Trading-Off Static and Dynamic Regret in Online Least-Squares and Beyond

Abstract

Recursive least-squares algorithms often use forgetting fac-
tors as a heuristic to adapt to non-stationary data streams.
The first contribution of this paper rigorously character-
izes the effect of forgetting factors for a class of on-
line Newton algorithms. For exp-concave and strongly con-
vex objectives, the algorithms achieve a dynamic regret of
max{O(logT),O(vTV)}, where V is a bound on the
path length of the comparison sequence. In particular, we
show how classic recursive least-squares with forgetting fac-
tor achieves this dynamic regret bound. By varying V', we
obtain a trade-off between static and dynamic regret. In or-
der to obtain more computationally efficient algorithms, our
second contribution is a novel gradient descent step-size
rule for smooth, strongly convex functions. Here, we obtain
static regret of O(T"'~*) and dynamic regret of O(T°V™),
where 8 € (0,1) and V™ is the path length of the se-
quence of minimizers. By varying 3, we obtain a trade-off
between static and dynamic regret. Finally, we characterize
the strongly convex problem and obtain the dynamic regret

of max{O(log T"), O(~TV)}.

Introduction

Online learning algorithms are designed to solve predic-
tion and learning problems for streaming data or batch data
whose volume is too large to be processed all at once. Ap-
plications include online routing (Hazan 2016), online auc-
tions (Blum et al. 2004), online classification and regression
(Crammer et al. 2006), as well as online resource allocation
(Yuan and Lamperski 2018).

The general procedure for online learning algorithms is as
follows: at each time ¢, before the true time-dependent ob-
jective function f;(6) is revealed, we need to make the pre-
diction, 6;, based on the history of the observations f;(6),
i < t. Then the value of f;(6;) is the loss suffered due to the
lack of the knowledge for the true objective function f;(6).
Our prediction of 6 is then updated to include the informa-
tion of f;(#). This whole process is repeated until termina-
tion. The functions, f;(6), can be chosen from a function
class in an arbitrary, possibly adversarial manner.
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An import class of online learning problems is online con-
vex optimization, (Zinkevich 2003), which focuses on the
case of convex objective functions. The most basic perfor-
mance metric in online convex optimization is static regret
‘R s, which measures the difference between the algorithm’s
cumulative loss and the cumulative loss of the best fixed
decision in hindsight (Cesa-Bianchi and Lugosi 2006). For-
mally, the static regret is defined by:

T T
Rs = tzzlft(@t) - Iggg;ft(a)

where 7' is the time horizon, S is a compact convex con-
straint set with ||z|| < D,Vz € S. Without loss of general-
ity, we assume throughout the paper that D > 1.

Another performance metric is called the dynamic regret
Ra(2T) (Zinkevich 2003) which is defined as

T T
Ra(z) =D fi(0) = > fi(z)

where 0;,2; € S, and 27 is an arbitrary comparator se-
quence. (Besbes, Gur, and Zeevi 2015) uses a specific se-
quence of le, which is z; = 6, the optimal solution of the
current f3(6).

For the static regret R, a number of algorithms are pro-
posed to upper bound it in terms of the time horizon 7" un-
der different properties of the convex function f;(6). For the
general convex one, (Zinkevich 2003) showed that R can
be upper bounded in the order of O(+/T'). For the case when
f1(0) is either strongly convex or exp-concave over the con-
vex set S, (Hazan, Agarwal, and Kale 2007) showed that we
could upper bound the R in the order of O(logT'). These
two upper bounds were shown to be minimax optimal by
(Abernethy et al. 2008). For the smooth convex f;(6), (Sre-
bro, Sridharan, and Tewari 2010) proved that it can be upper
bounded in terms of the cumulative loss of the fixed optimal
solution, which is preferable when it is much smaller than
T. Such sub-linear regret upper bounds guarantee that on
average the predicted variable 6, will converge to the global
optimal solution 8* as T" — oo.

For the dynamic regret /R 4, it is usually not upper bounded



merely in terms of 7. One notion is in terms of the path-
length V' (Zinkevich 2003), which is defined as

T
V=> llze =zl (1)
t=2

And we use V* when z;, = ;.

According to (Zinkevich 2003), R 4 can be upper bounded
by O(VT(1 + V)) when f,(0) is convex. Such upper
bound is later improved by (Zhang, Lu, and Zhou 2018)
to O(/T(1 4 V)) by running an order of O(logT') algo-
rithms in parallel in order to cover the domain of the possi-
ble stepsizes. For the strongly convex and smooth function
f+(0), Rq is improved to the order of O(V*) by (Mokhtari
et al. 2016).

Other notions of the comparator sequence for the dynamic
regret include the variant of path-length (Hall and Willett
2013), functional variation (Besbes, Gur, and Zeevi 2015),
as well as gradient variation (Chiang et al. 2012).

The contributions of this paper are the following four
folds:

1. For the a-exp-concave problem, we propose the Dis-
counted Online Newton Step (D-ONS), which has im-
proved performance of the dynamic regret upper bound

max{O(logT),O0(vTV)} as compared to the previous

result O(4/T(1 4 V)) in (Zhang, Lu, and Zhou 2018).
Furthermore, it solves the open question of how to achieve
the trade-off between dynamic and static regrets by a sim-
ple user-determined discounted factor 3 € (0, 1).

2. Although the analysis in the a-exp-concave problem ap-
plies to some strongly convex and smooth problems, it is
not computationally efficient. To circumvent such obsta-
cle and further improve the regret trade-off performance
in the strongly convex and smooth case, we start from the
online least-squares problem. For the first time we can not
only make the connection between the discounted recur-
sive least-squares algorithm (Fabre and Gueguen 1986)
and the regret guarantees it can achieve, but show that the
two regrets’ trade-off can be achieved by tuning the dis-
counted factor 3 € (0, 1) to achieve both Ry < O(T*~7)
and Ryg < O(T?(1 + V*)), which is an improved result
compared to the result from the c-exp-concave case.

3. For the strongly convex and smooth case, we propose a
new online gradient descent update inspired by the anal-
ysis in the online least-squares problem. This new update
rule is not only computationally efficient but enjoys all the
same improvements in the special least-squares problem.
These user-determined regret trade-off results can provide
the flexibility in the priority of the dynamic or static regret
minimization while maintaining the other one in a reason-
able order.

4. Inspired by the proposed new step-size rule,
for the strongly convex case, we obtain
max{O(logT),O(vTV)} dynamic regret bound
for the general V, which is better than O(\/T(1+ V))
in (Zhang, Lu, and Zhou 2018).

Notation. For the n dimensional vector § € R", we use
|6]| to denote the ¢3-norm. The gradient of the function f;
at time step ¢ in terms of the 6 is denoted as V f;(6).

For the matrix A € R™*", its transpose is denoted by AT
and AT A denotes the matrix multiplication. The inverse of
A is denoted as A~'. When m = n, we use || Al|, to rep-
resent the induced 2 norm of the square matrix. For the two
square matrix A € R™"*" and B € R"*", A < B means
A — B is negative semi-definite, while A = B means A— B
is positive semi-definite. For a positive definite matrix, M,
let |z||2, = 2" M. The standard inner product between
matrices is given by (A, B) = Tr(AT B). The determinant
of a square matrix, A is denoted by |A|. We use I to repre-
sent the identity matrix.

Problem Statement and Motivation

In this section, we discuss the problems that we consider and
the motivations behind them.

First, let us see the definition of the f; being a-exp-
concave (Cesa-Bianchi and Lugosi 2006):

Definition 1. A convex function f;: S — R is a-exp-
concave if exp(—a.f;) is concave over S and o > 0.

For the general convex problem, (Zhang, Lu, and Zhou
T T

2018) shows that R4(z{) = > fi(0:) — . fi(z) <
t=1 t=1

OWT(A+YV)).

But there are no results on the dynamic regret for the cases
when f; is either a-exp-concave or strongly convex. Con-
sidering the better static regret for these cases, the dynamic
regret is also possible to be better than O(1/T(1 + V)).

As a result, we first consider the a-exp-concave case,
in which we are interested in not only upper bounding
the dynamic regret, but obtaining the trade-off between
dynamic and static regret. To the best of our knowledge,
there is only one previous work concerning the dynamic
regret in this case (Zhang et al. 2018) when V = V*,
while no prior work has been done to do the general anal-
ysis of V' and the trade-off between dynamic and static re-
grets as has been done in convex case (Zinkevich 2003;
Zhang, Lu, and Zhou 2018).

Then we move to the strongly convex and smooth prob-
lem setup in order to further improve the existing results
done in the a-exp-concave case.

As a special case of strongly convex and smooth setup,
we first consider the online least-squares problem:

1
10) = 5 lye = Al

where A; € R™*", AT A, has full rank with [T < AT A, <
ul, and y, € R™ comes from a bounded set with ||y, || < D.

In this setting, previous works consider to upper bound
either the static regret using the so-called “Follow-The-
Leader” update rule (Shalev-Shwartz and others 2012) or
the dynamic regret in terms of V* (Mokhtari et al. 2016).
Besides these regret minimization based approach, the dis-
counted recursive least-squares update (Fabre and Gueguen



1986) is also commonly used in order to track the changes
of the environment.

