi0_0 yi0_1 KO3 ko4 y0_0 y0_1
49. Reg_NULL 1 yi1_0 yi1_1 KO3 ko5 y1_0 y1_1
50. Reg_NULL 1 yi2_0 yi2_1 KO3 ko6 y2_0 y2_1
51. Reg_NULL 2 m0_0 m0_1 ko15 ko7 z0_0 z0_1
52. Reg_NULL 2 m1_0 m1_1 ko16 ko8 z1_0 z1_1
53. Reg_NULL 2 m2_0 m2_1 ko17 ko9 z2_0 z2_1
54. Reg_NULL 2 c3_0 c3_1 KO4 ko10 m3_0 m3_1
55. Reg_NULL 2 c2_0 c2_1 KO4 ko11 m4_0 m4_1
56. Reg_NULL 2 t5_0 t5_1 KO4 ko12 m5_0 m5_1
57. Reg_NULL 2 t6_0 t6_1 KO4 ko13 m6_0 m6_1
58. Reg_NULL 2 t7_0 t7_1 KO5 ko14 m7_0 m7_1
59. Reg_NULL 3 z0_0 z0_1 Ki ko15 p0_0 p0_1
60. Reg_NULL 3 z1_0 z1_1 Ki ko16 p1_0 p1_1
61. Reg_NULL 3 z2_0 z2_1 Ki ko17 p2_0 p2_1
62. Reg_NULL 3 z3_0 z3_1 Ki ko18 p3_0 p3_1
63. Reg_NULL 3 z4_0 z4_1 Ki ko19 p4_0 p4_1
64. Reg_NULL 3 z5_0 z5_1 Ki ko20 p5_0 p5_1
65. C4 ko7,ko8,ko9,ko10 KO1
66. C4 ko11,ko12,ko13,ko14 KO2
67. C2 KO1,KO2 KO3
68. C3 ko18,ko19,ko20 KO4
69. C2 ko19,ko20 KO5
70. C3 ko4,ko5,ko6 KO6
71. C3 ko1,ko2,ko3 KO7
72. C2 KO7,KO6 KO

1. xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2. p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3. not xi0_1 xi0_0
4. not xi1_1 xi1_0
5. not xi2_1 xi2_0
6. not yi0_1 yi0_0
7. not yi1_1 yi1_0
8. not yi2_1 yi2_0
9. th22 xi0_1 ,yi0_1 p0_1
10. thand0 yi0_0,xi0_0,yi0_1,xi0_1 p0_0
11. th22 xi0_1,yi1_1 t0_1
12. th12 xi0_0,yi1_0 t0_0
13. th22 xi0_1,yi2_1 t4_1
14. th12 xi0_0,yi2_0 t4_0
15. th22 xi1_1,yi0_1 t1_1
16. th12 xi1_0,yi0_0 t1_0
17. th22 xi1_1,yi1_1 t2_1
18. thand0 yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19. th22 xi1_1,yi2_1 t6_1
20. th12 xi1_0,yi2_0 t6_0
21. th22 xi2_1,yi0_1 t3_1
22. th12 xi2_0,yi0_0 t3_0
23. th22 xi2_1,yi1_1 t5_1
24. th12 xi2_0,yi1_0 t5_0
25. th22 xi2_1,yi2_1 t7_1
26. thand0 yi2_0,xi2_0,yi2_1,xi2_1 t7_0
27. th24comp t0_0,t1_0,t0_1,t1_1 p1_1
28. th24comp t0_0,t1_1,t1_0,t0_1 p1_0
29. th22 t0_1, t1_1 c1_1
30. th12 t0_0,t1_0 c1_0
31. th23 t3_0,t2_0,c1_0 c2_0
32. th23 t3_1,t2_1,c1_1 c2_1
33. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
34. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
35. th24comp s1_0,t4_0,s1_1,t4_1 p2_1
36. th24comp s1_0,t4_1,t4_0,s1_1 p2_0
37. th22 s1_1,t4_1 c3_1
38. th12 s1_0,t4_0 c3_0
39. th23 t5_0,c2_0,c3_0 c4_0
40. th23 t5_1,c2_1,c3_1 c4_1
41. th34w2 c4_0,t5_1,c2_1,c3_1 s2_1
42. th34w2 c4_1,t5_0,c2_0,c3_0 s2_0
43. th24comp s2_0,t6_0,s2_1,t6_1 p3_1
44. th24comp s2_0,t6_1,t6_0,s2_1 p3_0
45. th22 s2_1,t6_1 c5_1
46. th12 s2_0,t6_0 c5_0
47. th23 t7_0,c4_0,c5_0 p5_0
48. th23 t7_1,c4_1,c5_1 p5_1
49. th34w2 p5_0,t7_1,c4_1,c5_1 p4_1
50. th34w2 p5_1,t7_0,c4_0,c5_0 p4_0

1. xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2. p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3. not xi0_1 xi0_0
4. not xi1_1 xi1_0
5. not xi2_1 xi2_0
6. not yi0_1 yi0_0
7. not yi1_1 yi1_0
8. not yi2_1 yi2_0
9. th22 xi0_1 ,yi0_1 p0_1
10. not p0_1 p0_0
11. th22 xi0_1,yi1_1 t0_1
12. th12 xi0_0,yi1_0 t0_0
13. th22 xi0_1,yi2_1 t4_1
14. th12 xi0_0,yi2_0 t4_0
15. th22 xi1_1,yi0_1 t1_1
16. th12 xi1_0,yi0_0 t1_0
17. th22 xi1_1,yi1_1 t2_1
18. thand0 yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19. th22 xi1_1,yi2_1 t6_1
20. not t6_1 t6_0
21. th22 xi2_1,yi0_1 t3_1
22. th12 xi2_0,yi0_0 t3_0
23. th22 xi2_1,yi1_1 t5_1
24. not t5_1 t5_0
25. th22 xi2_1,yi2_1 t7_1
26. not t7_1 t7_0
27. th24comp t0_0,t1_0,t0_1,t1_1 p1_1
28. not p1_1 p1_0
29. th22 t0_1, t1_1 c1_1
30. th12 t0_0,t1_0 c1_0
31. th23 t3_1,t2_1,c1_1 c2_1
32. not c2_1 c2_0
33. th34w2 c2_0,t3_1,t2_1,c1_1 s1_1
34. th34w2 c2_1,t3_0,t2_0,c1_0 s1_0
35. th24comp s1_0,t4_0,s1_1,t4_1 p2_1
36. not p2_1 p2_0
37. th22 s1_1,t4_1 c3_1
38. not c3_1 c3_0
38. th12 s1_0,t4_0 c3_0
39. th23 t5_0,c2_0,c3_0 c4_0
40. th23 t5_1,c2_1,c3_1 c4_1
41. th34w2 c4_0,t5_1,c2_1,c3_1 s2_1
42. th34w2 c4_1,t5_0,c2_0,c3_0 s2_0
43. th24comp s2_0,t6_0,s2_1,t6_1 p3_1
44. not p3_1 p3_0
45. th22 s2_1,t6_1 c5_1
46. th12 s2_0,t6_0 c5_0
47. th23 t7_1,c4_1,c5_1 p5_1
48. not p5_1 p5_0
49. th34w2 p5_0,t7_1,c4_1,c5_1 p4_1
50. not p4_1 p4_0

(a) (b) (c)

Fig. 2. (a) 3×3 NCL multiplier netlist (b) converted netlist using method in [3] (c) converted netlist using proposed Dual-Rail Register Invariant

TABLE II. VERIFICATION RESULTS

contains 4 registers for increased performance. Note that the

proposed Dual-Rail Register Invariant can also be applied to

Reset-to-DATA registers, resulting in their replacement with a

single synchronous register, plus an inverter to generate the rail0

output, instead of the previous conversion technique that

required 2 synchronous registers, as described in Section II.

The Z3 SMT solver [5] was used to check for equivalence,

but any combinational equivalence checker could be used.

Table II lists the verification results, where the first column

indicates the MAC size, and the second column is speedup (i.e.,

equivalence verification time using the method described in [3]

divided by equivalence verification time using the proposed

Dual-Rail Register Invariant). Timeout (TO) denotes that the

verification time exceeded one day. The last 2 rows in Table II

are for MACs with an additional Reset-to-NULL register

inserted between the partial product generation circuitry (i.e.,

AND functions) and the first carry-save adder.

The results show speedups ranging from 14% - 263% for

the various 4-register MACS, and an additional speedup of 25%

and 11% when adding an extra 5th register stage in the 16+8×8

Fig. 3. 4+2×2 NCL MAC [3]

and 20+10×10 MACs, respectively. Note that the 24+12×12

MAC timed out using the previous approach in [3], but was

successfully verified in less than 1 day utilizing the proposed

Dual-Rail Register Invariant.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes the Dual-Rail Register Invariant

technique to speedup equivalence checking of NCL circuit

implementations with respect to their Boolean/synchronous

specifications. It has been shown to significantly reduce

equivalence checking times, and to further speedup equivalence

checking when additional pipeline stages are added to the NCL

circuit, as this allows for more usage of the technique.

