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Abstract—Ensuring the safety of autonomous vehicles (AVs) is
critical for their mass deployment and public adoption. However,
security attacks that violate safety constraints and cause accidents
are a significant deterrent to achieving public trust in AVs, and
that hinders a vendor’s ability to deploy AVs. Creating a security
hazard that results in a severe safety compromise (for example,
an accident) is compelling from an attacker’s perspective. In
this paper, we introduce an attack model, a method to deploy
the attack in the form of smart malware, and an experimental
evaluation of its impact on production-grade autonomous driving
software. We find that determining the time interval during which
to launch the attack is critically important for causing safety
hazards (such as collisions) with a high degree of success. For
example, the smart malware caused 33× more forced emergency
braking than random attacks did, and accidents in 52.6% of the
driving simulations.

Index Terms—Autonomous Vehicles, Security, Safety

I. INTRODUCTION

Autonomous vehicle (AV) technologies are advertised to be
transformative, with the potential to bring greater convenience,
improved productivity, and safer roads [1]. Ensuring the safety
of AVs is critical for their mass deployment and public
adoption [2]–[7]. However, security attacks that violate safety
constraints and cause accidents are a significant deterrent to
achieving public trust in AVs, and also hinder vendors’ ability to
deploy AVs. Creating a security hazard that results in a serious
safety compromise (for example, an accident) is attractive from
an attacker’s perspective. For example, smart malware can
modify sensor data at an opportune time to interfere with the
inference logic of an AV’s perception module. The intention is
to miscalculate the trajectories of other vehicles and pedestrians,
leading to unsafe driving decisions and consequences. Such
malware can fool an AV into inferring that an in-path vehicle
is moving out of the lane while in reality the vehicle is slowing
down; that can lead to a serious accident.

This paper introduces i) the foregoing attack model, ii) a
method to deploy the attack in the form of smart malware
(RoboTack), and iii) an experimental evaluation of its impact
on production-grade autonomous driving software. Specifically,
the proposed attack model answers the questions of what, how,
and when to attack. The key research questions addressed by
RoboTack and the main contributions of this paper are:

Deciding what to attack? RoboTack modifies sensor data
of the AV such that the trajectories of other vehicles and
pedestrians will be miscalculated. RoboTack leverages situation
awareness to select a target object for which the trajectory will
be altered.

Deciding how to attack? RoboTack minimally modifies the
pixels of one of the AV’s camera sensors using an adversarial
machine-learning (ML) technique (described in §IV-C) to alter

the trajectories of pedestrians and other vehicles, and maintains
these altered trajectories for a short time interval. The change in
the sensor image and the perceived trajectory is small enough
to be considered as noise. Moreover, RoboTack overcomes
compensation from other sensors (e.g., LIDAR) and temporal
models (e.g., Kalman filters).

Deciding when to attack? RoboTack employs a shallow 3-
hidden-layered neural network (NN) decision model (described
in §IV-B) to identify the most opportune time with the intent of
causing a safety hazard (e.g., collisions) with a high probability
of success. In particular, the proposed NN models the non-
linear relationship between the AV kinematics (i.e., distance,
velocity, acceleration) and attack parameters (i.e., when and
how long to attack). We use a feed-forward NN because neural
networks can approximate complex continuous functions as
shown in the universal function approximation theorem [8].

Assessment on production software. We deployed Rob-
oTack on Apollo [9], a production-grade AV system from
Baidu, to quantify the effectiveness of the proposed safety-
hijacking attack by simulating ∼2000 runs of experiments
for five representative driving scenarios using the LGSVL
simulator [10].

The key findings of this paper are as follows:

1) RoboTack is significantly more successful in creating
safety hazards than random attacks (our baseline) are.
Here, random attacks correspond to miscalculations of the
trajectories (i.e., trajectory hijacking) of randomly chosen
non-AV vehicles or pedestrians, at random times, and for
random durations. This random attack condition is the most
general condition for comparison, although we also show
results for a much more restrictive set of experiments.
RoboTack caused 33× more forced emergency braking
than random attacks did, i.e., RoboTack caused forced
emergency braking in 75.2% of the runs (640 out of 851).
In comparison, random attacks caused forced emergency
braking in 2.3% (3 out of 131 driving simulations).1

2) Random attacks caused 0 accidents, whereas RoboTack
caused accidents in 52.6% of the runs (299 out of 568).