However, there is no result that connects such discounted
recursive update with the analysis of both static and dynamic
regret guarantees, which is necessary considering the suc-
cessful applications such as (Duong 2017). Moreover, we
want to provide the user with both the flexibility of the trade-
off on the two regrets and the user-determined improve-
ment on either static or restricted dynamic regret in not only
this online least-squares setting, but the strongly convex and
smooth setting.

Although the dynamic and the static regret can be upper
bounded by the first-order method with different stepsize
choices in (Mokhtari et al. 2016) in terms of V* and (Hazan,
Agarwal, and Kale 2007), respectively, no trade-off between
these two metrics for this specific problem setting has been
shown in the literature. This open question is solved by our
update rule to take both regret metrics into consideration.

Last but not least, we consider the strongly convex case
to obtain the general dynamic regret in terms of the path-
length V', whose step-size rule is inspired by the strongly
convex and smooth case.

Discounted Online Newton Step

In this section, we propose the Discounted Online Newton
Step algorithm to achieve the static and dynamic regrets’
trade-off.

The original Online Newton Step was proposed in
(Hazan, Agarwal, and Kale 2007), which could upper bound
the static regret of the a-exp-concave problems in the or-
der of O(logT). However, there is no result on how to
arrive the regret trade-off as shown in the general con-
vex problem using online gradient descent (Zinkevich 2003;
Zhang, Lu, and Zhou 2018).

For the a-exp-concave function f;, Lemma 4.2 of (Hazan
2016) implies that for all p < I min{;35,}, the follow-
ing bound holds for all z and y in S:

fiy) = filx) + Vi) (y — 2)+

La—y) Vi@V (@ -y). @
Also, if f; are twice differentiable, then f; is a-exp-
concave if and only if

V2fi(x) = aV fi(x)V fe(z) T (2b)

forall z € S.

In some variations on the algorithm, we will require extra
conditions on the function, f;. In particular, in one variation
we will require /-strong convexity. which means that there
is a number ¢ > 0 such that

Filo) > @) + V@) (= 2) + Sl —yl? 20

for all x and y in S. For twice-differentiable functions,
strong convexity implies a-exp-concavity for o < £/G? on
S.

In another variant, we will require that the following
bound holds for all z and y in S:

Ao 2 Fil@) + V@)~ ) + e~ o
(2d)
This bound does not correspond to a commonly used con-
vexity class, but it does hold for the important special case
of quadratic functions: f;(z) = 3||y; — Ayx||%. This fact will
be important for analyzing the classic discounted recursive
least-squares algorithm. Note that if ¢, and A; are restricted
to compact sets, a can be chosen so that f; is a-exp-concave.
Additionally, the algorithms for strongly convex func-
tions and those satisfying (2d) will require that the gradients
V fi(x) are u-Lipschitz for all z € S (equivalently, f;(x) is
u-smoothness), which means the gradient V f;(x) satisfies
the relation

IVfi(z) =V i)l <ulz—yll, vt
which is equivalent to f;(y) < fi(z) + Vfi(2)T (y — z) +
Y ||y — x||*. This implies, in particular, that V2 f;(z) < ul.

Algorithm 1 Discounted Online Newton Step
Given constants € > 0,7 > 0,and v € (0, 1).
Letf, € Sand Py = el.
for t=1,..., T do
Play 6, and incur loss f;(6;)
Observe V; = V f,(60;) and H; = V2 f,(0;) (if needed)
Update P;:

Pt = ’V.Pt71 + VtV:
P =~FP,_1+ H;

(Quasi-Newton) (3a)
(Full-Newton) (3b)

Update 6;: 0 = 15" (9t - %Pflvt)
end for

To accommodate these three different cases, we propose
Algorithm 1, in which TI§' (y) = argmin, g ||z — y|3, is
the projection onto S with respect to the norm induced by
P,.
By using Algorithm 1, the following theorem can be ob-
tained:

Theorem 1. Consider the following three cases of Algo-

rithm 1:

1. fy is «-exp-concave. The algorithm uses n <
s min{ 25, a}, e =1, and (3a).

2. fi is a-exp-concave and (-strongly convex while V fi ()
is u-Lipschitz. The algorithm uses n < {/u, ¢ = 1, and
(3b).

3. fi is a-exp-concave and satisfy (2d) while V fi(x) is u-
Lipschitz. The algorithm uses n < 1, € = 1, and (3b).

For each of these cases, there are positive constants
ai, ... ay such that

ST (fe(8) = fe(2) < —aiTlogy — aslog(1 — )

+1a_3,yv+a4

forall zq,...,zp € S such that 23;2 Izt — ze—1] < V.




Due to space limit, all the omitted proofs are moved to
Appendix. Next, we will describe some consequences of
Theorem 1.

Corollary 1. Setting v = 1 — T~" with 3 € (0,1) leads to
the following form:
Yt (fe(0) = fi(z))
<O(T'*P + BlogT +TV)
Proof. The first term is bounded as:
—Tlogy = —Tlog(l —T77)
71—
< -
~—1-T-5

where the inequality follows from —log(1 — z) < % for
0<x<l.
The other terms follow by direct calculation. O

=o(r'=?),

This corollary guarantees that the static regret is bounded
in the order of O(T'~#) since V = 0 in that case. The
dynamic regret is of order O(T'~# 4 TPV). By choosing
B € (0,1), we are guaranteed that both the static and dy-
namic regrets are both sublinear in 7" as long as V' < O(T).
Also, small static regret can be obtained by setting 3 near 1.

In the setting of Corollary 1, the algorithm parameters do
not depend on the path length V. Thus, the bounds hold for
any path length, whether or not it is known a priori. The
next corollary shows how tighter bounds could be obtained
if knowledge of V' were exploited in choosing the discount
factor, .

Corollary 2. Settingy =1 — 31/ % leads to

the form:
T
Z(ft(et) — fi(z)) < max{O(log T), O(VTV)}
t=1

The proof is similar to the proof of Corollary 1.

Note that Corollary 2 implies that the discounted Newton
method achieves logarithmic static regret by setting V' = 0.
This matches the bounds obtained in (Hazan, Agarwal, and
Kale 2007). For positive path lengths bounded by V', we im-
prove the O(1/T(1 + V)) dynamic bounds from (Zhang,
Lu, and Zhou 2018). However, the algorithm above cur-
rent requires knowing a bound on the path length, whereas
(Zhang, Lu, and Zhou 2018) achieves its bound without
knowing the path length, a priori.

If we view V as the variation budget that 27 = 21,..., 27
can vary over S like in (Besbes, Gur, and Zeevi 2015), and
use this as a pre-fixed value to allow the comparator se-
quence to vary arbitrarily over the set of admissible com-

T
parator sequence {zI € S: Y ||zt — z:—1]| < V'}, we can
t=2

tune v in terms of V.

In order to bound the dynamic regret without knowing a
bound on the path length, the method of (Zhang, Lu, and
Zhou 2018) runs a collection of gradient descent algorithms
in parallel with different step sizes and then uses a meta-
optimization (Cesa-Bianchi and Lugosi 2006) to weight

their solutions. In a later section, we will show how a re-
lated meta-optimization over the discount factor leads to
max{O(logT),O(vVTV)} dynamic regret bounds for un-
known V.

For the Algorithm 1, we need to invert P;, which can be
achieved in time O(n?) for the Quasi-Newton case in (3a)
by utilizing the matrix inversion lemma. However, for the
Full-Newton step (3b), the inversion requires O(n?) time.

In the next two sections, we will use different methods to
achieve the static/dynamic regret trade-off for the strongly
convex and smooth case considered in the Full-Newton up-
date to both avoid the high computation cost and improve
the trade-off performance.

From Forgetting Factors to a Step Size Rule

In this section, we analyze recursive least squares for the
special case of quadratic functions of the form:

1
£i(0) =510 = vl “

where y; € S.

In this case, we will see that discounted recursive least
squares can be interpreted as online gradient descent method
with a special step size rule. We will show how this step
size rule achieves a trade-off between static regret and dy-
namic regret with the specific comparison sequence 0; =
Y = argmingeg f¢(#). In the next section, we will see how
this step size rule can achieve similar trade-offs on smooth,
strongly convex functions. For a related analysis of more
general quadratic functions, f¢(6) = 3[|A:0 — y||?, please
see the appendix.

Note that the previous section focused on dynamic regret
for arbitrary comparison sequences, z; € S. The analysis
techniques in this and the next section are specialized to
comparisons against §; = argmingcg f;(6), as studied in
works such as (Mokhtari et al. 2016; Yang et al. 2016).

Classic discounted recursive least squares corresponds to
Alg. 1 run with full Newton steps, 7 = 1, and initial matrix
Py = 0. When f; is defined as in (4), we have that P, =

Z_:lo +*1. Thus, the update rule can be expressed in the
following equivalent ways:

t

0¢+1 = argmin Z Y e i(0) (5a)
ves i
t
Y= L—n

= 1_71591: 1_7t31t (5b)

= Ht — Pt_lvft (9,5) (SC)

=0, — .V fe(0r), (5d)

where 7, = =2 Note that since y;, € S, no projection

1—~t"

steps are needed.

