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Abstract

Recursive least-squares algorithms often use forgetting fac-
tors as a heuristic to adapt to non-stationary data streams.
The first contribution of this paper rigorously character-
izes the effect of forgetting factors for a class of on-
line Newton algorithms. For exp-concave and strongly con-
vex objectives, the algorithms achieve a dynamic regret of

max{O(log T ), O(
√
TV )}, where V is a bound on the

path length of the comparison sequence. In particular, we
show how classic recursive least-squares with forgetting fac-
tor achieves this dynamic regret bound. By varying V , we
obtain a trade-off between static and dynamic regret. In or-
der to obtain more computationally efficient algorithms, our
second contribution is a novel gradient descent step-size
rule for smooth, strongly convex functions. Here, we obtain
static regret of O(T 1−β) and dynamic regret of O(T βV ∗),
where β ∈ (0, 1) and V ∗ is the path length of the se-
quence of minimizers. By varying β, we obtain a trade-off
between static and dynamic regret. Finally, we characterize
the strongly convex problem and obtain the dynamic regret

of max{O(log T ), O(
√
TV )}.

Introduction

Online learning algorithms are designed to solve predic-
tion and learning problems for streaming data or batch data
whose volume is too large to be processed all at once. Ap-
plications include online routing (Hazan 2016), online auc-
tions (Blum et al. 2004), online classification and regression
(Crammer et al. 2006), as well as online resource allocation
(Yuan and Lamperski 2018).

The general procedure for online learning algorithms is as
follows: at each time t, before the true time-dependent ob-
jective function ft(θ) is revealed, we need to make the pre-
diction, θt, based on the history of the observations fi(θ),
i < t. Then the value of ft(θt) is the loss suffered due to the
lack of the knowledge for the true objective function ft(θ).
Our prediction of θ is then updated to include the informa-
tion of ft(θ). This whole process is repeated until termina-
tion. The functions, ft(θ), can be chosen from a function
class in an arbitrary, possibly adversarial manner.
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An import class of online learning problems is online con-
vex optimization, (Zinkevich 2003), which focuses on the
case of convex objective functions. The most basic perfor-
mance metric in online convex optimization is static regret
Rs, which measures the difference between the algorithm’s
cumulative loss and the cumulative loss of the best fixed
decision in hindsight (Cesa-Bianchi and Lugosi 2006). For-
mally, the static regret is defined by:

Rs =

T
∑

t=1

ft(θt)−min
θ∈S

T
∑

t=1

ft(θ)

where T is the time horizon, S is a compact convex con-
straint set with ‖x‖ ≤ D, ∀x ∈ S . Without loss of general-
ity, we assume throughout the paper that D ≥ 1.

Another performance metric is called the dynamic regret
Rd(z

T
1 ) (Zinkevich 2003) which is defined as

Rd(z
T
1 ) =

T
∑

t=1

ft(θt)−
T
∑

t=1

ft(zt)

where θt, zt ∈ S , and zT1 is an arbitrary comparator se-
quence. (Besbes, Gur, and Zeevi 2015) uses a specific se-
quence of zT1 , which is zt = θ∗t , the optimal solution of the
current ft(θ).

For the static regret Rs, a number of algorithms are pro-
posed to upper bound it in terms of the time horizon T un-
der different properties of the convex function ft(θ). For the
general convex one, (Zinkevich 2003) showed that Rs can

be upper bounded in the order of O(
√
T ). For the case when

ft(θ) is either strongly convex or exp-concave over the con-
vex set S, (Hazan, Agarwal, and Kale 2007) showed that we
could upper bound the Rs in the order of O(log T ). These
two upper bounds were shown to be minimax optimal by
(Abernethy et al. 2008). For the smooth convex ft(θ), (Sre-
bro, Sridharan, and Tewari 2010) proved that it can be upper
bounded in terms of the cumulative loss of the fixed optimal
solution, which is preferable when it is much smaller than
T . Such sub-linear regret upper bounds guarantee that on
average the predicted variable θt will converge to the global
optimal solution θ∗ as T → ∞.

For the dynamic regret Rd, it is usually not upper bounded



merely in terms of T . One notion is in terms of the path-
length V (Zinkevich 2003), which is defined as

V =

T
∑

t=2

‖zt − zt−1‖ (1)

And we use V ∗ when zt = θ∗t .

According to (Zinkevich 2003), Rd can be upper bounded

by O(
√
T (1 + V )) when ft(θ) is convex. Such upper

bound is later improved by (Zhang, Lu, and Zhou 2018)

to O(
√

T (1 + V )) by running an order of O(log T ) algo-
rithms in parallel in order to cover the domain of the possi-
ble stepsizes. For the strongly convex and smooth function
ft(θ), Rd is improved to the order of O(V ∗) by (Mokhtari
et al. 2016).

Other notions of the comparator sequence for the dynamic
regret include the variant of path-length (Hall and Willett
2013), functional variation (Besbes, Gur, and Zeevi 2015),
as well as gradient variation (Chiang et al. 2012).

The contributions of this paper are the following four
folds:

1. For the α-exp-concave problem, we propose the Dis-
counted Online Newton Step (D-ONS), which has im-
proved performance of the dynamic regret upper bound

max{O(log T ), O(
√
TV )} as compared to the previous

result O(
√

T (1 + V )) in (Zhang, Lu, and Zhou 2018).
Furthermore, it solves the open question of how to achieve
the trade-off between dynamic and static regrets by a sim-
ple user-determined discounted factor β ∈ (0, 1).

2. Although the analysis in the α-exp-concave problem ap-
plies to some strongly convex and smooth problems, it is
not computationally efficient. To circumvent such obsta-
cle and further improve the regret trade-off performance
in the strongly convex and smooth case, we start from the
online least-squares problem. For the first time we can not
only make the connection between the discounted recur-
sive least-squares algorithm (Fabre and Gueguen 1986)
and the regret guarantees it can achieve, but show that the
two regrets’ trade-off can be achieved by tuning the dis-
counted factor β ∈ (0, 1) to achieve both Rs ≤ O(T 1−β)
and Rd ≤ O(T β(1 + V ∗)), which is an improved result
compared to the result from the α-exp-concave case.

3. For the strongly convex and smooth case, we propose a
new online gradient descent update inspired by the anal-
ysis in the online least-squares problem. This new update
rule is not only computationally efficient but enjoys all the
same improvements in the special least-squares problem.
These user-determined regret trade-off results can provide
the flexibility in the priority of the dynamic or static regret
minimization while maintaining the other one in a reason-
able order.

4. Inspired by the proposed new step-size rule,
for the strongly convex case, we obtain

max{O(log T ), O(
√
TV )} dynamic regret bound

for the general V , which is better than O(
√

T (1 + V ))
in (Zhang, Lu, and Zhou 2018).

Notation. For the n dimensional vector θ ∈ R
n, we use

‖θ‖ to denote the ℓ2-norm. The gradient of the function ft
at time step t in terms of the θ is denoted as ∇ft(θ).

For the matrix A ∈ R
m×n, its transpose is denoted by A⊤

and A⊤A denotes the matrix multiplication. The inverse of
A is denoted as A−1. When m = n, we use ‖A‖2 to rep-
resent the induced 2 norm of the square matrix. For the two
square matrix A ∈ R

n×n and B ∈ R
n×n, A � B means

A−B is negative semi-definite, while A � B means A−B
is positive semi-definite. For a positive definite matrix, M ,
let ‖x‖2M = x⊤Mx. The standard inner product between

matrices is given by 〈A,B〉 = Tr(A⊤B). The determinant
of a square matrix, A is denoted by |A|. We use I to repre-
sent the identity matrix.

Problem Statement and Motivation

In this section, we discuss the problems that we consider and
the motivations behind them.

First, let us see the definition of the ft being α-exp-
concave (Cesa-Bianchi and Lugosi 2006):

Definition 1. A convex function ft: S → R is α-exp-
concave if exp(−αft) is concave over S and α > 0.

For the general convex problem, (Zhang, Lu, and Zhou

2018) shows that Rd(z
T
1 ) =

T
∑

t=1
ft(θt) −

T
∑

t=1
ft(zt) ≤

O(
√

T (1 + V )).
But there are no results on the dynamic regret for the cases

when ft is either α-exp-concave or strongly convex. Con-
sidering the better static regret for these cases, the dynamic

regret is also possible to be better than O(
√

T (1 + V )).
As a result, we first consider the α-exp-concave case,

in which we are interested in not only upper bounding
the dynamic regret, but obtaining the trade-off between
dynamic and static regret. To the best of our knowledge,
there is only one previous work concerning the dynamic
regret in this case (Zhang et al. 2018) when V = V ∗,
while no prior work has been done to do the general anal-
ysis of V and the trade-off between dynamic and static re-
grets as has been done in convex case (Zinkevich 2003;
Zhang, Lu, and Zhou 2018).

Then we move to the strongly convex and smooth prob-
lem setup in order to further improve the existing results
done in the α-exp-concave case.

As a special case of strongly convex and smooth setup,
we first consider the online least-squares problem:

ft(θ) =
1

2
‖yt −Atθ‖2

where At ∈ R
m×n, AT

t At has full rank with lI � AT
t At �

uI , and yt ∈ R
m comes from a bounded set with ‖yt‖ ≤ D.

In this setting, previous works consider to upper bound
either the static regret using the so-called ”Follow-The-
Leader” update rule (Shalev-Shwartz and others 2012) or
the dynamic regret in terms of V ∗ (Mokhtari et al. 2016).
Besides these regret minimization based approach, the dis-
counted recursive least-squares update (Fabre and Gueguen



1986) is also commonly used in order to track the changes
of the environment.

However, there is no result that connects such discounted
recursive update with the analysis of both static and dynamic
regret guarantees, which is necessary considering the suc-
cessful applications such as (Duong 2017). Moreover, we
want to provide the user with both the flexibility of the trade-
off on the two regrets and the user-determined improve-
ment on either static or restricted dynamic regret in not only
this online least-squares setting, but the strongly convex and
smooth setting.

Although the dynamic and the static regret can be upper
bounded by the first-order method with different stepsize
choices in (Mokhtari et al. 2016) in terms of V ∗ and (Hazan,
Agarwal, and Kale 2007), respectively, no trade-off between
these two metrics for this specific problem setting has been
shown in the literature. This open question is solved by our
update rule to take both regret metrics into consideration.

Last but not least, we consider the strongly convex case
to obtain the general dynamic regret in terms of the path-
length V , whose step-size rule is inspired by the strongly
convex and smooth case.

Discounted Online Newton Step

In this section, we propose the Discounted Online Newton
Step algorithm to achieve the static and dynamic regrets’
trade-off.

The original Online Newton Step was proposed in
(Hazan, Agarwal, and Kale 2007), which could upper bound
the static regret of the α-exp-concave problems in the or-
der of O(log T ). However, there is no result on how to
arrive the regret trade-off as shown in the general con-
vex problem using online gradient descent (Zinkevich 2003;
Zhang, Lu, and Zhou 2018).

For the α-exp-concave function ft, Lemma 4.2 of (Hazan
2016) implies that for all ρ ≤ 1

2 min{ 1
4GD , α}, the follow-

ing bound holds for all x and y in S:

ft(y) ≥ ft(x) +∇ft(x)
⊤(y − x)+

ρ

2
(x− y)⊤∇ft(x)∇ft(x)

⊤(x− y). (2a)

Also, if ft are twice differentiable, then ft is α-exp-
concave if and only if

∇2ft(x) � α∇ft(x)∇ft(x)
⊤ (2b)

for all x ∈ S .