3) RoboTack had higher a success rate in attacking pedestrians
(84.1% of the runs that involved pedestrians) than in at-
tacking vehicles (31.7% of the runs that involved vehicles).

4) Apollo’s perception system is less robust in detecting
pedestrians than in detecting other vehicles. RoboTack
automatically discerns that difference, and hence needs
only 14 consecutive camera frames involving pedestrians

1These numbers, while seemingly contradictory, are consistent, as we will
show in §VI.
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Ŝt−1

Ŝt
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Figure 1: Overview of the ADS perception system and the proposed attack in RoboTack.

to cause accidents, while needing 48 consecutive camera
frames that only involve other vehicles to cause accidents.

Comparing RoboTack with adversarial learning. Past
work has targeted deep neural networks (DNNs) used in the
perception systems of AVs to create adversarial machine-
learning-based attacks [11]–[14] that were shown to have
successful results (such as by causing misclassification and/or
misdetection of a stop sign as a yield sign), and object
trackers [15]. The goal of this line of research is to create
adversarial objects on the road that fool the AV’s perception
system. However, such attacks 1) are limited because DNNs
represent only a small portion of the production autonomous
driving system (ADS) [9], and 2) have low safety impact due
to built-in compensation provided by temporal state-models
(which provide redundancy in time) and sensor fusion (which
provides redundancy in space) in ADS, which can mask the
consequences of such perturbations and preserve AV safety
(as shown in this paper, and by others [16]). To summarize,
adversarial learning tells one only what to attack. In contrast,
as we discuss in detail in §III-D, RoboTack tells one what,

when, and how to attack, making it highly efficient in targeting
AV safety. Moreover, previous attacks have been shown only

on one camera sensor without considering i) the sensor fusion
module, and ii) the AV control loop (i.e., it considers only
statically captured video frames without running a real ADS).
In contrast, we show our attack on an end-to-end production-
grade AV system using a simulator that provides data from
multiple sensors.

II. BACKGROUND

A. Autonomous Driving Software

We first discuss the terminologies associated with the au-
tonomous driving system (ADS) that are used in the remainder

of the paper. Fig. 1 illustrates the basic control architecture of
an AV (henceforth also referred to as the Ego vehicle, EV). The
EV consists of mechanical components (e.g., throttle, brake, and
steering) and actuators (e.g., electric motors) that are controlled
by an ADS, which represent the computational (hardware and
software) components of the EV. At every instant in time, t, the
ADS system takes input from sensors It (e.g., cameras, LiDAR,
GPS, IMU) and infers Wt, a model of the world, which
consists of the positions and velocities of objects around the
EV. Using Wt and the destination as input, the ADS planning,
routing, and control module generates actuation commands
(e.g., throttle, brake, steering angle). Those commands are
smoothed out using a PID controller [17] to generate final
actuation values At for the mechanical components of the EV.
The PID controller ensures that the AV does not make any
sudden changes in At.

B. Perception System

Definition 1. Object tracking is defined as the process of
identifying an object (e.g., vehicle, pedestrian) and estimating
its state st at time t using a series of sensor measurements
(e.g., camera frames, LIDAR pointcloud) observed over time.
The state of the object is represented by the coordinates and
the size of a “bounding box” (bbox) that contains the object.
That estimated state at time t is used to estimate the trajectory
(i.e., the velocity, acceleration, and heading) for the object.

Definition 2. Multiple object tracking (MOT) is defined as
the process of estimating the state of the world denoted by
Ŝt = (ŝ1t , ŝ

2
t , ..., ŝ

Nt

t ), where Nt represents the number of
objects in the world at time t, and ŝit is the state of the ith

object.2

2In this paper, the boldface math symbols represent tensors and nonbolded
symbols represent scalar values in tensors.



The MOT problem is most commonly solved by the tracking-

by-detection paradigm [18]. An overview of this paradigm
is shown in Fig. 1. Here, a sensor (or group of sensors)
continuously collects the measurement data at every instant of
time t (It). These sensor inputs are sent to a corresponding
DNN-based object detector, such as YoloNet [19] or Faster-
RCNN [20] (labeled as “D” in Fig. 1). Such an object detector
estimates the object’s class and its bbox at every time instant.
The collection of these bbox measurements for all objects
is denoted by Ot = {o1t , o

2
t , ..., o

Mt

t }, where oit denotes the
observations for the ith object at time t.

