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Abstract

The main drawbacks of input-output linearizing controllers are the need for precise dynamics mod-

els and not being able to account for input constraints. Model uncertainty is common in almost

every robotic application and input saturation is present in every real world system. In this paper,

we address both challenges for the specific case of bipedal robot control by the use of reinforcement

learning techniques. Taking the structure of a standard input-output linearizing controller, we use

an additive learned term that compensates for model uncertainty. Moreover, by adding constraints

to the learning problem we manage to boost the performance of the final controller when input

limits are present. We demonstrate the effectiveness of the designed framework for different levels

of uncertainty on the five-link planar walking robot RABBIT.

Keywords: legged robots, feedback control, reinforcement learning, model uncertainty

1. Introduction

1.1. Motivation

Research on humanoid walking robots is gaining in popularity due to the robots’ medical appli-

cations as exoskeletons for people with physical disabilities and their usage in dangerous disaster

and rescue missions. Model-based controllers have traditionally been applied to obtain stable walk-

ing controllers but, in general, they heavily rely on having perfect model knowledge and unlimited

torque capacity. In this paper we take a data-driven approach to address these two topics of cur-

rent research interest which still constitute challenges in bipedal robot control: uncertainty in the

dynamics and input saturation.

1.2. Related work

Input-output linearization is a nonlinear control technique that can be used to get the outputs

of a nonlinear system to track desired reference trajectories in a simple manner. By introducing an

appropriate state transformation, this control technique permits rendering the input-output dynamics
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linear. Afterward, linear systems control theory can be used to track the desired outputs. However,

input-output linearization requires precise knowledge of the system’s dynamics, which directly con-

flicts with the fact that actual systems’ dynamics might have nonlinearities that can be extremely

challenging to model precisely. Several efforts have been made to address this issue, using different

methods including robust and adaptive control techniques (Nguyen and Sreenath, 2015; Sastry and

Bodson, 1989; Craig et al., 1986; Sastry and Isidori, 1989) or, more recently, data-driven learning

methods (Taylor et al., 2019; Westenbroek et al., 2019). This paper will take the later approach

to address this challenge, specifically combining reinforcement learning (RL) and the Hybrid Zero

Dynamics (HZD) method for getting bipedal robots to walk.

The high nonlinearity, underactuation and hybrid nature of bipedal robotic systems pose addi-

tional problems that need to be addressed. The virtual constraints and HZD methods (Grizzle et al.,

2001; Westervelt et al., 2002; Westervelt, 2003; Morris and Grizzle, 2005) provide a systematic

approach to designing asymptotically stable walking controllers if there is full model knowledge.

These methods have been very successful in dealing with the challenging dynamics of legged robots,

being able to achieve fast enough convergence to guarantee stability over several walking steps. By

the HZD method, a set of output functions is chosen such that, when they are driven to zero, a time-

invariant lower-dimensional zero dynamics manifold is created. Stable periodic orbits designed on

this lower-dimensional manifold are also stable orbits for the full system under application of, for

instance, input-output linearizing (Sreenath et al., 2011), or control Lyapunov function (CLF) based

controllers (Ames et al., 2014). The later is based on solving online quadratic programs, whereas

the former approach does not rely on running any kind of online optimization. The CLF-based

method has also been successful in taking into account torque saturation (Galloway et al., 2015),

but it assumes perfect model knowledge too. In fact, taking input saturation into account is of

major importance and not doing it is one of the main disadvantages of input-output linearization

controllers that is often overlooked.

In this work, we build on the formulation proposed in Westenbroek et al. (2019) wherein pol-

icy optimization algorithms from the RL literature are used to overcome large amounts of model

uncertainty and learn linearizing controllers for uncertain robotic systems. Specifically, we extend

the framework introduced in Westenbroek et al. (2019) to the class of hybrid dynamical systems

typically used to model bipedal robots using the HZD framework. Unlike the systems considered in

Westenbroek et al. (2019), here we must explicitly account for the effects of underactuation when

designing the desired output trajectories for the system to ensure that it remains stable. Addition-

ally, we demonstrate that a stable walking controller can be learned even when input constraints are

added to the system. By focusing on learning a stabilizing controller for a single task (walking),

we are able to train our controller using significantly less data than was used in Westenbroek et al.

(2019), where it was trained to track all possible desired output signals.

1.3. Contributions

The contributions of our work thus are:

• We extend the work in Westenbroek et al. (2019) to the case of hybrid, underactuated bipedal

robots with input constraints.

• We directly address the challenge of dealing with a statically unstable underactuated system,

designing a new training strategy that uses a finite-time convergence feedback controller to

track desired walking trajectories.
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• We perform Poincaré analysis to claim local exponential stability of our proposed RL-enhanced

input-output linearization controller in the presence of torque saturation.

1.4. Organization

The rest of the paper is organized as follows. Section 2 briefly revisits hybrid systems theory

for walking and input-output linearization. Section 3 develops the proposed RL framework that

improves the input-output linearizing controller when there is a mismatch between the model and

the plant dynamics. Section 4 presents simulations on perturbed models of RABBIT, a five-link

planar bipedal robot. Finally, Section 5 provides concluding remarks.