In some variations on the algorithm, we will require extra
conditions on the function, ft. In particular, in one variation
we will require ℓ-strong convexity. which means that there
is a number ℓ > 0 such that

ft(y) ≥ ft(x) +∇ft(x)
⊤(y − x) +

ℓ

2
‖x− y‖2 (2c)

for all x and y in S . For twice-differentiable functions,
strong convexity implies α-exp-concavity for α ≤ ℓ/G2 on
S .

In another variant, we will require that the following
bound holds for all x and y in S:

ft(y) ≥ ft(x) +∇ft(x)
⊤(y − x) +

1

2
‖x− y‖2∇2ft(x)

.

(2d)

This bound does not correspond to a commonly used con-
vexity class, but it does hold for the important special case
of quadratic functions: ft(x) =

1
2‖yt−Atx‖2. This fact will

be important for analyzing the classic discounted recursive
least-squares algorithm. Note that if yt and At are restricted
to compact sets, α can be chosen so that ft is α-exp-concave.

Additionally, the algorithms for strongly convex func-
tions and those satisfying (2d) will require that the gradients
∇ft(x) are u-Lipschitz for all x ∈ S (equivalently, ft(x) is
u-smoothness), which means the gradient ∇ft(x) satisfies
the relation

‖∇ft(x)−∇ft(y)‖ ≤ u ‖x− y‖ , ∀t
which is equivalent to ft(y) ≤ ft(x) +∇ft(x)

T (y − x) +
u
2 ‖y − x‖2. This implies, in particular, that ∇2ft(x) � uI .

Algorithm 1 Discounted Online Newton Step

Given constants ǫ > 0, η > 0, and γ ∈ (0, 1).
Let θ1 ∈ S and P0 = ǫI .
for t=1,. . . ,T do

Play θt and incur loss ft(θt)
Observe ∇t = ∇ft(θt) and Ht = ∇2ft(θt) (if needed)
Update Pt:

Pt = γPt−1 +∇t∇⊤
t (Quasi-Newton) (3a)

Pt = γPt−1 +Ht (Full-Newton) (3b)

Update θt: θt+1 = ΠPt

S

(

θt − 1
ηP

−1
t ∇t

)

end for

To accommodate these three different cases, we propose

Algorithm 1, in which ΠPt

S (y) = argminz∈S ‖z − y‖2Pt
is

the projection onto S with respect to the norm induced by
Pt.

By using Algorithm 1, the following theorem can be ob-
tained:

Theorem 1. Consider the following three cases of Algo-
rithm 1:

1. ft is α-exp-concave. The algorithm uses η ≤
1
2 min{ 1

4GD , α}, ǫ = 1, and (3a).

2. ft is α-exp-concave and ℓ-strongly convex while ∇ft(x)
is u-Lipschitz. The algorithm uses η ≤ ℓ/u, ǫ = 1, and
(3b).

3. ft is α-exp-concave and satisfy (2d) while ∇ft(x) is u-
Lipschitz. The algorithm uses η ≤ 1, ǫ = 1, and (3b).

For each of these cases, there are positive constants
a1, . . . a4 such that
∑T

t=1(ft(θt)− ft(zt)) ≤ −a1T log γ − a2 log(1− γ)
+ a3

1−γV + a4

for all z1, . . . , zT ∈ S such that
∑T

t=2 ‖zt − zt−1‖ ≤ V .



Due to space limit, all the omitted proofs are moved to
Appendix. Next, we will describe some consequences of
Theorem 1.

Corollary 1. Setting γ = 1− T−β with β ∈ (0, 1) leads to
the following form:

∑T
t=1(ft(θt)− ft(zt))

≤ O(T 1−β + β log T + T βV )

Proof. The first term is bounded as:

−T log γ = −T log(1− T−β)

≤ T 1−β

1− T−β
= O(T 1−β),

where the inequality follows from − log(1 − x) ≤ x
1−x for

0 ≤ x < 1.
The other terms follow by direct calculation.

This corollary guarantees that the static regret is bounded
in the order of O(T 1−β) since V = 0 in that case. The
dynamic regret is of order O(T 1−β + T βV ). By choosing
β ∈ (0, 1), we are guaranteed that both the static and dy-
namic regrets are both sublinear in T as long as V < O(T ).
Also, small static regret can be obtained by setting β near 1.

In the setting of Corollary 1, the algorithm parameters do
not depend on the path length V . Thus, the bounds hold for
any path length, whether or not it is known a priori. The
next corollary shows how tighter bounds could be obtained
if knowledge of V were exploited in choosing the discount
factor, γ.

Corollary 2. Setting γ = 1 − 1
2

√

max{V,log2 T/T}
2DT leads to

the form:

T
∑

t=1

(ft(θt)− ft(zt)) ≤ max{O(log T ), O(
√
TV )}

The proof is similar to the proof of Corollary 1.
Note that Corollary 2 implies that the discounted Newton

method achieves logarithmic static regret by setting V = 0.
This matches the bounds obtained in (Hazan, Agarwal, and
Kale 2007). For positive path lengths bounded by V , we im-

prove the O(
√

T (1 + V )) dynamic bounds from (Zhang,
Lu, and Zhou 2018). However, the algorithm above cur-
rent requires knowing a bound on the path length, whereas
(Zhang, Lu, and Zhou 2018) achieves its bound without
knowing the path length, a priori.

If we view V as the variation budget that zT1 = z1, . . . , zT
can vary over S like in (Besbes, Gur, and Zeevi 2015), and
use this as a pre-fixed value to allow the comparator se-
quence to vary arbitrarily over the set of admissible com-

parator sequence {zT1 ∈ S :
T
∑

t=2
‖zt − zt−1‖ ≤ V }, we can

tune γ in terms of V .
In order to bound the dynamic regret without knowing a

bound on the path length, the method of (Zhang, Lu, and
Zhou 2018) runs a collection of gradient descent algorithms
in parallel with different step sizes and then uses a meta-
optimization (Cesa-Bianchi and Lugosi 2006) to weight

their solutions. In a later section, we will show how a re-
lated meta-optimization over the discount factor leads to

max{O(log T ), O(
√
TV )} dynamic regret bounds for un-

known V .
For the Algorithm 1, we need to invert Pt, which can be

achieved in time O(n2) for the Quasi-Newton case in (3a)
by utilizing the matrix inversion lemma. However, for the
Full-Newton step (3b), the inversion requires O(n3) time.

In the next two sections, we will use different methods to
achieve the static/dynamic regret trade-off for the strongly
convex and smooth case considered in the Full-Newton up-
date to both avoid the high computation cost and improve
the trade-off performance.

From Forgetting Factors to a Step Size Rule

In this section, we analyze recursive least squares for the
special case of quadratic functions of the form:

ft(θ) =
1

2
‖θ − yt‖2 , (4)

where yt ∈ S .
In this case, we will see that discounted recursive least

squares can be interpreted as online gradient descent method
with a special step size rule. We will show how this step
size rule achieves a trade-off between static regret and dy-
namic regret with the specific comparison sequence θ∗t =
yt = argminθ∈S ft(θ). In the next section, we will see how
this step size rule can achieve similar trade-offs on smooth,
strongly convex functions. For a related analysis of more
general quadratic functions, ft(θ) =

1
2‖Atθ − yt‖2, please

see the appendix.
Note that the previous section focused on dynamic regret

for arbitrary comparison sequences, zt ∈ S . The analysis
techniques in this and the next section are specialized to
comparisons against θ∗t = argminθ∈S ft(θ), as studied in
works such as (Mokhtari et al. 2016; Yang et al. 2016).

Classic discounted recursive least squares corresponds to
Alg. 1 run with full Newton steps, η = 1, and initial matrix
P0 = 0. When ft is defined as in (4), we have that Pt =
∑t−1

k=0 γ
kI . Thus, the update rule can be expressed in the

following equivalent ways:

θt+1 = argmin
θ∈S

t
∑

i=1

γi−1ft+1−i(θ) (5a)

=
γ − γt

1− γt
θt +

1− γ

1− γt
yt (5b)

= θt − P−1
t ∇ft(θt) (5c)

= θt − ηt∇ft(θt), (5d)

where ηt = 1−γ
1−γt . Note that since yt ∈ S , no projection

steps are needed.
The above update is the ubiquitous gradient descent with

a changing stepsize. The only difference between standard
methods is the choice of ηt, which will lead to the useful
trade-off between dynamic and static regret.

By using the above update, we can get the relationship
between θt+1 − θ∗t and θt − θ∗t as the following result:



Lemma 1. Let θ∗t = argminθS ft(θ) in Eq.(4). When using
the discounted recursive least-squares update in Eq.(5), we
have the following relation:

θt+1 − θ∗t =
γ − γt

1− γt
(θt − θ∗t )

Proof. Since θ∗t = argmin ft(θ) = yt, for θt+1 − θ∗t , we
have:

θt+1 − θ∗t = θt+1 − yt
= γ−γt

1−γt θt +
1−γ
1−γt yt − yt

= γ−γt

1−γt (θt − yt)

= γ−γt

1−γt (θt − θ∗t )

Recall from (1) that the path length of optimizer sequence
is denoted by V ∗. With the help of Lemma 1, we can upper
bound the dynamic regret in the next theorem:

Theorem 2. Let θ∗t be the solution to ft(θ) in Eq.(4).
When using the discounted recursive least-squares update
in Eq.(5) with 1 − γ = 1/T β , β ∈ (0, 1), we can upper
bound the dynamic regret as:

Rd ≤ 2DT β
(

‖θ1 − θ∗1‖+ V ∗)

Proof. According to the Mean Value Theorem, there exists
a vector x ∈ {v|v = δθt + (1 − δ)θ∗t , δ ∈ [0, 1]} such that
ft(θt)−ft(θ

∗
t ) = ∇ft(x)

T (θt−θ∗t ) ≤ ‖∇ft(x)‖ ‖θt − θ∗t ‖.
For our problem, ‖∇ft(x)‖ = ‖x− yt‖ ≤ ‖x‖+ ‖yt‖. For
‖x‖, we have:

‖x‖ = ‖δθt + (1− δ)θ∗t ‖
≤ δ ‖θt‖+ (1− δ) ‖yt‖

= δ

∥

∥

∥

∥

∥

∥

t−1∑

i=1
γi−1yt−i

t−1∑

i=1
γi−1

∥

∥

∥

∥

∥

∥

+ (1− δ) ‖yt‖

≤ D

where the second inequality is due to ‖yi‖ ≤ D, ∀i.
As a result, the norm of the gradient can be upper bounded

as ‖∇ft(x)‖ ≤ 2D. Then we have Rd =
T
∑

t=1

(

ft(θt) −

ft(θ
∗
t )
)

≤ 2D
T
∑

t=1
‖θt − θ∗t ‖. Now we could instead upper

bound
T
∑

t=1
‖θt − θ∗t ‖, which can be achieved as follows:

T
∑

t=1
‖θt − θ∗t ‖

= ‖θ1 − θ∗1‖+
T
∑

t=2

∥

∥θt − θ∗t−1 + θ∗t−1 − θ∗t
∥

∥

≤ ‖θ1 − θ∗1‖+
T−1
∑

t=1
‖θt+1 − θ∗t ‖+

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

= ‖θ1 − θ∗1‖+
T−1
∑

t=1

γ−γt

1−γt ‖θt − θ∗t ‖+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

≤ ‖θ1 − θ∗1‖+
T
∑

t=1

γ−γt

1−γt ‖θt − θ∗t ‖+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

where in the second equality, we substitute the result from
Lemma 1.

