
Learned Scheduling of LDPC Decoders Based on
Multi-armed Bandits

Salman Habib, Allison Beemer, and Jörg Kliewer
Helen and John C. Hartmann Dept. of Electrical and Computer Engineering,

New Jersey Institute of Technology, Newark, NJ 07102

Abstract— The multi-armed bandit (MAB) problem refers to
the dilemma encountered by a gambler when deciding which
arm of a multi-armed slot machine to pull in order to maximize
the total reward earned in a sequence of pulls. In this paper, we
model the scheduling of a node-wise sequential LDPC decoder as
a Markov decision process, where the underlying Tanner graph
is viewed as a slot machine with multiple arms corresponding to
the check nodes. A fictitious gambler decides which check node
to pull (schedule) next by observing a reward associated with
each pull. This interaction enables the gambler to discover an
optimized scheduling policy that aims to reach a codeword output
by propagating the fewest possible messages. Based on this policy,
we contrive a novel MAB-based node-wise scheduling (MAB-
NS) algorithm to perform sequential decoding of LDPC codes.
Simulation results show that the MAB-NS scheme, aided by an
appropriate scheduling policy, outperforms traditional scheduling
schemes in terms of complexity and bit error probability.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are sparse graph-
based codes whose rates approach the capacity of symmetric
binary input channels [1], [2]. LDPC codes are decoded via
iterative algorithms, such as belief propagation (BP), which
operate on the code’s Tanner graph [3]. Traditional BP de-
coders employ a flooding scheme, where at each iteration,
all variables nodes (VNs) of the Tanner graph are updated
simultaneously, followed by a simultaneous update of all
check nodes (CNs). The flooding schedule is computationally
intensive compared to sequential scheduling, where the nodes
of a Tanner graph are updated serially based on the latest
messages propagated by their neighbors. Sequential scheduling
problems deal with finding the optimized order of node
updates to improve the convergence speed and/or the decoding
performance with respect to the flooding scheme.

In [4], a sequential CN scheduling scheme, so-called node-
wise scheduling (NS), is proposed, where the criterion for
selecting the next CN depends on its residual, given by the
magnitude of the difference between two successive messages
emanating from that CN. In NS, all CN to VN messages
corresponding to a CN with the highest residual are propagated
simultaneously. Although the NS method converges faster than
the flooding scheme, it computes provisional messages for
updating the CN residuals in real-time, making NS more
computationally intensive than the flooding scheme for the
same total number of messages propagated.

In this paper, we mitigate the computational complexity
inherent in NS by employing a multi-armed bandit-based
NS (MAB-NS) scheme. To the best of our knowledge, such
a scheme has not been proposed in conjunction with BP

This work was supported in part by NSF grant ECCS-1711056 and by the
US Army Research Office under Cooperative Agreement Number W911NF-
17-2-0183.

decoder scheduling in the open literature. Instead of comput-
ing residuals, the proposed MAB-NS algorithm evaluates an
action-value function prior to scheduling, which determines
how beneficial an action (a selected CN) is for maximizing
convergence speed/performance of the decoder. We model the
NS algorithm as a Markov decision process (MDP), where the
Tanner graph is conceived as an m-armed slot machine with
m CNs (arms), and a fictitious gambler attempts to discover
the CNs that elicit the highest reward. In this paper we employ
the CN residual [4] as a reward function. Repeated scheduling
during the learning phase enables the gambler to estimate the
action-value function, which can be viewed as a reinforcement
learning (RL) task intended to optimize the CN scheduling
order. We refer to this RL task as the MAB problem.

In the following, we discuss two strategies for estimating
the action-value function: by computing the Gittins indices
(GIs) of all the CNs, and via Q-learning. In the GI approach,
each CN is considered as an independent bandit process (with
independent rewards), leading to a learning complexity that
grows linearly with the number of CNs. In comparison, Q-
learning is a Monte Carlo approach for estimating the action-
value function, without explicit assumptions on the distribution
of the bandit processes. However, the learning complexity
in this approach can grow exponentially with the number of
CNs. To lower the Q-learning complexity, we propose a novel
clustering scheme where CNs are grouped into smaller clusters
with separate state and action spaces.

