Smart Malware that Uses Leaked Control Data of Robotic Applications:
The Case of Raven-II Surgical Robots

Keywhan Chung!, Xiao Li', Peicheng Tang?, Zeran Zhu!, Zbigniew T. Kalbarczyk!, Ravishankar K. Iyer!,
and Thenkurussi Kesavadas'

"University of Illinois at Urbana-Champaign
2Rose-Hulman Institute of Technology

Abstract

In this paper, we demonstrate a new type of threat that lever-
ages machine learning techniques to maximize its impact.
We use the Raven-II surgical robot and its haptic feedback
rendering algorithm as an application. We exploit ROS vulner-
abilities and implement smart self-learning malware that can
track the movements of the robot’s arms and trigger the attack
payload when the robot is in a critical stage of a (hypotheti-
cal) surgical procedure. By keeping the learning procedure
internal to the malicious node that runs outside the physical
components of the robotic application, an adversary can hide
most of the malicious activities from security monitors that
might be deployed in the system. Also, if an attack payload
mimics an accidental failure, it is likely that the system admin-
istrator will fail to identify the malicious intention and will
treat the attack as an accidental failure. After demonstrating
the security threats, we devise methods (i.e., a safety engine)
to protect the robotic system against the identified risk.

1 Introduction

A number of attempts have been made to leverage machine
learning (ML) techniques to realize malicious intentions. For
instance, adversarial learning was used to effectively deceive
data-driven models by strategically injecting malicious in-
put [8, 25, 45,47] to identify the target of an attack [28], or to
infer information hidden behind encrypted data [26, 33]. In
this context, smart malware that employs ML techniques rep-
resents a new concept for the implementation of sophisticated
attack strategies. Such malware can infer attack strategies
based on live operational data and trigger an attack at the
most opportune time so as to maximize the impact.

For threats that use self-learning malware, robotic appli-
cations turn out to be a fascinating target. Like other cyber-
physical systems (CPSes), robotic applications incorporate
sensors and actuators that are connected through a network
that passes around data. Their (i) relatively weak security
[5, 13, 317, (i1) abundance of data that can be used to infer
actionable intelligence [4, 9,54], and (iii) close proximity to

USENIX Association

and direct interactions with humans (such that a successful
attack could have a life-threatening impact) [14,22, 23] make
robotic applications a tempting target for advanced threats.

To demonstrate the feasibility of smart malware, we have
built an injection module as a prototype. Our prototype smart
malware eavesdrops on the communication between the robot
components of a near-real-time system (as an input for the
smart malware), uses the leaked data to infer intelligence on
when to trigger the payload (or take control over the robot),
and executes the payload at the most opportune time (i.e.,
the output of our smart malware) so that it can maximize the
impact. While our attack model applies to any robotic system,
in this paper, we use the Raven-II surgical robot [3] and its
haptic feedback rendering algorithm as a target application.

Raven-II is driven by the Robot Operating System (ROS)
[44], an open-source framework that has been widely de-
ployed across various robotic applications (i.e., more than
125 applications [38]), and its resiliency is critical to varying
domains (e.g., robotic surgery, aviation, and manufacturing).
However, the most commonly used ROS contains vulnerabili-
ties [15] that leak data (e.g., robot state) transmitted within the
application, and those data can become the basis from which
smart malware can learn about the system behavior and use
this information to decide when to trigger an attack. We ex-
ploited ROS vulnerabilities and implemented smart malware
that tracks the movement of the robot’s arms and triggers the
attack payload when the robot is in a critical state of a (hypo-
thetical) surgical procedure. After demonstrating the security
threats, we discuss the methods (i.e., a safety module) that
we devised to protect the robotic system against the identified
risk.

What makes our malware stealthy is the invisibility of its
learning process to security monitoring systems. Unlike com-
mon malware, which is installed in a victim system, our mal-
ware runs outside the physical components of the robotic
application. The ROS allows any new node/process to regis-
ter with a master (core) node; hence, an attacker can register
its malicious node to the robotic application without being
noticed. By keeping the learning procedure internal to the

22nd International Symposium on Research in Attacks, Intrusions and Defenses 337

malicious node, an adversary can hide all malicious activities

(except for its network activities with genuine nodes of the

target application) from security monitors that might be de-

ployed. Hence, only the impact of the attack, which mimics
accidental failures, is observable to the system administrator.

As aresult, it is likely that malicious faults will be seen as ac-

cidental failures (especially if the network traffic is not being

monitored). Note that additional network traffic introduced
by our malware prototype is negligible (about 0.24% of the
volume of the genuine traffic).

The contributions of this paper are the following:

* We show the possibility of a real attack on a surgical robot
that exploits known vulnerabilities in the underlying run-
time environment, ROS. The vulnerabilities allow a ma-
licious entity to operate as a man-in-the-middle (MITM),
with the ability to eavesdrop (i.e., leak robot control data)
and overwrite communication among the robot components
(i.e., effectively take control of the robot).

* We demonstrate smart malware logic that can infer the
most opportune time of attack from the information ob-
tained through exploitation of the vulnerabilities in ROS.
Our experiment with three use cases that mimic (hypothet-
ical) surgical operations of different levels of complexity
shows that the ML algorithm (DBSCAN) used by our mal-
ware can determine the position of the robot end-effector
with respect to the target object and use this information
to trigger the execution of the payload. Specifically, the
DBSCAN algorithm triggers the injection of the attack
payload (i.e., corruption of data used to control the robot)
when the robot arm is in close proximity to the target object
(i.e., there is less than 10 mm distance between the robot
end-effector and the target object).

* We present a set of unique faults that, when used as an
attack payload, can threaten the integrity of the surgical
operation. The faults consist of realistic scenarios that can
be disguised as accidental failures, such as network packet
drop, data corruption, or bugs in the control software.

* Weimplement a ROS-generic safety module that can detect
abnormalities introduced by attacks and can bring the robot
to a safe state. Specifically, the safety module detects the
shutdown signal generated by the roscore in the case of
a name conflict (i.e., a new node registers itself with an
already existing name). If that happens, the safety module
terminates the new node, takes over the control of the robot,
and returns it to a predefined safe state to prevent further
impact.

While we demonstrate the feasibility of the advanced threat

in the context of Raven-II and its underlying framework (i.e.,

ROS), the design of the smart malware is sufficiently generic

that it can be used on other robotic systems that generate a

stream of sensor data from input sensors and robot control

data to the physical robots. As summarized in [1], an attacker
can intrude into a robotic system through various entry points

(e.g., third-party networks, vulnerable workstations, and vul-

338 22nd International Symposium on Research in Attacks, Intrusions and Defenses

nerable or incorrectly configured firewalls or gateways). Once
smart malware has established an MITM attack (i.e., it can lis-
ten to and overwrite control data), its smart injection module
can infer the critical time of the operation of any robot. The
attack payloads (i.e., the faults to be injected), on the other
hand, are specific to the robotic application.

2 Motivation for smart malware

Machine learning techniques have been applied in different
domains (e.g., image processing and natural language pro-
cessing) to derive intelligence from data. Researchers and
engineers in cyber security have also deployed ML-based
techniques as part of an effort to advance methods for de-
tecting malicious activities. However, not much work has
considered the possibility that adversaries could take advan-
tage of machine learning algorithms to devise attack strategies.
More specifically, a few studies have investigated the poten-
tial impact of attacks that are supported by machine learning
algorithms [40, 41]. In this paper, we define smart malware
as malicious software that can, by itself, derive intelligence
from data obtained from the victim system.

Smart malware is available only at a cost (i.e., high compu-
tation workload). However, we find reasons that might justify
the overhead: access to rich data and an ability to achieve
high impact with minimized remote interaction between the
malware (software) and the attacker (human). (That is, to
a certain extent, machine learning algorithms can replace
human-driven analysis in designing/customizing malware.)
Notably, long and unusual remote connections often lead to
exposure of attackers. Furthermore, the computational load
imposed by the execution of the smart malware can be obfus-
cated with techniques such as the “low and slow” approach,
whereby attackers intentionally reduce the computation work-
load despite having to tolerate a longer time of execution.

For machine-learning-driven threats, cyber-physical sys-
tems (especially robotic applications) turn out to be tempting
targets. In cyber-physical systems, sensors and monitors are
deployed across the system to gather information (e.g., on
images, sounds, temperature, and flows). Data collected from
input sensors are sent to controllers or computation units that
derive control variables or decisions, which are passed to the
actuator to update the state of the system. While traditional
robots were contained within a single physical system, the
new concept of distributed robotics (or collaborative robotics)
is expanding the boundary of robotic systems. (E.g., with
remote surgery, a physician can perform surgery from a re-
mote location.) A key enabler for this new mode of attacking
the system is a protocol for sharing data across a network.
However, if the protocol is not properly designed for security,
it can introduce vulnerabilities that eventually exploited by
smart malware.