From the above inequality, we get

T
∑

t=1

(

1−γ − γt

1− γt

)

‖θt − θ∗t ‖ ≤ ‖θ1 − θ∗1‖+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

Since
(

1− γ−γt

1−γt

)

= 1−γ
1−γt ≥ 1− γ, we get

T
∑

t=1
‖θt − θ∗t ‖ ≤ 1

1−γ ‖θ1 − θ∗1‖+ 1
1−γ

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

= T β(‖θ1 − θ∗1‖+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥)

Thus, Rd ≤ 2D
T
∑

t=1
‖θt − θ∗t ‖ ≤ 2DT β(‖θ1 − θ∗1‖ +

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥).

Theorem 2 shows that if we choose the discounted factor
γ = 1−T−β we obtain a dynamic regret of O(T β(1+V ∗)).
This is a refinement of the Corollary 1 since the bound no
longer has the T 1−β term. Thus, the dynamic regret can be
made small by choosing a small β.

In the next theorem, we will show that this carefully cho-
sen γ can also lead to useful static regret, which can give us
a trade-off between them.

Theorem 3. Let θ∗ be the solution to min
T
∑

t=1
ft(θ). When

using the discounted recursive least-squares update in
Eq.(5) with 1− γ = 1/T β , β ∈ (0, 1), we can upper bound
the static regret as:

Rs ≤ O(T 1−β)

Recall that the algorithm of this section can be interpreted
both as a discounted recursive least squares method, and as a
gradient descent method. As a result, this theorem is actually
a direct consequence of Corollary 1, by setting V = 0. How-
ever, we will give a separate proof in the Appendix, since the
techniques extend naturally to the analysis of more general
work on gradient descent methods of the next sections.

Our Theorems 2 and 3 build a trade-off between dynamic
and static regret by the carefully chosen discounted factor γ.
Compared with the result from the last section, there are two
improvements: 1. The two regrets are decoupled so that we
could reduce the β to make the dynamic regret result smaller
than the previous section’s one. 2. The update is the first-
order gradient descent, which is computationally efficient.

In the next section, we will consider the strongly convex
and smooth case, whose result is inspired by this section’s
analysis.

Online Gradient Descent for Smooth, Strongly

Convex Problems

In this section, we generalize the previous section idea to
the functions with ℓ-strong-convexity and u-smoothness. We
will see that similar bounds on Rs and R∗

d can be obtained.



The assumption we use is the upper bound of the norm of
the gradient, which is ‖∇ft(θ)‖ ≤ G, ∀θ ∈ S, ∀t.

Our proposed update rule for the prediction θt+1 at time
step t+ 1 is:

θt+1 = argmin
θ∈S

‖θ − (θt − ηt∇ft(θt))‖2 (6)

where ηt =
1−γ

ℓ(γ−γt)+u(1−γ) and γ ∈ (0, 1).

This update rule generalizes the step size rule from the
last section.

Before getting to the dynamic regret, we will first derive
the relation between ‖θt+1 − θ∗t ‖ and ‖θt − θ∗t ‖ to try to
mimic the result in Lemma 1 of the quadratic case:

Lemma 2. Let θ∗t ∈ S be the solution to ft(θ) which is
strongly convex and smooth. When we use the update in
Eq.(6), the following relation is obtained:

‖θt+1 − θ∗t ‖ ≤
√

1− l(1− γ)

u(1− γ) + lγ
‖θt − θ∗t ‖

Now we are ready to present the dynamic regret result:

Theorem 4. Let θ∗t be the solution to ft(θ), θ ∈ S. When
using the update in Eq.(6) with 1 − γ = 1/T β , β ∈ (0, 1),
we can upper bound the dynamic regret:

Rd ≤ G
(

2(T β − 1) + u/l
)

(‖θ1 − θ∗1‖+ V ∗)

Theorem 4’s result seems promising in achieving the
trade-off, since it has the similar formula as the previous
successful case of quadratic problem in Theorem 2. Next,
we will present the static regret result, which assures such
conjecture.

Theorem 5. Let θ∗ be the solution to min
θ∈S

T
∑

t=1
ft(θ). When

using the update in Eq.(6) with 1 − γ = 1/T β , β ∈ (0, 1),
we can upper bound the static regret:

Rs ≤ O(T 1−β)

The above two theorems’ results have the similar bounds
as the last section, which will give us the same improve-
ments discussed in the previous section over the strongly
convex and smooth problem.

In the next section, we will consider the strongly convex
problem.

Online Gradient Descent for Strongly Convex

Problems
In this section, we generalize the step-size idea from previ-
ous section to consider the problem with ℓ-strong-convexity.
The assumption is the same as the previous section’s.

The update rule is still oneline gradient descent:

θt+1 = argmin
θ∈S

‖θ − (θt − ηt∇ft(θt))‖2 (7)

where ηt =
1−γ

ℓ(1−γt) , and γ ∈ (0, 1).

We can see that the update rule is the same as the one in

Eq.(6) while the stepsize ηt is replaced with 1−γ
ℓ(1−γt) .

By using the new step-size with the update rule in Eq.(7),
we can get:

Theorem 6. If using the update rule in Eq.(7) with ηt =
1−γ

ℓ(1−γt) and γ ∈ (0, 1), the following dynamic regret can be

obtained:

T
∑

t=1

(

ft(θt)− ft(zt)
)

≤ 2Dℓ
1

1− γ
V +

G2

2

T
∑

t=1

ηt

We can view V as the variation budget that zT1 can vary
over S like discussed in previous section. By further restrict-
ing V = T β , where β ∈ [0, 1) like in (Besbes, Gur, and
Zeevi 2015), we can get:

Corollary 3. By setting γ = 1 −
√

V
T , V = T β , and β ∈

[0, 1), for large enough T such that T 1−β ≥ 4, the following
bound can be obtained:

T
∑

t=1

(

ft(θt)− ft(zt)
)

≤ O(
√
TV )

where {z1, z2, . . . , zT ∈ S :
T
∑

t=2
‖zt − zt−1‖ ≤ V }.

When V = V ∗, The above corollary’s result meets the
lower bound in (Besbes, Gur, and Zeevi 2015), which is of
the order optimal and requires only online gradient descent
as opposed to the complex restarting procedure in (Besbes,
Gur, and Zeevi 2015).

If we are instead concerned with the general V , which can
vary from 0 up to 2DT , as opposed to [1, 2DT ) in Corollary
3, the corollary below gives a general result:

Corollary 4. By setting γ = 1 − 1
2

√

max{V,log2 T/T}
2DT , the

following bound can be obtained:

T
∑

t=1

(

ft(θt)− ft(zt)
)

≤ max{O(log T ), O(
√
TV )}.

The above result characterizes the general dynamic re-
gret, which is never shown before to the best of our
knowledge. For the special case when V = V ∗, Rd ≤
O(max{log T,

√
TV ∗}), which is an improved result com-

pared to O(max{log T,
√
TV ∗ log T}) in (Zhang et al.

2018). According to the result in (Besbes, Gur, and Zeevi

2015), our result is minimax optimal when V ∗ ≥ log2 T/T ,
and only up to polylogarithmic factor larger when V ∗ <
log2 T/T .

Similar problem about the unknown value V arises in the
step-size setup of Corollary 4 as in Corollary 2, which will
be solved in the next section.

Meta-algorithm

In previous sections, we discussed the results on dynamic
regret for both α-exp-concave and ℓ strongly convex cases.
But in order to obtain the general results, we need to know
the value of V in order to setup the step-size correctly, which
may be difficult to know or approximate. In this section, we
use the so-called ’Meta-algorithm’ to solve this issue by run-
ning multiple algorithms in parallel with different step-sizes.



For the online convex optimization, the ’Meta-algorithm’
has been used by (Zhang, Lu, and Zhou 2018) to solve the
similar issue in the convex case. But it cannot be used di-
rectly in either the α-exp-concave or ℓ strongly convex case

due to the added O(
√
T ) regret from running multiple algo-

rithms.

In this section, we will show that by using appropriate
parameters and analysis designed specifically for our cases,
the Meta-algorithm can be used to solve our issues.

Algorithm 2 Meta-algorithm

Given step-size λ, and a set H containing step-sizes for
each algorithm.
Activate a set of algorithms {Aγ |γ ∈ H} by calling
Algorithm 1 (exp-concave case) or the update in Eq.(7)
(strongly convex case) for each parameter γ ∈ H.
Sort γ in descending order γ1 ≥ γ2 ≥ · · · ≥ γN , and set
wγi

1 = C
i(i+1) with C = 1 + 1/|H|.

for t=1,. . . ,T do
Obtain θγt from each algorithm Aγ .
Play θt =

∑

γ∈H
wγ

t θ
γ
t , and incur loss ft(θ

γ
t ) for each θγt .

Update wγ
t by

wγ
t+1 =

wγ
t exp(−λft(θ

γ
t ))

∑

µ∈H
wµ

t exp(−λft(θ
µ
t ))

.

Send back the gradient ∇ft(θ
γ
t ) for each algorithm Aγ .

end for

Exp-concave case

Before showing the regret result, we first show that the cu-
mulative loss of the meta-algorithm is comparable to all
Aγ ∈ H:

Lemma 3. If ft is α-exp-concave and λ = α, the cumula-
tive loss difference of Algorithm 2 for any γ ∈ H is bounded
as:

T
∑

t=1

(ft(θt)− ft(θ
γ
t )) ≤

1

α
log

1

wγ
1

Based on the above result, if we can show that there
exists an algorithm Aγ , which can bound the regret
∑T

t=1(ft(θ
γ
t )− ft(zt)) ≤ max{O(log T ), O(

√
TV )}, then

we can combine these two results and show that the regret
holds for θt, t = 1, . . . , T as well:

Theorem 7. For any comparator sequence z1, . . . , zT ∈ S ,

setting H =
{

γi = 1−ηi

∣

∣

∣
i = 1, . . . , N

}

with T ≥ 2 where

ηi = 1
2

log T

T
√
2D

2i−1, N = ⌈ 1
2 log2(

2DT 2

log2 T
)⌉ + 1, and λ = α

leads to the result:

T
∑

t=1

(ft(θt)− ft(zt)) ≤ O(max{log T,
√
TV })

Strongly convex case

For the strongly convex problem, since the parameter γ used
in Corollary 4 is the same as the one in Corollary 2, the meta-
algorithm may also work with the same setup in Theorem 7
except the parameter λ = α, which comes from the α-exp-
concavity.

To proceed, we first show that the ℓ-strongly convex func-
tion with bounded gradient (e.g.,‖∇ft‖ ≤ G) is also ℓ/G2-
exp-concave. Previous works also pointed out this, but their
statement only works when ft is second-order differentiable,
while our result is true when ft is first-order differentiable.

Lemma 4. For the ℓ-strongly convex function ft with
‖∇ft‖ ≤ G, it is also α-exp-concave with α = ℓ/G2.

Lemma 4 indicates that running Algorithm 2 with
strongly convex function leads to the same result as in
Lemma 3. Thus, using the similar idea as discussed in the
case of α-exp-concavity and Algorithm 2, the theorem be-
low can be obtained:

Theorem 8. For any comparator sequence z1, . . . , zT ∈ S ,

setting H =
{

γi = 1 − ηi

∣

∣

∣
i = 1, . . . , N

}

with T ≥ 2

where ηi = 1
2

log T

T
√
2D

2i−1, N = ⌈ 1
2 log2(

2DT 2

log2 T
)⌉ + 1, and

λ = ℓ/G2 leads to the result:

T
∑

t=1

(ft(θt)− ft(zt)) ≤ O(max{log T,
√
TV })

Conclusion

In this paper, we propose the Discounted Online New-
ton Step (D-ONS) for the α-exp-concave setup to not
only improve the dynamic regret result to the order of

max{O(log T ), O(
√
TV )} but solve the open question of

how to achieve the static/dynamic regret trade-off in this set-
ting.