The proposed Dual-Rail Register Invariant technique is

also applicable to speedup equivalence verification of Sleep

Convention Logic (SCL) circuits [6], as the circuit

transformation and safety verification are the same for SCL and

NCL, only liveness verification differs [7].

Future work includes investigating additional refinements

and invariants to potentially further reduce verification time,

such as applying the dual-rail invariant described herein, to

generate rail0 as the inverse of rail1, at the outputs of every NCL

C/L function (e.g., HA, FA, AND), instead of only at register

boundaries. This would require NCL C/L functions to be

reconstructed from a flattened NCL gate netlist, where the two

wires of a dual-rail signal are disassociated. Additionally, the

invariant check from [3], which ensures that the rail1 and rail0

outputs of each NCL register are always inverses of each other

during the DATA phase, would also need to be checked at the

output of each NCL C/L function, instead of only at the register

boundaries.

Acknowledgement: This paper is based upon work supported by

the National Science Foundation under Grant No. CCF-

1717420.

 REFERENCES

[1] K. M. Fant and S. A. Brandt, “NULL Convention Logic: A Complete and
Consistent Logic for Asynchronous Digital Circuit Synthesis,”
International Conference on Application Specific Systems, Architectures,
and Processors, pp. 261-273, August 1996.

[2] J. Di and S. C. Smith, “Asynchronous Digital Circuits,” in Extreme
Environment Electronics, pp. 663 – 673, CRC Press, November 2012.

[3] A. A. Sakib, S. Le, S. C. Smith, and S. K. Srinivasan, “Formal
Verification of NCL Circuits,” in Asynchronous Circuit Applications,
pp. 309-338, IET, December 2019.

[4] P. Manolios, “Correctness of Pipelined Machines,” in FMCAD 2000, ser.
LNCS, W. A. Hunt, Jr. and S. D. Johnson, Eds., Vol. 1954. Springer-
Verlag, 2000, pp. 161–178.

[5] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science, C. R. Ramakrishnan and
J. Rehof, Eds., vol. 4963, Springer, 2008, pp. 337–340.

[6] L. Zhou, R. Parameswaran, F. Parsan, S. C. Smith, and J. Di, “Multi-
Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power
Asynchronous Circuit Design Methodology,” Journal of Low Power
Electronics and Applications, Vol. 5/2, pp. 81-100, May 2015.

[7] M. Hossain, A. A. Sakib, S. K. Srinivasan, and S. C. Smith, “An
Equivalence Verification Methodology for Asynchronous Sleep
Convention Logic Circuits,” IEEE International Symposium on Circuits
and Systems, pp. 1-5, May 2019.

Circuit Speedup

8 + 4 × 4 𝑀𝐴𝐶 1.14
12 + 6 × 6 𝑀𝐴𝐶 1.17
16 + 8 × 8 𝑀𝐴𝐶 2.75

20 + 10 × 10 𝑀𝐴𝐶 1.31
22 + 11 × 11 𝑀𝐴𝐶 3.63
24 + 12 × 12 𝑀𝐴𝐶 TO/67,599 sec

16 + 8 × 8 𝑀𝐴𝐶 − 5 𝑅𝑒𝑔 3.44
20 + 10 × 10 𝑀𝐴𝐶 − 5 𝑅𝑒𝑔 1.46

HA

HAFA HA

HA

FA
FAs

x1

acc0

t0

t2

t3

t5c1

t4
t6

c2

t7c3

t8

c5

t1

y1 x0y1 x1 y0 y0x0

acc1
acc2

t9t10

x0x1y0y1

REG_NULL
(4)

REG_NULL
(3)

REG_NULL
(2)

REG_NULL
(1)

acc0acc1acc2acc3

REG_NULL
(8)

REG_NULL
(7)

REG_NULL
(6)

REG_NULL
(5)

REG_NULL
(19)

REG_NULL
(18)

REG_NULL
(17)

REG_NULL
(16)

REG_DATA0
(23)

REG_DATA0
(22)

REG_DATA0
(21)

REG_DATA0
(20)

p
0p
1

p
2p
3

acci0acci1acci2acci3

acci0acci1acci2acci3 xi0xi1yi0yi1

REG_NULL
(12)

REG_NULL
(11)

REG_NULL
(10)

REG_NULL
(9)

REG_NULL
(13)

REG_NULL
(14)

r0r1r2r3r4r5

C
/L1

C
/L2

REG 2

REG 3

REG 4

CC I I

REG_NULL
(15)

r6

REG 1

