Exploiting Dual-Rail Register Invariants for
Equivalence Verification of NCL Circuits

Son N. Le
Electrical and Computer Engineering
North Dakota State University
Fargo, USA
son.ngoc.le@ndsu.edu

Abstract—Equivalence checking is one of the most scalable and
useful verification techniques in industry. NULL Convention
Logic (NCL) circuits utilize dual-rail signals (i.e., two wires to
represent one bit of DATA), where the wires are inverses of each
other during a DATA wavefront. In this paper, a technique that
exploits this invariant at NCL register boundaries is proposed to
improve the efficiency of equivalence verification of NCL circuits.

Keywords—asynchronous circuits, formal verification, formal
methods, equivalence checking, NULL Convention Logic

I. INTRODUCTION

NULL Convention Logic (NCL) [1] is one type of Quasi-
Delay Insensitive (QDI) asynchronous circuit design paradigm,
which has benefits over its synchronous counterpart by being
more robust to process, voltage, and temperature (PVT)
variations, allowing NCL circuits to operate in environments
with extreme high or low temperatures, or with large
temperature fluctuations, and with an ultra-low supply voltage
[2]. Hence, NCL circuits are ideal candidates for applications in
space exploration, the power industry, the automotive industry,
oil/gas exploration, medical imaging instrumentation, the laser
industry, superconducting computing and energy storage
systems, and wireless sensor nodes or other low voltage or low
power applications.

NCL circuits do not utilize a clock signal for
synchronization, instead NCL utilizes multi-rail logic, such as
dual-rail, along with a 4-phase handshaking protocol to achieve
delay-insensitivity. A dual-rail signal, D, consists of two wires,
D’ and D!, which may assume any value from the set {DATAO,
DATAIL, NULL}. The DATAO state (D’ = 1 and D' =0)
corresponds to a Boolean logic 0, the DATALI state (D’ = 0 and
D' =1) corresponds to a Boolean logic 1, and the NULL state
(D" = 0 and D’ =0) corresponds to the empty set meaning that
the value of D is not yet available. The two rails are mutually
exclusive, such that both rails can never be asserted
simultaneously; this state is defined as an ILLEGAL state.
Hence, when an NCL register is DATA, its rail' and rail® outputs
are inverses of each other, referred to herein as the Dual-Rail
Register Invariant.

One of the very effective formal verification techniques for
digital system design is equivalence checking. In commercial
design cycles, the design is continuously optimized for
performance, power, and area. Significant time and effort are
invested in design testing. If the design is further optimized, it is
not feasible to exhaustively test the design again. Equivalence
checking has been found to be very effective to address this

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Sudarshan K. Srinivasan
Electrical and Computer Engineering
North Dakota State University
Fargo, USA
sudarshan.srinivasan@ndsu.edu

Scott C. Smith
Electrical Engineering and Computer Science
Texas A&M University - Kingsville
Kingsville, USA
scott.smith@tamuk.edu

problem as the verified design can be checked against the more
optimized design directly. Equivalence checking has been
previously extended to NCL circuits [3], where the NCL circuits
are checked for equivalence against their synchronous
counterparts. In this paper, the Dual-Rail Register Invariant is
exploited to speed up the previous equivalence checking method
for NCL circuits, which is demonstrated by using identical
benchmarks to show the improvement in verification times.

II. RELATED WORK

In the NCL equivalence checking method presented in [3],
the NCL netlist is first converted to a synchronous netlist. This
conversion has three steps. First, the NCL threshold gates are
replaced with their Boolean set function; and gate hysteresis is
ignored. Second, rail' of each dual-rail input is replaced with a
Boolean input; and each rail® input is generated by negating its
corresponding Boolean input. Third, the reset-to-NULL
registers (henceforth termed as Reg NULL) are removed, and
their inputs connected directly to their outputs. Each dual-rail
Reset-to-DATA register is replaced by a 2-bit synchronous
register. Well Founded Equivalence Bisimulation (WEB)
refinement [4] is used as the notion of equivalence to compare
the synchronous version of the NCL circuit and the synchronous
specification circuit. The WEB refinement property is checked
using an SMT solver. This approach was found to be very
scalable because the equivalence verification is performed at the
synchronous-level instead of directly verifying the NCL circuit,
which is difficult due to nondeterministic signal transitions in
NCL circuits. Section III presents the proposed Dual-Rail
Register Invariant technique that modifies the conversion
technique described above for the register components to
improve efficiency.