Faced with the high computational cost when using this
algorithm to solve strongly convex and smooth case, we pro-
pose a new online gradient descent update to further improve
the trade-off performance, which is inspired by the anal-
ysis of the connection between discounted recursive least-
squares algorithm and the regret guarantees. This new up-
date is generalized to the strongly convex case with im-

proved dynamic regret max{O(log T ), O(
√
TV )}.
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Appendix:

The supplementary material contains proofs of the some
results of the paper along with supporting results.

Proof of Theorem 1: Before proving the theorem, the fol-
lowing observation is helpful.

Lemma 5. If Pt is updated via (3a) then ‖Pt‖ ≤ ǫ + G2

1−γ ,

while if Pt is updated via (3b), then ‖Pt‖ ≤ ǫ+ u
1−γ .

Proof. First consider the quasi-Newton case. The bound
holds at P0 = ǫI , so assume that it holds at time t − 1 for
t ≥ 1. Then, by induction we have

‖Pt‖ = ‖γPt−1 +∇t∇t‖
≤ γ‖Pt−1‖+G2

≤ γǫ+
G2

1− γ

≤ ǫ+
G2

1− γ
.

The full-Newton case is identical, except it uses the bound
‖Ht‖ ≤ u.

The generalized Pythagorean theorem implies that

‖θt+1 − zt‖2Pt
≤

∥

∥

∥

∥

θt −
1

η
P−1
t ∇t − zt

∥

∥

∥

∥

2

Pt

= ‖θt − zt‖2Pt
+

1

η2
∇⊤

t P
−1
t ∇t

− 2

η
∇⊤

t (θt − zt).

Re-arranging shows that

∇⊤
t (θt − zt) ≤

1

2η
∇⊤

t P
−1
t ∇t +

η

2

(

‖θt − zt‖2Pt

− ‖θt+1 − zt‖2Pt

)

(8)

Let c1 be the upper bound on ‖Pt‖ from Lemma 5. Then
we can lower bound ‖θt+1 − zt‖2Pt

by

‖θt+1 − zt‖2Pt
= ‖θt+1 − zt+1‖2Pt

+ ‖zt+1 − zt‖2Pt

+ 2(θt+1 − zt+1)
⊤Pt(zt+1 − zt)

≥ ‖θt+1 − zt+1‖2Pt
− 4Dc1‖zt+1 − zt‖

(9)

Combining (8) and (9) gives

∇⊤
t (θt − zt) ≤

1

2η
∇⊤

t P
−1
t ∇t + 2Dc1η‖zt+1 − zt‖

η

2

(

‖θt − zt‖2Pt
− ‖θt+1 − zt+1‖2Pt

)

Summing over t, dropping the term −‖θT+1 − zT+1‖2PT
,

setting zT+1 = zT , and re-arranging gives

T
∑

t=1

∇⊤
t (θt − zt) ≤

T
∑

t=1

1

2η
∇⊤

t P
−1
t ∇t + 2Dc1ηV

+
η

2
ǫ‖θ1 − z1‖2 +

η

2

T
∑

t=1

(θt − zt)
⊤(Pt −Pt−1)(θt − zt)

(10)

Now we will see how the choices of η enable the final sum
from (10) to cancel the terms from (2). In Case 1, we have
that η(Pt−Pt−1) � η∇t∇⊤

t and the bound from (2a) holds
for ρ = η. In Case 2, η(Pt − Pt−1) � ηHt � ℓI . In Case 3,
η(Pt − Pt−1) � ηHt � Ht. Thus in all cases, η has been
chosen so that combining the appropriate term of (2) with
(10) gives

∑T
t=1(ft(θt)− ft(zt)) ≤ ∑T

t=1
1
2η∇⊤

t P
−1
t ∇t

+2Dc1ηV + 2ηǫD2
(11)

Now we will bound the first sum of (11). Note that
∇⊤

t P
−1
t ∇t = 〈P−1

t ,∇t∇⊤
t 〉. In Case 1, we have that

∇t∇⊤
t = Pt − γPt−1, while in Cases 2 and 3, we have

that ∇t∇⊤
t � 1

αHt = 1
α (Pt − γPt−1). So, in Case 1, let

c2 = 1 and in Cases 2 and 3, let c2 = 1/α. Then in all cases,
we have that

∇⊤
t P

−1
t ∇t ≤ c2〈P−1

t , Pt − γPt−1〉. (12)

Lemma 4.5 of (Hazan 2016) shows that

〈P−1
t , Pt − γPt−1〉 ≤ log

|Pt|
|γPt−1|

= log
|Pt|

|Pt−1|
− n log γ,

(13)
where n is the dimension of xt.

Combining (12) with (13), summing, and then using the
bound that ‖PT ‖ ≤ c1 gives,

T
∑

t=1

∇⊤
t P

−1
t ∇t ≤ c2 log |PT | − c2n log ǫ− nT log γ

≤ c2n log
c1
ǫ
− c2nT log γ (14)

Recall that c1 = ǫ + c3
1−γ , where c3 = G2 or c3 = u,

depending on the case. Then a more explicit upper bound on
(14) is given by:

t
∑

t=1

∇⊤
t P

−1
t ∇t ≤ c2n log

(

1 +
c3

ǫ(1− γ)

)

− c2nT log γ.

(15)
Combining (11) and (15) gives the bound:

∑T
t=1(ft(θt)− ft(zt)) ≤ − c2nT

2η log γ+
c2n
2η log

(

1 + c3
ǫ(1−γ)

)

+ 2Dη
(

ǫ+ c3
1−γ

)

V + 2ηǫD2

The desired regret bound can now be found by simplifying
the expression on the right, using the fact that 1

1−γ > 1.



Proof of Theorem 3:

Proof. To proceed, recall that the update in Eq.(5) is

θt+1 = γ−γt

1−γt θt +
1−γ
1−γt yt

= θt − ηt∇ft(θt)

where ηt =
1−γ
1−γt .

Then we get the relationship between ∇ft(θt)
T (θt − θ∗)

and ‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2 as:

‖θt+1 − θ∗‖2 = ‖θt − ηt∇ft(θt)− θ∗‖2
= ‖θt − θ∗‖2 − 2ηt∇ft(θt)

T (θt − θ∗)
+η2t ‖∇ft(θt)‖2

∇ft(θt)
T (θt − θ∗) = 1

2ηt

(

‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2
)

+ηt

2 ‖∇ft(θt)‖2

Moreover, we write ft(θ
∗) as ft(θ

∗) = ft(θt) +

∇ft(θt)
T (θ∗ − θt) +

1
2 ‖θ∗ − θt‖2, which combined with

the previous equation gives us the following equation:

ft(θt)− ft(θ
∗) = 1

2ηt

(

‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2
)

+ηt

2 ‖∇ft(θt)‖2 − 1
2 ‖θ∗ − θt‖2

≤ 2D2ηt +
1

2ηt

(

‖θt − θ∗‖2 −
‖θt+1 − θ∗‖2

)

− 1
2 ‖θ∗ − θt‖2

where the inequality is due to ‖∇ft(θt)‖ ≤ 2D as shown in
Theorem 2.

Sum the above inequality from t = 1 to T , we get:

T
∑

t=1

(

ft(θt)− ft(θ
∗)
)

≤ 2D2
T
∑

t=1
ηt +

1/η1−1
2 ‖θ1 − θ∗‖2 + 1

2

T
∑

t=2

[

( 1
ηt

− 1
ηt−1

− 1) ‖θ∗ − θt‖2
]

− 1
2ηT

‖θT+1 − θ∗‖2

Since ηt =
1−γ
1−γt , η1 = 1, 1

ηt
− 1

ηt−1
− 1 < 0. Then for

the static regret, we have:

Rs =
T
∑

t=1

(

ft(θt)− ft(θ
∗)
)

≤ 2D2
T
∑

t=1
ηt = 2D2(1− γ)

T
∑

t=1

1
1−γt

(16)

Since γ ∈ (0, 1),
T
∑

t=1

1
1−γt ≤ 1

1−γ +
∫ T

1
1

1−γt dt =
1

1−γ +

(

t− log(1−γt)
log(γ)

)∣

∣

∣

T

1
= 1

1−γ +T −1+ log(1−γ)
log γ − log(1−γT )

log γ ≤
1

1−γ + T − 1 + log(1−γ)
log γ .

Since 1 − γ = 1/T β ,
log(1−γ)

log γ = β log T
log(1+ 1

Tβ−1
)
. Since

log(1 + x) ≥ 1
2x, x ∈ (0, 1), log(1 + 1

Tβ−1
) ≥ 1

2
1

Tβ−1
.

Thus, we have
log(1−γ)

log γ ≤ 2β(T β − 1) log T . Then (1 −

γ)
T
∑

t=1

1
1−γt = O(T 1−β), which results in Rs ≤ O(T 1−β).

Proof of Lemma 2:

Proof. The proof follows the analysis in Chapter 2 of (Nes-
terov 2013).

From the strong convexity of ft(θ), we have

ft(θ) ≥ ft(θt) +∇ft(θt)
T (θ − θt) +

ℓ
2
‖θ − θt‖2

= ft(θt) +∇ft(θt)
T (θ − θt) +∇ft(θt)

T (θt+1 − θt)
−∇ft(θt)

T (θt+1 − θt) +
ℓ
2
‖θ − θt‖2

= ft(θt) +∇ft(θt)
T (θt+1 − θt)

+∇ft(θt)
T (θ − θt+1) +

ℓ
2
‖θ − θt‖2

(17)

According to the optimality condition of the update rule

in Eq.(6), we have
(

∇ft(θt)+
1
ηt
(θt+1−θt)

)T
(θ−θt+1) ≥

0, ∀θ ∈ S , which is ∇ft(θt)
T (θ − θt+1) ≥ 1

ηt
(θt −

θt+1)
T (θ − θt+1). Then combine with Eq.(17), we have

ft(θ) ≥ ft(θt) +∇ft(θt)
T (θt+1 − θt)

+ 1
ηt
(θt − θt+1)

T (θ − θt+1) +
ℓ
2 ‖θ − θt‖2

(18)
From the smoothness of ft(θ), we have ft(θt+1) ≤

ft(θt)+∇ft(θt)
T (θt+1−θt)+

u
2 ‖θt+1 − θt‖2. Since 1

ηt
=

ℓ(γ−γt)+u(1−γ)
1−γ ≥ u, we have ft(θt) + ∇ft(θt)

T (θt+1 −
θt) ≥ ft(θt+1) − 1

2ηt
‖θt+1 − θt‖2. Then combined with

inequality (18), we have

ft(θ) ≥ ft(θt+1)− 1
2ηt

‖θt+1 − θt‖2

+ 1
ηt
(θt − θt+1)

T (θ − θt+1) +
ℓ
2 ‖θ − θt‖2

= ft(θt+1) +
1

2ηt
‖θt+1 − θt‖2

+ 1
ηt
(θt − θt+1)

T (θ − θt) +
ℓ
2 ‖θ − θt‖2

(19)
By setting θ = θ∗t and using the fact ft(θ

∗
t ) ≤ ft(θt+1),

we reformulate the above inequality as:

(θt − θt+1)
T (θ∗t − θt)

≤ − ℓ(1−γ)
2ℓ(γ−γt)+2u(1−γ) ‖θ∗t − θt‖2 − 1

2 ‖θt+1 − θt‖2
(20)

Since ‖θt+1 − θ∗t ‖
2
= ‖θt+1 − θt + θt − θ∗t ‖

2
, we have

‖θt+1 − θ∗t ‖2 = ‖θt+1 − θt‖2 + ‖θt − θ∗t ‖2
+2(θt − θt+1)

T (θ∗t − θt)

≤
(

1− ℓ(1−γ)
ℓ(γ−γt)+u(1−γ)

)

‖θt − θ∗t ‖2

≤
(

1− ℓ(1−γ)
ℓγ+u(1−γ)

)

‖θt − θ∗t ‖
2

(21)

Proof of Theorem 4:

Proof. We use the same steps as in the previous section.
First, according to the Mean Value Theorem, we have
ft(θt)−ft(θ

∗
t ) = ∇ft(x)

T (θt−θ∗t ) ≤ ‖∇ft(x)‖ ‖θt − θ∗t ‖,
where x ∈ {v|v = δθt + (1 − δ)θ∗t , δ ∈ [0, 1]}. Due to the
assumption on the upper bound of the norm of the gradi-
ent, we have ft(θt) − ft(θ

∗
t ) ≤ G ‖θt − θ∗t ‖. As a result,

T
∑

t=1

(

ft(θt)− ft(θ
∗
t )
)

≤ G
T
∑

t=1
‖θt − θ∗t ‖.