An object tracker (or just tracker) tracks the changes in the
position of the bboxes over successive sensor measurements.
Each detected object is associated with a unique tracker, where
a tracker is a Kalman filter [21] (KF) that maintains the
state si for the ith object. Each object detected at time t is
associated with either an existing object tracker or a new
object tracker, initialized for that object. Such association of
a detected object with existing trackers (from time t − 1) is
formulated as a bipartite matching problem, which is solved
using the Hungarian matching algorithm [22] (shown as “M”
in the figure). “M” uses the overlap, in terms of IoU3, between
the detected bboxes at time t (i.e., the output of “D”) and the
bboxes predicted by the trackers (Kalman filter) of the existing
objects to find the matching. A KF is used to maintain the
temporal state model of each object (shown as “F*” in the
figure), which operates in a recursive predict-update loop: the
predict step estimates the current object state according to a
motion model, and the update step takes the detection results
(oit) as the measurement to update the ŝit state. That is, the
KF uses a series of noisy measurements observed over time
and produces estimates of an object state that tend to be more
accurate than those based on a single measurement alone. KF
is used to address the following challenges:

• Sensor inputs are captured at discrete times (i.e., t, t+1, . . . ).
Depending on the speed and acceleration, the object may
have moved between those discrete time intervals. Motion
models associated with KFs predict the new state of tracked
objects from time-step t− 1 to t.

• State-of-the-art object detectors are inherently noisy [19],
[20] (i.e., bounding box estimates are approximate measure-
ments of the ground truth), and that can corrupt the object
trajectory estimation (i.e., velocity, acceleration, heading).
Hence, the perception system uses KFs to compensate for
the noise by using Gaussian noise models [22].

Finally, a transformation operation (shown as “T” in the
figure) estimates the position, velocity, and acceleration for each
detected object by using Ŝt. The transformed measurements
are then fused with other sensor measurements (e.g., from
LiDAR) to get world state Wt.

C. Safety Model

In this paper, we use the AV safety model provided by Jha
et al. [6]. They define the instantaneous safety criteria of an
AV in terms of the longitudinal (i.e., direction of the vehicle’s

3Intersection over Union (IoU) is a metric for characterizing the accuracy of
predicted bounding boxes (bboxes). It is defined as (area of overlap)/(area of union)

between the ground-truth label of the bbox and the predicted bbox.
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Figure 2: Definition of dstop, dsafe, and δ for lateral and
longitudinal movement of the car. Non-AV vehicles are labeled
as target vehicles (TV).

motion) and lateral (i.e., perpendicular to the direction of the
vehicle’s motion) Cartesian distance travelled by the AV (see
Fig. 2). In this paper, we use only the longitudinal definition
of the safety model, as our attacks are geared towards driving
scenarios for which that is relevant. Below we reproduce the
definitions of Jha et al.’s safety model for completeness.

Definition 3. The stopping distance dstop is defined as the
maximum distance the vehicle will travel before coming to a
complete stop, given the maximum comfortable deceleration.

Definition 4. The safety envelope dsafe [23], [24] of an AV is
defined as the maximum distance an AV can travel without
colliding with any static or dynamic object.

In our safety model, we compute dsafe whenever an actuation
command is sent to the mechanical components of the vehicle.
ADSs generally set a minimum value of dsafe (i.e., dsafe,min) to
ensure that a human passenger is never uncomfortable about
approaching obstacles.

Definition 5. The safety potential δ is defined as δ = dsafe −
dstop. An AV is defined to be in a safe state when δ > 0.

Unlike the authors of [6] who use δ ≥ 0 as the safe operation
state, we choose δ ≥ 4 meters because of a limitation in the
simulation environment provided by LGSVL [10] for Apollo [9]
that halts simulations for distances closer than 4 meters.

III. ATTACK OVERVIEW & THREAT MODEL

This section describes the attacker goals, target system, and
defender capabilities.

A. Attacker Goals

The ultimate goal of the attacker is to hijack object
trajectories as perceived by the AV in order to cause a safety
hazard.