The above update is the ubiquitous gradient descent with
a changing stepsize. The only difference between standard
methods is the choice of 7;, which will lead to the useful
trade-off between dynamic and static regret.

By using the above update, we can get the relationship
between 0,1 — 0; and 0, — 0] as the following result:



Lemma 1. Ler 0f = argmingg f(0) in Eq.(4). When using
the discounted recursive least-squares update in Eq.(5), we
have the following relation:

A
7= *

0, — 0]
= 6)
Proof. Since 07 = argmin f;(0) = y, for 0,41 — 05, we
have:

0t+1 - 9*

Opp1 —0f = 9t+1t_ Yt
= ’f :Yytat+ 11 ;{tyt Yt
= 1= (00— w)
= th (0 — 6F)

O

Recall from (1) that the path length of optimizer sequence
is denoted by V*. With the help of Lemma 1, we can upper
bound the dynamic regret in the next theorem:

Theorem 2. Let 0 be the solution to fi(0) in Eq.(4).
When using the discounted recursive least-squares update
in Eq.(5) with 1 —~ = 1/T? 8 € (0,1), we can upper
bound the dynamic regret as:

Ra < 2DT( |61 — 67 + V™)

Proof. According to the Mean Value Theorem, there exists
a vector x € {v|v = §6, + (1 — 0)6;,6 € [0,1]} such that
fe(00)=1:(67) = V fe(2)T (6:=07) < ||V fe(2)[]]10; — 6;]].
For our problem, ||V fi(x)|| = ||z — y|| < ||z|| + ||y For
|||, we have:

el = 30, + (1 — )07
<300+ (1= &)l
. 71‘,—1 _
=8| E— |+ =9Il
i¥17i71
<D

where the second inequality is due to ||y;|| < D, Vi.

As aresult, the norm of the gradient can be upper bounded
T
as |V fi(z)|| < 2D. Then we have Rgy = > (ft(ﬁt) -

t=1

T
ft(é‘;k)) < 2D " ||6: — 65||. Now we could instead upper
t=1

T
bound > ||f; — 65|, which can be achieved as follows:
=1

T
> 10 — 07|
t=1
T
=16, — 07| + ;2 10: — 67—, + 67—, — 05|

T-1 T
<16 — 671l + E 16041 = 07| + Z |

07 — 074 ||

= [16n = 671l + Z

= ||9t79*\+2||9* 074 ||

<||91—9*||+Z 6, — 9r|\+t§32||92‘—9:,1|\

where in the second equality, we substitute the result from
Lemma 1.
From the above inequality, we get

T
5" (-1 ) -0 < o - 1167 - 0|

t=2

~

—

Since (1 — “’:Vt,) = 11;} >1—, we get

T
>0 —07]l <
t=1

= 1_,Y

161 — 07 + T Z 167 — 07+ ||

=T7(|6r — 05 + tZ_:z 107 = 071 ))

T
Thus, Rg < 2D Y |10 — 07 < 2DT(||0, — 03] +
t=1

T
> |
t=2

Theorem 2 shows that if we choose the discounted factor
v = 1—T~" we obtain a dynamic regret of O(T?(1+V*)).
This is a refinement of the Corollary 1 since the bound no
longer has the 7' ~# term. Thus, the dynamic regret can be
made small by choosing a small (.

In the next theorem, we will show that this carefully cho-
sen <y can also lead to useful static regret, which can give us
a trade-off between them.

07 — 07 |- O

T
Theorem 3. Let 0 be the solution to min >, f;(6). When
=1

using the discounted recursive least-squares update in
Eq.(5) with1 — v =1/T? B € (0,1), we can upper bound
the static regret as:

Re < O(THP)

Recall that the algorithm of this section can be interpreted
both as a discounted recursive least squares method, and as a
gradient descent method. As a result, this theorem is actually
a direct consequence of Corollary 1, by setting V' = 0. How-
ever, we will give a separate proof in the Appendix, since the
techniques extend naturally to the analysis of more general
work on gradient descent methods of the next sections.

Our Theorems 2 and 3 build a trade-off between dynamic
and static regret by the carefully chosen discounted factor ~.
Compared with the result from the last section, there are two
improvements: 1. The two regrets are decoupled so that we
could reduce the 5 to make the dynamic regret result smaller
than the previous section’s one. 2. The update is the first-
order gradient descent, which is computationally efficient.

In the next section, we will consider the strongly convex
and smooth case, whose result is inspired by this section’s
analysis.

Online Gradient Descent for Smooth, Strongly
Convex Problems

In this section, we generalize the previous section idea to
the functions with /-strong-convexity and u-smoothness. We
will see that similar bounds on R, and R} can be obtained.



The assumption we use is the upper bound of the norm of
the gradient, which is |V f:(0)] < G, V0 € S, V.

Our proposed update rule for the prediction 6, at time
stept + 1is:

Or+1 = arééfgin 10 — (6 — 0V £2(60)))? (6)
S

M% and Y € (07 1)
This update rule generalizes the step size rule from the
last section.
Before getting to the dynamic regret, we will first derive
the relation between |01 — 07| and ||0; — 6f|| to try to

mimic the result in Lemma 1 of the quadratic case:
Lemma 2. Ler 0 € S be the solution to fi(0) which is

strongly convex and smooth. When we use the update in
Eq.(6), the following relation is obtained:

1(1—7)
—_ 0¥l < 1- - - —_ oF
012 et|_\/ eyl L]

Now we are ready to present the dynamic regret result:

Theorem 4. Let 0 be the solution to fi(0),0 € S. When
using the update in Eq.(6) with 1 —~ = 1/T? B € (0,1),
we can upper bound the dynamic regret:

Ra < G(2T% = 1) +u/l) (|6 — 05| + V)

Theorem 4’s result seems promising in achieving the
trade-off, since it has the similar formula as the previous
successful case of quadratic problem in Theorem 2. Next,
we will present the static regret result, which assures such
conjecture.

where 1; =

T
Theorem 5. Let 0* be the solution to ‘rgnig > f1(0). When
€5 =1

using the update in Eq.(6) with 1 —~ = 1/T? B € (0,1),
we can upper bound the static regret:
R < O(T'F)

The above two theorems’ results have the similar bounds
as the last section, which will give us the same improve-
ments discussed in the previous section over the strongly
convex and smooth problem.

In the next section, we will consider the strongly convex
problem.

Online Gradient Descent for Strongly Convex
Problems

In this section, we generalize the step-size idea from previ-
ous section to consider the problem with /-strong-convexity.
The assumption is the same as the previous section’s.

The update rule is still oneline gradient descent:

Ory1 = argn;in 16 = (6 — mV £2(6)) O
where 7; = & L, and vy € (0,1).

We can see that the update rule is the same as the one in
Eq.(6) while the stepsize 7; is replaced with Z(i%

By using the new step-size with the update rule in Eq.(7),
we can get:

Theorem 6. If using the update rule in Eq.(7) with n, =
£(1 A/ o) and vy € (0, 1), the following dynamic regret can be
obtained:

T e
Z (ft(et) - ft(%)) < ZDE—V + o5 2.
t=1 t=1
We can view V as the variation budget that z{ can vary
over S like discussed in previous section. By further restrict-
ing V. = T%, where 3 € [0,1) like in (Besbes, Gur, and
Zeevi 2015), we can get:

Corollary 3. By settingy =1— /¥, V =T7 and B €

[0, 1), for large enough T such that T*=# > 4, the following
bound can be obtained:

T

> (£80) = filz0)) <

t=1

O(VTV)

T
where {z1,22,..., 271 € S: > ||zt — ze—1|| <V}
t=2

When V' = V*, The above corollary’s result meets the
lower bound in (Besbes, Gur, and Zeevi 2015), which is of
the order optimal and requires only online gradient descent
as opposed to the complex restarting procedure in (Besbes,
Gur, and Zeevi 2015).

If we are instead concerned with the general V', which can
vary from 0 up to 2DT, as opposed to [1,2DT') in Corollary
3, the corollary below gives a general result:

Corollary 4. By setting vy = 1 — %\/ %W, the

following bound can be obtained:

> (£i00) = fi(z)) < max{O(og T), O(VTV)}.

t=1

The above result characterizes the general dynamic re-
gret, which is never shown before to the best of our
knowledge. For the special case when V = V*, R; <
O(max{log T, vT'V*}), which is an improved result com-
pared to O(max{logT,+/TV*logT}) in (Zhang et al.
2018). According to the result in (Besbes, Gur, and Zeevi
2015), our result is minimax optimal when V* > log2 T/T,
and only up to polylogarithmic factor larger when V* <
log> T/T.

Similar problem about the unknown value V' arises in the
step-size setup of Corollary 4 as in Corollary 2, which will
be solved in the next section.

Meta-algorithm

In previous sections, we discussed the results on dynamic
regret for both a-exp-concave and ¢ strongly convex cases.
But in order to obtain the general results, we need to know
the value of V' in order to setup the step-size correctly, which
may be difficult to know or approximate. In this section, we
use the so-called "Meta-algorithm’ to solve this issue by run-
ning multiple algorithms in parallel with different step-sizes.