Now we need to upper bound the term
T
∑

t=1
‖θt − θ∗t ‖.

T
∑

t=1
‖θt − θ∗t ‖ is equal to ‖θ1 − θ∗1‖ +

T
∑

t=2

∥

∥θt − θ∗t−1 + θ∗t−1 − θ∗t
∥

∥, which is less than

‖θ1 − θ∗1‖+
T
∑

t=1
‖θt+1 − θ∗t ‖+

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥. According

to Lemma 2, we have
T
∑

t=1
‖θt+1 − θ∗t ‖ ≤ ρ

T
∑

t=1
‖θt − θ∗t ‖

with ρ =
√

1− l(1−γ)
u(1−γ)+lγ . Then we have

T
∑

t=1
‖θt − θ∗t ‖ ≤

‖θ1 − θ∗1‖ + ρ
T
∑

t=1
‖θt − θ∗t ‖ +

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥,

which can be reformulated as
T
∑

t=1
‖θt − θ∗t ‖ ≤

1
1−ρ (‖θ1 − θ∗1‖++

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥).

1 − ρ = 1 −
√

1− a0

b0
=

√
b0−

√
b0−a0√
b0

, where

a0 = ℓ and b0 = ℓγ+u(1−γ)
1−γ . Thus, 1/(1 −

ρ) =
√
b0√

b0−
√
b0−a0

=
√
b0(

√
b0+

√
b0−a0)

a0
. After plug-

ging in the expression of 1 − γ = 1/T β , 1/(1 −
ρ) =

√
ℓ(Tβ−1)+u

(√
ℓ(Tβ−1)+u+

√
ℓ(Tβ−1)+u−ℓ

)

ℓ ≤
2
(

ℓ(Tβ−1)+u
)

ℓ = 2(T β − 1) + u/ℓ

Then Rd =
T
∑

t=1

(

ft(θt)− ft(θ
∗
t )
)

≤ G 1
1−ρ

(

‖θ1 − θ∗1‖+

+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

)

≤ G
(

2(T β − 1) + u/ℓ
)(

‖θ1 − θ∗1‖+

+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥

)

.

Proof of Theorem 5:

Proof. The proof follows the similar steps in the proof of
Theorem 3.

According to the non-expansive property of the projection
operator and the update rule in Eq.(6), we have

‖θt+1 − θ∗‖2 ≤ ‖θt − ηt∇ft(θt)− θ∗‖2
= ‖θt − θ∗‖2 − 2ηt∇ft(θt)

T (θt − θ∗)
+η2t ‖∇ft(θt)‖2

The reformulation gives us

∇ft(θt)
T (θt − θ∗) ≤ 1

2ηt

(

‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2
)

+ηt

2 ‖∇ft(θt)‖2
(22)

Moreover, from the strong convexity, we have ft(θ
∗) ≥

ft(θt)+∇ft(θt)
T (θ∗− θt)+

ℓ
2 ‖θ∗ − θt‖2, which is equiv-

alent to ∇ft(θt)
T (θt−θ∗) ≥ ft(θt)−ft(θ

∗)+ ℓ
2 ‖θ∗ − θt‖2.

Combined with Eq.(22), we have

ft(θt)− ft(θ
∗) ≤ 1

2ηt

(

‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2
)

+ηt

2 ‖∇ft(θt)‖2 − ℓ
2 ‖θ∗ − θt‖2

Summing up from t = 1 to T with ‖∇ft(θt)‖2 ≤ G2, we
get

T
∑

t=1

(

ft(θt)− ft(θ
∗)
)

≤
T
∑

t=1

1

2ηt

(

‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2
)

+
T
∑

t=1

ηt
2
G2 −

T
∑

t=1

ℓ
2
‖θ∗ − θt‖2

≤ G2/2
T
∑

t=1

ηt +
1/η1−ℓ

2
‖θ1 − θ∗‖2

+ 1

2

T
∑

t=2

[

( 1

ηt
− 1

ηt−1
− ℓ) ‖θ∗ − θt‖2

]

(23)

Since ηt =
1−γ

ℓ(γ−γt)+u(1−γ) , 1/η1 = u and 1
ηt

− 1
ηt−1

− ℓ =

ℓ(γt−1−1)(1−γ)
1−γ ≤ 0.

For the term
T
∑

t=1
ηt =

T
∑

t=1

1−γ
ℓ(γ−γt)+u(1−γ) , it can be refor-

mulated as 1
u

T
∑

t=1

u(1−γ)

ℓ(γ−γt)

1+
u(1−γ)

ℓ(γ−γt)

= 1
u + 1

u

T
∑

t=2

u(1−γ)

ℓ(γ−γt)

1+
u(1−γ)

ℓ(γ−γt)

≤ 1
u +

1
u

T
∑

t=2

u(1−γ)
ℓ(γ−γt) =

1
u + 1−γ

ℓγ

T
∑

t=2

1
1−γt−1 = 1

u + 1−γ
ℓγ

T−1
∑

t=1

1
1−γt .

For
T−1
∑

t=1

1
1−γt , we know that

T−1
∑

t=1

1
1−γt ≤ O(T ) as shown

in the proof of Theorem 3. For the term 1−γ
ℓγ , 1−γ

ℓγ =
1

ℓ(Tβ−1)
. Combining these two terms’ inequalities, we get

that
T
∑

t=1
ηt ≤ O(T 1−β).

As a result, the inequality (23) can be reduced to

T
∑

t=1

(

ft(θt)− ft(θ
∗)
)

≤ O(T 1−β)

Proof of Theorem 6:

Proof. According to the non-expansive property of the pro-
jection operator and the update rule in Eq.(7), we have

‖θt+1 − zt‖2 ≤ ‖θt − ηt∇ft(θt)− zt‖2
= ‖θt − zt‖2 − 2ηt∇ft(θt)

T (θt − zt)

+η2t ‖∇ft(θt)‖2

The reformulation gives us

∇ft(θt)
T (θt − zt) ≤ 1

2ηt

(

‖θt − zt‖2 − ‖θt+1 − zt‖2
)

+ηt

2 ‖∇ft(θt)‖2
(24)

Moreover, from the strong convexity, we have ft(zt) ≥
ft(θt)+∇ft(θt)

T (zt−θt)+
ℓ
2 ‖zt − θt‖2, which is equiva-

lent to ∇ft(θt)
T (θt− zt) ≥ ft(θt)− ft(zt)+

ℓ
2 ‖zt − θt‖2.



Combined with Eq.(24), we have

ft(θt)− ft(zt) ≤ 1
2ηt

(

‖θt − zt‖2 − ‖θt+1 − zt‖2
)

+ηt

2 ‖∇ft(θt)‖2 − ℓ
2 ‖zt − θt‖2

(25)
Then we can lower bound ‖θt+1 − zt‖2 by

‖θt+1 − zt‖2 = ‖θt+1 − zt+1‖2 + ‖zt+1 − zt‖2
+2(θt+1 − zt+1)

⊤(zt+1 − zt)
≥ ‖θt+1 − zt+1‖2 − 4D‖zt+1 − zt‖

(26)
Combining (25) and (26) gives

ft(θt)− ft(zt)

≤ 1
2ηt

(

‖θt − zt‖2 − ‖θt+1 − zt+1‖2
)

+ 2D
ηt

‖zt+1 − zt‖
+ηt

2 ‖∇ft(θt)‖2 − ℓ
2 ‖zt − θt‖2

Summing over t from 1 to T , dropping the term
− 1

2ηT
‖θT+1 − zT+1‖2, setting zT+1 = zT , using the in-

equality ‖∇ft(θt)‖2 ≤ G2, and re-arranging gives

T
∑

t=1

(

ft(θt)− ft(zt)
)

≤ 1
2 (

1
η1

− ℓ)‖θ1 − z1‖2 + 1
2

T
∑

t=1
( 1
ηt

− 1
ηt−1

− ℓ)‖θt − zt‖2

+2D
T−1
∑

t=1

1
ηt
‖zt+1 − zt‖+ G2

2

T
∑

t=1
ηt

≤ 2Dℓ 1
1−γV + G2

2

T
∑

t=1
ηt

where for the second inequality, we use the following re-

sults: 1
η1

− ℓ = 0, 1
ηt

− 1
ηt−1

− ℓ = ℓ(1−γ)(γt−1−1)
1−γ ≤ 0,

1
ηt

= ℓ(1−γt)
1−γ ≤ ℓ

1−γ , and the definition of V .

Proof of Corollary 3:

Proof. Since γ = 1−
√

V
T , V = T β , and β ∈ [0, 1), 1−γ =

T
1
2 (β−1). Theorem 6 leads to

T
∑

t=1

(

ft(θt)− ft(zt)
)

≤ 2Dℓ

1− γ
V +

G2

ℓ
(1− γ)

T
∑

t=1

1

1− γt

The first term 1
1−γV =

√
TV . Then second term

T
∑

t=1

1
1−γt ≤ 1

1−γ +
∫ T

1
1

1−γt dt =
1

1−γ +
(

t− ln(1−γt)
ln(γ)

)
∣

∣

∣

T

1
=

1
1−γ +T −1+ ln(1−γ)

ln γ − ln(1−γT )
ln γ ≤ 1

1−γ +T −1+ ln(1−γ)
ln γ .

ln(1 − γ) = − 1
2 (1 − β) lnT . − ln γ = ln 1

1−T
1
2
(β−1)

=

ln T
1
2
(1−β)

T
1
2
(1−β)−1

= ln(1 + 1

T
1
2
(1−β)−1

) ≥ 1
2

1

T
1
2
(1−β)−1

, where

the inequality is due to ln(1 + x) ≥ 1
2x, x ∈ [0, 1]. Then

ln(1−γ)
ln γ ≤ O(T

1
2 (1−β) lnT ), which leads to

T
∑

t=1

1
1−γt ≤

O(T ). Then the second term (1− γ)
T
∑

t=1

1
1−γt ≤ O(

√
TV ),

which completes the proof.

Proof of Corollary 4:

Proof. Since γ = 1 − 1
2

√

max{V,log2 T/T}
2DT and V ∈

[0, 2DT ], 1/2 ≤ γ < 1. Then the integral bound in the

proof of Corollary 3 can be used, which is
T
∑

t=1

1
1−γt ≤

1
1−γ + T + ln(1−γ)

ln γ .