II. PRELIMINARIES
A. LDPC Codes

A (J,K)-regular LDPC code is defined as the null space
of a sparse parity-check matrix H ∈ Fm×n2 , where each row
(resp. column) of H contains K (resp. J) ones, with K � m,
J � n. The code block length is n and its design rate is
given by R = 1− m

n , which is equal to the actual rate if and
only if the parity-check matrix is full-rank. In a sequential BP
decoding step, a CN residual rma→v is defined as

rma→v , |m′a→v −ma→v|. (1)

Here, ma→v is the message sent by CN a to its neighboring
VN v in the previous iteration, and m′a→v is the message that
CN a would send to VN v in the current iteration, if scheduled.

Let GH = (V ∪C,E) denote the Tanner graph correspond-
ing to H, where V = {v0, . . . , vn−1} is a set of n VNs,
C = {c0, . . . , cm−1} is a set of m CNs, and there is an edge
in set E connecting vi to cj if and only if Hj,i = 1. In GH,
if X ⊆ V , let N (X) be the set of all neighbors of X , and
let O(X) be the set of neighbors of X with odd degree in
the subgraph induced by X ∪ N (X). For A > 0, B ≥ 0, an
(A,B) absorbing set (ABS) X is a set of VNs with |X|= A,

2807978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

|O(X)|= B, and the property that each VN in X has strictly
fewer neighbors in O(X) than in C \O(X) [5].

ABSs are known to cause BP decoder failures, exhibited by
a flattening of the bit error rate (BER) performance curve in
the high signal-to-noise ratio (SNR) region, also known as an
error-floor [5]. In particular, (3, 3) ABSs are most harmful for
column weight-3 array-based (AB) LDPC codes [6], [7].

B. Multi-armed Bandits
The MAB is a special RL problem where in each time step,

a gambler must decide which arm of an m-armed slot machine
to pull next in order to maximize the total reward in a series of
pulls. In this paper, the m-armed slot machine is modeled as a
finite Markov decision process (MDP) [8], and the optimized
scheduling order of arms is obtained by solving the related
MAB problem.

In the remainder of the paper, let [[x]] , {0, . . . , x − 1},
where x is a positive integer. In an m-armed bandit problem,
let S(0)

t , . . . , S
(m−1)
t represent m bandit processes (arms),

where each random variable (r.v.) S(j)
t , j ∈ [[m]], can take

M possible real values. Let a state space S contain all Mm

possible realizations of the sequence S
(0)
t , . . . , S

(m−1)
t . Let

the r.v. St ∈ [[Mm]], with realization s represent the index of
realization s(0)t , . . . , s

(m−1)
t . Since each index corresponds to a

unique realization, we also refer to St as the state of a m-armed
slot machine at time t. If the arms are modeled as independent
bandit processes, we define a r.v. Ŝt ∈ [[M]], with realization
ŝ, as the realization s

(j)
t of arm j. Let At ∈ [[m]] represent

an action, with realization a, indicating the index of an arm
that has been pulled by the gambler at time t, and A = [[m]]
be an action space, where a ∈ A. Let St+1 represent a new
state of the MDP after pulling arm At, and let s′ denote its
realization. Also, let a r.v. Rt(St, At, St+1), with realization r
be the reward yielded at time t after playing arm At in state
St.

