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Abstract—Equivalence checking is one of the most scalable and 

useful verification techniques in industry. NULL Convention 

Logic (NCL) circuits utilize dual-rail signals (i.e., two wires to 

represent one bit of DATA), where the wires are inverses of each 

other during a DATA wavefront. In this paper, a technique that 

exploits this invariant at NCL register boundaries is proposed to 

improve the efficiency of equivalence verification of NCL circuits.  
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I. INTRODUCTION  

NULL Convention Logic (NCL) [1] is one type of Quasi-
Delay Insensitive (QDI) asynchronous circuit design paradigm, 
which has benefits over its synchronous counterpart by being 
more robust to process, voltage, and temperature (PVT) 
variations, allowing NCL circuits to operate in environments 
with extreme high or low temperatures, or with large 
temperature fluctuations, and with an ultra-low supply voltage 
[2]. Hence, NCL circuits are ideal candidates for applications in 
space exploration, the power industry, the automotive industry, 
oil/gas exploration, medical imaging instrumentation, the laser 
industry, superconducting computing and energy storage 
systems, and wireless sensor nodes or other low voltage or low 
power applications.  

NCL circuits do not utilize a clock signal for 
synchronization, instead NCL utilizes multi-rail logic, such as 
dual-rail, along with a 4-phase handshaking protocol to achieve 
delay-insensitivity. A dual-rail signal, D, consists of two wires, 
D0 and D1, which may assume any value from the set {DATA0, 
DATA1, NULL}. The DATA0 state (D0 = 1 and D1 =0) 
corresponds to a Boolean logic 0, the DATA1 state (D0 = 0 and 
D1 =1) corresponds to a Boolean logic 1, and the NULL state 
(D0 = 0 and D1 =0) corresponds to the empty set meaning that 
the value of D is not yet available. The two rails are mutually 
exclusive, such that both rails can never be asserted 
simultaneously; this state is defined as an ILLEGAL state. 
Hence, when an NCL register is DATA, its rail1 and rail0 outputs 
are inverses of each other, referred to herein as the Dual-Rail 
Register Invariant. 

One of the very effective formal verification techniques for 
digital system design is equivalence checking. In commercial 
design cycles, the design is continuously optimized for 
performance, power, and area. Significant time and effort are 
invested in design testing. If the design is further optimized, it is 
not feasible to exhaustively test the design again. Equivalence 
checking has been found to be very effective to address this 

problem as the verified design can be checked against the more 
optimized design directly. Equivalence checking has been 
previously extended to NCL circuits [3], where the NCL circuits 
are checked for equivalence against their synchronous 
counterparts. In this paper, the Dual-Rail Register Invariant is 
exploited to speed up the previous equivalence checking method 
for NCL circuits, which is demonstrated by using identical 
benchmarks to show the improvement in verification times. 

II. RELATED WORK 

In the NCL equivalence checking method presented in [3], 
the NCL netlist is first converted to a synchronous netlist. This 
conversion has three steps. First, the NCL threshold gates are 
replaced with their Boolean set function; and gate hysteresis is 
ignored. Second, rail1 of each dual-rail input is replaced with a 
Boolean input; and each rail0 input is generated by negating its 
corresponding Boolean input. Third, the reset-to-NULL 
registers (henceforth termed as Reg_NULL) are removed, and 
their inputs connected directly to their outputs. Each dual-rail 
Reset-to-DATA register is replaced by a 2-bit synchronous 
register. Well Founded Equivalence Bisimulation (WEB) 
refinement [4] is used as the notion of equivalence to compare 
the synchronous version of the NCL circuit and the synchronous 
specification circuit. The WEB refinement property is checked 
using an SMT solver. This approach was found to be very 
scalable because the equivalence verification is performed at the 
synchronous-level instead of directly verifying the NCL circuit, 
which is difficult due to nondeterministic signal transitions in 
NCL circuits. Section III presents the proposed Dual-Rail 
Register Invariant technique that modifies the conversion 
technique described above for the register components to 
improve efficiency.  