Next, we upper bound each term on the right-hand-side of

Theorem 6 individually. 1
1−γV = 2

√

2DT
max{V,log2 T/T}V ≤

O(
√
TV ). (1− γ)

T
∑

t=1

1
1−γt ≤ 1 + (1− γ)(T + ln(1−γ)

ln γ ).

ln(1−γ)
ln γ

=
− ln( 1

2

√
max{V,log2 T/T}

2DT )

− ln(1− 1
2

√
max{V,log2 T/T}

2DT )

=
− ln( 1

2

√
max{V,log2 T/T}

2DT )

ln

(

1+
1
2

√

max{V,log2 T/T}
2DT

1− 1
2

√

max{V,log2 T/T}
2DT

)

≤ ln(2
√

2DT
max{V,log2 T/T} )4

√

2DT
max{V,log2 T/T}

≤ O(ln(T/ log T ) T
log T )

≤ O(T )

where the first inequality follows by using ln(1 + x) ≥
1
2x, x ∈ [0, 1], and 1− 1

2

√

max{V,log2 T/T}
2DT < 1.

Thus, (1 − γ)
T
∑

t=1

1
1−γt ≤ max{O(log T ), O(

√
TV )}.

The final result follows by combining the two terms’ re-
sults.

Proof of Lemma 3:

Proof. The first part of the proof is the same as the first
part of the result in the Proof of Lemma 1 in (Zhang, Lu,
and Zhou 2018), which follows the result in (Cesa-Bianchi

and Lugosi 2006). We define Lγ
t =

t
∑

i=1

fi(θ
γ
i ), and Wt =

∑

γ∈H
wγ

1 exp(−αLγ
t ).

The following update is equivalent to the update rule in
Algorithm 2:

wγ
t =

wγ
1 exp(−αLγ

t−1)
∑

µ∈H
wµ

1 exp(−αLµ
t−1)

, t ≥ 2. (27)

First, we have

logWT = log
(
∑

γ∈H
wγ

1 exp(−αLγ
T )

)

≥ log
(

max
γ∈H

wγ
1 exp(−αLγ

T )
)

= −αmin
γ∈H

(

Lγ
T + 1

α log 1
wγ

1

)

.

(28)



Then we bound the quantity log(Wt/Wt−1). For t ≥ 2,
we get

log
(

Wt

Wt−1

)

= log
(

∑

γ∈H wγ
1 exp(−αLγ

t )
∑

γ∈H wγ
1 exp(−αLγ

t−1)

)

= log
(

∑

γ∈H wγ
1 exp(−αLγ

t−1) exp(−αft(θ
γ
t ))

∑

γ∈H wγ
1 exp(−αLγ

t−1)

)

= log
(

∑

γ∈H
wγ

t exp(−αft(θ
γ
t ))

)

(29)

where the last equality is due to Eq.(27).

When t = 1, logW1 = log
(

∑

γ∈H
wγ

1 exp(−αf1(θ
γ
1 ))

)

.

Then logWT can be expressed as:

logWT = logW1 +
T
∑

t=2
log

(

Wt

Wt−1

)

=
T
∑

t=1
log

(

∑

γ∈H
wγ

t exp(−αft(θ
γ
t ))

)

.
(30)

The rest of the proof is new.
Due to the α-exp-concavity, exp(−αft(

∑

γ∈H wγ
t θ

γ
t )) ≥

∑

γ∈H wγ
t exp(−αft(θ

γ
t )), which is equivalent to

log
(

∑

γ∈H
wγ

t exp(−αft(θ
γ
t ))

)

≤ −αft
(

∑

γ∈H
wγ

t θ
γ
t

)

= −αft(θt)
(31)

Combining the Inequalities (28), (30), and (31), we get

−αmin
γ∈H

(

Lγ
T +

1

α
log

1

wγ
1

)

≤ −α

T
∑

t=1

ft(θt)

which can be reformulated as

T
∑

t=1

ft(θt) ≤ min
γ∈H

(

T
∑

t=1

ft(θ
γ
t ) +

1

α
log

1

wγ
1

)

Since it holds for the minimum value, it is true for all
γ ∈ H, which completes the proof.

Proof of Theorem 7:

Proof. When γ = γ∗ = 1 − 1
2
log T
T

√

max{ T
log2 T

V,1}
2D =

1 − η∗, we have
∑T

t=1(ft(θ
γ∗

t ) − ft(zt)) ≤
max{O(log T ), O(

√
TV )} based on the Corollary 2.

Since 0 ≤ V ≤ 2TD, 1
2

log T

T
√
2D

≤ η∗ ≤ 1
2 .

According to our definition of ηi, min ηi =
1
2

log T

T
√
2D

and
1
2 ≤ max ηi < 1, which means for any value of V , there
always exists a ηk such that

ηk =
1

2

log T

T
√
2D

2k−1 ≤ η∗ ≤ 2ηk = ηk+1

where k = ⌊ 1
2 log2(max{ T

log2 T
V, 1})⌋+ 1.

Since 0 < ηk ≤ 1
2 , 1

2 ≤ γk = 1− ηk < 1 and γk ≥ γ∗.

According to Theorem 1, we have
∑T

t=1
(ft(θ

γk
t )− ft(zt)) ≤ −a1T log γk − a2 log(1− γk)

+ a3
1−γk

V + a4.

For the first term on the RHS, −T log γk = T log 1
γk

≤
T log 1

γ∗ .

For the second one, − log(1− γk) = − log 1
2 (2− 2γk) =

− log 1
22ηk. Since 1 ≥ 2ηk ≥ η∗, 1

22ηk ≥ 1
2η

∗, which

leads to − log 1
22ηk ≤ − log 1

2η
∗ and − log(1 − γk) ≤

− log 1
2η

∗ = log 2− log(1− γ∗).
For the third one, 1

1−γk
V = 1

ηk
V = 2

2ηk
V ≤ 2

η∗V =
2

1−γ∗V .

Since all the terms can be expressed in terms of γ∗ in the
original form without adding the order, based on the Corol-
lary 2, we get:

T
∑

t=1

(ft(θ
γk
t )− ft(zt)) ≤ max{O(log T ), O(

√
TV )} (32)

What’s more, from Lemma 3 we get

T
∑

t=1
(ft(θt)− ft(θ

γk
t )) ≤ 1

α log 1
w

γk
1

≤ 1
α log(k(k + 1))

≤ 2 1
α log(k + 1)

≤ O(log(log T ))

(33)

Combining the above inequalities (32) and (33) completes
the proof.

Proof of Lemma 4:

Proof. Let g(x) = exp(−αf(x)). To prove the concavity of
g(x), it is equivalent to show 〈∇g(x) − ∇g(y), x − y〉 ≤
0, x, y ∈ S . Since ∇g(x) = exp(−αf(x))(−α)∇f(x),
it is equivalent to prove that 〈exp(−αf(x))∇f(x) −
exp(−αf(y))∇f(y), x − y〉 ≥ 0, which can be reformu-
lated as

exp(−αf(x))〈∇f(x), x− y〉 ≥ exp(−αf(y))〈∇f(y), x− y〉
(34)

Without loss of generality, let us assume f(x) ≥ f(y).
Due to ℓ-strong convexity, f(x) ≥ f(y)+ 〈∇f(y), x−y〉+
ℓ
2‖x− y‖2, which leads to

〈∇f(y), x− y〉 ≤ f(x)− f(y)− ℓ

2
‖x− y‖2 (35)

What’s more, f(y) ≥ f(x)+〈∇f(x), y−x〉+ ℓ
2‖x−y‖2,

which leads to

〈∇f(x), x− y〉 ≥ f(x)− f(y) +
ℓ

2
‖x− y‖2 (36)

Combining inequalities (34), (35), and (36), it is enough

to prove that exp(−αf(x))(f(x) − f(y) + ℓ
2‖x − y‖2) ≥

exp(−αf(y))(f(x)− f(y)− ℓ
2‖x− y‖2), which can be re-

formulated as ℓ
2‖x−y‖2(exp(−αf(x))+exp(−αf(y))) ≥

(f(x) − f(y))(exp(−αf(y)) − exp(−αf(x))). When x −
y = 0, it is always true. Let us consider the case when ‖x−



y‖ > 0. Then we need to show that ℓ
2

(

1 + exp
(

α
(

f(x) −

f(y)
))

)

≥ f(x)−f(y)
‖x−y‖

exp

(

α
(

f(x)−f(y)
)

)

−1

‖x−y‖ . Due to

bounded gradient and Mean value theorem,
f(x)−f(y)
‖x−y‖ ≤ G,

which means it is enough to show that

ℓ

2G

(

1+exp
(

α
(

f(x)−f(y)
))

)

≥
exp

(

α
(

f(x)− f(y)
)

)

− 1

‖x− y‖
(37)

According to the Taylor series, exp
(

α
(

f(x) −

f(y)
)

)

= 1 + α
(

f(x) − f(y)
)

+ 1
2!α

2
(

f(x) −
f(y)

)2
+ · · · + 1

n!α
n
(

f(x) − f(y)
)n

, n → ∞.

Thus,
exp

(

α
(

f(x)−f(y)
)

)

−1

‖x−y‖ = α f(x)−f(y)
‖x−y‖ +

1
2α

2(f(x) − f(y)) f(x)−f(y)
‖x−y‖ + · · · + 1

n!α
n
(

f(x) −
f(y)

)n−1 f(x)−f(y)
‖x−y‖ , n → ∞. Since

f(x)−f(y)
‖x−y‖ ≤ G, we

have

exp

(

α
(

f(x)−f(y)
)

)

−1

‖x−y‖
≤ αG+ 1

2α
2(f(x)− f(y))G+ . . .

+ 1
n!α

n
(

f(x)− f(y)
)n−1

G

(38)

For the LHS of inequality (37), it is equal to

ℓ
G + α ℓ

2G (f(x)− f(y)) + 1
2!α

2 ℓ
2G (f(x)− f(y))2

+ · · ·+ 1
n!α

n ℓ
2G (f(x)− f(y))n, n → ∞

(39)

If we compare the coefficients of the RHS from the in-
equality (38) with the one in (39) and plug in α = ℓ/G2, we
see that it is always smaller or equal, which completes the
proof.

Proof of Theorem 8:

Proof. As in the proof of Theorem 7, all we need to show
is that there exists an algorithm Aγ , which can bound the

regret
∑T

t=1(ft(θ
γ
t )− ft(zt)) ≤ O(max{log T,

√
TV }).

When γ = γ∗ = 1 − 1
2
log T
T

√

max{ T
log2 T

V,1}
2D = 1 − η∗,

we have
∑T

t=1(ft(θ
γ∗

t )− ft(zt)) ≤ O(max{log T,
√
TV })

based on the Corollary 4.

Since 0 ≤ V ≤ 2TD, 1
2

log T

T
√
2D

≤ η∗ ≤ 1
2 .

According to our definition of ηi, min ηi =
1
2

log T

T
√
2D

and
1
2 ≤ max ηi < 1, which means for any value of V , there
always exists a ηk such that

ηk =
1

2

log T

T
√
2D

2k−1 ≤ η∗ ≤ 2ηk = ηk+1

where k = ⌊ 1
2 log2(max{ T

log2 T
V, 1})⌋+ 1.

Since 0 < ηk ≤ 1
2 , 1

2 ≤ γk = 1− ηk < 1 and γk ≥ γ∗.