C. Solving the MAB Problem by Computing Gittins Indices

As outlined above, if an m-armed bandit problem, formu-
lated as an MDP, is solved via Markov decision theory, the
state space consists of Mm possible state realizations of all the
m arms. Consequently, the complexity of solving the MAB via
Markov decision theory grows exponentially with the number
of arms. On the other hand, if the arms are independent bandit
processes, it is clear that the optimal solution to the m-armed
bandit problem can be obtained by solving m 1-dimensional
optimization problems, leading to an exponential complexity
reduction. Hence, for a given arm with index a, one only needs
to compute its action-value function, in this case known as the
Gittins index (GI) G(ŝ, a), given by [9]

G(ŝ, a) = max
pτ∈P

Eτ,ŝ′
[∑τ−1

t=0 β
tRt(Ŝt, At, ŝ

′)|Ŝ0 = ŝ, At = a
]

Eτ
[∑τ−1

t=0 β
t|Ŝ0 = ŝ, At = a

] ,

(2)
where τ is a r.v. with realizations in {1, 2, ...} that gives the
number of times the gambler plays arm a, pτ is the distribution
of τ , P represents the collection of all allowed distributions
and is determined by allowed stopping time policies, and 0 <
β < 1 is the reward discount rate. The action-value function

G(ŝ, a) represents the long-term expected reward for taking
action a in state ŝ, indicating how beneficial it would be for
the gambler to take that action [8], [9]. For the Gittins scheme,
the optimal arm scheduling policy for a gambler is given by

πG = argmax
a

G(ŝ, a). (3)

D. Solving the MAB Problem via Q-learning
Optimal policies for MDPs can also be estimated via

Monte Carlo techniques such as Q-learning [11], [10], [12].
The estimated action-value function Qt(St, At) in Q-learning
represents the expected long-term reward achieved by the
gambler at time t after taking action At in state St. To improve
the estimation in each time step, the action-value function is
adjusted according to a recursion
Qt+1(s, a) = (1− α)Qt(St = s,At = a)+

α

(
Rt(s, a, St+1 = f(s, a)) + β max

a′∈[[m]]
Qt(f(s, a), a

′)

)
,

(4)

where f(s, a) represents the new state s′ as a function of s and
a, 0 < α < 1 is the learning rate, and Qt+1(s, a) is a future
action-value resulting from action a in the current state s [12,
pp. 95-96]. Note that the observed state, which is a collective
state S(0)

t , . . . , S
(m−1)
t of all m bandit processes, allows the

gambler to incorporate any dependencies of the arms, unlike
the Gittins scheme.

In Q-learning, the optimal policy for the gambler, π(τ)
Q , in

state s is determined as
π
(τ)
Q = argmax

a
Qτ (s, a), (5)

where τ is the total number of time steps after observing
an initial state S0. Although the optimal policy is initially
unknown to the gambler, with the aid of Q-learning it is
possible to recursively determine the policy and the action-
value function together via ε-greedy exploration (see Section
IV for details).

III. MAB-BASED NODE-WISE SCHEDULING

The proposed MAB-NS is a serial decoding algorithm in
which a single message passing iteration is given by messages
sent from a scheduled CN to all its neighboring variable
nodes, and subsequent messages sent from these variable
nodes to their other CN neighbors. Sequential CN scheduling
is carried out until a stopping condition is reached, or an
iteration threshold is exceeded. The MAB-NS decoder applies
a scheduling policy based on an action-value function to decide
the CN to be scheduled next, avoiding the real-time calculation
of residuals.

Now, we consider the effect of (3, 3) ABSs on the per-
formance of sequential decoders. Suppose that the VNs
v1, v2, v3 ∈ {0, 1, . . . , n − 1} of a (3, 3) ABS are initially
in error. In a sequential scheduling step, suppose that a
neighboring CN N (vi′), i′ ∈ {1, 2, 3} corrects the erroneous
belief (LLR) of vi′ . Then, in the second half of the same
iteration, this VN can correct its CN neighbors, and these
CNs can correct the remaining VNs in the ABS. On the
other hand, for the flooding scheme, the erroneous VN will
also receive messages from the other elements of N (vi′),
which can potentially reinforce the error. If this is the case,

2808

the decoder is trapped as this VN cannot correct any of its
neighbors. Thus we can state the following remark.