To be successful, the attack must:
• Stay stealthy by disguising attacks as noise. To evade

detection of his or her malicious intent, an attacker may want
to disguise malicious actions as events that occur naturally
during driving. In our attack, we hide the data perturbation
initiated by the malware/attacker as sensor noise. As we
show in §VI-A, modern object detectors naturally misclassify
(i.e., identify the object class incorrectly) and misdetect (i.e.,
bounding boxes have zero or < 60% IoU) objects for multiple
time-steps (discussed in §VI-A). Taking advantage of that
small error margin in hiding data perturbations, the attacker
initiates the attack 1) at the most opportune time such that
even if the malicious activity is detected it is too late for
the defender to mitigate the attack consequences, and 2)
for a short duration of time to evade detection from the



intrusion-detection system (IDS) that monitors for spurious
activities [25].

• Situational awareness. Hijacking of the object trajectory
in itself is not sufficient to cause safety violations or
hazardous driving situations. An attacker must be aware
of the surrounding environment to initiate the attack at the
most opportune time to cause safety hazards (e.g., collisions).

• Attack automation. An attacker can automate the process
of monitoring and identifying the opportune time for an
attack. That way, the adversary only needs to install the
malware instead of manually executing the attack.

B. Threat Model

In this section, we discuss the target system, the existing
defenses, and the attacker’s capabilities.

Target system. The target is the perception system of an AV,
specifically the object detection, tracking, and sensor fusion
modules. To compensate for the noise in the outputs of the
object detectors, the AV perception system uses temporal
tracking and sensor fusion (i.e., fusion data from multiple
sensors such as LIDAR, RADAR, and cameras). Temporal
tracking and sensor fusion provide an inherent defense against
most if not all existing adversarial attacks on detectors [16].

The critical vulnerable component of the perception system is
a Kalman filter (KF) (see “F” in §II and Fig. 1). KFs generally
assume that measurement noise follows a zero-mean Gaussian
distribution, which is the case for the locations and sizes of
bboxes produced by the object detectors (described later in
§VI-A). However, that assumption introduces a vulnerability.
The KF becomes ineffective in compensating for the adver-
sarially added noise. We show in this paper that an attacker
can alter the trajectory of a perceived object by adding noise
within one standard deviation of the modeled Gaussian noise.

The challenge in attacking a KF is to maintain a small
attack window (i.e., the number of contiguous time epochs for
which the data are perturbed). When an attacker is injecting a
malicious noise pattern, the attack window must be sufficiently
small (1–60 time-steps) such that the defender cannot estimate
the distribution of the injected noise and hence cannot defend
the system against the attack.
What can attackers do? In this paper we intentionally and
explicitly skirt the problem of defining the threat model. Instead,
we focus on what an attacker could do to an AV if he or she
has access to the ADS source code and live camera feeds.

Gain knowledge of internal ADS system. We assume that the
attacker has obtained knowledge of the internal ADS system
by analyzing the architecture and source code of open-source
ADSs, e.g., Apollo [9], [26]. The attacker can also gain access
to the source code through a rogue employee.

Gain access to and modify live camera feed. Recently,
Argus [27] showed the steps to hijack a standalone automotive-
grade Ethernet camera and spoof the camera traffic. The attack
follows a “man-in-the-middle” (MITM) strategy in which an
adversary gains physical access to the camera sensor data and
modifies them (when certain conditions are met). The hack
relied on the fact that the camera traffic is transmitted using
standard (i.e., IEEE 802.1 Audio Video Bridging [28]) but
simple protocols, which do not use encryption because of the
size of the data as well as performance and latency constraints

associated with the transmission. As the camera feed is not
encrypted, the attacker can reassemble packages of a video
frame and decode the JFIF (JPEG File Interchange Format)
payload into an image. Most importantly, since there is no
hash or digital signature checks on the transmitted images,
to prepare for the attack, the attacker can apply a number of
filters to modify the images in-line without being noticed. The
MITM attack works by using an Ethernet tap device to capture
UDP packets in the Ethernet/RCA link between the camera
and the ADS software. The Ethernet tap captures images and
provides them as the input for attacker-controlled hardware
with purpose-built accelerators, such as NVIDIA EGX, that are
operating outside the domain of the ADS hardware/software.

Optionally, compromise ADS software using secret hardware

implant. To further hide malware and evade detection, an
attacker can install backdoors in the hardware. Injection of
malicious code in hardware-software stacks has been realized
in existing hardware backdoors embedded in CPUs, networking
routers, and other consumer devices [26], [29]. As an AV is
assembled from components supplied by hundreds of vendors
through a sophisticated supply chain, it is reasonable to argue
that individual components such as infotainment systems and
other existing electronic component units (ECUs) could be
modified to enable secret backdoors [26], [30].