III. EQUIVALENCE VERIFICATION

The 3x3 unsigned NCL multiplier that implements the function
p(5:0) = xi(2:0) x yi(2:0), as shown in Fig. 1 without its
completion logic, will be used as the example circuit to show the
circuit transformation done in the previous work and contrast
that to the proposed Dual-Rail Register Invariant. It is comprised
of several components including dual-rail inputs and outputs,
input-complete NCL AND functions (represented with a C
inside the AND symbol), input-incomplete NCL AND functions
(represented with an I inside the AND symbol), NCL Half-
Adders (HA) and Full-Adders (FA), and dual-rail Reset-to-
NULL registers (REG_NULL).

yi2 yil yio xi2 xil xi0

vy 44y

REG_NULL | REG_NULL [REG_NULLREG_NULLf REG_NULL [REG_NULL
(6) (5) (4) 3) () 1)

2] vi] Vo] 2|] o[

Input
Registers

| |
| |
| |
| |
| |
C/L Unit1 : t1 t0 :
| |
| |
| |
| |
| |
| |
| t7 6 t5 |
[I [I NN ol m | moy
Intermediate [REG_NULL [REG_NULLJREG_NULL|REG_NULL | REG_NULL | REG_NULL|REG_NULL| REG_NULL
Registers (1) | (13) | (12) | (1) | (10) | (9) | @) |) |
T T T e =% i i B |
! I
! I
| m7 |
c/Lunit2 | |
! I
I I
| E— ot |
! I
[N - SR I A E— _
25 22 z1 20
\ 4
Output | | | |
N REG_NULL (20) [REG_NULL (19) | REG_NULL(18) | REG_NULL (17) | REG_NULL (16) | REG_NULL (15)
Registers _

s | pa | p3 | 02 | p1] po |
Fig. 1. 3x3 NCL multiplier circuit [3]

To accompany the circuit in Fig. 1, its netlist, and the netlist
of the previous work’s circuit transformation, are shown in
Fig. 2(a) and 2(b), respectively. In Fig. 2(a), the first two lines
indicate all primary inputs and primary outputs, respectively.
Lines 3-44 correspond to the NCL C/L threshold gates, where
the first column is the type of gate, the second column lists the
gate’s inputs, in comma separated format starting with input A4,
and the last column is the gate’s output. Lines 45-64 correspond
to 1-bit NCL registers, where the first column is the reset type
of the register, the second column denotes the register’s level
(i.e., the depth of the path through registers without considering
the C/L in-between; for the 3x3 multiplier example, there are
3 stages of registers, with levels 1, 2, and 3, starting from the
input registers), the third and fourth columns are the register’s
rail’ and rail' data inputs, respectively, the fifth and sixth
columns are the register’s Ki input and Ko output, respectively,
and the seventh and eighth columns are the register’s rail® and
rail' data outputs, respectively. Lines 65-72 correspond to the
C-elements (i.e., THnn gates) used in the handshaking control
circuitry, where the first column is Cn, with # indicating the
number of inputs to the C-element, the second column lists the
inputs in comma separated format, and the last column is the
C-element’s output.

A. Previous Circuit Transformation

For Fig. 2(b), each NCL gate from Fig. 2(a) is replaced with
its corresponding Boolean gate without hysteresis, and the dual-
rail primary inputs are replaced by their respective rail' input,
which are then complemented by inserting invertors (lines 3-8)
to generate their corresponding rail’ signals. The Reg NULL

components are removed by connecting their inputs to their
outputs; and the handshaking C-elements are also removed.

B. Proposed Dual-Rail Register Invariant

Instead of removing the Reg NULL components by
connecting their inputs to their outputs, the proposed Dual-Rail
Register Invariant removes the Reg NULL components by
connecting their rail' inputs to their corresponding rail' outputs,
and then generates each rail’ output by inverting its
corresponding rail! input. This transformation is possible due to
the inherent NCL property where the rail' and rail® values are
inverses of each other in the DATA phase. Note that both this
inverse signal property and correctness of the NULL phase are
checked as part of the NCL formal verification method
presented in [3]. The proposed Dual-Rail Register Invariant
allows the SMT solver to trim the circuit by removing all logic
solely used to generate the Reg NULL rail® inputs, replacing
this instead with a single inverter, as shown in Fig. 2(c).