For instance, a publish-subscribe model is a common mes-
saging pattern in which the information is shared between

USENIX Association

the publisher and the subscriber. Its advantages include scal-
ability and loose coupling between the publishers and the
subscribers. However, such advantages introduce side effects
that impact the security of the system. Without authentication
and encryption, unauthorized entities can read messages and
leak data. Such data become a baseline for learning, from
which malicious entities can derive actionable intelligence. In
this paper, we demonstrate the threat by using the Raven-II
surgical robot (running on top of ROS) as the target for such
an attack strategy.

3 Background: Robots, ROS, and Raven-I1

Robots have been adopted across different application do-
mains. For example, in manufacturing, robot manipulators
assist human workers; drones are deployed in agriculture,
entertainment, and military operations; and surgical robots
support surgeons in performing medical procedures. For such
applications, robots play a critical role. A robot’s failure to
make a correct and timely movement can lead to catastrophic
consequences, such as injuring people near the robots in fac-
tories or risking a patient’s life during surgery. This study
focuses on the resiliency of a surgical robot against malicious
attacks. We use the Raven-II surgical robot [3] and its hap-
tic rendering algorithm as an application to demonstrate the
security threat, and suggest methods to cope with the risk.
Robot Operating System (ROS). The Robot Operating Sys-
tem (ROS) is an open-source framework for programming
robots [44], and is commonly used by various robotic ap-
plications. According to its official website, ROS is widely
deployed across more than 125 different robots, including mo-
bile robots, drones, manipulators, and humanoids [38]. The
framework is being developed to support collaborative de-
velopment by experts from different domains (e.g., computer
vision or motion planning) and provides hardware abstraction,
device drivers, libraries, and a communication interface [44].
For instance, the OpenCV library [6] provides interfaces that
can be used to add vision to robotics applications, and the
OpenNI library [35] focuses on integrating 3D sensors into
robots. As ROS provides the core underlying runtime environ-
ment, the security of ROS is critical in ensuring the correct
operation of the robot.

As shown in Fig. 1a, a ROS-based application consists of
multiple ROS nodes. They can be running on a single physical
machine or can be distributed across multiple machines (i.e.,
Computers A and B in the figure), as long as they share the
ROS core, which is deployed on the computer declared as the
ROS master. Each node communicates over the network, and
the ROS core serves as the central server for all nodes. Data
are exchanged in the context of a fopic, where a fopic is a
data structure defined to deliver a specific context type; e.g.,
the image sensor data are exchanged in the form of multidi-
mensional arrays, which consist of the RGB color codes for
all pixels captured by the image sensor. A node, either a pub-

USENIX Association

lisher or a subscriber, registers itself to the ROS core for the
topic that the node is about to publish (or subscribe to). The
ROS core then passes the information (i.e., the IP address) of
the publisher to the subscriber waiting for the topic, so that
the subscriber can establish a TCP connection with the pub-
lisher. After a handshaking protocol and transmission of the
metadata that include the structure of the topic message, the
two entities start passing the message by using a ROS-specific
protocol.

The ROS nodes can be classified into three types: input
nodes, output nodes, and computational nodes. An input node
is a node connected to a piece of hardware (e.g., an image
sensor or a haptic device) that provides input to the robot
application. The input node, using the device driver provided
by (or interfaced with) ROS, collects the data and converts the
data into a ROS message as defined for the topic. Once the
message is ready, the input node publishes it. The input node
should have declared itself to the ROS core as a publisher
for a topic. A computational node is a node that takes the
input data to produce the output (e.g., a command to a robot
actuator); it subscribes from the input node and publishes to
the output node. Finally, an output node is a node connected
to an actuator (i.e., the robot). The values (i.e., robot states
and control commands) subscribed from the computational
node are converted into a form that the hardware can interpret,
and passed to the hardware. The output data determine the
(joint) state of the robot.

The ROS framework comes with the RVIZ software pack-
age, which allows users to test and visualize the operation
of the robot applications in a virtualized environment. RVIZ
takes the physical specifications of the robot and displays
the mesh of the robot; it is heavily used to test robot designs
without using a physical robot.

Raven-II and haptic force feedback rendering engine. In
this paper, we study the resiliency of a ROS application in
the context of a surgical robot (i.e., Raven-II) and its haptic
feedback rendering engine. Leveraging the open-architecture
surgical robot, the authors of [30] present a hardware-in-the-
loop simulator for training surgeons in telerobotic surgery.
The simulator, in addition to having all the features of the
Raven surgical robot, introduces a novel algorithm to pro-
vide haptic feedback to the operator and, hence, offer a touch
sensation to surgeons. Unfortunately, commercially available
surgical systems' (e.g., da Vinci by Intuitive [52]) do not pro-
vide haptic feedback to the operator. The traditional approach
for haptic feedback uses physical force sensors to determine
the force applied to the robot. Since the instruments (on which
the force sensors are installed) are disposable, that approach
turns out to be costly. Instead, the authors of [30] proposed an
indirect haptic feedback rendering approach that does not rely

In 2017, the FDA approved a new surgical system [49] with haptic force
feedback. However, we do not have sufficient information to understand the
underlying technology and, hence, the capability of the system.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 339

Sensor 1
Computer B

: Actuator (Robot)
l e _'l-‘

Sensor 2

—(§

as et O ROS core «<— topic publication
X O output node - - 4 topic subscription
computational o _ .
[o | e o
. input node <== output to actuator
Computer A

(a) Generic robot running on ROS.

kinect/Depth

N omni_incr
kinect/BGR

@-%

~*omni_force OMNI haptic

tool e E N
&
contact ;
transformation;

===

KINECT image sensor

joint_states

..
RVIZ simulator

(b) Raven-II with its haptic feedback rendering algorithm.

Figure 1: Software architecture of robotic applications.

on force sensor measurement, but instead uses image sensor
data to derive the force feedback.

In our study, the haptic feedback rendering algorithm, as
implemented in the augmented Raven-II simulator, utilizes
information from a depth map (a matrix of distances from the
image sensor to each pixel of a hard surface) to derive the
distance from the object (e.g., a patient’s tissues) to the robot
arm. Using the current position of the arm and the measured
distance to the object, the algorithm returns an interactive
force value that generates resistance in the haptic device.

Figure 1b provides an overview of the software architecture
of Raven-II and its haptic feedback rendering algorithm. The
haptic algorithm takes input from the Kinect image sensor
and the OMNI haptic device to control the Raven-II robot (or
its virtual representation in RVIZ). The sensorkinect node
parses the image data (as BGR and depth) from the Kinect
image sensor, packages the data into ROS messages, and pub-
lishes the messages to the ROS core as topics (kinect/BGR and
kinect/Depth). The omni client node is connected to the
OMNI haptic device for user input. The omni client node
shares the processed operator input as a topic (omni_incr). A
set of nodes, dedicated to running the algorithm, subscribe to
the topics from the ROS core and derive the force feedback,
which the omni clientsends to the haptic device.

The kinect/Depth topic from sensorkinectis used to de-
rive the distance from the robot arm to the object. However, in
deriving the distance, the algorithm needs a reference frame.
It leverages the ArUco library [21, 46], which is an Open-
Source library commonly used for camera pose estimation.
With the ArUco marker (i.e., a squared marker) location fixed
and used as a reference point, we can derive the location of
the robot arm(s) relative to the marker. Using that information,
the algorithm can derive the distance from the robot arm to
the object by using (i) the transformation from the marker to
the robot, (ii) the transformation from the image sensor to the
marker, and (iii) the transformation from the image sensor to
the object. Because the transformation from the robot arm to
the object is evaluated in near-real-time, the algorithm can
provide timely haptic force feedback to the OMNI device.

340

22nd International Symposium on Research in Attacks, Intrusions and Defenses

4 Approach

Cyber security is often referred to as a “cat and mouse” game.
In this paper, we are considering potential advances in cy-
ber threats, assuming that adversaries will eventually take
advantage of machine learning techniques (if they are not
already doing so). In this section, we present our approach
for corrupting a robotic application with self-learning mal-
ware. We developed this approach to raise awareness of the
potential threats, and to promote preparation for responding
to this threat. The methodologies included in our approach
can be used for (i) preemptive identification of vulnerabilities,
(i1) hardening of robotic applications against potential threats,
and (iii) design of detection/mitigation methods.

Threat model. In our threat model, we assume:

* The attacker can penetrate into the control network of the
robot. As presented in [13], ROS applications are often
connected to a public network without proper protection.
One can provide a level of protection by virtually isolating
the control network (i.e., by deploying a VLAN). However,
it would be possible to intrude into the virtual network
either with stolen credentials or by exploiting a weak link
(i.e., a vulnerable computer that has access to the VLAN).
In the context of attacks on surgical robots, a survey on
potential entry points of a hospital network can be found
in[1].

* The attacker understands the operation of ROS, and has
access to ROS-provided APIs (which are easily obtainable
online). With remote access to the ROS master, one can
execute ROS commands.

* The target robot runs on top of ROS 1. Our attack model is
designed for ROS 1 (e.g., Kinetic and Melodic), which is
still the most commonly deployed version despite the re-
lease of ROS 2 (discussed in detail in Section 7.1) in 2015.
Software patches have been issued to fix the vulnerabili-
ties in ROS, but, as we discuss in Section 7.1, the patches
merely require attackers to take another step to neutralize
them. Hence, in describing our attack model, we assume
the default setting of the most commonly used ROS.