What things can attackers not do? In this work, we
assume that the CAN bus transmitting the control command is
protected/encrypted. Therefore we cannot launch a man-in-the-
middle attack to perturb the control/actuation commands sent
to the mechanical components of the EV.

Defender capabilities. Again, we assume that the CAN bus
transmitting the controller/actuation commands is encrypted.
That assumption is acceptable because many commercial
products utilize such encryption [31]. Moreover, there are
well known IDSs for monitoring CAN bus activity [25], [32].
Therefore, we do not leverage CAN bus vulnerabilities as an
attack vector; instead, our attack exploits vulnerabilities on the
camera’s Ethernet/RCA cable link.

C. Attack Vectors and Injected Attacks

We describe a taxonomy of attack vectors (shown in Fig. 1)
that the attacker can leverage to maximize impact, such as
with an emergency stop or a collision. The attack vectors are
as follows.

a) Move_Out. In this attack, the attacker hijacks the target
object (TO) trajectories to fool the EV into believing that
the TO is moving out of the EV’s lane. A close variant of
this attack is fooling the EV into believing that the target
object is maintaining its lane, whereas in reality the target
object is moving into the EV’s lane. Because of this attack,
the EV will start to accelerate or maintain its speed, causing
it to collide with the target object.

b) Move_In. In this attack, the attacker hijacks the target object
(TO) trajectories to fool the EV into believing that the TO
is moving into the EV’s lane. Because of this attack, the
EV will initiate emergency braking. The emergency braking
maneuver is highly uncomfortable for the passengers of the
EV and may lead to injuries in some cases.

c) Disappear. In this attack, the attacker hijacks the target
object (TO) trajectories to fool the EV into believing that
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Figure 3: Steps followed by RoboTack to mount a successful attack, i.e., collision between the EV (blue) and the target object
(red). SM: Scenario matching. SH: Safety hijacking, TH: Trajectory hijacking.

the TO has disappeared. The effects of this attack will be
similar to those of the Move_Out attack model.

D. Attack Phases.

The attack progresses in three key phases as follows.

Phase 1. Preparing and deploying the malware. Here the
attacker does the following:

1) Gains access to the ADS source code,
2) Defines the mapping between the attack vectors (see §III-C)

and the world state (Wt),
3) Trains the "safety hijacker" and fine-tunes the weights

of "trajectory hijacker" (e.g., learns about the maximum
perturbation that can be injected to evade detection) for the
given ADS,

4) Gains access to the target EV camera feeds, and
5) Installs RoboTack on the target EV.

Phase 2. Monitoring the environment. Once our intelligent
malware is deployed, it does the following:

1) Approximately reconstructs the world (Wt) using the
hacked camera sensor data ( 1 in Fig. 1). For simplicity, we
assume that the world state estimated using sensor fusion is
not significantly different from the state determined using
only one camera sensor. In our implementation, we only
use Ŝt to carry out the attack instead of relying on data
from all sensors.

2) Identifies the victim target object i (i.e., one of the other
vehicles or pedestrians) for which the trajectory is hijacked.
The target object is the one closest to the EV. The
identification is done using the safety model as defined
in §II-C (line 9 of algorithm 1).

3) Invokes the “scenario matcher” (SM) module ( 2 in Fig. 1),
which uses the world state (Wt) to determine whether the
identified object is vulnerable to one of the attack vectors
(as shown in 3 and discussed in §III-C).

4) Uses the “safety hijacker” (SH) (shown as 4 in Fig. 1)
to decide when to launch the attack (t), and for how long
(t+K). The SH estimates the impact of the attack by using
a shallow 3-hidden-layered NN, in terms of reduced safety
potential (δ). The malware launches the attack only if the
reduced safety potential drops below a predefined threshold
(10 meters). We determine the threshold through simulation
of driving scenarios that lead to emergency braking by the
EV. To evade detection, the malware ensures that K does not
exceed a pre-defined threshold (see line 15 in algorithm 1).
K is obtained by characterizing the continuous misdetection
of an object associated with the “object detector” in the

normal (i.e., without attacks) driving scenarios executed in
the simulator.

Phase 3. Triggering the attack. RoboTack:
1) Uses the “trajectory hijacker” ( 5 in Fig. 1) to corrupt the

camera feed. The trajectory hijacker perturbs the camera
sensor data such that i) the trajectory of the object (e.g., a
school bus) is altered to match the selected attack vector
(e.g., Move_Out), and ii) the trajectory of the object does
not change significantly, thus evading detection.