Remark. Sequential scheduling techniques such as the pro-
posed MAB-NS scheme are more likely to correct errors
associated with (3, 3) ABSs than a flooding-based scheme.

We define the optimal scheduling order to be the one that
yields a codeword output by propagating the least number of
CN to VN messages. The decoding algorithm informs the
imaginary gambler of the current state of the decoder, and
the reward obtained after performing an action (scheduling a
CN). Based on these observations, the gambler takes future
actions, to enhance the total reward earned, which alters the
state of the environment and also the future reward. In this
work, the reward Ra obtained by the gambler after scheduling
CN a is defined as Ra = maxv∈N (a) rma→v , where rma→v is
computed according to (1).

The magnitude of the residual diminishes as the BP al-
gorithm converges. Consequently, propagating CN to VN
messages with relatively large residuals first is expected to
lead to faster convergence of the BP algorithm [4]. Note that in
our MAB problem, residuals are computed for estimating the
action-value function only, which is done off-line (see Section
IV for details).

An iteration number ` (resp. iteration threshold `max) of the
MAB-NS scheme is analogous to a time step t (resp. stopping
time τ) discussed in Section II. Let x = [x0, . . . , xn−1] and
y = [y0, . . . , yn−1] represent the transmitted and the received
word, respectively, where xi ∈ {0, 1}, yi = (−1)xi + z, and
z ∼ N (0, σ2). The posterior log-likelihood ratio (LLR) of xi
is expressed as Li = log Pr(xi=1|yi)

Pr(xi=0|yi) . The soft channel infor-
mation input to the MAB-NS algorithm is a vector of LLRs
denoted as L = [L0, . . . , Ln−1]. In the MAB-NS scheme, the
value (or state) of CN j at the end of iteration ` is denoted by
ŝ
(j)
` =

∑n−1
i=0 Hj,iL̂

(i)
` , where L̂(i)

` =
∑
c∈N (vi)

mc→vi + Li
is the posterior LLR computed by VN vi at the end of
iteration `, and mc→vi is the message received by VN vi
from a neighboring CN c. Let Ŝ` = Ŝ

(0)
` , . . . , Ŝ

(m−1)
` , with

realization ŝ` = ŝ
(0)
` , . . . , ŝ

(m−1)
` , represent a soft syndrome

vector of the MAB-NS scheme obtained at the end of iteration
`.

Since we model the NS scheme as a finite MDP, it is
necessary to quantize each CN state. Let gM (·) denote an
M -level scalar quantization function that maps a real number
to any of the closest M possible representation points set by
the quantizer. Let S` = S

(0)
` , . . . , S

(m−1)
` be the quantized

syndrome vector, where a realization s(j)` = gM (ŝ
(j)
`). We call

S` a quantized soft syndrome for the case M > 2, and a binary
syndrome if M = 2. The state space containing all possible
quantized syndromes is represented as S(M). Let S` ∈ [[Mm]],
with realization s, denote the index of a realization of S`, let
Ŝ` ∈ [[M]], with realization ŝ, represent a quantized CN value,
and let an action A` ∈ A, with realization a, denote the index
of a scheduled CN in iteration `.

The proposed MAB-NS scheme is shown in Algorithm 1.
The input to this algorithm is a soft channel information vector
L and a parity-check matrix H. Note that the CN scheduling

policy in Step 12 of Algorithm 1 is equivalent to scheduling
the CN with the highest expected residual.

