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Abstract 

In this paper, we demonstrate a new type of threat that lever- 
ages machine learning techniques to maximize its impact. 
We use the Raven-II surgical robot and its haptic feedback 
rendering algorithm as an application. We exploit ROS vulner- 
abilities and implement smart self-learning malware that can 
track the movements of the robot’s arms and trigger the attack 
payload when the robot is in a critical stage of a (hypotheti- 
cal) surgical procedure. By keeping the learning procedure 
internal to the malicious node that runs outside the physical 
components of the robotic application, an adversary can hide 
most of the malicious activities from security monitors that 
might be deployed in the system. Also, if an attack payload 
mimics an accidental failure, it is likely that the system admin- 
istrator will fail to identify the malicious intention and will 
treat the attack as an accidental failure. After demonstrating 
the security threats, we devise methods (i.e., a safety engine) 
to protect the robotic system against the identified risk. 

 
1 Introduction 

A number of attempts have been made to leverage machine 
learning (ML) techniques to realize malicious intentions. For 
instance, adversarial learning was used to effectively deceive 
data-driven models by strategically injecting malicious in- 
put [8, 25, 45, 47] to identify the target of an attack [28], or to 
infer information hidden behind encrypted data [26, 33]. In 
this context, smart malware that employs ML techniques rep- 
resents a new concept for the implementation of sophisticated 
attack strategies. Such malware can infer attack strategies 
based on live operational data and trigger an attack at the 
most opportune time so as to maximize the impact. 

For threats that use self-learning malware, robotic appli- 
cations turn out to be a fascinating target. Like other cyber- 
physical systems (CPSes), robotic applications incorporate 
sensors and actuators that are connected through a network 
that passes around data. Their (i) relatively  weak security 
[5, 13, 31], (ii) abundance of data that can be used to infer 
actionable intelligence [4, 9, 54], and (iii) close proximity to 

and direct interactions with humans (such that a successful 
attack could have a life-threatening impact) [14, 22, 23] make 
robotic applications a tempting target for advanced threats. 

To demonstrate the feasibility of smart malware, we have 
built an injection module as a prototype. Our prototype smart 
malware eavesdrops on the communication between the robot 
components of a near-real-time system (as an input for the 
smart malware), uses the leaked data to infer intelligence on 
when to trigger the payload (or take control over the robot), 
and executes the payload at the most opportune time (i.e., 
the output of our smart malware) so that it can maximize the 
impact. While our attack model applies to any robotic system, 
in this paper, we use the Raven-II surgical robot [3] and its 
haptic feedback rendering algorithm as a target application. 

Raven-II is driven by the Robot Operating System (ROS) 
[44], an open-source framework that has been widely de- 
ployed across various robotic applications (i.e., more than 
125 applications [38]), and its resiliency is critical to varying 
domains (e.g., robotic surgery, aviation, and manufacturing). 
However, the most commonly used ROS contains vulnerabili- 
ties [15] that leak data (e.g., robot state) transmitted within the 
application, and those data can become the basis from which 
smart malware can learn about the system behavior and use 
this information to decide when to trigger an attack. We ex- 
ploited ROS vulnerabilities and implemented smart malware 
that tracks the movement of the robot’s arms and triggers the 
attack payload when the robot is in a critical state of a (hypo- 
thetical) surgical procedure. After demonstrating the security 
threats, we discuss the methods (i.e., a safety module) that 
we devised to protect the robotic system against the identified 
risk. 

What makes our malware stealthy is the invisibility of its 
learning process to security monitoring systems. Unlike com- 
mon malware, which is installed in a victim system, our mal- 
ware runs outside the physical components of the robotic 
application. The ROS allows any new node/process to regis- 
ter with a master (core) node; hence, an attacker can register 
its malicious node to the robotic application without being 
noticed. By keeping the learning procedure internal to the 
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malicious node, an adversary can hide all malicious activities 
(except for its network activities with genuine nodes of the 
target application) from security monitors that might be de- 
ployed. Hence, only the impact of the attack, which mimics 
accidental failures, is observable to the system administrator. 
As a result, it is likely that malicious faults will be seen as ac- 
cidental failures (especially if the network traffic is not being 
monitored). Note that additional network traffic introduced 
by our malware prototype is negligible (about 0.24% of the 
volume of the genuine traffic). 

The contributions of this paper are the following: 
• We show the possibility of a real attack on a surgical robot 

that exploits known vulnerabilities in the underlying run- 
time environment, ROS. The vulnerabilities allow a ma- 
licious entity to operate as a man-in-the-middle (MITM), 
with the ability to eavesdrop (i.e., leak robot control data) 
and overwrite communication among the robot components 
(i.e., effectively take control of the robot). 

• We demonstrate smart malware logic that can infer the 
most opportune time of attack from the information ob- 
tained through exploitation of the vulnerabilities in ROS. 
Our experiment with three use cases that mimic (hypothet- 
ical) surgical operations of different levels of complexity 
shows that the ML algorithm (DBSCAN) used by our mal- 
ware can determine the position of the robot end-effector 
with respect to the target object and use this information 
to trigger the execution of the payload. Specifically, the 
DBSCAN algorithm triggers the injection of the attack 
payload (i.e., corruption of data used to control the robot) 
when the robot arm is in close proximity to the target object 
(i.e., there is less than 10 mm distance between the robot 
end-effector and the target object). 

• We present a set of unique faults that, when used as an 
attack payload, can threaten the integrity of the surgical 
operation. The faults consist of realistic scenarios that can 
be disguised as accidental failures, such as network packet 
drop, data corruption, or bugs in the control software. 

• We implement a ROS-generic safety module that can detect 
abnormalities introduced by attacks and can bring the robot 
to a safe state. Specifically, the safety module detects the 
shutdown signal generated by the roscore  in the case of  
a name conflict (i.e., a new node registers itself with an 
already existing name). If that happens, the safety module 
terminates the new node, takes over the control of the robot, 
and returns it to a predefined safe state to prevent further 
impact. 

While we demonstrate the feasibility of the advanced threat 
in the context of Raven-II and its underlying framework (i.e., 
ROS), the design of the smart malware is sufficiently generic 
that it can be used on other robotic systems that generate a 
stream of sensor data from input sensors and robot control 
data to the physical robots. As summarized in [1], an attacker 
can intrude into a robotic system through various entry points 
(e.g., third-party networks, vulnerable workstations, and vul- 

nerable or incorrectly configured firewalls or gateways). Once 
smart malware has established an MITM attack (i.e., it can lis- 
ten to and overwrite control data), its smart injection module 
can infer the critical time of the operation of any robot. The 
attack payloads (i.e., the faults to be injected), on the other 
hand, are specific to the robotic application. 