III. EQUIVALENCE VERIFICATION 

The 3×3 unsigned NCL multiplier that implements the function 
p(5:0) = xi(2:0) × yi(2:0), as shown in Fig. 1 without its 
completion logic, will be used as the example circuit to show the 
circuit transformation done in the previous work and contrast 
that to the proposed Dual-Rail Register Invariant. It is comprised 
of several components including dual-rail inputs and outputs, 
input-complete NCL AND functions (represented with a C 
inside the AND symbol), input-incomplete NCL AND functions 
(represented with an I inside the AND symbol), NCL Half- 
Adders (HA) and Full-Adders (FA), and dual-rail Reset-to-
NULL registers (REG_NULL). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 3×3 NCL multiplier circuit [3] 

To accompany the circuit in Fig. 1, its netlist, and the netlist 
of the previous work’s circuit transformation, are shown in  
Fig. 2(a) and 2(b), respectively. In Fig. 2(a), the first two lines 
indicate all primary inputs and primary outputs, respectively. 
Lines 3-44 correspond to the NCL C/L threshold gates, where 
the first column is the type of gate, the second column lists the 
gate’s inputs, in comma separated format starting with input A, 
and the last column is the gate’s output. Lines 45-64 correspond 
to 1-bit NCL registers, where the first column is the reset type 
of the register, the second column denotes the register’s level 
(i.e., the depth of the path through registers without considering 
the C/L in-between; for the 3×3 multiplier example, there are  
3 stages of registers, with levels 1, 2, and 3, starting from the 
input registers), the third and fourth columns are the register’s 
rail0 and rail1 data inputs, respectively, the fifth and sixth 
columns are the register’s Ki input and Ko output, respectively, 
and the seventh and eighth columns are the register’s rail0 and 
rail1 data outputs, respectively. Lines 65-72 correspond to the  
C-elements (i.e., THnn gates) used in the handshaking control 
circuitry, where the first column is Cn, with n indicating the 
number of inputs to the C-element, the second column lists the 
inputs in comma separated format, and the last column is the  
C-element’s output. 

A. Previous Circuit Transformation 

For Fig. 2(b), each NCL gate from Fig. 2(a) is replaced with 
its corresponding Boolean gate without hysteresis, and the dual-
rail primary inputs are replaced by their respective rail1 input, 
which are then complemented by inserting invertors (lines 3-8) 
to generate their corresponding rail0 signals. The Reg_NULL 

components are removed by connecting their inputs to their 
outputs; and the handshaking C-elements are also removed.  

B. Proposed Dual-Rail Register Invariant 

Instead of removing the Reg_NULL components by 
connecting their inputs to their outputs, the proposed Dual-Rail 
Register Invariant removes the Reg_NULL components by 
connecting their rail1 inputs to their corresponding rail1 outputs, 
and then generates each rail0 output by inverting its 
corresponding rail1 input. This transformation is possible due to 
the inherent NCL property where the rail1 and rail0 values are 
inverses of each other in the DATA phase. Note that both this 
inverse signal property and correctness of the NULL phase are 
checked as part of the NCL formal verification method 
presented in [3]. The proposed Dual-Rail Register Invariant 
allows the SMT solver to trim the circuit by removing all logic 
solely used to generate the Reg_NULL rail0 inputs, replacing 
this instead with a single inverter, as shown in Fig. 2(c). 

C. Proof Obligation 

 The proof obligation for equivalence verification is the same 
for the original approach and the proposed approach that 
exploits the Dual-Rail Register Invariant. We now describe the 
proof obligation. Consider an NCL circuit with p inputs and q 
outputs. Note that NCL inputs and outputs are dual-rail. The 
corresponding synchronous circuit will have p Boolean inputs 
and q Boolean outputs. We step both the specification 
synchronous circuit and the NCL-reduced synchronous circuit, 
with the same symbolic inputs i1, …, ip, to generate outputs 
Osync

1, …, Osync
q, and ONCL

1, …, ONCL
q, respectively. The proof 

obligation itself is constructed using the predicates from  
Table 1: {𝑝0 ∧ 𝑝1 } → 𝑝2. 𝑝0 corresponds to the symbolic step of 
the NCL reduced synchronous circuit, and 𝑝1 corresponds to the 
symbolic step of the synchronous specification circuit. 𝑝2 is the 
equivalence predicate, which states that the rail1’s of the NCL 
reduced synchronous outputs should be equal to the 
synchronous specification circuit outputs.   