Algorithm 1: MAB-NS for LDPC codes
Input : L, H
Output: reconstructed codeword

1 Initialization:
2 `← 0
3 mc→v ← 0 // for all CN to VN messages
4 mvi→c ← Li // for all VN to CN messages

5 L̂` ← L

6 Ŝ` ← HL̂`

7 foreach a ∈ [[m]] do
8 s

(a)
` ← gM (ŝ

(a)
`) // M-level quantization

9 end
// decoding starts

10 if stopping condition not satisfied or ` < `max then
11 s← index of S`

12 select CN a according to an optimum scheduling policy
13 foreach vk ∈ N (a) do
14 compute and propagate ma→vk
15 foreach cj ∈ N (vk) \ a do
16 compute and propagate mvk→cj

17 end
18 L̂

(k)
` ←

∑
c∈N (vk)

mc→vk + Lk // update LLR
of vk

19 end
20 foreach CN j that is a neighbor of vk ∈ N (a) do
21 ŝ

(j)
` ←

∑
vi∈N (j) L̂

(i)
`

22 s
(j)
` ← gM (ŝ

(j)
`) // update syndrome S`

23 end
24 `← `+ 1 // update iteration
25 end

Now, we address a decoding error encountered by the NS
scheme which we expect to correct using MAB-NS. Unde-
tected errors occur when the Hamming distance between the
received and decoded codewords is greater than the distance
between the transmitted and received ones. In the MAB-NS
scheme, the gambler attempts to schedule a CN based on its
expected residual instead of the immediate one. As a result, the
MAB-NS scheme employs a more global decoding approach
in contrast to the pure NS scheme [4] and is more likely to
overcome undetected errors compared to NS.

IV. LEARNING CN SCHEDULING POLICIES

In our MAB problem, the gambler’s goal is to estimate, from
experience, the action-value function used for implementing
the CN scheduling policy shown in Step 12 of Algorithm
1. This task manifests an exploration vs. exploitation trade-
off which is typical of any RL framework. To maximize the
total reward in the long-run, the gambler must schedule CNs
that are known to produce high residuals (exploitation). But to
discover such CNs, the gambler must select CNs that were not
scheduled before (exploration). To accommodate this trade-
off, we utilize the well-known ε-greedy exploration scheme
[8], [13]. The estimate of the action-value function improves
as more CNs are scheduled by the gambler. In the following,
we discuss two RL techniques for learning the action-value
function used in MAB-NS: by estimating the GIs, and via
Q-learning.

2809

A. Estimating the GIs
In this approach, the m CNs are assumed to be m in-

dependent bandit processes, implying that scheduling a par-
ticular CN does not affect the state of the remaining ones.
This assumption holds in tree-like Tanner graphs where a
message propagated by a CN to a VN is independent of the
messages computed by all other CNs in the graph. However,
in practice, Tanner graphs contain cycles that induce depen-
dencies between the CN to VN messages. Nonetheless, the
GI approach offers a low-complexity learning task where the
size of the state space observed by the gambler increases
linearly with the number of CNs in the underlying graph. Note
that P (S̀ +1|S`, A`) ∈ {0, 1} as the Tanner graph is fixed
and the messages are deterministically computed. We also
apply a specific stopping time policy by selecting an integer
`∗max ∈ {1, 2, . . . , } with the condition Pr(`max = `∗max) = 1.
Based on these considerations, (2) is rewritten for our MAB
problem as

G(ŝ, a) = max
`∗max

∑`max−1
`=0 β`R`(ŝ, a, ŝ

′)∑`max−1
`=0 β`

. (6)

Since a gambler must obtain the GIs via RL, we obtain an
average GI, denoted G̃(ŝ, a), over multiple realizations of L.
After computing G̃(ŝ, a) for all ŝ and a, the optimum CN
scheduling policy is π̂G = argmaxa G̃(ŝ, a).