 
2 Motivation for smart malware 

Machine learning techniques have been applied in different 
domains (e.g., image processing and natural language pro- 
cessing) to derive intelligence from data. Researchers and 
engineers in cyber security have also deployed ML-based 
techniques as part of an effort to advance methods for de- 
tecting malicious activities. However, not much work has 
considered the possibility that adversaries could take advan- 
tage of machine learning algorithms to devise attack strategies. 
More specifically, a few studies have investigated the poten- 
tial impact of attacks that are supported by machine learning 
algorithms [40, 41]. In this paper, we define smart malware 
as malicious software that can, by itself, derive intelligence 
from data obtained from the victim system. 

Smart malware is available only at a cost (i.e., high compu- 
tation workload). However, we find reasons that might justify 
the overhead: access to rich data and an ability to achieve 
high impact with minimized remote interaction between the 
malware (software)  and the  attacker (human).  (That is, to 
a certain extent, machine learning algorithms can replace 
human-driven analysis in designing/customizing malware.) 
Notably, long and unusual remote connections often lead to 
exposure of attackers. Furthermore, the computational load 
imposed by the execution of the smart malware can be obfus- 
cated with techniques such as the “low and slow” approach, 
whereby attackers intentionally reduce the computation work- 
load despite having to tolerate a longer time of execution. 

For machine-learning-driven threats, cyber-physical sys- 
tems (especially robotic applications) turn out to be tempting 
targets. In cyber-physical systems, sensors and monitors are 
deployed across the system to gather information (e.g., on 
images, sounds, temperature, and flows). Data collected from 
input sensors are sent to controllers or computation units that 
derive control variables or decisions, which are passed to the 
actuator to update the state of the system. While traditional 
robots were contained within a single physical system, the 
new concept of distributed robotics (or collaborative robotics) 
is expanding the boundary of robotic systems. (E.g., with 
remote surgery, a physician can perform surgery from a re- 
mote location.) A key enabler for this new mode of attacking 
the system is a protocol for sharing data across a network. 
However, if the protocol is not properly designed for security, 
it can introduce vulnerabilities that eventually exploited by 
smart malware. 

For instance, a publish-subscribe model is a common mes- 
saging pattern in which the information is shared between 
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the publisher and the subscriber. Its advantages include scal- 
ability and loose coupling between the publishers and the 
subscribers. However, such advantages introduce side effects 
that impact the security of the system. Without authentication 
and encryption, unauthorized entities can read messages and 
leak data. Such data become a baseline for learning, from 
which malicious entities can derive actionable intelligence. In 
this paper, we demonstrate the threat by using the Raven-II 
surgical robot (running on top of ROS) as the target for such 
an attack strategy. 

 
3 Background: Robots, ROS, and Raven-II 

Robots have been adopted across different application do- 
mains. For example, in manufacturing, robot manipulators 
assist human workers; drones are deployed in agriculture, 
entertainment, and military operations; and surgical robots 
support surgeons in performing medical procedures. For such 
applications, robots play a critical role. A robot’s failure to 
make a correct and timely movement can lead to catastrophic 
consequences, such as injuring people near the robots in fac- 
tories or risking a patient’s life during surgery. This study 
focuses on the resiliency of a surgical robot against malicious 
attacks. We use the Raven-II surgical robot [3] and its hap- 
tic rendering algorithm as an application to demonstrate the 
security threat, and suggest methods to cope with the risk. 
Robot Operating System (ROS). The Robot Operating Sys- 
tem (ROS) is an open-source framework for programming 
robots [44], and is commonly used by various robotic ap- 
plications. According to its official website, ROS is widely 
deployed across more than 125 different robots, including mo- 
bile robots, drones, manipulators, and humanoids [38]. The 
framework is being developed to support collaborative de- 
velopment by experts from different domains (e.g., computer 
vision or motion planning) and provides hardware abstraction, 
device drivers, libraries, and a communication interface [44]. 
For instance, the OpenCV library [6] provides interfaces that 
can be used to add vision to robotics applications, and the 
OpenNI library [35] focuses on integrating 3D sensors into 
robots. As ROS provides the core underlying runtime environ- 
ment, the security of ROS is critical in ensuring the correct 
operation of the robot. 

As shown in Fig. 1a, a ROS-based application consists of 
multiple ROS nodes. They can be running on a single physical 
machine or can be distributed across multiple machines (i.e., 
Computers A and B in the figure), as long as they share the 
ROS core, which is deployed on the computer declared as the 
ROS master. Each node communicates over the network, and 
the ROS core serves as the central server for all nodes. Data 
are exchanged in the context of a topic, where a topic is a 
data structure defined to deliver a specific context type; e.g., 
the image sensor data are exchanged in the form of multidi- 
mensional arrays, which consist of the RGB color codes for 
all pixels captured by the image sensor. A node, either a pub- 

lisher or a subscriber, registers itself to the ROS core for the 
topic that the node is about to publish (or subscribe to). The 
ROS core then passes the information (i.e., the IP address) of 
the publisher to the subscriber waiting for the topic, so that 
the subscriber can establish a TCP connection with the pub- 
lisher. After a handshaking protocol and transmission of the 
metadata that include the structure of the topic message, the 
two entities start passing the message by using a ROS-specific 
protocol. 

The ROS nodes can be classified into three types: input 
nodes, output nodes, and computational nodes. An input node 
is a node connected to a piece of hardware (e.g., an image 
sensor or a haptic device) that provides input to the robot 
application. The input node, using the device driver provided 
by (or interfaced with) ROS, collects the data and converts the 
data into a ROS message as defined for the topic. Once the 
message is ready, the input node publishes it. The input node 
should have declared itself to the ROS core as a publisher 
for a topic. A computational node is a node that takes the 
input data to produce the output (e.g., a command to a robot 
actuator); it subscribes from the input node and publishes to 
the output node. Finally, an output node is a node connected 
to an actuator (i.e., the robot). The values (i.e., robot states 
and control commands) subscribed from the computational 
node are converted into a form that the hardware can interpret, 
and passed to the hardware. The output data determine the 
(joint) state of the robot. 