USENIX Association

Attack Preparation Attack Strategy Attack Payload m

Identify ROS master Initialize ROS Inject fault 1: -
(port 11311) node and | zero-outdepth = £

‘ N reiIStE'L ° g map 2

as subscriber EE2 S

Setup ROS (to £Z8 =
SROS_MASTER_URI eavesdrop) S8ET Inject fault 2: §
to target master l : S £ | shiftdepth —> =<
T Eesl | mor E
Initialize ROS 58§ |

Find the topics node and 203 -
of interest register L e Inject fault 3: g
(rostopic list, as publisher = shift reference = 8
rostopic info) (for injection) point =

Figure 2: Approach overview, from attack preparation to im-
pact to ROS application.

Approach overview. Vulnerabilities present in the ROS
framework allow unauthorized entities to eavesdrop on mes-
sages passed across ROS nodes. Utilizing the obtained data, a
malicious entity can identify an ideal time to trigger an attack
and corrupt the operation of the robot by injecting faulty input
or output commands. In Figure 2, we present an overview
of our approach. During the attack preparation phase, we
identify the victim (i.e., a ROS master that is remotely acces-
sible) and its critical components. Once they are identified,
the attack strategy can be applied to perform a man-in-the-
middle (MITM) attack. As the malware eavesdrops on the
sensor and control data of the robot, the smart malware runs
a learning algorithm to infer the location of the target object.
When the object is identified (i.e., the algorithm returns a clus-
ter) and the robot reaches the predicted location of the target
object, a trigger is raised to initiate the attack payload. In
the following, we describe the details of our approach.

4.1 Attack preparation

To deploy the attack, the first step is to identify machines that
are running ROS as a master (core) node. Using a network
scanning tool, we scan for the default port for ROS masters
(i.e., 11311, a well-known port for ROS masters) [13]. Once
the master and its IP address are known, we set up ROS on
our machine (which mimics a remote attacker) and update
the ROS master’s Uniform Resource Identifier (URI) variable
to that of the identified master. Using the ROS APIs, we
search for the topics of interest (i.c., the topics registered to
the ROS master are used as a signature for identifying the
ROS application).

4.2 Attack strategy: ROS-specific MITM

In corrupting a ROS application, we take advantage of the
vulnerabilities in ROS and execute a ROS-specific man-in-
the-middle attack. As described in Section 3, ROS provides
a set of interfaces (publish/subscribe) that ROS nodes can
use to communicate; the ROS core serves as the arbitrator.

USENIX Association

While the communication might include sensitive data, the
ROS 1 framework does not provide options for authenticating
or validating the ROS entities. (I.e., any ROS node that can
access the master can register itself as a publisher to write
messages or as a subscriber to read messages.) After config-
uring the ROS setup to connect to the victim ROS master
(attack preparation; see Section 4.1), our malware can initiate
a subscriber that eavesdrops on the network communications.
To take control of the robot, it kicks out a genuine node and
publishes malicious data while masquerading as the original
publisher. Without noticing the change in the publisher, the
robotic application takes the malicious data as an input (or
command) and updates the state of the robotaccordingly.

4.3 Trigger: Inference of critical time to
initiate the malicious payload

Most security attacks are detected when the attack payload is
executed [50]. Once detected, the attacker (or the malware that
the attacker had installed) is removed from the system. Con-
sequently, in many cases, the attacker may have one chance
to execute the payload before being detected. As a result, it
is realistic to consider the case in which an attacker tries to
identify the ideal time to execute the attack payload (in our
case, to inject a fault) in order to maximize the chances of
success. A common approach is to embed a trigger function
into the malware, which checks for a condition and executes
the payload only when the condition is satisfied.

In [2], Alemzadeh et al. presented an attack model that is
triggered by a prediction of the robot state derived by a side-
channel attack. In the model, the attacker installs malware on
the robot control system, eavesdrops on a USB packet, and
infers the state of the robot (i.e., either “engaged” when the
surgeon’s input is updating the position of the robot, or “dis-
engaged” when the position of the robot is not being updated).
The robot state (which is controlled by pedal input from the
surgeon) is an effective indicator in determining when mali-
cious input would be fed into the robot. However, in such an
approach, it is hard to accurately determine the time window
during which the robot is performing critical activities; e.g.,
it is more critical when the robot is cutting tissue than when
it is transitioning towards the target object.

In this study, we present an approach that leverages a well-
studied learning technique to infer the critical time to trigger
the attack payload, so as to maximize the impact.

Inference of object location. During a surgical operation,
the robot usually moves within a limited range defined by the
nature of the surgical procedure. Hence, the precision in iden-
tifying ‘the time when the robot is touching (or maneuvering
close to) the target object’ can help in triggering the attack at
the most opportune time so as to maximize the impact. For
instance, when the robot is moving from its idle location to
the patient on the operating table, the robot is operating in an
open space without obstacles. Hence, visual input is sufficient

22nd International Symposium on Research in Attacks, Intrusions and Defenses 341

to allow the surgeon to operate. Furthermore, the surgeon
will not even notice whether the haptic feedback rendering
algorithm is operational, as there is no surface that the robot
would touch (i.e., there is zero force feedback). On the other
hand, when the robot is inside the abdomen of the patient,
it is operating in limited space packed with obstacles (e.g.,
organs) and with blind spots that the image sensor cannot
monitor. In that situation, correct operation of the rendering
algorithm is critical. Also, the shorter the distance from the
robot (at the point of the trigger) to the target object, the less
time it takes the surgeon to respond” upon discovering the
failure of the rendering algorithm (which can be determined
only by noticing the lack of force feedback when a surface is
touched). In this paper, we analyze the spatial density of the
robot end-effector position throughout the operation to infer
a time when the robot (i.e., the surgical instrument) is near
the object.

Algorithm. We use unsupervised machine learning to deter-
mine the location of the target object with respect to the posi-
tion of the robot’s end-effector(s). Specifically, we adopted
the density-based spatial-clustering algorithm with noise (DB-
SCAN) [20,48] to accomplish this task. The DBSCAN algo-
rithm takes two parameters, € and numMinPonts. The maxi-
mum distance parameter (&) defines the maximum distance
between neighboring data points. Iterating over all data points,
the algorithm checks for neighbors whose distance from a
data point is less than €. If the number of neighbors is less
than numMinPoints, the data point is considered noise (i.e.,
the data point is not part of a cluster). Otherwise, the algorithm
checks whether the neighbors form a cluster. Any clusters
already formed by a neighbor are merged into the current
cluster. Although the DBSCAN algorithm is known for its
sensitivity to the choice of parameters, the attacker does not
have much information from which to derive the right pa-
rameters. Based on the data subscription frequency (i.e., 80
Hz for our eavesdropper) and our conservative assumption
that at least 10% of the overall operation time corresponds to
the critical procedures’ (i.e., 10 seconds for our data from ~
100 seconds of robot operation), we set numMinPonts to 800
(i.e., subscription_frequency X seconds of stay). Also, we
consider points (corresponding to the robot’s end-effector
position) within 1 cm of each other to be “close,” and de-
fine e=10. With a goal of demonstrating the feasibility of
self-learning malware (not of presenting the best algorithm or
parameters for a clustering problem), we find the parameter
pair (g, numMinPoints) to be accurate enough for our study.
The optimization of the parameters is outside the scope of
this paper.

2Similar to the concept of braking distance when driving a car.

3From a set of medical studies, we find that the mean of the total operation
time was 178.2 minutes [12] and that the mean time for a critical procedure
was 22.2 minutes [19] (i.e., 12.4% of the mean procedure time).

342 22nd International Symposium on Research in Attacks, Intrusions and Defenses

4.4 Attack payload: Fault injection

While the attack strategy in Section 4.2 is generic to the ROS
framework, the payload is specific to the ROS application
under study (i.e., Raven-II and its haptic feedback rendering
algorithm). As part of assessing the resiliency of the haptic
feedback rendering engine, we designed a set of faults that
can be injected on-the-fly. The faults were designed through
a careful study of Raven-II’s operation and its rendering algo-
rithm. In this paper, we present three fault models that cause
the haptic feedback rendering engine to fail to prevent the
operator from penetrating the surface of the object under oper-
ation. The three fault models are representative in mimicking
realistic cases of (i) loss of information during transmission
of data, (ii) data corruption, (iii) a glitch in sensors, and/or
(iv) a bug in the software algorithm. None of the faults are
specific to the environment (i.e., the faults are not affected
by custom settings of the robot in a certain environment).
Hence, understanding of the application (without needing to
understand certain custom configurations) is sufficient for
designing effective faults.