B. Q-learning
Q-learning is an adaptive algorithm for computing optimal

policies for MDPs [11], [12]. Q-learning does not rely on ex-
plicit assumptions on the distribution of the bandit processes,
unlike the Gittins scheme where the LLRs emanating from
CNs are assumed to be independent. However, the state space
observed by the gambler now grows exponentially with m.
As a result, the traditional Q-learning approach suffers from a
much greater learning complexity compared to the GI scheme.
To overcome this problem, we propose a novel clustering
strategy. A cluster is defined as a set of CNs with separate state
and action spaces. Let z � m represent the size (number of
CNs) in a cluster. The state of a cluster with index u ∈ [[

⌈
m
z

⌉
]],

is a sub-syndrome S
(u,z)
` = S

(uz)
` , . . . , S

(uz+z−1)
` of the

syndrome S`, with a state space S(M)
u containing all possible

Mz sub-syndromes S
(u,z)
` , where |S(M)

u |� |S(M)|. Hence,
the total number of states observed by the gambler is upper-
bounded by

⌈
m
z

⌉
|S(M)
u |. The action space of cluster u is

defined as Au = [[z]].
Note that the larger the size of the cluster, the greater the

ability of the gambler to take into account any dependencies
between CN LLRs. Hence, there exists a trade-off between
the effectiveness of clustered Q-learning to take into account
these dependencies, and the learning complexity which grows
exponentially with the size of each cluster: the cluster size
should be large enough to accommodate the dependencies of
the CN messages as much as possible, but not so large that
makes learning infeasible.

Apart from this trade-off, clustering does not restrict Q-
learning, as the reward obtained by the gambler is indifferent
to the size and location of the clusters in the Tanner graph.
Moreover, scheduling a CN in one cluster may affect the

residuals of other CNs distributed across multiple clusters,
due to their connection with a common set of VNs. Also note
that in traditional Q-learning, a scheduling operation alters the
state corresponding to the entire syndrome S`, whereas in the
clustering approach, only the states of the clusters that are
connected to the neighbors of scheduled CN are affected. As
a result, states of the unaffected clusters may be reused for
estimating future action-values. Based on the considerations
above and noting that decoder iteration ` is analogous to time
t, (4) can be rewritten for clustered Q-learning as
Q`+1(su, au) = (1− α)Q`(su, au)+

α

(
R`(su, au, f(su, au)) + β max

u′,au′
Q`(f(su′ , au′), au′)

)
,

(7)

where su ∈ [[Mz]] and au ∈ Au are the state and action
indices of cluster u, respectively, f(su, au) represents the
new state s′u ∈ [[Mz]] as a function of su and au, and
R`(su, au, s

′
u) = Rau . In clustered Q-learning, the action

in optimization step ` is selected via an ε-greedy approach
according to

au =

{
uniformly random over u and Au w.p. ε,
π
(`)
Q w.p. 1− ε,

(8)

where π
(`)
Q = argmaxau s.t. u∈[[dmz e]]Q`(su, au). After suc-

cessful learning, π(`max)
Q yields an optimized CN scheduling

policy, where `max is the maximum number of decoder itera-
tions for a given input of channel information L.

Algorithm 2 represents the method for clustered Q-learning.
The input to this algorithm is a set L = {L0, . . . ,L|L |−1}
containing |L | realizations of L over which clustered Q-
learning is performed, and a parity-check matrix H. This algo-
rithm trains the gambler to learn the optimum CN scheduling
policy for a given H. In each optimization step `, the gambler
performs NS for a given L. As a result, clustered Q-learning
can be viewed as a recursive Monte Carlo estimation approach
with L being the source of randomness.

V. DECODER IMPLEMENTATION AND SIMULATION
RESULTS

Each element of the state vector Ŝ` is quantized using
a standard scalar quantization algorithm [14], where a real-
ization ŝ

(j)
` represents the “source signal” to be quantized.

Provided that there exist a sufficiently large dataset of source
realizations, the quantization algorithm recursively optimizes
the boundary and the representation points of the quantizer by
minimizing the distortion E[(ŝ(j)` −gM (ŝ

(j)
`))2] over the entire

dataset. We generate a dataset comprising 105 realizations
of ŝ(j)` by randomly scheduling CNs via NS to estimate its
distribution.