For the online convex optimization, the "Meta-algorithm’
has been used by (Zhang, Lu, and Zhou 2018) to solve the
similar issue in the convex case. But it cannot be used di-
rectly in either the a-exp-concave or ¢ strongly convex case
due to the added O(+/T') regret from running multiple algo-
rithms.

In this section, we will show that by using appropriate
parameters and analysis designed specifically for our cases,
the Meta-algorithm can be used to solve our issues.

Algorithm 2 Meta-algorithm

Given step-size A, and a set H containing step-sizes for
each algorithm.

Activate a set of algorithms {A7|y € H} by calling
Algorithm 1 (exp-concave case) or the update in Eq.(7)
(strongly convex case) for each parameter v € H.

Sort v in descendlng order y; > 9 > --+ > 7N, and set
w]’ = 1(1+1 withC' =1+ 1/|H]|.
for t=1,...,T do

Obtain 9? from each algorithm A7.

Play 0; = > w] 6], and incur loss f; (6} ) for each 6.
'yEH

Update w; by

- wy exp(—=Afi(6)))
LTSS il exp(—A o (00)

neEH

Send back the gradient V f; (6] for each algorithm A7.
end for

Exp-concave case

Before showing the regret result, we first show that the cu-
mulative loss of the meta-algorithm is comparable to all
A7 e H:

Lemma 3. If f; is a-exp-concave and \ = «, the cumula-
tive loss difference of Algorithm 2 for any v € H is bounded
as:

S (00) ~ F6)) < ~log -

w
t=1 1

Based on the above result, if we can show that there
exists an algorithm A?, which can bound the regret

i1 (fi(07) = fi(2)) < max{O(log T), O(VTV)}, then
we can combine these two results and show that the regret
holds for 6;,t = 1,...,T as well:

zr €8,
1= 1,...,N} with T > 2 where

Ei logQ(fOZE;)] + 1L and X = «

Theorem 7. For any comparator sequence 21, . . .,

setting H = {%. =1-mn;

. 1 logT oi— 1
m = 2T\/2D2 N =

leads to the result:

T

Z(ft(et) — fi(z)) < O(max{log T, VTV})

t=1

Strongly convex case

For the strongly convex problem, since the parameter v used
in Corollary 4 is the same as the one in Corollary 2, the meta-
algorithm may also work with the same setup in Theorem 7
except the parameter A\ = «, which comes from the a-exp-
concavity.

To proceed, we first show that the /-strongly convex func-
| < G)isalso £/G?-
exp-concave. Previous works also pointed out this, but their
statement only works when f; is second-order differentiable,
while our result is true when f; is first-order differentiable.

Lemma 4. For the (-strongly convex function f; with
IV £ill < G, itis also a-exp-concave with o = £/ G>.

Lemma 4 indicates that running Algorithm 2 with
strongly convex function leads to the same result as in
Lemma 3. Thus, using the similar idea as discussed in the
case of a-exp-concavity and Algorithm 2, the theorem be-
low can be obtained:

zr €8,
N} with T > 2

Theorem 8. For any comparator sequence z1, . . .,
setting H = {% =1—-—nlt =1,...,

where 1; = ;TI%T LN =13 logQ(fong;ﬂ + 1, and
A\ = {/G? leads to the result:
T

> (fel6:) = fi(=)) < O(max{log T, VTV})

t=1

Conclusion

In this paper, we propose the Discounted Online New-
ton Step (D-ONS) for the a-exp-concave setup to not
only improve the dynamic regret result to the order of
max{O(logT),O(v/TV')} but solve the open question of
how to achieve the static/dynamic regret trade-off in this set-
ting.

Faced with the high computational cost when using this
algorithm to solve strongly convex and smooth case, we pro-
pose a new online gradient descent update to further improve
the trade-off performance, which is inspired by the anal-
ysis of the connection between discounted recursive least-
squares algorithm and the regret guarantees. This new up-
date is generalized to the strongly convex case with im-

proved dynamic regret max{O(log T'), O(vV'TV)}.

References

Abernethy, J.; Bartlett, P. L.; Rakhlin, A.; and Tewari, A.
2008. Optimal strategies and minimax lower bounds for on-
line convex games.

Besbes, O.; Gur, Y.; and Zeevi, A. 2015. Non-stationary
stochastic optimization. Operations research 63(5):1227-
1244.

Blum, A.; Kumar, V.; Rudra, A.; and Wu, F. 2004. Online
learning in online auctions. Theoretical Computer Science
324(2-3):137-146.

Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge university press.



Chiang, C.-K.; Yang, T.; Lee, C.-J.; Mahdavi, M.; Lu, C.-].;
Jin, R.; and Zhu, S. 2012. Online optimization with gradual
variations. In Conference on Learning Theory, 6-1.

Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and
Singer, Y. 2006. Online passive-aggressive algorithms.
Journal of Machine Learning Research 7(Mar):551-585.

Duong, V. H. 2017. Adaptive and robust algorithm for
lithium-ion battery states estimation for application in elec-
tric vehicles.

Fabre, P., and Gueguen, C. 1986. Improvement of the fast re-
cursive least-squares algorithms via normalization: A com-
parative study. /EEFE transactions on acoustics, speech, and
signal processing 34(2):296-308.

Hall, E. C., and Willett, R. M. 2013. Dynamical models and
tracking regret in online convex programming. In Proceed-
ings of the 30th International Conference on International
Conference on Machine Learning-Volume 28,1-579. JMLR.
org.

Hazan, E.; Agarwal, A.; and Kale, S. 2007. Logarithmic
regret algorithms for online convex optimization. Machine
Learning 69(2):169-192.

Hazan, E. 2016. Introduction to online convex optimization.
Foundations and Trends®) in Optimization 2(3-4):157-325.

Mokhtari, A.; Shahrampour, S.; Jadbabaie, A.; and Ribeiro,
A. 2016. Online optimization in dynamic environments: Im-
proved regret rates for strongly convex problems. In 2016
IEEE 55th Conference on Decision and Control (CDC),
7195-7201. IEEE.

Nesterov, Y. 2013. [Introductory lectures on convex opti-
mization: A basic course, volume 87. Springer Science &
Business Media.

Shalev-Shwartz, S., et al. 2012. Online learning and online
convex optimization. Foundations and Trends®) in Machine
Learning 4(2):107-194.

Srebro, N.; Sridharan, K.; and Tewari, A. 2010. Smoothness,
low noise and fast rates. In Advances in neural information
processing systems, 2199-2207.

Yang, T.; Zhang, L.; Jin, R.; and Yi, J. 2016. Tracking
slowly moving clairvoyant: Optimal dynamic regret of on-
line learning with true and noisy gradient. In International
Conference on Machine Learning, 449-457.

Yuan, J., and Lamperski, A. 2018. Online convex optimiza-
tion for cumulative constraints. In Advances in Neural In-
formation Processing Systems, 6137-6146.

Zhang, L.; Yang, T.; Zhou, Z.-H.; et al. 2018. Dynamic
regret of strongly adaptive methods. In International Con-
ference on Machine Learning, 5877-5886.

Zhang, L.; Lu, S.; and Zhou, Z.-H. 2018. Adaptive online
learning in dynamic environments. In Advances in Neural
Information Processing Systems, 1323—1333.

Zinkevich, M. 2003. Online convex programming and
generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning

(ICML-03), 928-936.



Appendix:

The supplementary material contains proofs of the some
results of the paper along with supporting results.

Proof of Theorem 1: Before proving the theorem, the fol-
lowing observation is helpful.

Lemma 5. If P, is updated via (3a) then |P;|| < e + %,
while if Py is updated via (3b), then | P|| < e + .

Proof. First consider the quasi-Newton case. The bound
holds at Py = €el, so assume that it holds at time ¢ — 1 for
t > 1. Then, by induction we have

[Pl = [lvPi-1 + VeVi|

<A||Poa|| + G?
2

<

< ve+ 1=

G2

<e+

1—7
The full-Newton case is identical, except it uses the bound
[ Hell < u.

O
The generalized Pythagorean theorem implies that
1 2
041 — 2| B, < ‘ 0, — —P 'V, — 2z
n P,
1 _
=10, — Zt”?)t + n*QVtTPt 'V,
2
— ;V:(Qt — Zt).
Re-arranging shows that
(Gt — Zt) < —V:P 1Vt + = (”9,5 - Ztht
— 1001 = 2li3,) ®)

Let ¢; be the upper bound on || P;|| from Lemma 5. Then
we can lower bound 6,1 — 2|, by
1011 — zell B, = 1001 — zesa |5, + 2631 — 2215,
+ 2041 — Zt+1)TPt(Zt+1 — 2)
> (1041 — 241l B, — 4Der |z — 2

©))

Combining (8) and (9) gives
1 _
V(0 — 2z) < %V:Pt 'V, + 2Dein||zes1 — 2|

n
) (||3t - Zt||?9t —10¢41 — Zt+1||?9t)

Summing over ¢, dropping the term —||0741 — 27413,
setting 2741 = 2z, and re-arranging gives

T T
1

Z (6r — 2¢) Z %Vth 'V +2DeinV
(0

t=1 =1

-P 1)(9t - Zt)

(10)

+ Sellor =2l + 5 D0 —=)"

t=

—

Now we will see how the choices of 7 enable the final sum
from (10) to cancel the terms from (2). In Case 1, we have
that (P, — P,_1) < nV,V, and the bound from (2a) holds
for p = n.In Case 2, n(P; — P;—1) = nH; < £I.In Case 3,
n(P; — Pi_1) =< nHy = H,;. Thus in all cases, 7 has been
chosen so that combining the appropriate term of (2) with
(10) gives

Z?:1(ft(9t> = fi(z)) < Zt 1 zlanP lvt (11)
+2DcynV + 2neD?