IV. RESULTS 

For comparison, the same unsigned NCL Multiply and 

Accumulate (MAC) circuits as in [3], with increasing operand 

sizes to show scalability, were used. These implement the 

function acci = acci + xi × yi, as shown in Fig. 3 for a 4+2×2 

NCL MAC, without its completion logic. As shown in the  

Fig. 3 example, each MAC’s C/L is partitioned into 2 stages by 

inserting a Reset-to-NULL register between the last carry-save 

adder and the final ripple-carry adder; and the feedback loop 

TABLE I.  EQUIVALENCE CHECKING PREDICATES 

pn Predicate 

𝑝0 (ONCL
1, …, ONCL

q) = NCLStep(i1, …, ip) 

𝑝1 (Osync
1, …, Osync

q) = SyncStep(i1, …, ip) 

𝑝2 

⋀(𝑟𝑎𝑖𝑙1(𝑜𝑁𝐶𝐿
𝑛) = 𝑜𝑠𝑦𝑛𝑐

𝑛)

𝑛=𝑞

𝑛=1
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1.   xi0_0, xi0_1, xi1_0, xi1_1,   , yi1_0, yi1_1,yi2_0, yi2_1
2.   p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3.    th22 x0_1,y0_1  m0_1
4.    thand0 y0_0,x0_0,y0_1,x0_1  m0_0
5.    th22   x0_1,y1_1  t0_1
6.    th12   x0_0,y1_0  t0_0
7.    th22   x0_1,y2_1  t4_1
8.    th12   x0_0,y2_0  t4_0
9.    th22   x1_1,y0_1  t1_1
10.  th12   x1_0,y0_0  t1_0
11.  th22   x1_1,y1_1  t2_1
12.  thand0   y1_0,x1_0,y1_1,x1_1  t2_0
13.  th22   x1_1,y2_1  t6_1
14.  th12   x1_0,y2_0  t6_0
15.  th22   x2_1,y0_1  t3_1
16.  th12   x2_0,y0_0  t3_0
17.  th22   x2_1,y1_1  t5_1
18.  th12   x2_0,y1_0  t5_0
19.  th22   x2_1,y2_1  t7_1
20.  thand0   y2_0,x2_0,y2_1,x2_1  t7_0
21.  th24comp   t0_0,t1_0,t0_1,t1_1  m1_1
22.  th24comp   t0_0,t1_1,t1_0,t0_1  m1_0
23.  th22   t0_1, t1_1  c1_1
24.  th12   t0_0,t1_0  c1_0
25.  th23   t3_0,t2_0,c1_0  c2_0
26.  th23   t3_1,t2_1,c1_1  c2_1
27.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
28.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
29.  th24comp    s1_0,t4_0,s1_1,t4_1   m2_1
30.  th24comp    s1_0,t4_1,t4_0,s1_1   m2_0