The ROS framework comes with the RVIZ software pack- 
age, which allows users to test and visualize the operation 
of the robot applications in a virtualized environment. RVIZ 
takes the physical specifications of the robot and displays 
the mesh of the robot; it is heavily used to test robot designs 
without using a physical robot. 
Raven-II and haptic force feedback rendering engine. In 
this paper, we study the resiliency of a ROS application in 
the context of a surgical robot (i.e., Raven-II) and its haptic 
feedback rendering engine. Leveraging the open-architecture 
surgical robot, the authors of [30] present a hardware-in-the- 
loop simulator for training surgeons in telerobotic surgery. 
The simulator, in addition to having all the features of the 
Raven surgical robot, introduces a novel algorithm to pro- 
vide haptic feedback to the operator and, hence, offer a touch 
sensation to surgeons. Unfortunately, commercially available 
surgical systems1 (e.g., da Vinci by Intuitive [52]) do not pro- 
vide haptic feedback to the operator. The traditional approach 
for haptic feedback uses physical force sensors to determine 
the force applied to the robot. Since the instruments (on which 
the force sensors are installed) are disposable, that approach 
turns out to be costly. Instead, the authors of [30] proposed an 
indirect haptic feedback rendering approach that does not rely 

 
1In 2017, the FDA approved a new surgical system [49] with haptic force 

feedback. However, we do not have sufficient information to understand the 
underlying technology and, hence, the capability of the system. 
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(a) Generic robot running on ROS. (b) Raven-II with its haptic feedback rendering algorithm. 

 
Figure 1: Software architecture of robotic applications. 

 
on force sensor measurement, but instead uses image sensor 
data to derive the force feedback. 

In our study, the haptic feedback rendering algorithm, as 
implemented in the augmented Raven-II simulator, utilizes 
information from a depth map (a matrix of distances from the 
image sensor to each pixel of a hard surface) to derive the 
distance from the object (e.g., a patient’s tissues) to the robot 
arm. Using the current position of the arm and the measured 
distance to the object, the algorithm returns an interactive 
force value that generates resistance in the haptic device. 

Figure 1b provides an overview of the software architecture 
of Raven-II and its haptic feedback rendering algorithm. The 
haptic algorithm takes input from the Kinect image sensor 
and the OMNI haptic device to control the Raven-II robot (or 
its virtual representation in RVIZ). The sensorkinect node 
parses the image data (as BGR and depth) from the Kinect 
image sensor, packages the data into ROS messages, and pub- 
lishes the messages to the ROS core as topics (kinect/BGR and 
kinect/Depth). The omni_client node is connected to the 
OMNI haptic device for user input. The omni_client node 
shares the processed operator input as a topic (omni_incr). A 
set of nodes, dedicated to running the algorithm, subscribe to 
the topics from the ROS core and derive the force feedback, 
which the omni_client sends to the haptic device. 

The kinect/Depth topic from sensorkinect is used to de- 
rive the distance from the robot arm to the object. However, in 
deriving the distance, the algorithm needs a reference frame. 
It leverages the ArUco library [21, 46], which is an Open- 
Source library commonly used for camera pose estimation. 
With the ArUco marker (i.e., a squared marker) location fixed 
and used as a reference point, we can derive the location of 
the robot arm(s) relative to the marker. Using that information, 
the algorithm can derive the distance from the robot arm to 
the object by using (i) the transformation from the marker to 
the robot, (ii) the transformation from the image sensor to the 
marker, and (iii) the transformation from the image sensor to 
the object. Because the transformation from the robot arm to 
the object is evaluated in near-real-time, the algorithm can 
provide timely haptic force feedback to the OMNI device. 

4 Approach 

Cyber security is often referred to as a “cat and mouse” game. 
In this paper, we are considering potential advances in cy- 
ber threats, assuming that adversaries will eventually take 
advantage of machine learning techniques (if they are not 
already doing so). In this section, we present our approach 
for corrupting a robotic application with self-learning mal- 
ware. We developed this approach to raise awareness of the 
potential threats, and to promote preparation for responding 
to this threat. The methodologies included in our approach 
can be used for (i) preemptive identification of vulnerabilities, 
(ii) hardening of robotic applications against potential threats, 
and (iii) design of detection/mitigation methods. 
Threat model. In our threat model, we assume: 
• The attacker can penetrate into the control network of the 

robot. As presented in [13], ROS applications are often 
connected to a public network without proper protection. 
One can provide a level of protection by virtually isolating 
the control network (i.e., by deploying a VLAN). However, 
it would be possible to intrude into the virtual network 
either with stolen credentials or by exploiting a weak link 
(i.e., a vulnerable computer that has access to the VLAN). 
In the context of attacks on surgical robots, a survey on 
potential entry points of a hospital network can be found 
in [1]. 

• The attacker understands the operation of ROS, and has 
access to ROS-provided APIs (which are easily obtainable 
online). With remote access to the ROS master, one can 
execute ROS commands. 

• The target robot runs on top of ROS 1. Our attack model is 
designed for ROS 1 (e.g., Kinetic and Melodic), which is 
still the most commonly deployed version despite the re- 
lease of ROS 2 (discussed in detail in Section 7.1) in 2015. 
Software patches have been issued to fix the vulnerabili- 
ties in ROS, but, as we discuss in Section 7.1, the patches 
merely require attackers to take another step to neutralize 
them. Hence, in describing our attack model, we assume 
the default setting of the most commonly used ROS. 
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Figure 2: Approach overview, from attack preparation to im- 
pact to ROS application. 

 

Approach overview. Vulnerabilities present in the ROS 
framework allow unauthorized entities to eavesdrop on mes- 
sages passed across ROS nodes. Utilizing the obtained data, a 
malicious entity can identify an ideal time to trigger an attack 
and corrupt the operation of the robot by injecting faulty input 
or output commands. In Figure 2, we present an overview  
of our approach. During the attack preparation phase, we 
identify the victim (i.e., a ROS master that is remotely acces- 
sible) and its critical components. Once they are identified, 
the attack strategy can be applied to perform a man-in-the- 
middle (MITM) attack. As the malware eavesdrops on the 
sensor and control data of the robot, the smart malware runs 
a learning algorithm to infer the location of the target object. 
When the object is identified (i.e., the algorithm returns a clus- 
ter) and the robot reaches the predicted location of the target 
object, a trigger is raised to initiate the attack payload. In 
the following, we describe the details of our approach. 