2) Attacks the trajectory of the victim object for the next K
time-steps, chosen by the safety hijacker.

E. An Example of a Real Attack

Fig. 3 shows an example of a Move_Out attack. Here we
show two different views: i) a simulation view, which was
generated using a driving scenario simulator, and ii) an ADS
view, which was rendered using the world-state visualizer.

RoboTack continuously monitors every camera frame using
“scenario matching” (SM) to identify a target object for which
the perceived trajectory by the EV can be hijacked. If SM does
not identify any target object of interest, it skips the rest of the
step and waits for the next camera frame. As shown in Fig. 3
(a) and (b), at time-step t, SM identified an SUV (i.e., target
vehicle) as a target object of interest, and returned "Move_Out"
as a matched attack vector, as the SUV was already in the Ego
lane. Next, RoboTack launched "safety hijacker" to determine
the reduced safety potential of the attack and the number
of time-steps the attack would need to be maintained. As it
turns out, the "safety hijacker" determined that the reduced
safety potential could cause an accident, so RoboTack launched
"trajectory hijacker" to perturb the camera sensor data as shown
in Fig. 3 (c). Its impact on the trajectory is shown in Fig. 3(d).
Camera sensor data are perturbed by modifying individual
pixels as shown in the white area (in the bounding box (red
square) of the target object) for illustration purposes, because
originally these pixels were modified in a way that was almost
invisible to the human eye. Because of this attack, the EV
collided with the target object as shown in Fig. 3(e) and (f).

IV. ALGORITHMS AND METHODOLOGY

In this section, we outline the three key steps taken by the
malware: 1) in the monitoring phase, selecting the candidate
attack vector by using the scenario matcher (§IV-A); 2) in
the monitoring phase, deciding when to attack by using the
safety hijacker (§IV-B); and 3) in the trigger phase, perturbing
camera sensor feeds using the trajectory hijacker. These steps
are described in algorithm 1.



Algorithm 1 Attack procedure at each time-step.

Input: Ŝt−1:t−2 � Past object states
Input: I

1

t
� Camera feed

Global: attack � Flag indicating if the attack is active
Global: K � Number of continuous attacks
Global: i � Index of the target object
Output: I

1

t

′
� Perturbed image with adversarial patch

1: α ← ∅

2: Ot, Ŝt ← Perception(It)
3: if attack = False then

4: i, δt ← SafetyModel(Ŝt) � From definition 5
5: �virel,t ← calcV elocity(ŝit:t−1)
6: �airel,t ← calcAcceleration(ŝit:t−2)
7: α ← ScenarioMatcher(ŝit)
8: end if

9: if α �= ∅ then

10: attack,K ← SafetyHijacker(�airel,t, �v
i
rel,t,

�δt, α)
11: end if

12: if attack = True ∧ K > 0 then

13: I
1

t

′
← TrajectoryHijacker(i, I1

t
, oit, ŝ

i
t−1, α)

14: K ← K − 1
15: if K = 0 then

16: attack ← False
17: end if

18: end if

A. Scenario Matcher: Selecting the Target Trajectory

The goal of the scenario matcher is to check whether the
closest object to the EV (referred to as the target object)
is vulnerable to any of the candidate attack vectors (i.e.,
Move_Out, Move_In, and Disappear). This is a critical step
for the malware, as it wants to avoid launching 1) an attack
if there are no objects next to or in front of the EV; or 2) an
attack when the object is actually executing the would-be bogus
driving maneuver (e.g., selecting attack vector α = Move_Out
when the target is moving out of the Ego lane anyway). The
scenario-matching algorithm is intentionally designed as a rule-
based system (whose rules are listed in Table I) to minimize
its execution time, and hence evade detection.

Note that "Scenario Matcher" can interchangeably choose
between the Move_Out and Disappear attack vectors. However,
in our work, we found that Disappear, which requires a large
perturbation in trajectory, is better suited for attacking the
pedestrians because the attack window is small. In contrast,
the attack window for vehicles is large. Therefore, for vehicles,
RoboTack uses Move_Out. This is described in detail in §VI.