31.  th22    s1_1,t4_1   c3_1
32.  th12    s1_0,t4_0   c3_0
33.  th23    m5_0,m4_0,m3_0   c4_0
34.  th23    m5_1,m4_1,m3_1   c4_1
35.  th34w2    c4_0,m5_1,m4_1,m3_1   s2_1
36.  th34w2    c4_1,m5_0,m4_0,m3_0   s2_0
37.  th24comp    s2_0,m6_0,s2_1,m6_1   z3_1
38.  th24comp    s2_0,m6_1,m6_0,s2_1   z3_0
39.  th22    s2_1,m6_1   c5_1
40.  th12    s2_0,m6_0   c5_0
41.  th23    m7_0,c4_0,c5_0   z5_0
42.  th23    m7_1,c4_1,c5_1   z5_1
43.  th34w2    z5_0,m7_1,c4_1,c5_1  z4_1
44.  th34w2    z5_1,m7_0,c4_0,c5_0  z4_0
45.  Reg_NULL   1   xi0_0 xi0_1   KO3   ko1   x0_0 x0_1
46.  Reg_NULL   1   xi1_0 xi1_1   KO3   ko2   x1_0 x1_1
47.  Reg_NULL   1   xi2_0 xi2_1   KO3   ko3   x2_0 x2_1
48.  Reg_NULL   1   yi0_0 yi0_1   KO3   ko4   y0_0 y0_1
49.  Reg_NULL   1   yi1_0 yi1_1   KO3   ko5   y1_0 y1_1
50.  Reg_NULL   1   yi2_0 yi2_1   KO3   ko6   y2_0 y2_1
51.  Reg_NULL   2   m0_0 m0_1   ko15   ko7   z0_0 z0_1
52.  Reg_NULL   2   m1_0 m1_1   ko16   ko8   z1_0 z1_1
53.  Reg_NULL   2   m2_0 m2_1   ko17   ko9   z2_0 z2_1
54.  Reg_NULL   2   c3_0 c3_1   KO4   ko10   m3_0 m3_1
55.  Reg_NULL   2   c2_0 c2_1   KO4   ko11   m4_0 m4_1
56.  Reg_NULL   2   t5_0 t5_1   KO4   ko12   m5_0 m5_1
57.  Reg_NULL   2   t6_0 t6_1   KO4   ko13   m6_0 m6_1
58.  Reg_NULL   2   t7_0 t7_1   KO5   ko14   m7_0 m7_1
59.  Reg_NULL   3   z0_0 z0_1   Ki   ko15   p0_0 p0_1
60.  Reg_NULL   3   z1_0 z1_1   Ki   ko16   p1_0 p1_1
61.  Reg_NULL   3   z2_0 z2_1   Ki   ko17   p2_0 p2_1
62.  Reg_NULL   3   z3_0 z3_1   Ki   ko18   p3_0 p3_1
63.  Reg_NULL   3   z4_0 z4_1   Ki   ko19   p4_0 p4_1
64.  Reg_NULL   3   z5_0 z5_1   Ki   ko20   p5_0 p5_1
65.  C4   ko7,ko8,ko9,ko10   KO1
66.  C4   ko11,ko12,ko13,ko14   KO2
67.  C2   KO1,KO2   KO3
68.  C3   ko18,ko19,ko20   KO4
69.  C2   ko19,ko20      KO5 
70.  C3   ko4,ko5,ko6   KO6
71.  C3   ko1,ko2,ko3   KO7
72.  C2   KO7,KO6   KO