Fault 1: Loss of granularity in the depth map. As dis-
cussed in Section 3, the haptic feedback rendering algorithm
relies heavily on image sensor data. Our first fault model
demonstrates a case in which the quality of the image from
the sensor is degraded. More specifically, we consider a case
in which the granularity of the depth map has become sparse
due to (i) hardware problems in the image sensor or (ii) loss
of data during transmission of the depth data. In this fault
model, we randomly choose a certain percentage of the pixels,
for which we neutralize the depth information (i.e., set it to
zero, which can be interpreted as setting the distance to that of
the ground surface). By carefully choosing the rate at which
pixels are dropped, we can disguise an attack as natural noise,
despite its critical impact.

Fault 2: Shifted depth map. The second fault model consid-
ers a case in which an entity with malicious intent manipulates
a ROS message to obfuscate the visual data provided to the
operator. Just as we dropped the depth information from the
image sensor in Fault 1, we can overwrite the depth map mes-
sage with shifted values, causing the rendering algorithm to
provide incorrect haptic feedback that the operator will rely
on. In our experiment, we shifted the depth map of the object
under operation by 50 pixels to the right. As the ROS message
that contained the BGR information remained untouched, the
3D rendered image of the object was incomplete. Similarly,
an attacker can shift the data in the BGR message and deliver
the malicious visual image to the Raven operator.

Fault 3: Corrupted reference frame. As part of rendering
haptic feedback, the application needs to derive the distance
from the object (under operation) to the robot arms, as the
location of the object can change on every run or during the
operation of the robot. An attacker can corrupt the coordi-
nates of the reference frame and make the rendered feedback

USENIX Association

CO marker as a

Virtual model
of the Raven-Il

erence plane o i
ver the marker
! e
r

(b) (©)

/
/
y ﬁ A %' Operating
! table

‘

Figure 3: Experimental setup with (a) BGR image of the
operating table; (b) RVIZ representation of the operating table
in 3D; and (c) RVIZ representation of the operating room,
including Raven-II.

become invalid. In this fault model we modify the reference
frame during the transmission of the coordinates from the
image sensor node to the computational node. Note that the
ArUco detection-based reference frame is applicable in exper-
imental settings such as ours. In commercial surgical robots,
the known position of trocars (i.e., pen-shaped instruments
used to create an opening into the body [7, 29]) are used as
the reference frame, and the fault model would need to be
modified accordingly.

S Experiment design

Experimental setup. In order to mimic the settings of a surgi-
cal operation, we set up a mock-up of a heart (the object under
operation in Figure 3a) on an operating table. We placed an
ArUco marker to calibrate the configuration of the object (i.e.,
the mock-up of the heart). Once the image sensor passed the
information to the Raven-II simulator, the operating table and
the target object were rendered in 3D, as shown in Figure
3b. Note that the 3D axes were added to the image upon the
algorithm’s detection of the marker. Using the predetermined
transformation from the marker to the robot, RVIZ can place
the virtual representation of the robot over the operating ta-
ble (Figure 3c). For the demonstration of the smart malware,
the mock-up heart was replaced with a simpler shape, i.e., a
cuboid (see Figures 5 and 10—12). However, the performance
measurements were not affected by the simplification of the
shape of the object.

Systems setup. To demonstrate the smart malware, as de-
picted in Figure 4, we set up three Linux (Ubuntu 16.04)
machines running ROS (i.e., Kinetic, one of the most recent
versions of ROS). While the nodes for Raven-II and the ren-
dering algorithm can be distributed across any combination of
machines, we simplified the configuration by distributing the
application across two machines (tchaikovsky and pachelbel,
shown in Figure 4). The third machine (cloud?) is owned

USENIX Association

kinectSensor |

==

KINECT | ROS Kinetic |

image sensor Ubuntu 16.04

ROS publisher (tchaikovsky)

kicker

¢[Rviz] ...[ROScoRE |

ROS Kinetic
Ubuntu 16.04
Attacker-controlled machine
(cloud7)

| ROS Kinetic |

Ubuntu 16.04

ROS subscriber (pachelbel)

s
[e]
-
Q
(]
=
£

RVIZ simulator

Figure 4: Overview of the system setup for the experiment.

robot joint whose location is . I Y
represented by the tftopic ™. ength of the
., #8 grasper

distance from robot
endpoint to object

Figure 5: Evaluation of the distance from the robot arm to the
object.

by the attacker. The two machines, both running Raven-II,
reside in the same (virtual) network (marked with the dotted
box in Figure 4), whereas cloud?7 resides in the same network
only when executing the attack strategy (see Section 4.2).
The rendering algorithm is designed to run with the (physi-
cal) Raven-II robot. However, we limited the experiment to
a simulated environment to protect the physical robot from
potential damage. Although the experiment was limited to a
simulated environment, the faults and their impact still apply
to the physical robot.

Data. With the MITM established (as described in Section
4), we were able to cavesdrop on all messages transmit-
ted between the ROS nodes. Such messages included ones
communicating the robot’s joints’ state (i.e., the angle of
each joint), which determined the robot’s end-effector po-
sition. We took advantage of the ROS-provided API (i.e.,
TransformListener () [37]) to derive the position of each
joint. Using the API, we (in the shoes of an attacker) could col-
lect data on the X, y, and z coordinates of the robot end-effector
in three-dimensional space. We considered three scenarios to
mimic surgical operations of different levels of complexity: (i)
a surgeon focuses on a single region of the target object; (ii) a
surgeon operates on two regions of the target object; and (iii)
a surgeon operates on three regions of the target object. Note
that the movements of the robot arms (manipulated by the
surgeon) follow a trajectory specific to a given surgical proce-
dure. Because of our lack of real data on such trajectories, we
imitated rather complex routes to challenge our algorithm.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 343

Surgeon controlling
Raven via haptic
interface

[Rroskinetic | [Rros kinetic | [RosKinetic | -~
oo |8 —’-ﬁ

KINECT
Public
network

ROS nodes for Raven-Il and its haptic rendering algorithm

| kinectSensor | | roscore | | omni_client I

image sensor E

Topic msgs regarding
robot control

control
network

,,,,,,,,,,,, ® 3, m Z?EZZ ,,,,,
[ROS Indigo | § ROS Kinetic

Raven-Il robot Raven-II control server Machine under attacker’s control

Figure 6: Overview of the steps taken by the malware.

Evaluation metrics. The goal of an attacker is to trigger the
execution of the attack payload at the most opportune time
so as to maximize the damage, e.g., hurt a patient or damage
the robot. In order to achieve that objective, the attacker must
precisely determine when the robot is operating near (if not
in contact with) the target object. The clustering algorithm
(in Section 4) indirectly derives the decision by monitoring
the trace density of the robot arm in 3D space. To evaluate
the effectiveness of the decision, we measured the distance
from the robot arm to the object (see Figure 5). That would
not be not possible for a real attacker, as the location of the
object would remain unknown. We evaluate the predictions by
using a threshold (i.e., 10 mm) that defines “close to object.”
Applying the definition, we derive the number of predicted
instances that would lead to a successful attack. (We consider
an attack to be “successful” if the execution is triggered when
the distance from the robot arm to the object is less than the
threshold).

Automated malware execution. In Figure 6, we show how
an attack using our smart malware would proceed. The at-
tacker starts by getting access to the control network of the
robot (@). This step could be accomplished by scanning
for the target ROS application connected to the public net-
work [13], or stealing the credentials of a legitimate user in
the control network (via social engineering or phishing at-
tacks). With access to the control network, the attacker scans
the network for the 11311 port to find the ROS master (@).
In @) the attacker checks the version of ROSand disables
all patches that remediate the vulnerabilities of ROS 1. Next,
the attacker can deploy the smart self-learning malware. First,
the malware subscribes (@) to topics of interest (e.g., tf, a
ROS-generic topic for the x, y, z coordinates of the robot
end-point). By running the DBSCAN algorithm, the malware
can label each point (i.e., member of a cluster or noise}@).
When the robot arm position is classified as a cluster, the
malware triggers the payload execution @), which registers
the malicious publisher with the name of a genuine publisher.
Because of the name conflict, in @he ROS master shuts

344 22nd International Symposium on Research in Attacks, Intrusions and Defenses

down the genuine publisher (i.e., omni_client)and the mali-
cious topic (i.e., faulty data) is passed to the ROS application
(@). Because of the faulty data, the operation of Raven is
corrupted, which puts the patient at risk (Q).

6 Results

In this section, we present our results from inferring the time
to trigger the attack payload and injecting realistic faults.

6.1 Determining attack triggers

In this section, we evaluate our accuracy in determining the
robot’s end-effector position with respect to the target object.
In Figure 7, we present the results of the clustering algorithm
(based on DBSCAN) for the three scenarios: (i) a surgeon
operates on a single region of the target object; (ii) a surgeon
operates on two regions of the target object; and (iii) a surgeon
operates on three regions of the target object. Note that in
Figures 7a—7c, an “x” indicates that the point is considered
noise, and a circle indicates that the point belongs to a cluster.
(Different colors are used to differentiate clusters.) Also, in
Figure 5, we compare the clustering results with those from a
pedal-detection-based approach (pedal) [2].