C. Proof Obligation

The proof obligation for equivalence verification is the same
for the original approach and the proposed approach that
exploits the Dual-Rail Register Invariant. We now describe the
proof obligation. Consider an NCL circuit with p inputs and ¢
outputs. Note that NCL inputs and outputs are dual-rail. The
corresponding synchronous circuit will have p Boolean inputs
and g Boolean outputs. We step both the specification
synchronous circuit and the NCL-reduced synchronous circuit,
with the same symbolic inputs i/, ..., ¥, to generate outputs
Ogync', ..., Ogu, and Onct!, ..., Onci?, respectively. The proof
obligation itself is constructed using the predicates from
Table 1: {py A p1 } = 5. Dy corresponds to the symbolic step of
the NCL reduced synchronous circuit, and p; corresponds to the
symbolic step of the synchronous specification circuit. p, is the
equivalence predicate, which states that the rail"’s of the NCL
reduced synchronous outputs should be equal to the
synchronous specification circuit outputs.

IV. RESULTS

For comparison, the same unsigned NCL Multiply and
Accumulate (MAC) circuits as in [3], with increasing operand
sizes to show scalability, were used. These implement the
function acci = acci + xi x yi, as shown in Fig. 3 for a 4+2x2
NCL MAC, without its completion logic. As shown in the
Fig. 3 example, each MAC’s C/L is partitioned into 2 stages by
inserting a Reset-to-NULL register between the last carry-save
adder and the final ripple-carry adder; and the feedback loop

TABLE L EQUIVALENCE CHECKING PREDICATES
Pn Predicate
Po (Onct!, ..., Onci?) = NCLStep(i', ...,)
D1 (Ogncl, ..., Ognc?) = SyncStep(i’, ..., i)
b2 e
/\(Taill(ONCLn) = Osyncn)
n=1