 
4.1 Attack preparation 
To deploy the attack, the first step is to identify machines that 
are running ROS as a master (core) node. Using a network 
scanning tool, we scan for the default port for ROS masters 
(i.e., 11311, a well-known port for ROS masters) [13]. Once 
the master and its IP address are known, we set up ROS on 
our machine (which mimics a remote attacker) and update 
the ROS master’s Uniform Resource Identifier (URI) variable 
to that of the identified master. Using the ROS APIs, we 
search for the topics of interest (i.e., the topics registered to 
the ROS master are used as a signature for identifying the 
ROS application). 

 
4.2 Attack strategy: ROS-specific MITM 
In corrupting a ROS application, we take advantage of the 
vulnerabilities in ROS and execute a ROS-specific man-in- 
the-middle attack. As described in Section 3, ROS provides 
a set of interfaces (publish/subscribe) that ROS nodes can 
use to communicate; the ROS core serves as the arbitrator. 

While the communication might include sensitive data, the 
ROS 1 framework does not provide options for authenticating 
or validating the ROS entities. (I.e., any ROS node that can 
access the master can register itself as a publisher to write 
messages or as a subscriber to read messages.) After config- 
uring the ROS setup to connect to the victim ROS master 
(attack preparation; see Section 4.1), our malware can initiate 
a subscriber that eavesdrops on the network communications. 
To take control of the robot, it kicks out a genuine node and 
publishes malicious data while masquerading as the original 
publisher. Without noticing the change in the publisher, the 
robotic application takes the malicious data as an input (or 
command) and updates the state of the robot accordingly. 

 
4.3 Trigger: Inference of critical time to 

initiate the malicious payload 
Most security attacks are detected when the attack payload is 
executed [50]. Once detected, the attacker (or the malware that 
the attacker had installed) is removed from the system. Con- 
sequently, in many cases, the attacker may have one chance 
to execute the payload before being detected. As a result, it 
is realistic to consider the case in which an attacker tries to 
identify the ideal time to execute the attack payload (in our 
case, to inject a fault) in order to maximize the chances of 
success. A common approach is to embed a trigger function 
into the malware, which checks for a condition and executes 
the payload only when the condition is satisfied. 

In [2], Alemzadeh et al. presented an attack model that is 
triggered by a prediction of the robot state derived by a side- 
channel attack. In the model, the attacker installs malware on 
the robot control system, eavesdrops on a USB packet, and 
infers the state of the robot (i.e., either “engaged” when the 
surgeon’s input is updating the position of the robot, or “dis- 
engaged” when the position of the robot is not being updated). 
The robot state (which is controlled by pedal input from the 
surgeon) is an effective indicator in determining when mali- 
cious input would be fed into the robot. However, in such an 
approach, it is hard to accurately determine the time window 
during which the robot is performing critical activities; e.g., 
it is more critical when the robot is cutting tissue than when 
it is transitioning towards the target object. 

In this study, we present an approach that leverages a well- 
studied learning technique to infer the critical time to trigger 
the attack payload, so as to maximize the impact. 
Inference of object location. During a surgical operation, 
the robot usually moves within a limited range defined by the 
nature of the surgical procedure. Hence, the precision in iden- 
tifying ‘the time when the robot is touching (or maneuvering 
close to) the target object’ can help in triggering the attack at 
the most opportune time so as to maximize the impact. For 
instance, when the robot is moving from its idle location to 
the patient on the operating table, the robot is operating in an 
open space without obstacles. Hence, visual input is sufficient 
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to allow the surgeon to operate. Furthermore, the surgeon 
will not even notice whether the haptic feedback rendering 
algorithm is operational, as there is no surface that the robot 
would touch (i.e., there is zero force feedback). On the other 
hand, when the robot is inside the abdomen of the patient,  
it is operating in limited space packed with obstacles (e.g., 
organs) and with blind spots that the image sensor cannot 
monitor. In that situation, correct operation of the rendering 
algorithm is critical. Also, the shorter the distance from the 
robot (at the point of the trigger) to the target object, the less 
time it takes the surgeon to respond2 upon discovering the 
failure of the rendering algorithm (which can be determined 
only by noticing the lack of force feedback when a surface is 
touched). In this paper, we analyze the spatial density of the 
robot end-effector position throughout the operation to infer 
a time when the robot (i.e., the surgical instrument) is near 
the object. 

Algorithm. We use unsupervised machine learning to deter- 
mine the location of the target object with respect to the posi- 
tion of the robot’s end-effector(s). Specifically, we adopted 
the density-based spatial-clustering algorithm with noise (DB- 
SCAN) [20, 48] to accomplish this task. The DBSCAN algo- 
rithm takes two parameters, ε and numMinPonts. The maxi- 
mum distance parameter (ε) defines the maximum distance 
between neighboring data points. Iterating over all data points, 
the algorithm checks for neighbors whose distance from a 
data point is less than ε. If the number of neighbors is less 
than numMinPoints, the data point is considered noise (i.e., 
the data point is not part of a cluster). Otherwise, the algorithm 
checks whether the neighbors form a cluster. Any clusters 
already formed by a neighbor are merged into the current 
cluster. Although the DBSCAN algorithm is known for its 
sensitivity to the choice of parameters, the attacker does not 
have much information from which to derive the right pa- 
rameters. Based on the data subscription frequency (i.e., 80 
Hz for our eavesdropper) and our conservative assumption 
that at least 10% of the overall operation time corresponds to 
the critical procedures3 (i.e., 10 seconds for our data from 
100 seconds of robot operation), we set numMinPonts to 800 
(i.e., subscription_ f requency seconds_o f _stay). Also, we 
consider points (corresponding to the robot’s end-effector 
position) within 1 cm of each other to be “close,” and de- 
fine ε=10. With a goal of demonstrating the feasibility of 
self-learning malware (not of presenting the best algorithm or 
parameters for a clustering problem), we find the parameter 
pair (ε, numMinPoints) to be accurate enough for our study. 
The optimization of the parameters is outside the scope of 
this paper. 

 
 

2Similar to the concept of braking distance when driving a car. 
3From a set of medical studies, we find that the mean of the total operation 

time was 178.2 minutes [12] and that the mean time for a critical procedure 
was 22.2 minutes [19] (i.e., 12.4% of the mean procedure time). 