Now we will bound the first sum of (11). Note that
vjpfr—lvt = (P7',V,V/). In Case 1, we have that
V.V, = P, — vP,_1, while in Cases 2 and 3, we have
that V,V, < 1H, = L(P, — vP,_4). So, in Case 1, let
¢ = 1 and in Cases 2 and 3, let co = 1/cv. Then in all cases,
we have that

V) P71V, < (P, P —yPiy). (12)
Lemma 4.5 of (Hazan 2016) shows that

B P P
(P;', P, —yPi_y) <log Ify|Ptt1| = log |1|3tt|1| —nlog",
(13)

where n is the dimension of x;.
Combining (12) with (13), summing, and then using the
bound that || Pr|| < ¢ gives,

T
Z V,) P71V, < cplog|Pr| — canloge — nTlog~y

t=1

< conlog a conT log~y (14)
€

Recall that ¢; = € + 1Cf'7, or c3 = u,
depending on the case. Then a more explicit upper bound on
(14) is given by:

ZVTP V,; < conlog <1 + (1)) — conT log .

t=1
(15)
Combining (11) and (15) gives the bound:

Y1 (fi(0) — fulz) < —Mlogw—
CQn c3 2
IOg(1+ (- 7))+2D77<€+ >V+2neD

The desired regret bound can now be found by simplifying
the expression on the right, using the fact that ﬁ >1. O



Proof of Theorem 3:
Proof. To proceed, recall that the update in Eq.(5) is

Opp1 = 79t+ ,Ytyt
—9t ntvft(et)

where 1; = 11_;,7,5
Then we get the relationship between V f;(6;)7 (6; — 6%)
and [|0; — 6%||° — ||041 — 67]% as:

16s51 = 0*1% =116 — eV £2(6:) — 0%
= 16: — 671> = 20,V £,(6,)7 (0 — 67)
S ANSACH &
Vi(0)T(0: —07) = 5 (116 — 9*||2
+2 [V £(00)]12
Moreover, we write f;(0*) as f;(0*) = fi(6;) +

Vi (0)T (0" — 6,) + 316" — 6;]|°, which combined with
the previous equation gives us the following equation:

Fu0r) = £u6%) = 5= (116 — 9*|I2—H9t+1—9*||2)
2 VAN = 3110 =6l
< 2D2m 2 o (l1o: — 9*||2 -
16141 — 0*[1*) — 3 116" — 6.

641 — 071

where the inequality is due to ||V f¢(0:)]| < 2D as shown in
Theorem 2.
Sum the above inequality from ¢ = 1 to T', we get:

T

> (£00 ~ £u0))
B I 1/mi—1 2 L
<2D? S+ M o 0P+ 5 2 [
t 1
R e
Since 7; = 11%71, n =1, i - m{l — 1 < 0. Then for

the static regret, we have:
T
Ro = 3 (filbr) — 1u(67))
t=1

P 7 ) (16)
<20 m = 2D%(1-9) ¥ %

T
Sincey € (0,1), 3 =2

1 T 1 _ 1
St rdt= 5

= v
_ log(1—7") log(1—y) _ log(1—")
(t log(7) )’1 +T 1+ log v log v <
1 log(1—7) 7)
1_,Y+T 1+ Tog " et .
Since 1= 9 = 1/77, WY = e Since

log(l + z) > %x,:c € (0,1), log(1 + T[Ll) > éﬁ

Thus we have logk();” < 2B(T? — 1)logT. Then (1 —
)

O(T*~?), which results in Ry < O(T'~5).
O

Proof of Lemma 2:

Proof. The proof follows the analysis in Chapter 2 of (Nes-
terov 2013).
From the strong convexity of f;(0), we have

Fi(6) = Fi(60) + VL(6)7 (0 — 60) + § 10 — 60

= [+(06) + V f1(0:) (0 — 00) + V £ (0:) " (041 — 02)

—Vfe(0:)" (Oe1 — 00) + 5 10 — 04

- ft(et) + vft(et)T(9t+1 — 9,5)

+Vfe(0:)7(0 = Oe1) + 5 110 — 6]
a7
According to the optimality condition of the update rule
in Eq.(6), we have (V£(00) + - (01— 01)) " (0~ 0141) >
O,V@ S S, which is Vft(ﬂt)T(H - 9t+l) Z i(ﬁt —

0;1+1)7 (0 — 0441). Then combine with Eq.(17), we have

fi(0) > fi(00) + V fe(0)" (Or1 — 0:) ,
Fo (0 = 0041)" (0 = Or1) + 5 110 — 64|

(18)

From the smoothness of f;(0), we have fi(6;11) <

Fo0) + YV £u(61) (0141 —00) + % (0211 — 04| Since L =

Qo0 > 4y, we have f;(6:) + Y fo(00)T (6141 —
0:) > fi(0ir1) — 27“ 16,41 — 6;]|*>. Then combined with

inequality (18), we have

f(0) = fiBrs1) — o 1001 — O]

+o (0 = 0p11)" (0 — 9t+1) + 516 -6
= f1(Br41) + 2 16041 — 04
+L (0, — D)0 0,) + + 50— 6.
(19)

By setting 6 = 05 and using the fact f;(07) < fi(0i41),
we reformulate the above inequality as:

(0r — 041)7 (07 — 0,)

< — s 165 — 6.1

2
20(yv=")+2u(l-7) o

(20)
Since ||0;11 — 07> = ||0es1 — 0: + 0, — 07 ||°, we have

= [0p11 — O¢||” + 1|6; — 07|
+2(0; — 0141)7 (07 — 01)

£(1-7) w12
(1- WM) 16 — 07 ||

£(1—7) %12
< (1= maasy) 16— 67l

6241 — 07|12

IN

2L
O

Proof of Theorem 4:

Proof. We use the same steps as in the previous section.

First, according to the Mean Value Theorem, we have

Fe(00)—=fe(67) = V fe(2)T (0:=07) < |V fe()| 16 — 07,

where x € {v|v = §0; + (1 — §)0F,6 € [0,1]}. Due to the

assumption on the upper bound of the norm of the gradi-

ent, we have f,(6;) — f:(6f) < G |6, — 6f]. As a result,
T

i (fe(Be) = f2(07)) < Gt; 16 — 0711



Now we need to upper bound the term

T T

> 10 =607l D2 110 — 67]] is equal to |6y — 67 +
t=1 t=1

T

,  which is less than

ZHQt*at 1+ 0; —0F

T
16, — 0311+ z [61s1 = 07 1+ 32 (167 071 |- According

p Z 162 — 07|

to Lemma 2, we have Z [[0:41 — 65| <
=

: 1(1— *
with p = (/1 — u(l(_% Then we have t; 16 — 05| <
T T
6: =071 + Pt; 16: =071l + t; [

which can be reformulated as

T
> o =07l <
t=1

T
5 (161 = 631+ + X 167 - 64 -

1 - = 1 - J1-% = Ybo—vbi-do yhere
P bo bo ’

a = € and by = HES) Thus, 1/(1 -

_ Vbo _ ¥bo(vbo+vbo—ao) _

p) = e = - . After plug

ging in the expression of 1 — vy = 1/7°, 1/(1 —

VTP 1) Fu (/UTP — 1) Fut+/ 6T —1) fu—t)
p) = 7 <
2(0(TP=1)+u

T

Then Ra = > (fu(0:) — fe(67)) < G (1161 — 65| +
=1

T
+;2’9Z —0;4||) < GATP = 1) +u/l) (116, — 05 +

T
+ 2 1107 = 0ra])-
t=2

Proof of Theorem 5:

Proof. The proof follows the similar steps in the proof of
Theorem 3.

According to the non-expansive property of the projection
operator and the update rule in Eq.(6), we have

< 1100 =V £:(01) — 0 |?
= ||9t - 9*H - Q;Itvft(gt)T(at - 9*)
07 IV f(04) |

The reformulation gives us

641 — 0%

VAT (0, —0%) < 5 (10— 0> = 0011 — 0°[|)

’“ IV £1(00)17
(22)
Moreover, from the strong convexity, we have f;(6*) >
fe(0:) +V £(0)T (0% —0,) + £ (16" — 6, ||?, which is equiv-
alent to V f,(6,)7 (0,—0%) > fu(6:)— fo(6*)+5 16" — 64,

Combined with Eq.(22), we have

Fi6) = £1(07) < (116, — 9*H2—||9t+1—9*||2)
VO = 5 1167 — 61

Summing up from ¢ = 1 to T with |V f,(6,)||> < G2, we
get

T
Z, (70 = £167)
T
; %(”9t —0"1> = [|6e1 — 671
Z TG - i Llo* — 6. (23)

+
G /QZnt+ e

IN

T
+%§2[<7; s = Ol = o
. . 1— o 1 1 _
Since 1y = m’ 1/m = uand e M-t —tl=

Uy T =1 (=)
Wfﬂ <0.