2. Input-Output Linearization of Bipedal Robots

2.1. Model Description

Bipedal walking is represented as a hybrid model with single-support continuous-time dynamics

and double-support discrete-time impact dynamics (1), with x ∈ R
2n being the robot state, and

u ∈ R
m the control inputs. x− and x+ represent the state before and after impact, respectively, with

S being the switching surface when the swing leg contacts the ground and ∆ being the discrete-

time impact map. The constrained continuous-time dynamics are represented in the manipulator

form (2), where q ∈ R
n is the vector containing the generalized system’s coordinates, D(q) is the

inertia matrix of the system, C(q, q̇) is the matrix representing the centripetal and Coriolis effects,

G(q) is the gravitation terms vector, B(q) is the motor torque matrix, J(q) is the Jacobian of the

stance foot and λ is the ground contact forces vector. The state variables are x = [q, q̇]>.

H =

{

ẋ = f(x) + g(x)u, x− /∈ S,

x+ = ∆(x−), x− ∈ S.

(1)

{

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u+ J>(q)λ,

J(q)q̈ + J̇(q, q̇)q̇ = 0.
(2)

2.2. Input-Output Linearization

The output function y : R2n → R
m is defined to represent the walking gait. Supposing y has a

vector relative degree two —meaning that the first derivative of y does not depend on the inputs but

the second derivative does— the second derivative of y can be written as:

ÿ = L2
fy(x) + LgLfy(x)u. (3)

The functions L2
fy and LgLfy are known as second order Lie derivatives. More information

about Lie derivatives and how to compute them can be found in Sastry (1999). Moreover, using

the method of Hybrid Zero Dynamics (HZD) the output function and its first derivative are driven

to zero, imposing “virtual constraints” such that the system evolves on the lower-dimensional zero

dynamics manifold, given by Z = {x ∈ R
2n| y(x) = 0, ẏ(x) = 0}. If the vector relative degree

is well-defined, then LgLfy(x) 6= 0 ∀ x ∈ D, with D ⊂ R
2n being a compact subset of the

state space containing the origin. Since LgLfy is nonsingular in D, we can use the input-output

linearizing control law:

u(x) = LgLfy
−1(x)(−L2

fy(x) + v), (4)

which yields ÿ = v, where v is a virtual input.

Suppose a state transform Φ : x → (ξ, z), with ξ = [y, ẏ]> and z ∈ Z. Then, the closed-loop

dynamics become a linear time-invariant system on ξ and the zero-dynamics on z:
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{

ξ̇ = Aξ +Bv,

ż = p(ξ, z),
with A =

[

0m×m Im
0m×m 0m×m

]

and B =

[

0m×m

Im

]

. (5)

We define v following Westervelt et al. (2007):

v(ξ) = 1

ε2
ψa(y, εẏ), with







ψa(y, εẏ) = −sign(εẏ)|εẏ|a − sign(φa(y, εẏ))|φa(y, εẏ)|
a

2−a ,

φa(y, εẏ) = y +
1

2− a
sign(εẏ)|εẏ|2−a,

(6)

such that v ensures finite time convergence to Z and ε controls the rate of convergence.

3. Reinforcement Learning for Uncertain Dynamics

In this section, we study the case in which there is a mismatch between the model and the actual

plant dynamics. Now, plant and model are represented by:

(Unknown) Plant Dynamics (Known) Model Dynamics
{

ẋ = fp(x) + gp(x)u,

y = hp(x),
(7)

{

ẋ = fm(x) + gm(x)u,

y = hm(x).
(8)

For our application we will be using the same output functions for plant and model, so we could

actually set hp ≡ hm. Furthermore, we assume that both systems have vector relative degree two.

Defining an input-output linearizing controller on the model dynamics using the state dependent

finite-time convergence feedback controller presented in (6) for the additional input v we get:

u(x) = (LgmLfmhm(x))−1 (−L2
fm
hm(x) + v(x)). (9)

However, if the mismatch between the model and the real dynamics is big enough, this controller

may not manage to stabilize the plant. In order to address this issue we use an alternative control

input:

uθ(x) =
(

LgmLfmhm(x)
)−1(

− L2
fm
hm(x) + v(x)

)

+ αθ(x)v(x) + βθ(x), (10)

where θ ∈ R
k is a vector of parameters of a neural network that are to be learned. For a specific θ,

the policies αθ : Rn → R
m×m, βθ : Rn → R

m take the current state as input and serve to define

an additive learned term that is affine in v. Note that uθ maintains the structure of an input-output

linearizing controller. Applying the new control law uθ, the second derivative of the plant’s outputs

can be rewritten as:

ÿ = L2
fp
hp(x)+LgpLfphp(x)

(

(

LgmLfmhm(x)
)−1(

−L2
fm
hm(x)+v(x)

)

+αθ(x)v(x)+βθ(x)

)

.