Case 1: Single region of operation. Figure 7a depicts the
trajectory of the robot arm for the case in which a surgeon is
operating at a single region of the object. The algorithm effec-
tively identifies the data points that correspond to the region
of operation and successfully filters out the data points related
to the transition of the robot arm from the starting point of the
robot arm to the region of operation. In Figure 8a, we present
a cumulative distribution of the distance from the clustered
points (robot’s joint positions) to the target object. While all
points of the DBSCAN-derived clusters had a distance of less
than 1 cm from the target object, the pedal-detection-based
algorithm included points related to transition of the robot,
which resulted in reduction of the probability of a successful
attack. Also, as depicted in Figure 9, the algorithm effectively
clusters the instances in which the robot is closer to the object
(“clustered1” in Figure 9), as opposed to the points that were
labeled as transitions to the object (“transitionl” in Figure
9). For our algorithm, the distance (from the robot arm to the
object) varied from 0.0 mm to 7.5 mm, and our clustering
algorithm was able to filter out the points that corresponded
to transitions from the starting point of the robot arm to oper-
ational regions (cluster I in Figure 7a). The pedal-detection-
based approach includes the starting point of the robot arm as
a potential trigger for an attack. (Note that the starting point
is 121 mm from the object.). As shown in Figure 8a, 99.9%
of the DBSCAN-predicted triggers were within 7.1 mm of
the object. However, for the pedal detection-based approach,
only 80.3% of the predicted points were within 7.1 mm.
Case 2: Two regions of operation. As shown in Figure 7b,
the algorithm successfully captured the two regions despite

USENIX Association

— 220
s ;Starting point -
! & ; of the robot 200 g
/ ¥ 180 £
[ow 160 &
S 140 £
Points with coordinates related to 1." ¥ ! *é
the transition to the object are |/ ; J 120 S
treated as noise. L ’,' 100 §
80
60
---- 60
‘(\\
09 356 140 010
X-Coo rd/’ng?O 180 2—0 1 0(’00\6
e (’"In) 200 220 —30 ¥
(a) Single region of operation.
220
S[?ﬁting el 2°°€
oint of the
Points with coordinates ; ,rjobot 180 £
related to the transition f 160 ;
from region A to B are ©
treated as noise. _____ £ 140.5
e 120 ©
100 3
80
60
60
&
100 120 140 . 10\‘@\,6
X-Co0rg;, 100 14, -10 00&
"ate (200 ~20,
Mm) 220 -30
(b) Two regions of operation.
220
» Starting 200
point of the
g‘i‘ robot 180 %
160 <
o
140 5
]
120 ¢
100
80
60
60

(c) Three regions of operation.

Figure 7: Results of tracing of the robot’s arm movements in
three hypothetical surgical procedures.

USENIX Association

= clustered1
7 - - pedall

0 2 4 6 8 10 12 14
distance from robot arm to object (mm)

oNro®O
—
\

cumulative
density
coooor

(a) Single region of operation.

) 1.0
208} S S S ey
r_=u g 8461 : 4 A — clustered2
g%OZZf e - - pedal2
0.0 =
© 0 2 7] 6 8 10 P 14
distance from robot arm to object (mm)
(b) Two regions of operation.
o 10 T
2> 08} D e SO e
r_:“ @ 85 L —— c — clustered3
g% 8[2) r -7 - - pedal3
) 2

a4 6 8 10 12 14
distance from robot arm to object (mm)

(c) Three regions of operation.

Figure 8: Cumulative distribution of the distance from the
robot arm to the object.

the complexity added to the operation. While we have added
an intermediate transition between the regions of operation,
the algorithm successfully filtered out such transitions, and
distinguished the two regions. As depicted in Figure 9 and
Figure 8b, the clustering algorithm was able to find a subset
that contained the majority of the points that were closest to
the object (i.e., 0.26 mm < distance < 20.44 mm).

Case 3: Three regions of operation. In Figure 7c, we
present the case in which the surgery takes place in three adja-
cent regions. The algorithm successfully detected all three re-
gions. Also, all points clustered by our algorithm turned out to
be within 19.8 mm of the object (i.e., all points in the clusters
had a distance<19.82 mm). For the pedal-detection-based
algorithm, 19.2% of the points triggered unsuccessful attacks
while with our DBSCAN-based approach, 3.23% would have
been unsuccessful.

Discussion. Triggering when the instrument is in close prox-
imity to the target object is essential to increasing the like-
lihood of success. As demonstrated in the experiments, our
DBSCAN:-based approach effectively predicts points that are
close to the target object. As discussed in [53], the success
of the DBSCAN algorithm is sensitive to the choice of the
two parameters (i.e., € and »). In this paper, we have taken
a trial-and-error approach, which would not be feasible for
an attacker with limited information. (I.e., the attacker cannot
confirm whether the resulting cluster truly represents the re-
gion of interest.) Instead, the attacker can tune the learning
algorithm (i.e., find the optimal parameters, € and) offline
and install the malware with the parameters embedded.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 345

e i windulaledlininiuiniedudnioduininigiaial
5 ' (90.0%) {0 :
H | clustered3

8 : 82.0%) [- Case 3: Three regions of operation :
3

% losons| p T .
Wi YOO yc | T et iU
23, pedal] N A
i 5, (94.0%) +] :
S5

g’:: clufggrgiz) 3 I-[ﬂ-lm-n Case 2: Two regions of operation ,:
Qwn

= ol - (
B geeionr e rere e m—
) e — g
= 5i pedall i |
o (95.0%) |
2

E‘ :dtgséi)rg%l) s e Case 1: Single region of operation :
b - I
3 losont| oo e S

- N K, . — S,

=20 6 Zb 4‘0 6b 86 160 12I0 140

distance from robot arm to object (mm)
Figure 9: Distribution of the distances from the predicted
clusters (predicted either by DBSCAN or by pedal detection)
to the object. The labels “clustered” and “transition” indicate
coordinates that were predicted as “surgical operation” and
“transition of the robot”, while “pedal” is for the coordinates
filtered by the approach in [2].

6.2 Impact of attacks on the Raven-II haptic
feedback rendering algorithm

This section presents the impacts of executing the three attack
payloads: (i) loss of granularity in the depth map, (ii) shifted
depth map, and (iii) corrupted reference point.

In Figure 10, we present the result of dropping 90% of the
pixels from the depth map. (Note that to maximize the visi-
bility of the fault’s impact, we have chosen an extreme case
and neutralized an unrealistically large portion of pixels.) As
a result, the robot arm tip penetrated the surface of the object
(Figure 10b), whereas the algorithm should have blocked it
from doing so (as seen in Figure 10a). In reality, incorrect
rendering of the force feedback can damage or endanger the
underlying surface and make the robot suffer a heavyload.

In Figure 11, we show the impact of shifting depth map
information during transmission of the information from the
publisher to the subscriber. The figure shows that because
of the shifted distance measure, the 3D rendering of the left
half of the box is flattened (and indeed would be hard to
differentiate from the surface, were it not for the colors), and
the original surface on the right side of the box has gained
volume. As shown in the figure, this fault model can lead to
penetration of the object by the robot that would have been
prevented by the non-corrupted image.

The last fault we studied was corruption of the derived
reference point (the ArUco marker). The object in Figure 12a
has the reference point set on the ArUco marker, whereas the
reference point in Figure 12b has been shifted upward. The
distance between the object and the robot arm (marked with a
double-headed arrow) has been updated accordingly. (L.e., the

346 22nd International Symposium on Research in Attacks, Intrusions and Defenses

(b)

Figure 10: Simulated Raven operation with (a) uncorrupted
depth map and (b) corrupted depth map. Note the difference
between the dotted circles.

(b)

Figure 11: Simulated Raven operation with (a) uncorrupted
depth map, and (b) shifted depth map. Note the problems
inside the contents of dotted circles.

®

Figure 12: Simulated Raven operation with (a) uncorrupted
camMsg, and (b) shifted camMsg. Note the difference be-
tween the reference points (inside dotted circles).

distance in (b) is larger than in (a), while (a) depicts the actual
setup of the robot and the object.) For the corrupted distance,
the rendered feedback is no longer valid. In the experiment
shown in Figure 12, the haptic device did not receive haptic

USENIX Association

feedback upon touching the surface of the object, and the
robot penetrated the object.

7 Discussion

Generalization. As demonstrated in this paper, the ROS 1
is vulnerable to variations of MITM attacks. We show that
our prototype smart malware can utilize the leaked data to
trigger an attack at the most opportune time so as to maxi-
mize the attack’s impact. The inference of the opportune time
range for execution of the attack payload reduces the chances
of exposure, which helps the malware disguise the attack as
an accidental failure. (Recall that the faults were designed
to represent accidental failures.) Without the smart trigger-
ing, frequent and likely unsuccessful injections of the fault
could make the system administrator aware of the malicious
intent behind the sequence of failures. To make things worse,
our DBSCAN-based approach does not require extensive
prior knowledge of the target robotic application. Alemzadeh
et al. [2] also introduce a triggering algorithm (i.e., a side-
channel attack that predicts the state of the robot from the
byte values of specific packets), but we find that our approach
is more intuitive and effective®. (L.e., our approach simply
searches for a dense region (corresponding to a high density
of critical activities), and that does not require background
knowledge on the design/implementation details of the target
robot.) However, despite the smartness of the malware, our
attack is limited in its payload. Unlike the fault in [2], which
tackles the time gap between a safety check of the input and
its execution (i.e., faults are injected after the safety check),
our faults (or faulty scenarios) are injected through corrup-
tion of the raw data, and that corruption might be detected by
safety checks (if such checks were implemented as part of the
robotic application).