1. xi0_0,xi0_1, xi1_0,xi1_1, ..., yi1_0, yi1_1,i2_0, yi2_1
2. p0_0,p0_1,p1.0,p1_1,..,p5.0,p5_1
3. th22x0_1,y0_1 mo0_1
4. thand0y0_0,x0_0,y0_1,x0_1 m0_0
5. th22 x0_1y1.1 t0_1
6. th12 x0_0,y1.0 t0_0
7. th22 x0_1y2.1 t4.1
8. th12 x0.0,y2.0 t4.0
9. th22 x1.1y0_1 t1_1
10. th12 x1_0,y0_0 t1.0
11. th22 x1_Lyl1.1 t21 o S .)
12. thand0 y1_0x1_0,y1.1x1.1 t2.0 1. xi0_1,xi1_1, xi2_1,yi0_1,yi1l_1,yi2_1 ; "‘8—01"(‘)‘11-1"1“%)-1'13’1{)-1'3’15161'53”5-1
13. th22 x1_1y2.1 t6_1 2. p0_0,p0_1, p1.0, p1_1,..,p5_0,p5_1 3 EoE '];i(-) ipx_io‘g PP
14. th12 x1_0,y2.0 t6_0 3. not xi0_1 xi0_0 4' not xil 1 xil0
15. th22 x2_1,y0_1 t3_1 4. not xil_1 xi1.0 c ot X2l K20
16. th12 x2_0,y0_0 t3_0 5 not xi2_1 xi2_0 o ot w01 w00
17. th22 x2_1,y1.1 t5.1 6. not yi0_1 yi0_0 7 ot yfl-l y?l-o
18. th12 x2_0,y1.0 t5.0 7. not yil.l yil 0 g o ¥2_1 ﬁz_o
19. th22 x2_1y2.1 t7.1 8. not yi2_1 yi2 0 o th22 a0 101 001
20. thand0 y2_0x2_0,y2_1,x2_1 t7_0 9. th22 xi0_1,yi0_1 p0_1 10t o0 1 IYIO_O po-
21. th24comp t0_0,t1_0,t0_1,t1_1 m1_1 10.thand0 yi0_0,xi0_0,yi0_1,xi0_1 p0_0 11 the? pxif) 1;1-1 01
22. th24comp t0_0,t1_1,t1_0,t0_1 m1_0 11.th22 xi0_Lyil_1 t0_1 12 thi2 0 0510 100
23. th22 t0_1,t1.1 c1_1 12.th12 xi0_0,yi1_0 t0_0 13 th2 xiO_1'£2_1 w1
24. th12 t0_0,t1.0 c1.0 13.th22 xi0_1yi2_1 t4.1 14.th12 xi0.05i20 t40
25. th23 3.0,t2_0,c1_0 2.0 14.th12 xi0_0,yi2_0 t4.0 15 tho2 w1 101l 1
26. th23 t3_1,t2_1,c1_1 c2_1 15. th22 xi1_1,yi0_1t1_1 1o thiz xil_Olﬁo_O o
27. th34w2 c2_0,t3_1,t2_1,c1.1 s1_1 16. th12 xi1_0,yi0_0t1_0 17, th22 xil 13111621
28. th34w2 c2_1,83.0,t2.0,c1.0 s1_0 17. th22 xil_1yi1_1t2_1 18, thand0 i1 041 0vil 1xil 112 0
29. th24comp s1.0,t4 0,51 1,t4.1 m2_1 18. thand0 yil 0xi1 0yil 1xi1.1t2_0 19 tha2 xnwl}i'z 116'}"1 —bXL e
30. th24comp s1_0,t4_1,t4_0,s1_.1 m2_0 19. th22 xil_1yi2_1t6_1 20 o 61 60
31. th22 s1_1,t4.1 c3_1 20. th12 xi1_0,yi2_0t6_0 51 the xiz 1vi0 163 1
32. th12 s1.0,t4.0 c3.0 21. th22 xi2_1,yi0_1t3_1 52 this xiZ_Olﬁo_O a0
33. th23 m5_0,m4_0,m3.0 c4.0 22. th12 xi2_0,yi0_0t3_0 53 th22 xiz 1ail1te 1
34. th23 m5_1,m4_1,m3_1 c4._1 23. th22 xi2_1yi1_1t5_1 24 nor 81 ,yt15_0 -
35. th34w2 c4_0,m5_1,m4_1,m3_1 s2_1 24. th12 xi2_0,yi1_0t5.0 25, th22 %i2 11217 1
36. th34w2 c4_1,m5_0,m4_0,m3_0 s2_0 25. th22 xi2_1yi2_1t7_1 e ot 1o
37. th24comp s2_0,m6_0,52_1,m6_1 z3_1 26. thand0 yi2_0,xi2_0,yi2_1,xi2_1 t7.0 7 th2dcoms 10041 00 Ltl 1 ol 1
38. th24comp s2_0,m6_1,m6_0,s2_1 z3.0 27. th24comp t0_0,t1_0,t0_1,t1 1 pl.1 58 not plpl o pL
39. th22 s2_1,m6_1 c5_1 28. th24comp 0_0,t1_1,t1_0,t0_1 p1.0 50 the2 t0 111 el
40. th12 $2_0,m6_0 c5_0 29. th22 t0_1,t1.1 c1_1 20, thiz 100610 10
41. th23 m7_0,c4.0,c5.0 250 30. th12 t0_0,t1.0 c1.0 31 th23 13 12 1cl1 c21
42. th23 m7_1,c4.1,651 z5_1 31. th23 t3.0,:2.0,c1.0 c2.0 B
43. th34w2 z5.0,m7_1,c4 1,c5_1 z4._1 32. th23 3_1,e2_1,c1.1 2.1 33 th3dws 2 013 112 1e1 1 s11
44, th34w2 z5_1,m7_0,c4_0,c5.0 z4_0 33. th34w2 ¢2_0,63_1,t2.1,c1.1 s1_1 31 th3tns 2 113 012 0l 0 <10
45. Reg NULL 1 xi0_0xi0_1 KO3 kol x0_0x0_1 34. th34w2 2_1,:3.0,t2.0,c1.0 s1_0 35 th2deomn 1 014 051 154 1 o2 1
46. Reg NULL 1 xi1 0xi1 1 KO3 ko2 x1 0x1_1 35. th24comp s1.0,t4 0,s1_1,t4 1 p2_1 36. not p2p1 p2_6 SUSL LR P
47. Reg NULL 1 xi2_0xi2_1 KO3 ko3 x2_0x2_1 36. th24comp s1_0,t4_1,t4_0,s1_1 p2.0 37 the2 el 1thd 31
48. Reg NULL 1 yi0_0yi0_1 KO3 ko4 y0_0y0_1 37. th22 s1_1,t4.1 c3.1 38 o 31 30 "
49. Reg NULL 1 yi1 0yil_1 KO3 ko5 y1.0y1.1 38. th12 s1.0,t4.0 c3.0 38 thi2 o040 c30
50. Reg NULL 1 yi2 0yi2_1 KO3 ko6 y2 0y2_1 39. th23 t5.0,c2.0,c3.0 c4.0 30, th23 15 0.2 030 c4 0
51. Reg NULL 2 m0_0mo0_1 kol5 ko7 z0_0z0_1 40. th23 t5_1,c2_1,c3.1 c4.1 10 the3 2 ler 131 cd1
52. Reg NULL 2 m1 . 0ml1.1 kol6 ko8 z10z11 41. th34w2 ¢4 0,t5_1,c2_1,c3_1 s2_1 41' th34w2 _c:l O_té 1_c2 1(?3 1921
53. Reg NULL 2 m2_0m2_1 kol7 ko9 z2. 0z2_1 42. th34w2 c4_1,t5.0,c2_0,c3.0 s2_0 42' th34w?2 C4il‘t570'0270'c370 $20
54. Reg NULL 2 ¢3.0c3_.1 KO4 kol0 m3_0m3_1 43. th24comp s2_0,t6_0,s2_1,t6_1 p3_1 43' th24comp _SZ‘ 0}6'0;2’1E6 1 53 1
55. Reg NULL 2 c2.0c2.1 KO4 koll m4 0m4_1 44, th24comp s2_0,t6_1,t6_0,s2_1 p3_0 44' not p3.1 p§6 - -
56. Reg NULL 2 t5.0t5_1 KO4 kol2 m5.0m5_1 45. th22 s2_1,t6_1 c5_1 45 th22 w3 161 o5 1
57. Reg NULL 2 t6_0t6_1 KO4 kol3 m6_0m6_1 46. th12 s2_0,t6.0 c5_0 o th12 <2 0t o0
58. Reg NULL 2 t7.0t7_1 KO5 kol4 m7_0m7_1 47. th23 t7.0,c4.0,c5.0 p5.0 47 1h23 17 Lehlend o5 1
59. Reg NULL 3 z0_0z0_1 Ki kol5 p0_0p0_1 48. th23 t7_1,c4.1,c5.1 p5_1 48 ot b5l b0 " Po-
60. Reg NULL 3 z1.0z1.1 Ki kol6 pl.0pl.1 49. th34w2 p5.0,t7 1,c4.1,c5.1 p4 1 19, tha 4wp2_ p5p0_t7 Led1c51 phl
61. Reg NULL 3 2z2.0z2_1 Ki kol7 p2_.0p2_1 50. th34w2 p5_1,t7_0,c4.0,c5.0 p40 o mot ea 1 s P
62. Reg NULL 3 2z3.0z3_1 Ki kol18 p3.0p3_1 : L
63. Reg NULL 3 z4.0z4.1 Ki kol9 p4 0p4.1
64. Reg NULL 3 z5.0z5_1 Ki ko20 p5.0p5_1
65. C4 ko7,ko8,ko9,ko10 KO1
66. C4 kollkol2kol3kol4 KO2
67. C2 KO1,KO2 KO3
68. C3 kol8ko19ko20 KO4
69. C2 kol9ko20 KO5
70. C3 ko4,ko5,ko6 K06
71. C3 kolko2,ko3 KO7
72. C2 KO7,K06 KO
@ (b) (©
Fig. 2. (a) 3x3 NCL multiplier netlist (b) converted netlist using method in [3] (c) converted netlist using proposed Dual-Rail Register Invariant