To verify the effectiveness of learned CN scheduling based
on GI estimation and clustered Q-learning, we apply the
scheduling policies π̂G and π

(`max)
Q , respectively, in Step 12

of Algorithm 1, resulting in schemes denoted as MAB-NS-1
and MAB-NS-2, respectively. We then utilize MAB-NS-1 and
MAB-NS-2 for sequential decoding of both random (3, 6)-
regular and (3, 7)-array-based (AB) LDPC codes [16]. Even
though clustering helps to reduce the state-space significantly

2810

Algorithm 2: Clustered Q-learning
Input : L , H
Output: Estimated Q`max(su, au) for all u

1 Initialization: Q0(su, au)← 0 for all su, au and u
2 for each L ∈ L do
3 `← 0

4 L̂` ← L

5 Ŝ` ← HL̂`

6 foreach a ∈ [[m]] do
7 s

(a)
` ← gM (ŝ

(a)
`) // M-level quantization

8 end
9 while ` < `max do

10 schedule CN au according to (8)
11 select u as cluster index of CN au

12 S
(u,z)
` ← s

(uz)
` , . . . , s

(uz+z−1)
`

13 su ← index of S(u,z)
`

14 foreach vi ∈ N (au) do
15 compute and propagate mau→vi
16 foreach cj ∈ N (vi) \ au do
17 compute and propagate mvi→cj

18 end
19 L̂

(i)
` ←

∑
c∈N (vi)

mc→vi +Li // update LLR

20 end
21 foreach CN j that is a neighbor of vk ∈ N (au) do
22 ŝ

(j)
` ←

∑
vi∈N (j) L̂

(i)
`

23 s
(j)
` ← gM (ŝ

(j)
`) // update syndrome S`

24 end
25 s′u ← index of updated S

(u,z)
`

26 R`(su, au, s
′
u)← highest residual of CN au

27 compute Q`+1(su, au) according to (7)
28 `← `+ 1 // update iteration
29 end
30 end

compared to standard Q-learning, it is still more complex
than estimating GIs. Hence, our choice of code block length
for MAB-NS-1 and MAB-NS-2 is influenced by the run-time
complexity of Algorithm 2. Since a large |L | is needed to
accurately estimate the action-value, we found short codes,
with a block length of approximately 200, to be suitable for
implementing Algorithm 2 on our system with a reasonable
cluster size z.

For learning, we consider α = 0.1, β = 0.9, ε = 0.6, z = 7,
M = 4, `max = 25, for both codes, and |L |= 2.5 × 107

(resp. 5 × 107) for the (3, 6)-regular (resp. (3, 7)-AB) code.
For GI estimation and clustered Q-learning, training is done
according to Section IV-A and Algorithm 2, respectively, for
each code, and the corresponding action-value functions are
used to perform the MAB-NS-1 and MAB-NS-2 schemes,
respectively. We compare the performances of MAB-NS-1 and
MAB-NS-2 with existing BP decoding schemes of flooding
and NS for `max = 25. The BER performances of (3, 6)-
regular and (3, 7)-AB LDPC codes using these decoding
techniques are shown in Figs. 1 and 2, respectively. These
results clearly demonstrate that MAB-NS-2 is superior to
the other decoding schemes in terms of BER performance,
although the gain is diminished for more structured codes
as AB LDPC constructions. A comparison with a (128, 64)
Reed Muller code under majority logic decoding reveals a
threshold of around 4.5 dB and performs therefore much worse
compared to all the codes shown in Figs. 2 and 3.

In Table I, we compare the average number of CN to VN
messages propagated in the different decoding schemes to
attain the results in Figs. 1 and 2. The numbers without (resp.
with) parentheses correspond to the (3, 6)-regular and (resp.
(3, 7)-AB) LDPC code. We see that MAB-NS-2 generates
a lower number of CN to VN messages compared to the
other schemes. Moreover, unlike NS, MAB-NS-2 avoids the
computation of residuals in real-time, providing a significant
reduction in message-passing complexity for short LDPC
codes.