According to Theorem 6, we have

T
∑

t=1

(

ft(θ
γk
t )−ft(zt)

)

≤ 2Dℓ

1− γk
V+

G2

ℓ
(1−γk)

T
∑

t=1

1

1− γt
k

For the first term on the RHS, 1
1−γk

V = 1
ηk
V = 2

2ηk
V ≤

2
η∗V = 2

1−γ∗V .

For the second one, 1 − γk ≤ 1 − γ∗. According to the

proof in Corollary 4,
T
∑

t=1

1
1−γt

k
≤ 1

1−γk
+ T + log(1−γk)

log γk
.

log(1− γk)

log γk
=

log ηk
log(1− ηk)

=
− log ηk

− log(1− ηk)
. (40)

Since ηk ≥ 1
2η

∗, log ηk ≥ log 1
2η

∗ and

0 < − log ηk ≤ − log
1

2
η∗ = log 2− log η∗. (41)

Since ηk ≥ 1
2η

∗, 1 − ηk ≤ 1 − 1
2η

∗. Then log(1 − ηk) ≤
log(1− 1

2η
∗), which results in

− log(1− ηk) ≥ − log(1− 1

2
η∗) > 0. (42)

Combining inequalities (41) and (42) with Eq.(40), we get

log(1−γk)
log γk

≤ log 2−log η∗

− log(1− 1
2η

∗)

= log 2
− log(1− 1

2η
∗)

+ − log η∗

− log(1− 1
2η

∗)

(43)

For the first term on the RHS,

− log(1− 1
2η

∗) = log
(

1

1− 1
4

√
max{V,log2 T/T}

2DT

)

= log
(

1 +
1
4

√
max{V,log2 T/T}

2DT

1− 1
4

√
max{V,log2 T/T}

2DT

)

≥ 1
2

1
4

√
max{V,log2 T/T}

2DT

1− 1
4

√
max{V,log2 T/T}

2DT

≥ 1
8

√

max{V,log2 T/T}
2DT

where the first inequality is due to log(1 + x) ≥ 1
2x, x ∈

[0, 1] and the second one is due to

√

max{V,log2 T/T}
2DT > 0.

As a result,

log 2
− log(1− 1

2η
∗)

≤ 8
√

2DT
max{V,log2 T/T} log 2

≤ 8 T
log T

√
2D log 2 < O(T ).

For the second term on the RHS of Eq.(43),

− log η∗ = log
(

2
√

2DT
max{V,log2 T/T}

)

≤ log 2 + 1
2 log 2D + 1

2 log
T

log T

Combining the inequalities for − log η∗ and − log(1 −
1
2η

∗), we get − log η∗

− log(1− 1
2η

∗)
≤ (log 2 + 1

2 log 2D +

1
2 log

T
log T )8

T
log T

√
2D ≤ O(T ).

As a result,
log(1−γk)

log γk
≤ O(T ) and

T
∑

t=1

1
1−γt

k
≤ O(T ).



Since using γk does not increase the order when replacing
with γ∗, we get

T
∑

t=1

(

ft(θ
γk
t )− ft(zt)

)

≤ O(max{log T,
√
TV })

which combining with the result of Lemma 3 completes the
proof.

Online Least-Squares Optimization Consider the online
least-squares problem with:

ft(θ) =
1

2
‖yt −Atθ‖2 (44)

where At ∈ R
m×n, AT

t At has full rank with lI � AT
t At �

uI , and yt ∈ R
m comes from a bounded set with ‖yt‖ ≤ D.

In the main paper, we analyzed the dynamic regret of
discounted recursive least squares against comparison se-

quences z1, . . . , zT with a path length constraint
∑T

t=2 ‖zt−
zt−1‖ ≤ V . Additionally, we analyzed the trade-off be-
tween static and dynamic regret of a gradient descent rule
with comparison sequence θ∗t = argminθ∈S ft(θ). In this
appendix, we analyze the trade-off between static regret and
dynamic regret with comparison sequence θ∗t achieved by
discounted recursive least squares. We will see that the dis-
counted recursive least squares achieves trade-offs depend
on the condition number, δ = u/l. In particular, low dy-
namic regret is only guaranteed for low condition numbers.

Recall that discounted recursive least squares corresponds
to Alg. 1 run with a full Newton step and η = 1. In this case,

Pt =
t
∑

i=1

γi−1AT
t+1−iAt+1−i = γPt−1 + AT

t At, and the

update rule can be written more explicitly as

θt+1 =
(

t
∑

i=1

γi−1AT
t+1−iAt+1−i

)−1(
t

∑

i=1

γi−1AT
t+1−iyt+1−i

)

(45)

The above update rule can be reformulated as:

θt+1 = θt − P−1
t ∇ft(θt). (46)

Before we analyze dynamic and static regret for the
update (46), we first show some supporting results for
‖yt −Atx‖ and ‖∇ft(x)‖, where x ∈ {v|v = βθt + (1 −
β)θ∗t , β ∈ [0, 1]}.

Lemma 6. Let θt be the result of Eq.(46), and θ∗t =
argmin ft(θ). For x ∈ {v|v = βθt +(1−β)θ∗t , β ∈ [0, 1]},
If ‖yt‖ ≤ D, then ‖yt −Atx‖ ≤ (u/l + 1)D.

Proof. ‖yt −Atx‖ ≤ ‖At‖2 ‖x‖ + ‖yt‖, and ‖At‖2 =
√

σ1(AT
t At) ≤ √

u. For ‖x‖, we have ‖x‖ =
‖βθt + (1− β)θ∗t ‖ ≤ β ‖θt‖+ (1− β) ‖θ∗t ‖.

For the term ‖θt‖, ‖θt‖ =
∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iAt−i

)−1( t−1
∑

i=1

γi−1AT
t−iyt−i

)

∥

∥

∥

∥

,

which can be upper bounded by

∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iAt−i

)−1
∥

∥

∥

∥

2

∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iyt−i

)

∥

∥

∥

∥

.

Then we upper bound these two terms individually.
∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iAt−i

)−1
∥

∥

∥

∥

2

= 1

σn(
t−1∑

i=1
γi−1AT

t−iAt−i)

.

Since lI � AT
t−iAt−i � uI , 1−γt−1

1−γ lI �
t−1
∑

i=1

γi−1AT
t−iAt−i) � 1−γt−1

1−γ uI . Thus,

σn(
t−1
∑

i=1

γi−1AT
t−iAt−i) ≥ l 1−γt−1

1−γ , which results in
∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iAt−i

)−1
∥

∥

∥

∥

2

≤ 1−γ
l(1−γt−1) .

For the term

∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iyt−i

)

∥

∥

∥

∥

, we have
∥

∥

∥

∥

( t−1
∑

i=1

γi−1AT
t−iyt−i

)

∥

∥

∥

∥

≤
t−1
∑

i=1

γi−1
∥

∥AT
t−iyt−i

∥

∥ ≤
t−1
∑

i=1

γi−1
∥

∥AT
t−i

∥

∥

2
‖yt−i‖ ≤ 1−γt−1

1−γ

√
uD. Then we have

‖θt‖ ≤
√
u
l D.

For ‖θ∗t ‖, we have ‖θ∗t ‖ =
∥

∥(AT
t At)

−1AT
t yt

∥

∥ ≤
∥

∥(AT
t At)

−1
∥

∥

2

∥

∥AT
t

∥

∥

2
‖yt‖ ≤

√
u
l D. Thus, ‖x‖ ≤

√
u
l D

and ‖yt −Atx‖ ≤ ‖At‖2 ‖x‖+ ‖yt‖ ≤ (u/l + 1)D.

Corollary 5. Let θt be the result of Eq.(46) and θ∗t =
argmin ft(θ). For x ∈ {v|v = βθt +(1−β)θ∗t , β ∈ [0, 1]},
we have ‖∇ft(x)‖ ≤ √

u(u/l + 1)D.

Proof. For ‖∇ft(x)‖, we have ‖∇ft(x)‖ =
∥

∥AT
t Atx−AT

t yt
∥

∥ ≤
∥

∥AT
t

∥

∥

2
‖Atx− yt‖ ≤√

u(u/l + 1)D, where the second inequality is due to
Lemma 6 and the assumption of AT

t At � uI .

Moreover, we need to obtain the relationship between
θt+1 − θ∗t and θt − θ∗t as another necessary step to get the
dynamic regret.

Lemma 7. Let θ∗t be the solution to ft(θ) in Eq.(44). When
we use the discounted recursive least-squares update in
Eq.(46), the following relationship is obtained:

θt+1 − θ∗t
=

(

I − γ−1P−1
t−1A

T
t (I +Atγ

−1P−1
t−1A

T
t )

−1At

)

(θt − θ∗t )

=
(

I + γ−1P−1
t−1A

T
t At

)−1

(θt − θ∗t )

Proof. If we set Φt =
t
∑

i=1

γi−1AT
t+1−iyt+1−i = γΦt−1 +

AT
t yt, then according to the update of θt+1 in Eq.(45), we

have θt+1 = (AT
t At + γPt−1)

−1(AT
t yt + γΦt−1), which

by the use of inverse lemma can be further reformulated as:

θt+1 =
(

γ−1P−1
t−1 − γ−2P−1

t−1A
T
t (I+

Atγ
−1P−1

t−1A
T
t )

−1AtP
−1
t−1

)

(

AT
t yt + γΦt−1

)

(47)



Then for θt+1 − θ∗t = θt+1 − (AT
t At)

−1AT
t yt, we have:

θt+1 − θ∗
t

=
(
I − γ

−1
P

−1
t−1A

T
t (I + Atγ

−1
P

−1
t−1A

T
t )

−1
At

)

︸ ︷︷ ︸

1

θt + γ
−1

P
−1
t−1A

T
t yt

︸ ︷︷ ︸

2.1

−
(
γ
−2

P
−1
t−1A

T
t (I + Atγ

−1
P

−1
t−1A

T
t )

−1
AtP

−1
t−1 − (A

T
t At)

−1)
A

T
t yt

︸ ︷︷ ︸

2.2

(48)

We want to prove 2.1 + 2.2 = 1 (−θ∗t ) =

1 (−(AT
t At)

−1AT
t yt) = 3 .

Since A(I + BA)−1B = AB(I + AB)−1 = (I +
AB)−1AB, for any compatible matrix A and B, we have:

3

= −
[
I − γ−1P−1

t−1A
T
t (I + Atγ

−1P−1
t−1A

T
t )−1At

]
(AT

t At)
−1AT

t yt

= −
[
I − (I + γ−1P−1

t−1A
T
t At)

−1γ−1P−1
t−1A

T
t At

]
(AT

t At)
−1AT

t yt

= −
[
(AT

t At)
−1 − (I + γ−1P−1

t−1A
T
t At)

−1γ−1P−1
t−1

]
AT

t yt

(49)

Also, for any compatible P , we have (I + P )−1 =
I − (I + P )−1P . Then (I + γ−1P−1

t−1A
T
t At)

−1 =

I − (I + γ−1P−1
t−1A

T
t At)

−1γ−1P−1
t−1A

T
t At.

Then 3 = −
[

(AT
t At)

−1 − γ−1P−1
t−1 + (I +

γ−1P−1
t−1A

T
t At)

−1γ−2P−1
t−1A

T
t AtP

−1
t−1

]

AT
t yt. Com-

pared with 2.1 + 2.2 , we are left to prove

(I + γ−1P−1
t−1A

T
t At)

−1γ−2P−1
t−1A

T
t AtP

−1
t−1 =

γ−2P−1
t−1A

T
t (I + Atγ

−1P−1
t−1A

T
t )

−1AtP
−1
t−1, which is

always true.