4.4 Attack payload: Fault injection 

While the attack strategy in Section 4.2 is generic to the ROS 
framework, the payload is specific to the ROS application 
under study (i.e., Raven-II and its haptic feedback rendering 
algorithm). As part of assessing the resiliency of the haptic 
feedback rendering engine, we designed a set of faults that 
can be injected on-the-fly. The faults were designed through 
a careful study of Raven-II’s operation and its rendering algo- 
rithm. In this paper, we present three fault models that cause 
the haptic feedback rendering engine to fail to prevent the 
operator from penetrating the surface of the object under oper- 
ation. The three fault models are representative in mimicking 
realistic cases of (i) loss of information during transmission 
of data, (ii) data corruption, (iii) a glitch in sensors, and/or 
(iv) a bug in the software algorithm. None of the faults are 
specific to the environment (i.e., the faults are not affected 
by custom settings of the robot in a certain environment). 
Hence, understanding of the application (without needing to 
understand certain custom configurations) is sufficient for 
designing effective faults. 
Fault 1: Loss of granularity in the depth map. As dis- 
cussed in Section 3, the haptic feedback rendering algorithm 
relies heavily on image sensor data. Our first fault model 
demonstrates a case in which the quality of the image from 
the sensor is degraded. More specifically, we consider a case 
in which the granularity of the depth map has become sparse 
due to (i) hardware problems in the image sensor or (ii) loss 
of data during transmission of the depth data. In this fault 
model, we randomly choose a certain percentage of the pixels, 
for which we neutralize the depth information (i.e., set it to 
zero, which can be interpreted as setting the distance to that of 
the ground surface). By carefully choosing the rate at which 
pixels are dropped, we can disguise an attack as natural noise, 
despite its critical impact. 
Fault 2: Shifted depth map. The second fault model consid- 
ers a case in which an entity with malicious intent manipulates 
a ROS message to obfuscate the visual data provided to the 
operator. Just as we dropped the depth information from the 
image sensor in Fault 1, we can overwrite the depth map mes- 
sage with shifted values, causing the rendering algorithm to 
provide incorrect haptic feedback that the operator will rely 
on. In our experiment, we shifted the depth map of the object 
under operation by 50 pixels to the right. As the ROS message 
that contained the BGR information remained untouched, the 
3D rendered image of the object was incomplete. Similarly, 
an attacker can shift the data in the BGR message and deliver 
the malicious visual image to the Raven operator. 
Fault 3: Corrupted reference frame. As part of rendering 
haptic feedback, the application needs to derive the distance 
from the object (under operation) to the robot arms, as the 
location of the object can change on every run or during the 
operation of the robot. An attacker can corrupt the coordi- 
nates of the reference frame and make the rendered feedback 
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Figure 3: Experimental setup with (a) BGR image of the 
operating table; (b) RVIZ representation of the operating table 
in 3D; and (c) RVIZ representation of the operating room, 
including Raven-II. 

 

become invalid. In this fault model we modify the reference 
frame during the transmission of the coordinates from the 
image sensor node to the computational node. Note that the 
ArUco detection-based reference frame is applicable in exper- 
imental settings such as ours. In commercial surgical robots, 
the known position of trocars (i.e., pen-shaped instruments 
used to create an opening into the body [7, 29]) are used as 
the reference frame, and the fault model would need to be 
modified accordingly. 

 
5 Experiment design 

Experimental setup. In order to mimic the settings of a surgi- 
cal operation, we set up a mock-up of a heart (the object under 
operation in Figure 3a) on an operating table. We placed an 
ArUco marker to calibrate the configuration of the object (i.e., 
the mock-up of the heart). Once the image sensor passed the 
information to the Raven-II simulator, the operating table and 
the target object were rendered in 3D, as shown in Figure 
3b. Note that the 3D axes were added to the image upon the 
algorithm’s detection of the marker. Using the predetermined 
transformation from the marker to the robot, RVIZ can place 
the virtual representation of the robot over the operating ta- 
ble (Figure 3c). For the demonstration of the smart malware, 
the mock-up heart was replaced with a simpler shape, i.e., a 
cuboid (see Figures 5 and 10–12). However, the performance 
measurements were not affected by the simplification of the 
shape of the object. 
Systems setup. To demonstrate the smart malware, as de- 
picted in Figure 4, we set up three Linux (Ubuntu 16.04) 
machines running ROS (i.e., Kinetic, one of the most recent 
versions of ROS). While the nodes for Raven-II and the ren- 
dering algorithm can be distributed across any combination of 
machines, we simplified the configuration by distributing the 
application across two machines (tchaikovsky and pachelbel, 
shown in Figure 4). The third machine (cloud7) is owned 

Figure 4: Overview of the system setup for the experiment. 
 

Figure 5: Evaluation of the distance from the robot arm to the 
object. 

 

by the attacker. The two machines, both running Raven-II, 
reside in the same (virtual) network (marked with the dotted 
box in Figure 4), whereas cloud7 resides in the same network 
only when executing the attack strategy (see Section 4.2). 
The rendering algorithm is designed to run with the (physi- 
cal) Raven-II robot. However, we limited the experiment to 
a simulated environment to protect the physical robot from 
potential damage. Although the experiment was limited to a 
simulated environment, the faults and their impact still apply 
to the physical robot. 
Data. With the MITM established (as described in Section 
4), we were able to eavesdrop on  all messages  transmit- 
ted between the ROS nodes. Such messages included ones 
communicating the robot’s joints’ state (i.e., the angle of 
each joint), which determined the robot’s end-effector po- 
sition. We took advantage of the ROS-provided API (i.e., 
TransformListener() [37]) to derive the position of each 
joint. Using the API, we (in the shoes of an attacker) could col- 
lect data on the x, y, and z coordinates of the robot end-effector 
in three-dimensional space. We considered three scenarios to 
mimic surgical operations of different levels of complexity: (i) 
a surgeon focuses on a single region of the target object; (ii) a 
surgeon operates on two regions of the target object; and (iii) 
a surgeon operates on three regions of the target object. Note 
that the movements of the robot arms (manipulated by the 
surgeon) follow a trajectory specific to a given surgical proce- 
dure. Because of our lack of real data on such trajectories, we 
imitated rather complex routes to challenge our algorithm. 
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down the genuine publisher (i.e., omni_client) and the mali- 
cious topic (i.e., faulty data) is passed to the ROS application 
( ). Because of the faulty data, the operation of Raven is 
corrupted, which puts the patient at risk ( ). 

 
6 Results 

 

 
 
 
 
 

Figure 6: Overview of the steps taken by the malware. 
 