1.   xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2.   p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3.   not     xi0_1   xi0_0
4.   not     xi1_1   xi1_0
5.   not     xi2_1   xi2_0 
6.   not     yi0_1   yi0_0
7.   not     yi1_1   yi1_0
8.   not     yi2_1   yi2_0
9.   th22    xi0_1 ,yi0_1   p0_1
10. thand0    yi0_0,xi0_0,yi0_1,xi0_1   p0_0
11. th22    xi0_1,yi1_1   t0_1
12. th12    xi0_0,yi1_0   t0_0 
13. th22    xi0_1,yi2_1   t4_1
14. th12    xi0_0,yi2_0   t4_0
15.  th22  xi1_1,yi0_1 t1_1
16.  th12  xi1_0,yi0_0 t1_0
17.  th22  xi1_1,yi1_1 t2_1
18.  thand0  yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19.  th22  xi1_1,yi2_1 t6_1
20.  th12  xi1_0,yi2_0 t6_0
21.  th22  xi2_1,yi0_1 t3_1
22.  th12  xi2_0,yi0_0 t3_0
23.  th22  xi2_1,yi1_1 t5_1
24.  th12  xi2_0,yi1_0 t5_0
25.  th22  xi2_1,yi2_1 t7_1
26.  thand0    yi2_0,xi2_0,yi2_1,xi2_1   t7_0
27.  th24comp    t0_0,t1_0,t0_1,t1_1   p1_1
28.  th24comp    t0_0,t1_1,t1_0,t0_1   p1_0
29.  th22    t0_1, t1_1   c1_1
30.  th12    t0_0,t1_0   c1_0
31.  th23    t3_0,t2_0,c1_0   c2_0
32.  th23    t3_1,t2_1,c1_1   c2_1
33.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
34.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
35.  th24comp    s1_0,t4_0,s1_1,t4_1   p2_1
36.  th24comp    s1_0,t4_1,t4_0,s1_1   p2_0
37.  th22    s1_1,t4_1   c3_1
38.  th12    s1_0,t4_0   c3_0
39.  th23    t5_0,c2_0,c3_0   c4_0
40.  th23    t5_1,c2_1,c3_1   c4_1
41.  th34w2    c4_0,t5_1,c2_1,c3_1   s2_1
42.  th34w2    c4_1,t5_0,c2_0,c3_0   s2_0
43.  th24comp    s2_0,t6_0,s2_1,t6_1   p3_1
44.  th24comp    s2_0,t6_1,t6_0,s2_1   p3_0
45.  th22    s2_1,t6_1   c5_1
46.  th12    s2_0,t6_0   c5_0
47.  th23    t7_0,c4_0,c5_0    p5_0
48.  th23     t7_1,c4_1,c5_1   p5_1
49.  th34w2     p5_0,t7_1,c4_1,c5_1   p4_1
50.  th34w2     p5_1,t7_0,c4_0,c5_0   p4_0

1.   xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2.   p0_0,p0_1, p1_0, p1_1, ,p5_0,p5_1
3.   not     xi0_1   xi0_0
4.   not     xi1_1   xi1_0
5.   not     xi2_1   xi2_0 
6.   not     yi0_1   yi0_0
7.   not     yi1_1   yi1_0
8.   not     yi2_1   yi2_0
9.   th22    xi0_1 ,yi0_1   p0_1
10. not     p0_1    p0_0
11. th22    xi0_1,yi1_1   t0_1
12. th12    xi0_0,yi1_0   t0_0 
13. th22    xi0_1,yi2_1   t4_1
14. th12    xi0_0,yi2_0   t4_0
15.  th22  xi1_1,yi0_1 t1_1
16.  th12  xi1_0,yi0_0 t1_0
17.  th22  xi1_1,yi1_1 t2_1
18.  thand0  yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19.  th22  xi1_1,yi2_1 t6_1
20.  not     t6_1    t6_0
21.  th22  xi2_1,yi0_1 t3_1
22.  th12  xi2_0,yi0_0 t3_0
23.  th22  xi2_1,yi1_1 t5_1
24.  not     t5_1    t5_0
25.  th22  xi2_1,yi2_1 t7_1
26.  not     t7_1    t7_0
27.  th24comp    t0_0,t1_0,t0_1,t1_1   p1_1
28.  not     p1_1    p1_0
29.  th22    t0_1, t1_1   c1_1
30.  th12    t0_0,t1_0   c1_0
31.  th23    t3_1,t2_1,c1_1   c2_1
32.  not     c2_1    c2_0
33.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
34.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
35.  th24comp    s1_0,t4_0,s1_1,t4_1   p2_1
36.  not     p2_1    p2_0
37.  th22    s1_1,t4_1   c3_1
38.  not     c3_1    c3_0
38.  th12    s1_0,t4_0   c3_0
39.  th23    t5_0,c2_0,c3_0   c4_0
40.  th23    t5_1,c2_1,c3_1   c4_1
41.  th34w2    c4_0,t5_1,c2_1,c3_1   s2_1
42.  th34w2    c4_1,t5_0,c2_0,c3_0   s2_0
43.  th24comp    s2_0,t6_0,s2_1,t6_1   p3_1
44.  not     p3_1    p3_0
45.  th22    s2_1,t6_1   c5_1
46.  th12    s2_0,t6_0   c5_0
47.  th23     t7_1,c4_1,c5_1   p5_1
48.  not     p5_1    p5_0
49.  th34w2     p5_0,t7_1,c4_1,c5_1   p4_1
50.  not     p4_1    p4_0