As a result, we have θt+1 − θ∗t =
(

I − γ−1P−1
t−1A

T
t (I +

Atγ
−1P−1

t−1A
T
t )

−1At

)

(θt − θ∗t ), which can be simplified as

θt+1 − θ∗t =
(

I + γ−1P−1
t−1A

T
t At

)−1
(θt − θ∗t ).

Corollary 6. Let θ∗t be the solution to ft(θ) in Eq.(44).
When we use the discounted recursive least-squares update
in Eq.(46), the following relation is obtained:

‖θt+1 − θ∗t ‖ ≤
√

u
l

uγ
uγ+l(1−γ) ‖θt − θ∗t ‖

Proof. From Lemma 7 we know that

θt+1 − θ∗t =
(

I + γ−1P−1
t−1A

T
t At

)−1

(θt − θ∗t )

which can be reformulated as:

θt+1−θ∗t = P
−1/2
t−1 (I+γ−1P

−1/2
t−1 AT

t AtP
−1/2
t−1 )−1P

1/2
t−1(θt−θ∗t )

which gives us the following inequality:

‖θt+1 − θ∗t ‖
≤

∥

∥

∥
P

−1/2
t−1

∥

∥

∥

2

∥

∥

∥
(I + γ−1P

−1/2
t−1 AT

t AtP
−1/2
t−1 )−1

∥

∥

∥

2∥

∥

∥
P

1/2
t−1

∥

∥

∥

2
‖θt − θ∗t ‖

Then we will upper bound the terms on the right-hand side
individually.

Since lI � AT
t−iAt−i � uI , 1−γt−1

1−γ lI � Pt−1 =
t−1
∑

i=1

γi−1AT
t−iAt−i � 1−γt−1

1−γ uI .

For the term

∥

∥

∥
P

−1/2
t−1

∥

∥

∥

2
, we have

∥

∥

∥
P

−1/2
t−1

∥

∥

∥

2
=

1√
σn(Pt−1)

. Since σn(Pt−1) ≥ 1−γt−1

1−γ l,
∥

∥

∥
P

−1/2
t−1

∥

∥

∥

2
≤

1√
l

√

1−γ
1−γt−1 .

For the term

∥

∥

∥
P

1/2
t−1

∥

∥

∥

2
, we have

∥

∥

∥
P

1/2
t−1

∥

∥

∥

2
=

√

σ1(Pt−1).

Since σ1(Pt−1) ≤ 1−γt−1

1−γ u,

∥

∥

∥
P

1/2
t−1

∥

∥

∥

2
≤ √

u
√

1−γt−1

1−γ .

For the term

∥

∥

∥
(I + γ−1P

−1/2
t−1 AT

t AtP
−1/2
t−1 )−1

∥

∥

∥

2
,

we have

∥

∥

∥
(I + γ−1P

−1/2
t−1 AT

t AtP
−1/2
t−1 )−1

∥

∥

∥

2
=

1/σn(I+γ−1P
−1/2
t−1 AT

t AtP
−1/2
t−1 ). For the term

σn(I+γ−1P
−1/2
t−1 AT

t AtP
−1/2
t−1 ), it is equal to

1 + σn(γ
−1P

−1/2
t−1 AT

t AtP
−1/2
t−1 ), which is lower bounded

by 1 + γ−1σn(P
−1/2
t−1 )σn(A

T
t At)σn(P

−1/2
t−1 ).

Since σn(P
−1/2
t−1 ) = 1√

σ1(Pt−1)
and σ1(Pt−1) ≤

1−γt−1

1−γ u, we have σn(P
−1/2
t−1 ) ≥ 1√

u

√

1−γ
1−γt−1 .

Together with σn(A
T
t At) ≥ l, we have

σn(P
−1/2
t−1 AT

t AtP
−1/2
t−1 ) ≥ l

u
1−γ

1−γt−1 , which results in
∥

∥

∥
(I + γ−1P

−1/2
t−1 AT

t AtP
−1/2
t−1 )−1

∥

∥

∥

2
≤ 1

1+γ−1 l
u

1−γ

1−γt−1

.

Combining the above three terms’ inequalities, we

have ‖θt+1 − θ∗t ‖ ≤
√

u
l

u(γ−γt)
u(γ−γt)+l(1−γ) ‖θt − θ∗t ‖ ≤

√

u
l

uγ
uγ+l(1−γ) ‖θt − θ∗t ‖.

Now we are ready to present the dynamic regret for the
general recursive least-squares update:

Theorem 9. Let θ∗t be the solution to ft(θ) in Eq.(44) and
δ = u/l ≥ 1 be the condition number. When using the
discounted recursive least-squares update in Eq.(46) with

γ < 1
δ3/2−δ+1

and ρ =
√

u
l

uγ
uγ+l(1−γ) < 1, we can upper

bound the dynamic regret:

Rd ≤
√
u(u/l + 1)D

1

1− ρ

(

‖θ1 − θ∗1‖++

T
∑

t=2

‖θ∗t − θ∗t−1‖
)

Proof. The proof follows the similar steps in the proof of
Theorem 2. First, we use the Mean Value Theorem to get
ft(θt)−ft(θ

∗
t ) = ∇ft(x)

T (θt−θ∗t ) ≤ ‖∇ft(x)‖ ‖θt − θ∗t ‖,
where x ∈ {v|v = βθt + (1− β)θ∗t , β ∈ [0, 1]}. According
to Corollary 5, ‖∇ft(x)‖ ≤ √

u(u/l + 1)D. As a result,
T
∑

t=1

(

ft(θt)− ft(θ
∗
t )
)

≤ √
u(u/l + 1)D

T
∑

t=1
‖θt − θ∗t ‖.

Now we need to upper bound the term
T
∑

t=1
‖θt − θ∗t ‖.

T
∑

t=1
‖θt − θ∗t ‖ = ‖θ1 − θ∗1‖ +

T
∑

t=2

∥

∥θt − θ∗t−1 + θ∗t−1 − θ∗t
∥

∥ ≤ ‖θ1 − θ∗1‖ +



T−1
∑

t=1
‖θt+1 − θ∗t ‖ +

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥ ≤ ‖θ1 − θ∗1‖ +

T
∑

t=1
‖θt+1 − θ∗t ‖ +

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥. According to Corol-

lary 6, ‖θt+1 − θ∗t ‖ ≤ ρ ‖θt − θ∗t ‖.
T
∑

t=1
‖θt − θ∗t ‖ ≤

‖θ1 − θ∗1‖ + ρ
T
∑

t=1
‖θt − θ∗t ‖ +

T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥, which

can be reformulated as
T
∑

t=1
‖θt − θ∗t ‖ ≤ 1

1−ρ (‖θ1 − θ∗1‖ +

+
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥). Then Rd =
T
∑

t=1

(

ft(θt) − ft(θ
∗
t )
)

≤

√
u(u/l + 1)D 1

1−ρ (‖θ1 − θ∗1‖++
T
∑

t=2

∥

∥θ∗t − θ∗t−1

∥

∥).

In the above Theorem 9, the valid range of γ is in

(0, 1/(δ3/2 − δ + 1)). Let us now examine the requirement
of γ to achieve the sub-linear static regret:

Theorem 10. Let θ∗ be the solution to min
T
∑

t=1
ft(θ).

When using the discounted recursive least-squares update
in Eq.(46) with 1 − γ = 1/Tα, α ∈ (0, 1), we can upper
bound the static regret:

Rs ≤ O(T 1−α)

Proof. The proof follows the analysis of the online Newton
method (Hazan, Agarwal, and Kale 2007). From the update
in Eq.(46), we have θt+1 − θ∗ = θt − θ∗ − P−1

t ∇ft(θt)
and Pt(θt+1 − θ∗) = Pt(θt − θ∗) − ∇ft(θt). Multiply-
ing the two equalities, we have (θt+1 − θ∗)TPt(θt+1 −
θ∗) = (θt − θ∗)TPt(θt − θ∗) − 2∇ft(θt)

T (θt − θ∗) +
∇ft(θt)

TP−1
t ∇ft(θt).

After the reformulation, we have ∇ft(θt)
T (θt − θ∗) =

1
2∇ft(θt)

TP−1
t ∇ft(θt)+

1
2 (θt−θ∗)TPt(θt−θ∗)− 1

2 (θt+1−
θ∗)TPt(θt+1 − θ∗) ≤ 1

2∇ft(θt)
TP−1

t ∇ft(θt) +
1
2 (θt −

θ∗)TPt(θt − θ∗)− 1
2 (θt+1 − θ∗)T γPt(θt+1 − θ∗).

Summing the above inequality from t = 1 to T , we have:
T
∑

t=1
∇ft(θt)

T (θt − θ∗) ≤
T
∑

t=1

1
2∇ft(θt)

TP−1
t ∇ft(θt) +

1
2 (θ1 − θ∗)TP1(θ1 − θ∗) +

T
∑

t=2

1
2 (θt − θ∗)T (Pt −

γPt−1)(θt − θ∗) − 1
2 (θT+1 − θ∗)T γPT (θT+1 − θ∗) ≤

T
∑

t=1

1
2∇ft(θt)

TP−1
t ∇ft(θt)+

1
2 (θ1−θ∗)T (P1−AT

1 A1)(θ1−

θ∗) +
T
∑

t=1

1
2 (θt − θ∗)TAT

t At(θt − θ∗).

Since P1 = AT
1 A1 and ft(θt)− ft(θ

∗) = ∇ft(θt)
T (θt −

θ∗)− 1
2 (θt−θ∗)TAT

t At(θt−θ∗), we reformulate the above

inequality as:

T
∑

t=1

(

ft(θt)− ft(θ
∗)
)

=
T
∑

t=1

(

∇ft(θt)
T (θt − θ∗)− 1

2 (θt − θ∗)TAT
t At(θt − θ∗)

)

≤
T
∑

t=1

1
2∇ft(θt)

TP−1
t ∇ft(θt)

=
T
∑

t=1

1
2 (Atθt − yt)

TAtP
−1
t AT

t (Atθt − yt)

≤
T
∑

t=1

1
2σ1(P

−1/2
t AT

t AtP
−1/2
t ) ‖Atθt − yt‖2

(50)

Since σ1(P
−1/2
t AT

t AtP
−1/2
t ) ≤ σ1(P

−1
t )σ1(A

T
t At) =

1
σn(Pt)

σ1(A
T
t At). From the proof of Corollary 6 we know

that σn(Pt) ≥ 1−γt

1−γ l and σ1(A
T
t At) ≤ u. Then

σ1(P
−1/2
t AT

t AtP
−1/2
t ) ≤ u

l
1−γ
1−γt . As a result, we have

T
∑

t=1

(

ft(θt)− ft(θ
∗)
)

≤
T
∑

t=1

1
2
u
l

1−γ
1−γt ‖Atθt − yt‖2

≤
T
∑

t=1

1
2
u
l

1−γ
1−γt (u/l + 1)2D2

≤ O(T 1−α)
(51)

where the second inequality is due to Lemma 6 and the third

inequality is due to the fact that
T
∑

t=1
1/(1 − γt) ≤ O(T ) as

shown in the proof of Theorem 3.

Recall that the valid range of γ in Theorem 9 is

(0, 1/(δ3/2 − δ + 1)), while having sub-linear static regret

requires γ = Tα−1
Tα . Although for some specific T , there

might be some intersection. In general, these two are con-
tradictory. However, as discussed in the main body of the
paper, more flexible trade-offs between static and dynamic
regret can be achieved via the gradient descent rule.