Evaluation metrics. The goal of an attacker is to trigger the 
execution of the attack payload at the most opportune time 
so as to maximize the damage, e.g., hurt a patient or damage 
the robot. In order to achieve that objective, the attacker must 
precisely determine when the robot is operating near (if not 
in contact with) the target object. The clustering algorithm 
(in Section 4) indirectly derives the decision by monitoring 
the trace density of the robot arm in 3D space. To evaluate 
the effectiveness of the decision, we measured the distance 
from the robot arm to the object (see Figure 5). That would 
not be not possible for a real attacker, as the location of the 
object would remain unknown. We evaluate the predictions by 
using a threshold (i.e., 10 mm) that defines “close to object.” 
Applying the definition, we derive the number of predicted 
instances that would lead to a successful attack. (We consider 
an attack to be “successful” if the execution is triggered when 
the distance from the robot arm to the object is less than the 
threshold). 
Automated malware execution. In Figure 6, we show how 
an attack using our smart malware would proceed. The at- 
tacker starts by getting access to the control network of the 
robot ( 1 ). This step could be accomplished by scanning  
for the target ROS application connected to the public net- 
work [13], or stealing the credentials of a legitimate user in 
the control network (via social engineering or phishing at- 
tacks). With access to the control network, the attacker scans 
the network for the 11311 port to find the ROS master ( 2 ). 
In   , the attacker checks the version  of ROSand disables  
all patches that remediate the vulnerabilities of ROS 1. Next, 
the attacker can deploy the smart self-learning malware. First, 
the malware subscribes ( 4 ) to topics of interest (e.g., tf, a 
ROS-generic topic for the x, y, z coordinates of the robot 
end-point). By running the DBSCAN algorithm, the malware 
can label each point (i.e., member of a cluster or noise) ( ). 
When the robot arm position is classified as a cluster, the 
malware triggers the payload execution ( 6 ), which registers 
the malicious publisher with the name of a genuine publisher. 
Because of the name conflict, in 7 , the ROS master shuts 

In this section, we present our results from inferring the time 
to trigger the attack payload and injecting realistic faults. 

 
6.1 Determining attack triggers 
In this section, we evaluate our accuracy in determining the 
robot’s end-effector position with respect to the target object. 
In Figure 7, we present the results of the clustering algorithm 
(based on DBSCAN) for the three scenarios: (i) a surgeon 
operates on a single region of the target object; (ii) a surgeon 
operates on two regions of the target object; and (iii) a surgeon 
operates on three regions of the target object. Note that in 
Figures 7a–7c, an “x” indicates that the point is considered 
noise, and a circle indicates that the point belongs to a cluster. 
(Different colors are used to differentiate clusters.) Also, in 
Figure 5, we compare the clustering results with those from a 
pedal-detection-based approach (pedal) [2]. 
Case 1: Single region of operation. Figure 7a depicts the 
trajectory of the robot arm for the case in which a surgeon is 
operating at a single region of the object. The algorithm effec- 
tively identifies the data points that correspond to the region 
of operation and successfully filters out the data points related 
to the transition of the robot arm from the starting point of the 
robot arm to the region of operation. In Figure 8a, we present 
a cumulative distribution of the distance from the clustered 
points (robot’s joint positions) to the target object. While all 
points of the DBSCAN-derived clusters had a distance of less 
than 1 cm from the target object, the pedal-detection-based 
algorithm included points related to transition of the robot, 
which resulted in reduction of the probability of a successful 
attack. Also, as depicted in Figure 9, the algorithm effectively 
clusters the instances in which the robot is closer to the object 
(“clustered1” in Figure 9), as opposed to the points that were 
labeled as transitions to the object (“transition1” in Figure 
9). For our algorithm, the distance (from the robot arm to the 
object) varied from 0.0 mm to 7.5 mm, and our clustering 
algorithm was able to filter out the points that corresponded 
to transitions from the starting point of the robot arm to oper- 
ational regions (cluster I in Figure 7a). The pedal-detection- 
based approach includes the starting point of the robot arm as 
a potential trigger for an attack. (Note that the starting point 
is 121 mm from the object.). As shown in Figure 8a, 99.9% 
of the DBSCAN-predicted triggers were within 7.1 mm of 
the object. However, for the pedal detection-based approach, 
only 80.3% of the predicted points were within 7.1 mm. 
Case 2: Two regions of operation. As shown in Figure 7b, 
the algorithm successfully captured the two regions despite 
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(a) Single region of operation. 

 

(b) Two regions of operation. 

 

(c) Three regions of operation. 
 

Figure 7: Results of tracing of the robot’s arm movements in 
three hypothetical surgical procedures. 

 
(a) Single region of operation. 

 

 
(b) Two regions of operation. 

 

(c) Three regions of operation. 
 

Figure 8: Cumulative distribution of the distance from the 
robot arm to the object. 

 
 
 
 

the complexity added to the operation. While we have added 
an intermediate transition between the regions of operation, 
the algorithm successfully filtered out such transitions, and 
distinguished the two regions. As depicted in Figure 9 and 
Figure 8b, the clustering algorithm was able to find a subset 
that contained the majority of the points that were closest to 
the object (i.e., 0.26 mm ≤ distance ≤ 20.44 mm). 

Case 3: Three regions of operation. In Figure 7c, we 
present the case in which the surgery takes place in three adja- 
cent regions. The algorithm successfully detected all three re- 
gions. Also, all points clustered by our algorithm turned out to 
be within 19.8 mm of the object (i.e., all points in the clusters 
had a distance 19.82 mm). For the pedal-detection-based 
algorithm, 19.2% of the points triggered unsuccessful attacks 
while with our DBSCAN-based approach, 3.23% would have 
been unsuccessful. 

 
Discussion. Triggering when the instrument is in close prox- 
imity to the target object is essential to increasing the like- 
lihood of success. As demonstrated in the experiments, our 
DBSCAN-based approach effectively predicts points that are 
close to the target object. As discussed in [53], the success 
of the DBSCAN algorithm is sensitive to the choice of the 
two parameters (i.e., ε and n). In this paper, we have taken  
a trial-and-error approach, which would not be feasible for 
an attacker with limited information. (I.e., the attacker cannot 
confirm whether the resulting cluster truly represents the re- 
gion of interest.) Instead, the attacker can tune the learning 
algorithm (i.e., find the optimal parameters, ε and n) offline 
and install the malware with the parameters embedded. 
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Figure 9: Distribution of the distances from the predicted 
clusters (predicted either by DBSCAN or by pedal detection) 
to the object. The labels “clustered” and “transition” indicate 
coordinates that were predicted as “surgical operation” and 
“transition of the robot”, while “pedal” is for the coordinates 
filtered by the approach in [2]. 

 

6.2 Impact of attacks on the Raven-II haptic 
feedback rendering algorithm 

This section presents the impacts of executing the three attack 
payloads: (i) loss of granularity in the depth map, (ii) shifted 
depth map, and (iii) corrupted reference point. 