(a) (b) (c)
 

Fig. 2. (a) 3×3 NCL multiplier netlist (b) converted netlist using method in [3] (c) converted netlist using proposed Dual-Rail Register Invariant  



TABLE II.  VERIFICATION RESULTS 

 

 

 

 

 

 

 

 

 

 

contains 4 registers for increased performance. Note that the 

proposed Dual-Rail Register Invariant can also be applied to 

Reset-to-DATA registers, resulting in their replacement with a 

single synchronous register, plus an inverter to generate the rail0 

output, instead of the previous conversion technique that 

required 2 synchronous registers, as described in Section II. 

The Z3 SMT solver [5] was used to check for equivalence, 

but any combinational equivalence checker could be used. 

Table II lists the verification results, where the first column 

indicates the MAC size, and the second column is speedup (i.e.,  

equivalence verification time using the method described in [3] 

divided by equivalence verification time using the proposed 

Dual-Rail Register Invariant). Timeout (TO) denotes that the 

verification time exceeded one day. The last 2 rows in Table II 

are for MACs with an additional Reset-to-NULL register 

inserted between the partial product generation circuitry (i.e., 

AND functions) and the first carry-save adder. 

The results show speedups ranging from 14% - 263% for 

the various 4-register MACS, and an additional speedup of 25% 

and 11% when adding an extra 5th register stage in the 16+8×8 

Fig. 3. 4+2×2 NCL MAC [3] 

 

and 20+10×10 MACs, respectively. Note that the 24+12×12 

MAC timed out using the previous approach in [3], but was 

successfully verified in less than 1 day utilizing the proposed 

Dual-Rail Register Invariant. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposes the Dual-Rail Register Invariant 

technique to speedup equivalence checking of NCL circuit 

implementations with respect to their Boolean/synchronous 

specifications. It has been shown to significantly reduce 

equivalence checking times, and to further speedup equivalence 

checking when additional pipeline stages are added to the NCL 

circuit, as this allows for more usage of the technique. 

The proposed Dual-Rail Register Invariant technique is 

also applicable to speedup equivalence verification of Sleep 

Convention Logic (SCL) circuits [6], as the circuit 

transformation and safety verification are the same for SCL and 

NCL, only liveness verification differs [7].  

Future work includes investigating additional refinements 

and invariants to potentially further reduce verification time, 

such as applying the dual-rail invariant described herein, to 

generate rail0 as the inverse of rail1, at the outputs of every NCL 

C/L function (e.g., HA, FA, AND), instead of only at register 

boundaries. This would require NCL C/L functions to be 

reconstructed from a flattened NCL gate netlist, where the two 

wires of a dual-rail signal are disassociated. Additionally, the 

invariant check from [3], which ensures that the rail1 and rail0 

outputs of each NCL register are always inverses of each other 

during the DATA phase, would also need to be checked at the 

output of each NCL C/L function, instead of only at the register 

boundaries. 
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Circuit Speedup 

8 + 4 × 4 𝑀𝐴𝐶 1.14 
12 + 6 × 6 𝑀𝐴𝐶 1.17 
16 + 8 × 8 𝑀𝐴𝐶 2.75 

20 + 10 × 10 𝑀𝐴𝐶 1.31 
22 + 11 × 11 𝑀𝐴𝐶 3.63 
24 + 12 × 12 𝑀𝐴𝐶 TO/67,599 sec 

16 + 8 × 8 𝑀𝐴𝐶 − 5 𝑅𝑒𝑔 3.44 
20 + 10 × 10 𝑀𝐴𝐶 − 5 𝑅𝑒𝑔 1.46 
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