(11)

In Westenbroek et al. (2019), Wθ is defined as the right hand side of the above equation, such that

∀x ∈ R
2n, ÿ =Wθ(x). The point-wise loss is then defined on R

2n × R
k as:

l(x, θ) = ||v(x)−Wθ(x)||
2
2, (12)

which provides a measure of how well the controller uθ linearizes the plant at the state x. Since

the term Wθ present in the loss function depends on the unknown plant dynamics, we use a finite

difference approximation of it by replacing this by the second derivative of the outputs of the plant.
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(a) scale = 1.5 (b) scale = 3

Figure 2: Euclidean norm of the tracking error (for 10 and 200 steps) and joint torques (for 10 steps),

for the original IO controller (yellow), the RL-enhanced IO controller (blue), and the RL-enhanced

IO controller with torque saturation (red). Torque saturation for the RL-enhanced IO controller is

set at 105 Nm when scale = 1.5, and at 155 Nm when scale = 3. There is no torque saturation

for the original IO controller.

been generated is time-invariant, which makes the controlled system more robust to uncertainties

(Westervelt et al., 2007). Taking the difference between the actual four actuated joint angles and

the desired ones (coming from the reference trajectory) as output functions y, the system is input-

output linearizable with vector relative degree two. Consequently, we can use the RL-enhanced IO

controller uθ presented in the previous section.

We train our controller using a Deep Deterministic Policy Gradient Algorithm (DDPG) (Silver

et al., 2014). DDPG is used to tune the parameters of the actor and critic feedforward neural net-

works. They each have two hidden layers of widths 400 and 300 and ReLU activation functions.

The actor neural network maps 14 observations, which are the states of the robot, to 20 outputs

corresponding to the 4× 4 αθ and the 4× 1 βθ.

4.3. Model-Plant Mismatch and Torque Saturation Results

We introduce model uncertainty by scaling all the masses and inertia values of the plant’s links

by some factor (scale) with respect to the known model. After about twenty minutes of training

when the scale is 1.5 and about an hour when the scale is 3, we obtain the results shown in Fig-

ure 2, in which we compare the tracking error and the joint torques when using (i) the original IO

controller, (ii) the RL-enhanced IO controller without torque saturation and (iii) the RL-enhanced

IO controller when there is torque saturation. For these results we did not need to include torque

saturation in the training process, and Figure 2 shows that the RL-enhanced IO controller still per-

forms well in the presence of input constraints if they are not too severe. The beneficial effects of

including torque saturation constraints during training will be discussed later.
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Figure 3: RL-enhanced IO controller with torque saturation at 45 Nm and scale = 1. Euclidean

norm of the tracking error (left) and joint torques (right) for a simulation of 10 walking steps. The

original IO controller fails after one step and is not shown in this figure.

In Figure 2 it can be observed that the RL-enhanced IO controller with and without saturation is

able to stabilize the system indefinitely each time, whereas the original IO controller accumulates

error on the outputs and the robot falls after a few steps. Moreover, the RL-enhanced IO controller

achieves this without increasing the magnitude of the torques when compared with the original IO

controller.

The stability of the periodic gait obtained under the RL-enhanced IO controller can also be

studied by the method of Poincaré. We consider the post-impact double stance surface S as a

Poincaré section, and define the Poincaré map P : S → S. We can numerically calculate the

eigenvalues of the linearization of the Poincaré map about the obtained periodic gait, which results

in a dominant eigenvalue of magnitude 0.67 for scale = 1.5 and no torque saturation, 0.78 for

scale = 1.5 with torque saturation, 0.76 for scale = 3 and no torque saturation and 0.83 for

scale = 3 with torque saturation. The magnitude of the dominant eigenvalue being always less than

one means that the designed controllers achieve local exponential stability (Westervelt et al., 2007).

Next, we study the case of having no mismatch between the plant and the model dynamics but,

instead, having heavy input constraints in the torques, which make the original IO controller fail.

By training while taking into account the torque saturation, we obtain a RL-enhanced IO controller

that achieves stable walking under the presence of severe input constraints, as shown in Figure 3.

4.4. Tracking Untrained Trajectories

Depicted in Figure 4 are the tracking errors and torques produced by the RL-enhanced IO con-

troller for a scale of 3 when it is trying to follow periodic orbits it was not trained on. These

trajectories differ from the one used for the training (trajectory 1) in the maximum hip height dur-

ing a step. As can be seen in the left part of Figure 4, trajectory 2 and trajectory 1 are relatively

similar, whereas trajectory 3 constitutes a noticeably different walking gait. From the figures, we

can see that the RL-enhanced IO controller performs better when tested in trajectory 2 than in tra-

jectory 3. Actually, it will be able to stably track trajectory 2 for an indefinitely long horizon and not

trajectory 3. This was expected, since the more different the trajectory is, the farther the state of the

robot will be from the distribution of states the DDPG agent has been trained on. Also, the output

functions we have defined depend on the Bézier coefficients of the reference trajectory, and so the

actual input-output linearizing controller is different for each trajectory. Still, thanks to training the

DDPG agent on a stochastic distribution of initial states, we get enough exploration to achieve good
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