In Figure 10, we present the result of dropping 90% of the 
pixels from the depth map. (Note that to maximize the visi- 
bility of the fault’s impact, we have chosen an extreme case 
and neutralized an unrealistically large portion of pixels.) As 
a result, the robot arm tip penetrated the surface of the object 
(Figure 10b), whereas the algorithm should have blocked it 
from doing so (as seen in Figure 10a). In reality, incorrect 
rendering of the force feedback can damage or endanger the 
underlying surface and make the robot suffer a heavy load. 

In Figure 11, we show the impact of shifting depth map 
information during transmission of the information from the 
publisher to the subscriber. The figure shows that because 
of the shifted distance measure, the 3D rendering of the left 
half of the box is flattened (and indeed would be hard to 
differentiate from the surface, were it not for the colors), and 
the original surface on the right side of the box has gained 
volume. As shown in the figure, this fault model can lead to 
penetration of the object by the robot that would have been 
prevented by the non-corrupted image. 

The last fault we studied was corruption of the derived 
reference point (the ArUco marker). The object in Figure 12a 
has the reference point set on the ArUco marker, whereas the 
reference point in Figure 12b has been shifted upward. The 
distance between the object and the robot arm (marked with a 
double-headed arrow) has been updated accordingly. (I.e., the 

(a) (b) 
 

Figure 10: Simulated Raven operation with (a) uncorrupted 
depth map and (b) corrupted depth map. Note the difference 
between the dotted circles. 

 
 

(a) (b) 
 

Figure 11: Simulated Raven operation with (a) uncorrupted 
depth map, and (b) shifted depth map. Note the problems 
inside the contents of dotted circles. 

 
 

(a) (b) 
 

Figure 12: Simulated Raven operation with (a) uncorrupted 
camMsg, and (b) shifted camMsg. Note the difference be- 
tween the reference points (inside dotted circles). 

 
 

distance in (b) is larger than in (a), while (a) depicts the actual 
setup of the robot and the object.) For the corrupted distance, 
the rendered feedback is no longer valid. In the experiment 
shown in Figure 12, the haptic device did not receive haptic 
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feedback upon touching the surface of the object, and the 
robot penetrated the object. 

 
7 Discussion 

Generalization. As demonstrated in this paper, the ROS 1 
is vulnerable to variations of MITM attacks. We show that 
our prototype smart malware can utilize the leaked data to 
trigger an attack at the most opportune time so as to maxi- 
mize the attack’s impact. The inference of the opportune time 
range for execution of the attack payload reduces the chances 
of exposure, which helps the malware disguise the attack as 
an accidental failure. (Recall that the faults were designed 
to represent accidental failures.) Without the smart trigger- 
ing, frequent and likely unsuccessful injections of the fault 
could make the system administrator aware of the malicious 
intent behind the sequence of failures. To make things worse, 
our DBSCAN-based approach does not require extensive 
prior knowledge of the target robotic application. Alemzadeh 
et al. [2] also introduce a triggering algorithm (i.e., a side- 
channel attack that predicts the state of the robot from the 
byte values of specific packets), but we find that our approach 
is more intuitive and effective4. (I.e., our approach simply 
searches for a dense region (corresponding to a high density 
of critical activities), and that does not require background 
knowledge on the design/implementation details of the target 
robot.) However, despite the smartness of the malware, our 
attack is limited in its payload. Unlike the fault in [2], which 
tackles the time gap between a safety check of the input and 
its execution (i.e., faults are injected after the safety check), 
our faults (or faulty scenarios) are injected through corrup- 
tion of the raw data, and that corruption might be detected by 
safety checks (if such checks were implemented as part of the 
robotic application). 

While we demonstrated the feasibility of a smart malware 
attack in the context of the Raven-II surgical robot and its hap- 
tic feedback rendering algorithm, our threat model exploits 
vulnerabilities in the underlying framework (ROS). Hence, a 
robotic application running on the most common version of 
ROS, ROS 1, is vulnerable to MITM attacks and to smart mal- 
ware that exploits the leaked data. Furthermore, the generic 
idea of malware driven by ML algorithms can be expanded 
to any computing infrastructure that generates a stream of 
data if the data contain actionable intelligence that smart 
malware can infer and the system has vulnerabilities that 
allow malicious entities to access data. While we leverage 
vulnerabilities in the ROS, as discussed in [1], various entry 
points exist through which malicious entities could intrude 
into robotic applications. By leveraging such vulnerabilities, 
our design for smart malware can be revised to target robotic 
applications in general. 

 
 

4Please note that the goals of the two approaches were different. The goal 
of the approach in [2] is to infer the time when the corrupted data will be 
passed to the robot and update its state. 

The work performed in this study is not intended to support 
hackers, but to proactively assess the resiliency of robotic 
applications, identify vulnerabilities in their design, and drive 
development of methods to harden robotic systems. For in- 
stance, the sensitivity of the haptic feedback rendering algo- 
rithm to its input data (as identified during our experiment) 
requires hardening of the data validation process. That hard- 
ening can be done by validating the publisher (to maintain 
the integrity of the data) or by deploying redundancy in the 
sensors. 

 
7.1 Protection 
The leakage of control data being transmitted between compo- 
nents of a robot can lead to inference of sensitive information 
that can threaten the operation of the robot.  As a result, it  
is critical to secure the robot by (i) assuring that only autho- 
rized entities can control robot operation, (ii) securing the 
communications between the components of the application, 
and (iii) closely monitoring the robot for anomalies. In this 
section, we discuss technologies that can be used to secure 
the application, and their limitations. Also, we introduce our 
safety module, which detects abnormal circumstances and 
brings the robot to a predefined safe state. 