T

For the term t; = Z W’ it can be refor-

T wa- a T w-y)

1 Ly—=t) 1 L(v=ob) 1
mulated as -~ > ey = + 5 =) <3
t=1 =2 7

+

Lo u(l=7) 1, 1oy w1 1,1 1
= utl=y) 1 — - = —1
Z Ly—t) — u + 1% tz—:2 1—vt—=1 7 +

For Z —! 757 we know that Z — < O(T) as shown

in the proof of Theorem 3. For the term 1;—7, R
¥ Ly

m Combining these two terms’ inequalities, we get

that Z ne < O(TYP).
As a result the inequality (23) can be reduced to

Z (f1(60) —
t=1

() < O(T"77)

Proof of Theorem 6:

Proof. According to the non-expansive property of the pro-
jection operator and the update rule in Eq.(7), we have
16r1 — 2] <16 — UtVth(at) -z
=16 — 2" — 2727th(9t)T(9t - zt)
+n7 [V £:(0,)|

The reformulation gives us

V0T (0 —z) < 50 (00— 2] -
+ 2|V £o(60) 1

[10+1 — z/%)

(24)

Moreover, from the strong convexity, we have f;(z;) >
Fe(0) +V f(0)T (2 — 0,) + % l|2z; — 64|, which is equiva-
lent to V £(8)7 (B — ) > fo(0s) — fo(ze) + & ||z — 04




Combined with Eq.(24), we have

fe(0) = fe(ze) < 5 (1162 — al” - H9t+1 )

HL VL O = & N1z — 0]
(25)
Then we can lower bound ||0;+1 — 2||? by
10011 = 2e[* = 101 — 2o I” + (|21 — 2]
+2(0141 — ze41) " (241 — 21)
> [|0s11 — 2ze41]1? — 4D ||ze41 — 2|
(26)
Combining (25) and (26) gives
ft(gt) ft(Zt) )
< o (1160 = 2] - ||9t+1 = zep1l”) + 22 Mlze1 — 2l
+L V£ O = £ 2 — 0]
Summmg over t from 1 to 7T, dropping the term
QTZT ||9T+1 — ZT+1|| setting 2Zr4+1 = 2T, using the in-
equality ||V f:(6;)]|?> < G2, and re-arranging gives
T

> (700 ~ ()
S%(*_6)”91_51“2"‘ Z(f_ﬁ_g)ngt_ztuz

+2D Z 2t — 2l + 5 Z un
< QDEﬁV + 7 Z ur
t=1

where for the second inequality, we use the following re-

sults: - —¢ =0, L - 1 /= 7“1_7)1(_”#1_1) <0,
1 Mt MNe—1 v

1_ 1=y 4 s

w="1 <17 and the definition of V.
O

Proof of Corollary 3:
Proof. Sincey =1—4/%,V =T and B € [0,1),1—v =
T2(=1)_ Theorem 6 leads to

T T

2D¢

Z(ft(‘gt)*ft(zt)) SiVJr— (1—+ T
t=1 t:l

The first term ==V = /TV. Then second term
> k< LT 1dn:4—+@—m“7)ﬂ =
1t =1y T 1 - In(v) 1

1 In(1—v) In(1— T) In(1—~)
E+T*1+ lln'yv - ln’;y — 1 +T 1+ ln'y’y :

1
T20-/ 1 1 1

In pos v In(1 + T%“*")—1) > G v where

the inequality is due to In(1 + z) > iz,2 € [0,1]. Then

T
RIS < O(rEA-H InT), which leads to z =

O(T). Then the second term (1 — ) OWTV),
which completes the proof. - O

Proof of Corollary 4:

Proof. Since v = 1 — %\/%’?T”} and V €

[0,2DT], 1/2 < ~ < 1. Then the integral bound in the

T
proof of Corollary 3 can be used, which is > 1%,%
=1

7+T_|_1n(1 ’Y)_

In~y
Next we upper bound each term on the right-hand-side of

2DT
V - \/ max{V,log? T/T}V <

<1+ (1—y) (T + 20,

In~y

Theorem 6 1nd1v1dually

OWTV). (1 —7)

In(1—7)
In~y
max{V,log2 T/T
~In(}y/ mexbper T
max{V,log2 T/T
~In(1- 4/ el /D))

1 max{V,log2 T/T}
—In(5 2DT )

l\/max{v,logz T/T}
T A —7 »J s—
171\/max{v,1og2 T/T}

3V~ sospT

2DT 2DT
< ln( max{V,log? T/T} ) max{V,log? T/T}

O(In(T/1og T) o)
SO( )

where the first inequality follows by using In(1 + z) >

iz,2€10,1),and 1 — \/%<1

Thus, (1 — 7) E T 7 < max{O(logT),O(VTV)}.

The final result follows by combining the two terms’ re-
sults. O

Proof of Lemma 3:

Proof. The first part of the proof is the same as the first
part of the result in the Proof of Lemma 1 in (Zhang, Lu,
and Zhou 2018), which follows the result in (Cesa-Bianchi

t
and Lugosi 2006). We define L] = > f;(0)), and W; =

i=1
> w] exp(—alL]).
YEH
The following update is equivalent to the update rule in
Algorithm 2:

w] exp(—alL] ;)

ZH wi exp(—ali_y)’
He

e
;=

w t>2. 27)

First, we have

logWr =log ( > wexp(—alL}))
YEH
>1 N —al;
og(I’yneagfw1 exp(—aL}.)) (28)

=—«a {Y%l% (L% + 1 log )



Then we bound the quantity log(W;/W;_1). For t > 2,
we get

log(Wt 1)
> w] exp(—alLy)
— log( YEH 1
> w exp(— aLt )
Sere w] expl— oLy ) exp(— aft(f??))) (29)
Zweu wy exp(—aLy ;)

~1og (¥ ] exp(~afi(6])

YEH

:log(

where the last equality is due to Eq.(27).

When ¢t = 1, logW; = log ( > w] exp(—ozfl(ﬂiy)))
YEH
Then log W can be expressed as:

log Wy =logWi + Z log (Wt 1)
(30)
= S tog ( ¥ ui exp(-afi(6])).
t=1 YEH
The rest of the proof is new.
Due to the a-exp-concavity, exp(—a fi (3, 5 wi 0])) >

> en wi exp(—afi(67)), which is equivalent to

log (32, ey, w7 exp(—afi(6]))) < —afi( 5, epwi0])

—afi(6:)
3D
Combining the Inequalities (28), (30), and (31), we get

—a min L’Y 10 — < — (6y)
7GH( g ;ft t)

which can be reformulated as

T T
1 1
< mi N + = log —
> Ji6) < mip (}t_lj Fl0]) + 3 log )

Since it holds for the minimum value, it is true for all
v € H, which completes the proof.

O
Proof of Theorem 7:
max{—5—V,1
Proof. When y = y* = 1 — LlsT max{ Vit _
1 — »", we have Zf:l(ft(ez) - fi(z0)) <

max{O(logT),O(v/TV)} based on the Corollary 2.

slnceo<v<2TD,;Tl‘§l_n*g%

According to our definition of 7;, minn; = % Tl% and

% < maxmn; < 1, which means for any value of V, there
always exists a 1, such that

1 logT _,._4
=—-— <" <2 =
Tk 9 T\/@ SN > 4k MNk+1
where k = |1 logz(max{logLQTV, 1H]+1

Since0<77kS%,%S’ykzl—nk<landfyk2'y*.

According to Theorem 1, we have

SLL(Fe(67%) = fu(z) < —aiTlog v — az log(1 — k)

+122-V + as.

Tloi_

For the first term on the RHS, —T'log vy, = o~

Tlogw%

For the second one, —log(1 — ;) = —log (2 — 27;) =
—log $2n. Since 1 > 2n;, > n*, 32n, > Lin*, which
leads to —log £2n;, < —login* and —log(l — ;) <
—log in* =log2 — log(1 — ~v*).

For the third one, ——V = LV = 2V < 2V =
) 1= Nk 2n5 n
V-

Since all the terms can be expressed in terms of v* in the
original form without adding the order, based on the Corol-
lary 2, we get:

T
D (fel07%) = fe(z)) < max{O(log T),0(VTV)} (32)

t=1

What’s more, from Lemma 3 we get

S (fi(00) —

fi0%) <3 w7
< Llog(k(k +1)) (33)
<2l L log(k +1)
< O(log(log T))
Combining the above inequalities (32) and (33) completes
the proof.