Future work will focus on extending these promising initial
results to longer LDPC codes.

SNR 0 0.6 1.2 1.4 1.8

flooding 16070 (29257) 13923 (27684) 9274 (22339) 7657 (17367) 4523 (10401)
MAB-NS-1 337 (402) 299 (367) 254 (314) 253 (286) 220 (254)

NS 324 (389) 290 (358) 256 (299) 238 (278) 222 (251)
MAB-NS-2 280 (374) 236 (308) 181 (281) 162 (276) 138 (234)

TABLE I: Average number of CN to VN messages propagated in
various decoding schemes for a (3, 6)-regular ((3, 7)-AB) LDPC code
for attaining the results shown in Figs. 1 and 2.

0 0.5 1 1.5 2
E

b
/N

0
 (dB)

10 -2

10 -1

B
E

R

Fig. 1: BER results using different BP decoding schemes for a (3, 6)-
regular LDPC code with block length n = 196.

0 0.5 1 1.5 2
E

b
/N

0
 (dB)

10 -2

10 -1

B
E

R

Fig. 2: BER results using different BP decoding schemes for a (3, 7)-
AB LDPC code with block length n = 196.

2811

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, Jan 1962.

[2] D. J. Costello, Jr., L. Dolecek, T. Fuja, J. Kliewer, D. G. M. Mitchell,
and R. Smarandache, “Spatially coupled sparse codes on graphs: theory
and practice,” IEEE Comms. Mag., vol. 52, no. 7, pp. 168–176, 2014.

[3] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 553–547, Sep 1981.

[4] A. V. Casado, M. Griot, and R. D. Wesel, “LDPC decoders with
informed dynamic scheduling,” IEEE Trans. of Comm., vol. 58, no. 12,
pp. 3470–3479, Dec 2010.

[5] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, pp. 181–201, Jan. 2010.

[6] B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and
L. Dolecek, “Optimized design of finite-length separable circulant-based
spatially-coupled codes: An absorbing set-based analysis,” IEEE Trans.
on Commun., vol. 64, no. 10, pp. 4029–4043, Oct 2016.

[7] A. Beemer, S. Habib, C. Kelley, and J. Kliewer, “A generalized algebraic
approach to optimizing SC-LDPC codes,” Proc. 55th Allerton Conf. on
Communication, Control, and Computing, pp. 672–679, Oct. 2017.

[8] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
The MIT Press Cambridge, 2015.

[9] J. C. Gittins, “Bandit processes and dynamic allocation indices,” J. R.
Statist. Soc. B, vol. 41, no. 2, pp. 148–163, 1979.

[10] F. Carpi, C. Hager, M. Martalo, R. Raheli, and H. D. Pfister, “Reinforce-
ment learning for channel coding: Learned bit-flipping decoding,” Proc.
of 57th Allerton Conf. on Communication, Control and Computing.

[11] M. O. Duff, “Q-learning for bandit problems,” CMPSCI Technical
Report 95-26, 1995.

[12] C. J. C. H. Watkins, “Learning from delayed rewards,” PhD Thesis,
King’s College, 1989.

[13] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empir-
ical evaluation,” European Conference on Machine Learning (ECML),
pp. 437–448, 2005.

[14] A. Gersho and R. M. Gray, “Vector quantization and signal compres-
sion,” The Springer International Series in Engineering and Computer
Science (Communications and Information Theory), vol 159. Springer,
Boston, MA, 1992.

[15] S. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670,
Feb 2001.

[16] J. L. Fan, “Array codes as low-density parity-check codes,” Proc. 2nd
Intl. Symp. Turbo Codes and Rel. Topics, pp. 543–546, Sep 2000.

2812