In terms of computer security, MITM attacks have been 
well-studied, and a number of protection and detection meth- 
ods have been introduced [11, 24, 32]. For instance, to prevent 
ARP poisoning (which is a critical step in performing an at- 
tack), each machine can have its ARP table set to be static, 
to prevent unknown entities from updating the table. Also, 
authentication of the nodes can prevent unauthorized enti- 
ties from hijacking a session. (I.e., unauthorized ROS nodes 
should not be able to register to the ROS core, and entries that 
can publish/subscribe a topic should be defined.) 
Security enhancements for ROS (SROS). To better se- 
cure the communications within the robotics applications, 
SROS [39, 55] provides TLS support in the socket-level trans- 
port. However, the current distribution of SROS is limited to 
TCPROS (not UDPROS) and robotic applications written in 
Python (not C++ or Java). As an alternative, one can add a 
layer of authentication by running all ROS nodes within a 
VPN (which would require authentication), and that approach 
is already common. However, it is not rare for malicious en- 
tities to intrude into a protected network by using weak or 
stolen credentials. 
Secure ROS. Unlike the well-studied TCP MITM attack, our 
ROS-specific attack model has not been well-investigated. 
Fortunately, a “fork” of the core ROS packages was released 
to enable secure communication in the ROS applications [51]. 
The “Secure ROS” introduced a new configuration file, which 
specifies the configuration of the application. Furthermore, by 
utilizing IPSec, Secure ROS ensures that the IP packets cannot 
be tampered with or spoofed. While Secure ROS enhances the 
security of ROS applications, the neutralization of the patch 
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Figure 13: Packet capture of the network packet carrying the 
“shutdown” command from the roscore, triggered by a conflict 
in node names. 

 
is not particularly difficult. As the package is an addition to 
an already existing ROS installation in the system, it has a 
single parameter (defined in a bash script) that enables the 
patch. As a result, an attacker can overwrite the parameter to 
disable the entire security patch, thus returning the system 
back to the vulnerable ROS. 
ROS 2. ROS 2 (released in 2015) [36] is a major update from 
the original ROS. On top of introducing new features to ad- 
dress challenges that arose from extended usage of the frame- 
work (e.g., with real-time systems, or groups of robots), the 
upgrade also covers the vulnerabilities discussed in this paper. 
The ROS 2 uses the data distribution service (DDS) [34] for 
publish-subscribe transport. The security enhancements pro- 
vided by the Secure ROS and SROS patch can be embedded in 
ROS 2 using DDS. Hence, the vulnerabilities exploited in this 
paper can be eliminated by using the upgraded framework. 
However, ROS 2 is not backward-compatible. As a result, 
the existing applications must be rewritten to take advantage 
of the new features in ROS 2, and such rewriting is not triv- 
ial. Even if the developer manages to re-program the robotic 
application with the new interface, configuring of the DDS 
to support the security needs is left to the robot’s program- 
mers. Such configuration requires thorough understanding 
of encryption, certification, and access control. Without se- 
curity in mind, if the programmer decides not to enable the 
security features of DDS (e.g., using the eProsima Fast RTPS 
middleware [18]) or if the programmer makes a mistake in 
configuring the DDS [16], the vulnerabilities discussed in 
this paper remain current. As discussed in [27], the DDS 
and its implementation have limitations (e.g., lack of forward 
security) and vulnerabilities (e.g., skipping of variable initial- 
ization) that attackers can exploit. 

 
7.2 Safety module 
The limitations of existing technologies mean that the threats 
described in this paper (especially that specific to ROS ap- 
plications) remain current and, hence, can occur in any of 
the 125+ existing robots. As a result, we find a need for a 
safety module that can (i) detect abnormalities in the robot 
and (ii) take control of the robot and bring it to a safe state 
under such circumstances. As discussed in Section 4, when 

the ROS master detects a name conflict (due to a new node’s 
registering of itself with a name already in use), it terminates 
the original node and registers the new node with the name 
in conflict. Our safety module detects the shutdown signal 
transmitted over the network (see Figure 13). Upon detecting 
the shutdown signal due to a name conflict (see Figure 13), 
our safety module (operating as another ROS node) termi- 
nates the node that publishes the state of the robot joints. By 
terminating the node, the safety module can prevent the mali- 
cious entity from taking control of the robot. Furthermore, if 
needed, the safety module can bring the robot to a predefined 
safe state (in our experiment, the reset position of the robot). 
As the safety module runs on the ROS master with privilege, 
we can be assured that the shutdown packet will be detected, 
with minimal risk that the attacker can corrupt the detection. 
Also, as the detection relies on an unusual signature, we can 
minimize false positives. (I.e., name conflict is a rare event 
and when there are multiple nodes with identical names by 
design, the programmer enables the anonymous mode, which 
pads a hash to the name to avoid the conflict.) 

 
8 Related work 

Attacks with learning features. In [41], an open-source 
hacking AI, DeepHack, was presented. Powered with a neural 
network, the tool learns how to intrude into web applications. 
DeepLocker [28], on the other hand, takes advantage of a deep 
neural network for target detection. Until the malware detects 
the target, the malware disguises itself as benign software. 
Furthermore, the malware encrypts the payload to conceal the 
malicious intent, which makes reverse-engineering challeng- 
ing. In [10], the authors leverage a learning technique to infer 
an attack payload from CPS operational data. The malware 
in [10] predicts failure-causing abnormalities in the CPS op- 
erational data, and injects abnormalities into the control data 
to corrupt the operation of the CPS. 
Attacks against ROS. Some vulnerabilities of ROS were dis- 
cussed in [42, 43]. Using the STOP surveillance system, the 
authors demonstrate an attack that changes the route of the pa- 
trol robot. They proposed the use of IPSec, which was indeed 
incorporated in the upgrade to ROS 2. The whitelist method 
proposed by Dóczi et al. [17] has also become part of the 
new ROS framework. Similarly, [15] discusses a method for 
preventing malicious publishers and subscribers from inter- 
fering with a given ROS node network. The authors ensured 
broadcast encryption by whitelisting nodes in an authenti- 
cation server and by requiring any new publisher to run an 
authentication to certify itself as a legitimate new publisher. 
Despite the efforts to secure ROS applications, as demon- 
strated in [13], a significant number of ROS applications that 
are connected to networks are vulnerable. The authors of [13], 
by scanning over the whole IPV4 address space, identified 
more than 100 hosts running as ROS masters. Also, in [5], the 
authors demonstrate that ROS applications can be vulnerable 
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to attacks that modify the instructions of a Raven operator 
(e.g., by manipulating packets to cause loss, reordering, or 
delay of commands) and to session-hijacking attacks. 

 
9 Conclusions 

In this paper, we studied the impact of security attacks that 
exploit security vulnerabilities in ROS to attack robotic appli- 
cations. More specifically, we demonstrated (i) the possibility 
of neutralizing the force feedback engine in Raven-II by cor- 
rupting a message passed across ROS nodes over the network, 
and (ii) the possibility of misleading the robot operator by 
providing incorrect feedback. Our study of ROS and obser- 
vations on the impact of security attacks reveal a need for 
advanced security APIs to be provided by the framework. We 
suggest that the applications be secured in the implementation 
phase, and be enforced by the framework. 
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