While we demonstrated the feasibility of a smart malware
attack in the context of the Raven-II surgical robot and its hap-
tic feedback rendering algorithm, our threat model exploits
vulnerabilities in the underlying framework (ROS). Hence, a
robotic application running on the most common version of
ROS, ROS 1, is vulnerable to MITM attacks and to smart mal-
ware that exploits the leaked data. Furthermore, the generic
idea of malware driven by ML algorithms can be expanded
to any computing infrastructure that generates a stream of
data if the data contain actionable intelligence that smart
malware can infer and the system has vulnerabilities that
allow malicious entities to access data. While we leverage
vulnerabilities in the ROS, as discussed in [1], various entry
points exist through which malicious entities could intrude
into robotic applications. By leveraging such vulnerabilities,
our design for smart malware can be revised to target robotic
applications in general.

“4Please note that the goals of the two approaches were different. The goal
of the approach in [2] is to infer the time when the corrupted data will be
passed to the robot and update its state.

USENIX Association

The work performed in this study is not intended to support
hackers, but to proactively assess the resiliency of robotic
applications, identify vulnerabilities in their design, and drive
development of methods to harden robotic systems. For in-
stance, the sensitivity of the haptic feedback rendering algo-
rithm to its input data (as identified during our experiment)
requires hardening of the data validation process. That hard-
ening can be done by validating the publisher (to maintain
the integrity of the data) or by deploying redundancy in the
Sensors.

7.1 Protection

The leakage of control data being transmitted between compo-
nents of a robot can lead to inference of sensitive information
that can threaten the operation of the robot. As a result, it
is critical to secure the robot by (i) assuring that only autho-
rized entities can control robot operation, (ii) securing the
communications between the components of the application,
and (iii) closely monitoring the robot for anomalies. In this
section, we discuss technologies that can be used to secure
the application, and their limitations. Also, we introduce our
safety module, which detects abnormal circumstances and
brings the robot to a predefined safe state.

In terms of computer security, MITM attacks have been
well-studied, and a number of protection and detection meth-
ods have been introduced [11,24, 32]. For instance, to prevent
ARP poisoning (which is a critical step in performing an at-
tack), each machine can have its ARP table set to be static,
to prevent unknown entities from updating the table. Also,
authentication of the nodes can prevent unauthorized enti-
ties from hijacking a session. (I.e., unauthorized ROS nodes
should not be able to register to the ROS core, and entries that
can publish/subscribe a topic should be defined.)

Security enhancements for ROS (SROS). To better se-
cure the communications within the robotics applications,
SROS [39, 55] provides TLS support in the socket-level trans-
port. However, the current distribution of SROS is limited to
TCPROS (not UDPROS) and robotic applications written in
Python (not C++ or Java). As an alternative, one can add a
layer of authentication by running all ROS nodes within a
VPN (which would require authentication), and that approach
is already common. However, it is not rare for malicious en-
tities to intrude into a protected network by using weak or
stolen credentials.

Secure ROS. Unlike the well-studied TCP MITM attack, our
ROS-specific attack model has not been well-investigated.
Fortunately, a “fork” of the core ROS packages was released
to enable secure communication in the ROS applications [51].
The “Secure ROS” introduced a new configuration file, which
specifies the configuration of the application. Furthermore, by
utilizing IPSec, Secure ROS ensures that the IP packets cannot
be tampered with or spoofed. While Secure ROS enhances the
security of ROS applications, the neutralization of the patch

22nd International Symposium on Research in Attacks, Intrusions and Defenses 347

Packet bytes

3e 0a 3c 6d 65 74 68 6f 64 4e 61 6d 65 3e 73 68 1 >.<metho dName>sh:
75 74 6 77 6e 3c 2f 6d 65 74 68 6f 64 4e 61 :utdO\-m-:/ methodNa1
6d 65 3e 0a 3c 70 61 72 61 6d 73 3e @a 3c 70 61 TWes.<par ams>.<pa
72 61 6d 3e 0a 3c 76 61 6¢C 75 65 3e 3c 73 74 72 ram>.<va lue><str
69 6e 67 3e 2f 6d 61 73 74 65 72 3c 2f 73 74 72 ing>/mas ter</str
69 6e 67 3e 3c 2f 76 61 6¢C 75 65 3e 0a 3c 2f 70 ing></va lue>.</p
61 72 61 6d 3e 0a 3c 70 61 72 61 6d 3e ©a 3c 76 ~arap=.<p Aaram>. sv
61 6Cc 75 65 3e 3c 73 74 72 69 6e 67 3e 6e alue><st ring>new,
20 6e 6 4 65 2 72 65 67 6 3 74 65 72 65 64 ' node re gistered!
2(9 74 6 6e 61 55 3c | with sa me name<!
2f 73 74 72 69 6e 67 3e 3c 2f 76 61 6¢c 75 65 3e 1 /string> </value>,

Bytes in ASCII

Figure 13: Packet capture of the network packet carrying the
“shutdown” command from the roscore, triggered by a conflict
in node names.

is not particularly difficult. As the package is an addition to
an already existing ROS installation in the system, it has a
single parameter (defined in a bash script) that enables the
patch. As a result, an attacker can overwrite the parameter to
disable the entire security patch, thus returning the system
back to the vulnerable ROS.

ROS 2. ROS 2 (released in 2015) [36] is a major update from
the original ROS. On top of introducing new features to ad-
dress challenges that arose from extended usage of the frame-
work (e.g., with real-time systems, or groups of robots), the
upgrade also covers the vulnerabilities discussed in this paper.
The ROS 2 uses the data distribution service (DDS) [34] for
publish-subscribe transport. The security enhancements pro-
vided by the Secure ROS and SROS patch can be embedded in
ROS 2 using DDS. Hence, the vulnerabilities exploited in this
paper can be eliminated by using the upgraded framework.
However, ROS 2 is not backward-compatible. As a result,
the existing applications must be rewritten to take advantage
of the new features in ROS 2, and such rewriting is not triv-
ial. Even if the developer manages to re-program the robotic
application with the new interface, configuring of the DDS
to support the security needs is left to the robot’s program-
mers. Such configuration requires thorough understanding
of encryption, certification, and access control. Without se-
curity in mind, if the programmer decides not to enable the
security features of DDS (e.g., using the eProsima Fast RTPS
middleware [18]) or if the programmer makes a mistake in
configuring the DDS [16], the vulnerabilities discussed in
this paper remain current. As discussed in [27], the DDS
and its implementation have limitations (e.g., lack of forward
security) and vulnerabilities (e.g., skipping of variable initial-
ization) that attackers can exploit.

7.2 Safety module

The limitations of existing technologies mean that the threats
described in this paper (especially that specific to ROS ap-
plications) remain current and, hence, can occur in any of
the 125+ existing robots. As a result, we find a need for a
safety module that can (i) detect abnormalities in the robot
and (ii) take control of the robot and bring it to a safe state
under such circumstances. As discussed in Section 4, when

348 22nd International Symposium on Research in Attacks, Intrusions and Defenses

the ROS master detects a name conflict (due to a new node’s
registering of itself with a name already in use), it terminates
the original node and registers the new node with the name
in conflict. Our safety module detects the shutdown signal
transmitted over the network (see Figure 13). Upon detecting
the shutdown signal due to a name conflict (see Figure 13),
our safety module (operating as another ROS node) termi-
nates the node that publishes the state of the robot joints. By
terminating the node, the safety module can prevent the mali-
cious entity from taking control of the robot. Furthermore, if
needed, the safety module can bring the robot to a predefined
safe state (in our experiment, the reset position of the robot).
As the safety module runs on the ROS master with privilege,
we can be assured that the shutdown packet will be detected,
with minimal risk that the attacker can corrupt the detection.
Also, as the detection relies on an unusual signature, we can
minimize false positives. (I.e., name conflict is a rare event
and when there are multiple nodes with identical names by
design, the programmer enables the anonymous mode, which
pads a hash to the name to avoid the conflict.)

8 Related work

Attacks with learning features. In [41], an open-source
hacking AI, DeepHack, was presented. Powered with a neural
network, the tool learns how to intrude into web applications.
DeepLocker [28], on the other hand, takes advantage of a deep
neural network for target detection. Until the malware detects
the target, the malware disguises itself as benign software.
Furthermore, the malware encrypts the payload to conceal the
malicious intent, which makes reverse-engineering challeng-
ing. In [10], the authors leverage a learning technique to infer
an attack payload from CPS operational data. The malware
in [10] predicts failure-causing abnormalities in the CPS op-
erational data, and injects abnormalities into the control data
to corrupt the operation of the CPS.