TABLE I 'VERIFICATION RESULTS
Circuit Speedup
8+ 4 x4MAC 1.14
12+ 6 x 6 MAC 117
16 + 8 x 8 MAC 275
20+ 10 x 10 MAC 131
22+ 11 x 11 MAC 3.63
24 +12 x12 MAC TO/67,599 sec
16 + 8 X 8 MAC — 5 Reg 3.44
20 + 10 X 10 MAC — 5 Reg 146

contains 4 registers for increased performance. Note that the
proposed Dual-Rail Register Invariant can also be applied to
Reset-to-DATA registers, resulting in their replacement with a
single synchronous register, plus an inverter to generate the rail®
output, instead of the previous conversion technique that
required 2 synchronous registers, as described in Section II.

The Z3 SMT solver [5] was used to check for equivalence,
but any combinational equivalence checker could be used.
Table II lists the verification results, where the first column
indicates the MAC size, and the second column is speedup (i.e.,
equivalence verification time using the method described in [3]
divided by equivalence verification time using the proposed
Dual-Rail Register Invariant). Timeout (TO) denotes that the
verification time exceeded one day. The last 2 rows in Table II
are for MACs with an additional Reset-to-NULL register
inserted between the partial product generation circuitry (i.e.,
AND functions) and the first carry-save adder.