Proof of Lemma 4:

Proof. Let g(x) = exp(—af(x)). To prove the concavity of
g(x), it is equivalent to show (Vg(z) — Vg(y),z — y) <

0,2,y € 8. Since Vg(z) = exp(—af(2))(~a)V (),
it is equivalent to prove that (exp(—af(z))Vf(z) —
exp(—af(y))Vf(y),z —y) > 0, which can be reformu-

lated as
exp(—af(x)(Vf(z),r —y) > exp(—af(y))(Vf(y),z —y)
(34)

Without loss of generality, let us assume f(z) > f(y).
Due to ¢-strong convexity, f(z) > f(y) +(Vf(y),x—y) +
L)l — y||?, which leads to

(Vf(y),z

What’s more, f(y)
which leads to

(Vf(x),x —y) = f(z) = fly) +

Combining inequalities (34), (35), and (36), it is enough
to prove that exp(*af(fv))(f(x) —fly) + 5llz —ylI*) >
exp(—af(y))(f(z) — f(y) — 5]z —yl|*), which can be re-
formulated as 7||x y||?(exp(—af(x)) +exp(—af(y))) >
(f(x) = f(y))(exp(—af(y)) — exp(—af(x))). When x —

y = 0, it is always true. Let us consider the case when ||z —

14
—y) < f@) = f) —gle—yl* 3G9

> f(2)+{Vf(z),y—z)+ 5]zl

Cle—yl* 6



y|| > 0. Then we need to show that %(1 + exp (a(f(z) —

) exp a(f(w)*f(’l/)) -
W) = Mpe ( =] )

bounded gradient and Mean value theorem, W <G,
which means it is enough to show that

exp (a(f(2) - f()) — 1

[l = yll

Due to

20(1+9XP( (f@)-FfW))) =

According to the Taylor series, exp( (x)
e}

f@)) = 1+ a(f@) — ) + He*(f@) -
W) + o+ L (f@) - fw)"n = o
Thus, — (a(f(m)ff(y)))f N S )

lz—wyll Te—yl]
éoﬂ(f() - fly ))Tgﬁy) + -+ Tha (f(x) —
n—1 f(x . z)—
f(y)) %m — 00. Since w < G, we
have
exp (a(f(:v)ff(y))) -

llz—y]l
SaG—i—%OzyQ(f(x)—f(y))G—i-... (38)

n—1
e (fl@) = fy)" G
For the LHS of inequality (37), it is equal to

&+ ass(f(x) — f(y) + 510255 (f(2) — f(y))?
+- 4 7},04 Qec(f(x)ff(y))”,n%oo

(39)

If we compare the coefficients of the RHS from the in-

equality (38) with the one in (39) and plug in o = £/G?, we

see that it is always smaller or equal, which completes the
proof.

O

Proof of Theorem 8:

Proof. As in the proof of Theorem 7, all we need to show
is that there exists an algorithm A7, which can bound the

regret 1, (£:(67) — fi(2)) < O(max{log T, VTV}).
max vV,
When y = 7" = 1 - JleaT /" i) g
we have 3, (fi(67

)= fi(21)) < O(max{logT, \/W})

based on the Corollary 4.
Since 0 <V < 27D, ;ﬁl <y <l
According to our definition of 7;, minn; = % :;% and

% < maxm; < 1, which means for any value of V, there

always exists a 1, such that

1 logT _,._4
Tk 9 T\/ﬁ SN > 4k Mk+1
where k = [ 1 logz(max{log%V, 1] +1

Since0<77kS%,%S’ykzl—nk<1andfyk2'y*.

According to Theorem 6, we have

T T
2D¢ G? 1
(07%) —(1-
E: (fe(0]*)—fs Zt))_1_7 V+ 7 ( %);:11_712
_ 1y _ 2
For the first term on the RHS, 1—— ﬂ/ V= n—kV = MV <
n%v ===V

For the second one, 1 — v, < 1 — ’y* According to the

T
. 1 log(1—k)
proof in Corollary 4, t; 557 =1 Tog 7r
log(l—) _ logm, _  —logm 40)
log Vi log(1 —nr)  —log(1 —mx)

Since nr, > $n*, log e > log 4n* and
1
0 < —logm, < —log 577* =log2 — logn*. 1)

Since m; > in*, 1 —m, < 1 — 1n* Thenlog(l — ;) <
log(1 — $n*), which results in

1
—log(1 — ) = —log(1 — 5n") > 0. (42)
Combining inequalities (41) and (42) with Eq.(40), we get
log(1—~) log 2—log1 n*
lo: N —1 1—35n*
g Yk oglgg2ﬂl ) - log " (43)
—log(l—gn*) = —log(1—37n*)
For the first term on the RHS,
— _ L= — 1
lOg(l 27 ) log (17%\/max{vélg%2 T/T} )

1 [/ max{V,log? T/T}
— log (1 + 4 2DT )

1-1 \/max{V,log2 T/T}
4 2DT

1. /max{V,log2 T/T}
> 1 4 2DT

1 \/max{V.logz T/T}

> 1 max{Vlog2 T/T}
= 38 2DT
1

where the first inequality is due to log(1 + z) > jz,z €

[0,1] and the second one is due to 4/ %%ZT/T} > 0.
As aresult,
8 \/ max{vlog2 T/T} log 2

<38; Tog T\/2D10g2 < O(T).
For the second term on the RHS of Eq.(43),

—logn* =log (%/%)

<log2+ 5log2D + jlog ol

[N

log 2
—log(1—3n*)

IN

Combining the inequalities for —logn* and — log(1 —
in*), we get % < (log2 + 1log2D +
%log logT) Tog T V 2D < O( )

log(1—
As aresult, % <O(T) <O(T).




Since using v does not increase the order when replacing
with v*, we get

T
> (£67) = fil2)) < O(max{log T, VTV})

t=1

which combining with the result of Lemma 3 completes the
proof.
O

Online Least-Squares Optimization Consider the online
least-squares problem with:

1
f0) = 5 llye = A" (44)

where A; € R™*", AT A, has full rank with [T < AT A, <
ul, and y; € R™ comes from a bounded set with ||y|| < D.

In the main paper, we analyzed the dynamic regret of
discounted recursive least squares against comparison se-
quences z1, . . . , zr with a path length constraint 23:2 |z —
zt—1]] < V. Additionally, we analyzed the trade-off be-
tween static and dynamic regret of a gradient descent rule
with comparison sequence 6; = argmingcg f;(6). In this
appendix, we analyze the trade-off between static regret and
dynamic regret with comparison sequence ; achieved by
discounted recursive least squares. We will see that the dis-
counted recursive least squares achieves trade-offs depend
on the condition number, § = u/l. In particular, low dy-
namic regret is only guaranteed for low condition numbers.

Recall that discounted recursive least squares corresponds
to Alg. 1 run with a full Newton step and 77 = 1. In this case,

t .
= Z ’Yz_lAz;.l_qu?H»lfi = ’yPt,1 + AtTAt, and the

i=1
update rule can be written more explicitly as

t . —1 t .
Orp1 = ( Z 7171Az+1—iAt+17i) (Z 7171A31+1—iyt+17i)
| i=1

45)
The above update rule can be reformulated as:

Ors1 = 0; — PV £1(6,). (46)

Before we analyze dynamic and static regret for the
update (46), we first show some supporting results for
lye — Aya]| and |V fi(2)]] o = 86, + (1 -
8)0;, 8 € (0,1}

Lemma 6. Let 0; be the result of Eq.(46), and 0; =
argmin f;(0). For z € {v|jv = 6, + (1 —B8)0;,5 € [0,1]},
Ifllyell < D, then ||ys — Agz|| < (u/l+1)D

Proof. |lys — Aszl| < || Adlly =]l + llye
Vo1 (ATA;) < yu. For ||z||, we have |z| =
H59t+(1— BY6; 1| < BII6el| + (1 B) [16;]]-

or the term [16:]]5 [16:]] =

1,t=1
H Z’Yz PAT A z) (Z’YzlAtTiyt—i)H,
i=1

bounded by

> and [[Agll, =

Wh1ch can be upper

t—1 —1 t—1

H( > ’71_1‘4;—1‘At—i) ( > ’71_1A?—iyt—i)
i=1 2 Il Vi=1

Then we upper bound these two terms individually.

1

> (S 7 TAT A)
. T 1:11_ o
Since I =< A A, =< ul, 1ZW 7y =
t—1 t—1
SoyittAl A = 17117 ul. Thus,
i=1

t—1 . t—1
on(2 yiTtAT A > l17117 , which results in

1—y
< I—t-1y"
2

=1
the term H(Zvl_lz‘lf_iyti) ’,

=1
H S| < g P AT ] <

t—1 -1
(_ 71_1A;_1At7i)

we have

Z’YZ AT H2||yt il < _1 fD Then we have
H9tH < VD,

For ||0* , we have [|07] = ||(ATA) ATyl <
AT AN, AT ||, llvell < ¥D. Thus, ||| < ¥“D

and [jy; — Agz|| < [[A¢ll, [|2[] + IIytH < (u/l+1)D

O

Corollary 5. Let 0, be the result of Eq.(46) and 0} =
argmin f;(0). For z € {vjv = 86, + (1 —B)0;,5 € [0,1]},
we have ||V fy(2)]| < u(u/l+1)D

Proof. For ||V fi(x)||, we have |V fi(x)
|‘A?Atx_A?yt|| < HAtTHz HAtx—ytH
Vu(u/l + 1)D, where the second inequality is due to
Lemma 6 and the assumption of A7 A; < ul.

IA I

O

Moreover, we need to obtain the relationship between
041 — 0 and 6; — 0 as another necessary step to get the
dynamic regret.