Attacks against ROS. Some vulnerabilities of ROS were dis-
cussed in [42, 43]. Using the STOP surveillance system, the
authors demonstrate an attack that changes the route of the pa-
trol robot. They proposed the use of IPSec, which was indeed
incorporated in the upgrade to ROS 2. The whitelist method
proposed by Doczi et al. [17] has also become part of the
new ROS framework. Similarly, [15] discusses a method for
preventing malicious publishers and subscribers from inter-
fering with a given ROS node network. The authors ensured
broadcast encryption by whitelisting nodes in an authenti-
cation server and by requiring any new publisher to run an
authentication to certify itself as a legitimate new publisher.
Despite the efforts to secure ROS applications, as demon-
strated in [13], a significant number of ROS applications that
are connected to networks are vulnerable. The authors of [13],
by scanning over the whole IPV4 address space, identified
more than 100 hosts running as ROS masters. Also, in [5], the
authors demonstrate that ROS applications can be vulnerable

USENIX Association

to attacks that modify the instructions of a Raven operator
(e.g., by manipulating packets to cause loss, reordering, or
delay of commands) and to session-hijacking attacks.

9 Conclusions

In this paper, we studied the impact of security attacks that
exploit security vulnerabilities in ROS to attack robotic appli-
cations. More specifically, we demonstrated (i) the possibility
of neutralizing the force feedback engine in Raven-II by cor-
rupting a message passed across ROS nodes over the network,
and (ii) the possibility of misleading the robot operator by
providing incorrect feedback. Our study of ROS and obser-
vations on the impact of security attacks reveal a need for
advanced security APIs to be provided by the framework. We
suggest that the applications be secured in the implementation
phase, and be enforced by the framework.

Acknowledgments

This material is based upon work supported by the National
Science Foundationunder GrantNos. 18-16673 and 15-45069.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion.

References

[1] Homa Alemzadeh. Data-driven Resiliency Assessment
of Medical Cyber-physical Systems. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 2016.

[2] Homa Alemzadeh, Daniel Chen, Xiao Li, Thenkurussi
Kesavadas, Zbigniew T.Kalbarczyk, and Ravishankar K.
Iyer. Targeted Attacks on Teleoperated Surgical Robots:
Dynamic Model-based Detection and Mitigation. In Pro-
ceedings of the IEEE International Conference on De-
pendable Systems and Networks, pages 395-406,2016.

[3] Applied Dexterity Website. Accessed May 1, 2019.
http://applieddexterity.com.

[4] Rachad Atat, Lingjia Liu, Jinsong Wu, Guangyu Li,
Chunxuan Ye, and Yang Yi. Big Data Meet Cyber-
Physical Systems: A Panoramic Survey. CoRR,
abs/1810.12399, 2018.

[5] Tamara Bonaci, Jeffrey Herron, Tariq Yusuf, Junjie
Yan, Tadayoshi Kohno, and Howard Jay Chizeck. To
Make a Robot Secure: An Experimental Analysis of
Cyber Security Threats against Teleoperated Surgical
Robots. arXivpreprint arXiv:1504.04339,2015. https:
//arxiv.org/abs/1504.043309.

USENIX Association

[6] Gary Bradski and Adrian Kaehler. Learning OpenCV:
Computer Vision with the OpenCV Library. O’Reilly
Media, Inc., 2008.

[7] Charles Chang, Zoe Steinberg, Anup Shah, and Mo-
han S. Gundeti. Patient Positioning and Port Placement
for Robot-assisted Surgery. Journal of Endourology,
28(6):631-638, 2014.

[8] Yizheng Chen, Yacin Nadji, Athanasios Kountouras,
Fabian Monrose, Roberto Perdisci, Manos Antonakakis,
and Nikolaos Vasiloglou. Practical Attacks against
Graph-based Clustering. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1125-1142. ACM, 2017.

[9] Xiuzhen Cheng, Yunchuan Sun, Antonio Jara, Houb-
ing Song, and Yingjie Tian. Big Data and Knowledge
Extraction for Cyber-Physical Systems. International
Journal of Distributed Sensor Networks, 11(9):231527,
2015.

[10] Keywhan Chung, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. Availability Attacks on Computing
Systems through Alteration of Environmental Control:
Smart Malware Approach. In Proceedings of the 10th
ACM/IEEE International Conference on Cyber-Physical
Systems, pages 1-12. ACM, 2019.

[11] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A
Survey of Man in the Middle Attacks. IEEE Communi-
cations Surveys & Tutorials, 18(3):2027-2051,2016.

[12] Altair da Silva Costa Jr. Assessment of Operative Times
of Multiple Surgical Specialties in a Public University
Hospital. Einstein (Sdo Paulo), 15(2):200-205, 2017.

[13] Nicholas DeMarinis, Stefanie Tellex, Vasileios Kemerlis,
George Konidaris, and Rodrigo Fonseca. Scanning the
Internet for ROS: A View of Security in Robotics Re-
search. arXiv preprint arXiv:1808.03322,2018. https:
//arxiv.org/abs/1808.03322.

[14] Department of Homeland Security. Cyber Physical
Systems Security, Feb. 2019. https://www.dhs.gov/
science-and-technology/csd-cpssec.

[15] Bernhard Dieber, Severin Kacianka, Stefan Rass, and
Peter Schartner. Application-level Security for ROS-
based Applications. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
44/ /-4482, 2016.

[16] Constanze Dietrich, Katharina Krombholz, Kevin Bor-
golte, and Tobias Fiebig. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1272—1289, New York, NY,
USA, 2018. ACM.

22nd International Symposium on Research in Attacks, Intrusions and Defenses 349

https://arxiv.org/abs/1808.03322
https://arxiv.org/abs/1808.03322
https://www.dhs.gov/science-and-technology/csd-cpssec
http://applieddexterity.com/
https://www.dhs.gov/science-and-technology/csd-cpssec
https://arxiv.org/abs/1504.04339
https://arxiv.org/abs/1504.04339

(17]

(18]

[19]

(20]

(21]

(23]

[24]

[25]

Roland Doéczi, Ferenc Kis, Balazs Sut6, Valéria Poser,
Gernot Kronreif, Eszter Josvai, and Miklos Kozlovszky.
Increasing ROS 1.x Communication Security for Medi-
cal Surgery Robot. In Proc. IEEFE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pages
4444-4449, 2016.

eProsima. eProsima Fast RTPS, Mar. 2019.
https://www.eprosima.com/index.php/products-—
all/eprosima-fast-rtps.

Richard H. Epstein and Franklin Dexter. Influence of
Supervision Ratios by Anesthesiologists on First-case
Starts and Critical Portions of Anesthetics. Anesthesiol-
ogy: The Journal of the American Society of Anesthesi-
ologists, 116(3):683-691, 2012.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xi-
aowei Xu. A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In
Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, pages 226-231,
1996.

Sergio Garrido-Jurado, Rafael Mufioz Salinas, Fran-
cisco J. Madrid-Cuevas, and Rafael Medina-Carnicer.
Generation of Fiducial Marker Dictionaries Using
Mixed Integer Linear Programming. Pattern Recog-
nition, 51(C):481-491, March 2016.

Martin Giles. Triton is the World’s Most
Murderous Malware, and It’s Spreading.
MIT Technology Review, March 5, 2019.

https://www.technologyreview.com/s/613054/
cybersecurity-critical-infrastructure-
triton-malware/.

Megan Henney. Amazon Bear Repellent Accident this
Week Wasn’t Its First. FOX Business, December 7,
2018. https://www.foxbusiness.com/retail/
amazon-bear-repellent-accident-this-week-
wasnt-its-first.

Brian Hernackiand William E. Sobel. Detecting Man-in-
the-middle Attacks via Security Transitions, October 15,
2013. US Patent8,561,181.

Ling Huang, Anthony D. Joseph, Blaine Nelson, Ben-
jamin LP. Rubinstein, and J.D. Tygar. Adversarial Ma-
chine Learning. In Proceedings of the 4th ACM Work-
shop on Security and Artificial Intelligence, pages 43—58.
ACM, 2011.

[26] Mohammad Saiful Islam, Mehmet Kuzu, and Mu-

350

rat Kantarcioglu. Access Pattern Disclosure on
Searchable Encryption: Ramification, Attack and
Mitigation. In Proceedings of the Annual Network and

22nd International Symposium on Research in Attacks, Intrusions and Defenses

[27]

[28]

[29]

[33]

Distributed System Security Symposium, 2012, https:
/ /www.ndss—symposiumorg/ndss2012/access—
pattern-disclosure-searchable-encryption—
ramification-attack-and-mitigation.

Jongkil Kim, Jonathon M. Smereka, Calvin Cheung,
Surya Nepal, and Marthie Grobler. Security and Per-
formance Considerations in ROS 2: A Balancing Act.
CoRR, abs/1809.09566, 2018. http://arxiv.org/
abs/1809.09566.

Dhilung Kirat, Jiyoung Jang, and Marc Ph.
Stoecklin. DeepLocker: Concealing Targeted At-
tacks with Al Locksmithing. Black Hat USA,

https://iblackhat.com/us-18/Thu-August-
9/us-18-Kirat-DeepLocker-Concealing-
Targeted-Attacks-with-AT-Locksmithing.pdf,
2018.