The results show speedups ranging from 14% - 263% for
the various 4-register MACS, and an additional speedup of 25%
and 11% when adding an extra 5™ register stage in the 16+8x8

acd3 aca2 acdl acci0 yil yio xil xi0

TS S SN TN S N B

REG_NULL | REG_NULL | REG_NULL (REG_NULL [REG_NULL| REG_NULL [REG_NULL|REG_NULL|
(8) Ul (6) (5) (4) 3 (2) (1)

acc3 acc2 l accll acc[)l y1 l yol xll xol
0 x0y0

REG 1

11/

aTs

REG_NULL] REG_NULL‘ REG 2

sy

REG_NULL|REG_NULL|REG_NULL[REG_NULL
(15) (14) (13) (12)

r6 r5] r4 3

L

10 v 19 8 v
REG_NULL| REG_NULL REG_NULL REG_NULL
(9) (18) @)
v: Ve 2
REG_DATAO | REG_DATAO REG_DATAO REG_DATAO
23) (22) (21) (20)

acd3 acci2 accil accio

Fig. 3. 4+2x2 NCL MAC [3]

REG_NULL|

(1) (10) (9)

2__n 0
v

an

‘REG3

REG 4

and 20+10x10 MACs, respectively. Note that the 24+12x12
MAC timed out using the previous approach in [3], but was
successfully verified in less than 1 day utilizing the proposed
Dual-Rail Register Invariant.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes the Dual-Rail Register Invariant
technique to speedup equivalence checking of NCL circuit
implementations with respect to their Boolean/synchronous
specifications. It has been shown to significantly reduce
equivalence checking times, and to further speedup equivalence
checking when additional pipeline stages are added to the NCL
circuit, as this allows for more usage of the technique.

The proposed Dual-Rail Register Invariant technique is
also applicable to speedup equivalence verification of Sleep
Convention Logic (SCL) circuits [6], as the circuit
transformation and safety verification are the same for SCL and
NCL, only liveness verification differs [7].

Future work includes investigating additional refinements
and invariants to potentially further reduce verification time,
such as applying the dual-rail invariant described herein, to
generate rail’ as the inverse of rail!, at the outputs of every NCL
C/L function (e.g., HA, FA, AND), instead of only at register
boundaries. This would require NCL C/L functions to be
reconstructed from a flattened NCL gate netlist, where the two
wires of a dual-rail signal are disassociated. Additionally, the
invariant check from [3], which ensures that the rail' and rail®
outputs of each NCL register are always inverses of each other
during the DATA phase, would also need to be checked at the
output of each NCL C/L function, instead of only at the register
boundaries.

Acknowledgement: This paper is based upon work supported by
the National Science Foundation under Grant No. CCF-
1717420.

REFERENCES

[1] K.M.Fantand S. A. Brandt, “NULL Convention Logic: A Complete and
Consistent Logic for Asynchronous Digital Circuit Synthesis,”
International Conference on Application Specific Systems, Architectures,
and Processors, pp. 261-273, August 1996.

[2] J. Di and S. C. Smith, “Asynchronous Digital Circuits,” in Extreme
Environment Electronics, pp. 663 — 673, CRC Press, November 2012.

[3] A. A. Sakib, S. Le, S. C. Smith, and S. K. Srinivasan, “Formal
Verification of NCL Circuits,” in Asynchronous Circuit Applications,
pp- 309-338, IET, December 2019.

[4] P. Manolios, “Correctness of Pipelined Machines,” in FMCAD 2000, ser.
LNCS, W. A. Hunt, Jr. and S. D. Johnson, Eds., Vol. 1954. Springer-
Verlag, 2000, pp. 161-178.

[5] L. M. de Moura and N. Bjerner, “Z3: An efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science, C. R. Ramakrishnan and
J. Rehof, Eds., vol. 4963, Springer, 2008, pp. 337-340.

[6] L. Zhou, R. Parameswaran, F. Parsan, S. C. Smith, and J. Di, “Multi-
Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power
Asynchronous Circuit Design Methodology,” Journal of Low Power
Electronics and Applications, Vol. 5/2, pp. 81-100, May 2015.

[7] M. Hossain, A. A. Sakib, S. K. Srinivasan, and S. C. Smith, “An
Equivalence Verification Methodology for Asynchronous Sleep
Convention Logic Circuits,” IEEE International Symposium on Circuits
and Systems, pp. 1-5, May 2019.