Lemma 7. Let 0 be the solution to fi(0) in Eq.(44). When
we use the discounted recursive least-squares update in
Eq.(46), the following relationship is obtained:

Orr1 — 0f
= (I =7 "PVAT (I + Ay P AT) A (60— 67)

—1
= (1+y7 PN ATA) (00— 0p)

t .
Proof. If we set &, = Y fyl_lAalﬂ-ytJrl_i = 7P +
i=1
AtTyt, then according to the update of 6,1 in Eq.(45), we
have 9t+1 = (A?At + ’YPtfl)_l(A;}ryt + ’}/q)tfl), which
by the use of inverse lemma can be further reformulated as:
b1 = (771Pt111 - 772Pt:11A31(I+
Aw—lptillA;F)—lAtPtjl) (Afy +~4®4-1)
(47)



Then for 0,1 — 0 = 0,41 — (AT A;)~1 ATy, we have:

Ors1 — 0F
= (I =7 " PNAT I+ Ay T P A A B+ T P Ay

®

_(772Pt7—11A?(I+At7 P, 1A ) (A At) I)A?yt

(43)

We want to prove @ @ @ -0y) =
(D~ (A7 4) " ATy) = (3).

Since A(I + BA)™'B = AB(I + AB)™! = (I +
AB)~!AB, for any compatible matrix A and B, we have:

©

—[I =y PN AT (T + Ay P AT T A (AT A AT
—[ - T4y TP AT AT R AT A (A AT Ay
—[AT A =T+~ P AT Ay P ] AT e

(49)
Also, for any compatible P, we have (I + P)~! =
I — (I + P)"'P. Then (I + v 'PLATA)"' =
I — (I 4+ A~ 'POLATA) 'y ip7hAT A,

Then @ = —[(ATA)™r — +y7'PT) + (I +
v PV AT A) Ty TP TIAT AP ATy Com-
pared with + , we are left to prove

(I + A '"PYATA) 2P AT AP =
Y 2PTYAT(I + Ay 'PILAT)YA,PTY, which s
always true.

As aresult, we have 0,41 — 07 = (I — v 1P AT (I +
ArytP AT) 71 A) (6 — 07), which can be simplified as
01 — 07 = (I +7 P ATA) (0, — 07). .

Corollary 6. Letr 0] be the solution to f;(0) in Eq.(44).
When we use the discounted recursive least-squares update
in Eq.(46), the following relation is obtained:

101 = 07 < /T ity 16 — 67

Proof. From Lemma 7 we know that
* —1 p—1 AT -1 *
Or11 — 07 = (I +97 P4 At) (0: — 07)
which can be reformulated as:
Oei1—0; = P2 (I+

’Y_lptil/QAt At 1/2) 1P1/2(9t—9t)

which gives us the following inequality:

16241 — 67|l
_1 2 _ —-1/2 —1 2
f‘ 2 oAt ar A

P3| 16— 671
Then we will upper bound the terms on the right-hand side
individually.

Since I =< AtT A =

-1

Z*y’ AT A = 5l

For the term “Ptill/Q’ , we have H 71/2“ =

2
. 1—ry —1/2

ﬁ Since on(Pi-1) 2 5 i, <
1 1 v
7

For the term HPtl_/f’ o we have HP;—/?H o1(Pi—1).

1

Since o1 (P;—1) < 1_11: u,

pL/2
t/lH <f\/7
For the term H(1+7—1Pt 11/2ATAf —1/2) ’

>

2
we  have H (I+~tP Y2AT AP )~ H -
1o, (I+y P2 AT AP, For  the  term
on(I+~y~ 1P /2 AT A, P 11/2), it is equal to
1+ o, (v 1PZY2AT A,P,4/?), which is lower bounded
by 1+ o (PY 2>an<AtTAt>on<P:{ ).

T2 L and o1(P—1) <

Since o,(P,_/") = Vo1 (Pi1) _

1—~t 1t —1/2 1 1—v
—u, we have o,(P_ /") = oAV

Together  with o, (AT Ay) > I, we have

on(P, _1/2ATA,5 _1/2) > %11;71, which results in

|7+ PR AT AP

st
— l 1— .

IS T v e
Combining the above three terms’ 1nequalities, we

have ||0;11 — 07| < %m%”et o7l <
T_a |, o).

I uy+l(1—

O

Now we are ready to present the dynamic regret for the
general recursive least-squares update:

Theorem 9. Let 6} be the solution to fi(0) in Eq.(44) and
0 = u/l > 1 be the condition number. When using the
discounted recursive least-squares update in Eq.(46) with

1
Y < s and p = %% < 1, we can upper
bound the dynamic regret:

Rd<f(u/l+1)D7(|‘91 07| |++ZH0’5 —0;40l)

t=2

Proof. The proof follows the similar steps in the proof of
Theorem 2. First, we use the Mean Value Theorem to get

fi(00) = fu(07) = V ful@)" (0:—07) < ||V ful=)| |6 — 07 ]I,
where © € {v|v = 86, + (1 — B)6;, 8 € [0, 1]}. According
to Corollary 5, |V fi(2)]| < Vu(u/l + 1)D. As a result,
T

Py (fe(6:) = £u(67)) < Vu(u/l+1)D Z 16 — 07 |-

Now we need to upper bound the term

T
||9t*9*|\ ;H@—Hfll = =6l +

HMHHMﬂ

Het 07 —0f| < 61— 67| +



T_1 T
t; 1041 — 07| + ;2’92‘ —0; 4] < len—o5ll +
T T
Yo 01 = O] + D2 ‘
i=1 i=2

T
lary 6, (|01 =071 < pll0: — 67| t;llﬂt*@‘ll <

0y — 9;*_1H. According to Corol-

. which

T T
160 =631l + p 3 1160 =071 + ;2||9:—9:_1

T
can be reformulated as Y [|6; — 0] < =5 (161 — 607]| +
=1

T T
+t;2]9; —0;_4]|)- Then Ry = t; (f:(0:) — f2(07)) <

T
Va(u/U+ DD (160 = 61l ++ 30 167 — 01 )-

In the above Theorem 9, the valid range of 7 is in
(0,1/(6%/2 — § 4 1)). Let us now examine the requirement
of =y to achieve the sub-linear static regret:

T
Theorem 10. Ler 6* be the solution to min Yy fi(9).
=1

When using the discounted recursive least-square; update
in Eq.(46) with 1 — v = 1/T%, « € (0, 1), we can upper
bound the static regret:

Rs < O(T'™9)

Proof. The proof follows the analysis of the online Newton
method (Hazan, Agarwal, and Kale 2007). From the update

in Eq.(46), we have ;1 — 0* = 6, — 0* — P, 'V f(6;)
and Pt(9t+1 - 9*) = Pt(et - 0*) - Vft(Gt) Multlply-
ing the two equalities, we have (0,11 — 0*)T P, (0,1 —

0%) = (6: — 0*)"Pi(0; — 0%) — 2V f:(6:)" (6 — 6%) +
V fi(6:)" PV £4(6,).

After the reformulation, we have V f;(0;)1(0; — 6*) =
IV F(0)T P IV (00 + 5 (0:—0%) T Py(0,—0%) — & (0p41 —
0°)" Pi(Orr1 — 0°) < $V[(0:)" PV f(0:) + 5(0: —
0°)" Py(0: — 0°) — 5(0141 — 0" )"y Pi(Or41 — 67).

Summing the above inequality from ¢ = 1 to 7', we have:
T

S VAO) O - 07) < X AVRO)PVAG) +

301 — )T P60 — 07) + Z 30 — 09T (P —
YP_1)(0; — 6%) — $(0741 — 9 ) ’YPT(9T+1 —-07) <
f: L £, (6)7 PN Fo(0) L (61 —0%)T (Py— AT 4,) (6
e*>+z L(0, — 0)T AT A, (0, — 0°).

Since P; = AiAl and f(6;) — f:(6%) =
0*) — 5(6, —0%)

Vfe(00)" (0 —

AT A, (0 — 0*), we reformulate the above

inequality as:
T
> (400~ 10))

(Vft(et) (0, — 0°) — 3(0, — 0*)T AT A,(0, — 0*))

’ﬂ

o~
\ |

T
< 3 5V A(0)T PV fu(0)
t=1
T
=> %(Atgt yo) T AP A (A — ye)
t=1
T
<3 Loy (P Y2AT APV || AW, — il
t=1
(50)
Since o3 (P TPAT APV < ol (P7 Yo (AT A,) =

( 7701 (A7 Ay). From the proof of Corollary 6 we know
that o,(P) > = A’l and o1(ATA;) < wu. Then

o1(P, _1/2ATA,5 _1/2) < »l1=%  Agaresult, we have
I 1—~

T T
2 (4000 = £107) < X 31k A~ wil?
t= t=
T
< t; 341 (w/l+1)2D?
<O(T'=)

(51)
where the second inequality is due to Lemma 6 and the third
inequality is due to the fact that E 1/(1 =~ < O(T) as
shown in the proof of Theorem 3

O

Recall that the valid range of - in Theorem 9 is
(0,1/(6%% -6 + )) while having sub-linear static regret
requires y = Tu L. Although for some specific T, there
might be some intersection. In general, these two are con-
tradictory. However, as discussed in the main body of the
paper, more flexible trade-offs between static and dynamic
regret can be achieved via the gradient descent rule.