Laparoscopic.MD. Laparoscopic Trocars, Feb.
2019. https://www.laparoscopicmd/surgery/
instruments/trocar.

Xiao Li and Thenkurussi Kesavadas. Surgical Robot
with Environment Reconstruction and Force Feedback.
In Proceedings of the 40th Annual International Confer-
ence of the IEEE Medicine and Biology Society, pages
1861-1866, July 2018.

Santiago Morante, Juan G. Victores, and Carlos
Balaguer. Cryptobotics: Why Robots Need Cy-
ber Safety. Frontiers in Robotics and Al, 2:23,
2015. https://www.frontiersin.org/article/
10.3389/frobt.2015.00023.

Seung Yeob Nam, Dongwon Kim, and Jeongeun Kim.
Enhanced ARP: Preventing ARP Poisoning-based Man-
in-the-middle Attacks. IEEE Communications Letters,
14(2):187-189, 2010.

Muhammad Naveed, Seny Kamara, and Charles V.
Wright. Inference Attacks on Property-preserving En-
crypted Databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 644—655. ACM, 2015.

Object Management Group. DDS Portal - Data Dis-
tribution Services, 2018. https://www.omgwiki.org/
dds/.

Occipital. OpenNI 2 Downloads and Documentation,
Mar. 2019. https://structure.io/openni.

Open Robotics. ROS2 Overview, 2019. https://
index.ros.org/doc/ros2/.

Open Source Robotics Foundation. APIs - ROS Wiki,
2016. http://wiki.ros.org/APIs.

USENIX Association

https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware/
https://www.foxbusiness.com/retail/amazon-bear-repellent-accident-this-week-wasnt-its-first
https://www.foxbusiness.com/retail/amazon-bear-repellent-accident-this-week-wasnt-its-first
https://www.foxbusiness.com/retail/amazon-bear-repellent-accident-this-week-wasnt-its-first
https://www.foxbusiness.com/retail/amazon-bear-repellent-accident-this-week-wasnt-its-first
https://www.foxbusiness.com/retail/amazon-bear-repellent-accident-this-week-wasnt-its-first
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
http://arxiv.org/abs/1809.09566
http://arxiv.org/abs/1809.09566
http://arxiv.org/abs/1809.09566
https://i.blackhat.com/us-18/Thu-August-9/us-18-Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Kirat-DeepLocker-Concealing-Targeted-Attacks-with-AI-Locksmithing.pdf
https://www.laparoscopic.md/surgery/instruments/trocar
https://www.laparoscopic.md/surgery/instruments/trocar
https://www.laparoscopic.md/surgery/instruments/trocar
https://www.frontiersin.org/article/10.3389/frobt.2015.00023
https://www.frontiersin.org/article/10.3389/frobt.2015.00023
https://www.frontiersin.org/article/10.3389/frobt.2015.00023
https://www.omgwiki.org/dds/
https://www.omgwiki.org/dds/
https://www.omgwiki.org/dds/
https://structure.io/openni
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
http://wiki.ros.org/APIs

(38]

[39]

[40]

[41]

[45]

[46]

USENIX Association

Open Source Robotics Foundation. Robots That You
Can Use with ROS, 2018. https://robots.ros.org/.

Open Source Robotics Foundation. SROS, 2018. http:
//wiki.ros.org/SROS.

Sean Palka and Damon McCoy. Fuzzing E-mail
Filters with Generative Grammars and N-Gram
Analysis. In Proceedings of the USENIX Work-
shop on Offensive Technologies (WOOT 15),
Washington, D.C., 2015. USENIX Association.
https://www.usenix.org/conference/wootl5/
workshop-program/presentation/palka.

Dan Petro and Ben Morris. Weaponizing Ma-
chine Learning: Humanity Was Overrated Anyway.
DEF CON, https://www.defcon.org/html/defcon—
25/dc-25-speakers.html#Petro, 2017.

David Portugal, Samuel Pereira, and Micael Couceiro.
The Role of Security in Human-robot Shared Envi-
ronments: A Case Study in ROS-based Surveillance
Robots. In Proc. 26th IEEE International Symposium
on Robot and Human Interactive Communication (RO-
MAN), pages 981-986, Aug. 2017.

David Portugal, Miguel Santos, Samuel Pereira, and Mi-
cael Coucerio. On the Security of Robotic Applications
using ROS. In Roman V. Yampolskiy, editor, Artificial
Intelligence Safety and Security, pages 279-289. Taylor
& Francis, 2018.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y.
Ng. ROS: An Open-source Robot Operating System.
In Proceedings of the ICRA Workshop on Open Source
Software. IEEE, 2009.

Erwin Quiring and Konrad Rieck. Adversarial Machine
Learning against Digital Watermarking. In Proceed-
ings of the 26th European Signal Processing Conference
(EUSIPCO), pages 519-523, Sep. 2018.

Francisco J. Romero-Ramirez, Rafael Mufioz-Salinas,
and Rafael Medina-Carnicer. Speeded Up Detection of
Squared Fiducial Markers. Image and Vision Computing,
76:38-47,2018.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[55]

22nd International Symposium on Research in Attacks, Intrusions and Defenses

Lea Schonherr, Katharina Kohls, Steffen Zeiler,
Thorsten Holz, and Dorothea Kolossa. Adversarial At-
tacks against Automatic Speech Recognition Systems
via Psychoacoustic Hiding. CoRR, abs/1808.05665,
2018. http://arxiv.org/abs/1808.05665.

Erich Schubert, Jorg Sander, Martin Ester, Hans Peter
Kriegel, and Xiaowei Xu. DBSCAN Revisited, Revis-
ited: Why and How You Should (Still) Use DBSCAN.
ACM Trans. Database Systems, 42(3):19:1-19:21, July
2017.

Senhance. The Senhance Surgical System,2018. https:
/ /www.senhance.com/us/digital-laparoscopy.

Aashish Sharma, Zbigniew Kalbarczyk, James Barlow,
and Ravishankar Iyer. Analysis of Security Data from
a Large Computing Organization. In Proc. 2011
IEEE/IFIP 41st International Conference on Depend-
able Systems & Networks (DSN), pages 506—517. IEEE,
2011.

Aravind Sundaresan, Leonard Gerard, and Minyoung
Kim. Secure ROS. Computer Science Laboratory,
SRI International, http://secure-ros.csl.sri.com/,
2017.

Intuitive Surgical. Da Vinci by Intuitive: Enabling
Surgical Care to Get Patients back to What Mat-
ters, 2019. https://www.intuitive.com/en-us/
products-and-services/da-vinci/.

Thanh N. Tran, Klaudia Drab, and Michal Daszykowski.
Revised DBSCAN Algorithm to Cluster Data with
Dense Adjacent Clusters. Chemometrics and Intelli-
gent Laboratory Systems, 120:92-96, 2013.

Jeffrey Voas, Rick Kuhn, Constantinos Kolias, Angelos
Stavrou, and Georgios Kambourakis. Cybertrust in the
IoT Age. Computer, 51(7):12—15, July 2018.

Ruffin White, Henrik 1. Christensen, and Morgan
Quigley. SROS: Securing ROS over the Wire, in the
Graph, and Through the Kernel. CoRR, abs/1611.07060,
2016. http://arxiv.org/abs/1611.07060.

351

https://robots.ros.org/
http://wiki.ros.org/SROS
http://wiki.ros.org/SROS
https://www.usenix.org/conference/woot15/workshop-program/presentation/palka
https://www.usenix.org/conference/woot15/workshop-program/presentation/palka
https://www.usenix.org/conference/woot15/workshop-program/presentation/palka
https://www.defcon.org/html/defcon-25/dc-25-speakers.html#Petro
https://www.defcon.org/html/defcon-25/dc-25-speakers.html#Petro
https://www.defcon.org/html/defcon-25/dc-25-speakers.html#Petro
http://arxiv.org/abs/1808.05665
https://www.senhance.com/us/digital-laparoscopy
https://www.senhance.com/us/digital-laparoscopy
http://secure-ros.csl.sri.com/
https://www.intuitive.com/en-us/products-and-services/da-vinci/
https://www.intuitive.com/en-us/products-and-services/da-vinci/
https://www.intuitive.com/en-us/products-and-services/da-vinci/
http://arxiv.org/abs/1611.07060

	Abstract
	1 Introduction
	2 Motivation for smart malware
	3 Background: Robots, ROS, and Raven-II
	4 Approach
	4.1 Attack preparation
	4.2 Attack strategy: ROS-specific MITM
	4.3 Trigger: Inference of critical time to initiate the malicious payload
	4.4 Attack payload: Fault injection
	5 Experiment design
	6 Results
	6.1 Determining attack triggers
	6.2 Impact of attacks on the Raven-II haptic feedback rendering algorithm
	7 Discussion
	7.1 Protection
	7.2 Safety module
	8 Related work
	9 Conclusions
	Acknowledgments
	References