B. Safety Hijacker: Deciding When to Attack

To cause a safety violation (i.e., a crash or emergency brake),
the malware will optimally attack the vehicle when the attack
results in δ ≤ 4 meters. The malware incorporates that insight
into the safety hijacker to choose the start and stop times of the
attack by executing the safety hijacker at every time-step. The
safety hijacker at time-step t takes (�virel,t,�a

i
rel,t), δt, and α as

inputs. It outputs the attack decision (i.e., attack or no-attack)
and the number of time-steps K for which the attack must
continue to be successful (line 16 in algorithm 1).

TO trajectory TO in EV-lane TO not in EV-lane

Moving In — Move_Out/Disappear
Keep Move_Out/Disappear Move_In
Moving Out Move_In —

TO: Target object

Table I: Scenario Matching Map

Let us assume that the malware has access to an oracle
function fα for a given attack vector α that predicts the future
safety potential of the EV when it is subjected to the attack
type α for k continuous time-steps,

δt+k = fα(�v
i
rel,t,�a

i
rel,t, δt, k). (1)

Later in this section, we will describe a machine-learning
formulation that approximates fα using a neural network, and
describe how to integrate it with the malware. The malware
decides to attack only when the safety potential δt+k is less
than some threshold γ. Ideally, the malware should attack when
γ = 4 (i.e., corresponding to the the δ for the crash).

In order to evade detection and disguise the attack as noise,
the installed malware should choose the "optimal k," which we
refer to as K (i.e., the minimal number of consecutive camera
sensor frame perturbations), using the information available at
time-step t. The malware can use the oracle function fα(.) to
decide on the optimal number of time-steps (K) for which the
attack should be active. The malware decides to attack only if
k ≤ Kmax, where Kmax is the maximal number of time-steps
during which a corruption of measurements cannot be detected.
This is formalized in (2).

K = argmin
k

k · (I(δt+k ≤ γ) = 1) (2)

Finally, the malware must take minimal time to arrive at the
attack decision. However, in the current formulation, calculating
K can be very costly, as it is necessary to evaluate (2) using
fα (which is an NN) for all k ≤ Kmax. We accelerate the
evaluation of K by leveraging the fact that for our scenarios
(§V-C), fα is non-increasing with increasing k when �arelt ≤ 0.
Hence, we can do a binary search between k ∈ [0,Kmax] to
find K in O(logKmax) steps.

Estimating fα using an NN. We approximate the oracle
function fα using a feed-forward NN. We use an NN to
approximate fα to model the uncertainty in the ADS due
to use of non-deterministic algorithms. Hence, the malware
uses a uniquely trained NN for each attack vector. The input to
the NN is a vector [δt, �vrelt ,�arelt , k]. The model predicts δt+k

after k consecutive frames, given the input. Intuitively, the NN
learns the behavior of the ADS (e.g., conditions for emergency
braking) and kinematics under the chosen attack vector, and it
infers the safety potential δt+k to the targeted object from the
input. We train the NN using a cost function (L) that minimizes
the average L2 distance between the predicted δt+k and the
ground-truth δGt+k for the training dataset Dtrain.

L =
1

|Dtrain|

∑

i∈Dtrain

‖δG,i
t+k − δit+k‖

2
2 (3)

We use a fully connected NN with 3 hidden layers
(100, 100, 50 neurons), the ReLU activation function, and



dropout layers with a dropout rate of 0.1 to estimate fα. The
specific architecture of the NN was chosen to reduce the
computational time for the inference with sufficient learning
capacity for high accuracy. The NN predicts the safety potential
after the attack within 1m and 5m for pedestrian and vehicles,
respectively.

The NN was trained with a dataset D collected from a set
of driving simulations ran on Baidu’s Apollo ADS. To collect
training data, we ran several simulations, where each simulation
had a predefined δinject and a k, i.e., an attack started as soon
as the δt = δinject, and continued for k consecutive time-steps.
The dataset characterized the ADS’s responses to attacks. The
network was trained using the Adam optimizer with a 60%-40%
split of the dataset between the training and the validation.

C. Hijacking Trajectory: Perturbing Camera Sensor Feeds

In this section, we describe the mechanism through which
the malware can perturb the camera sensor feeds to successfully
mount the attack (i.e., execute one of the attack vectors) once
it has decided to attack the EV. The malware achieves that
objective using a trajectory hijacker.

The attack vectors used in this paper require that the malware
perturb the camera sensor data (by changing pixels) in such a
way that the bounding box (ŝit) estimated by the multiple-object
tracker (used in the perception module) at time t moves in a
given direction (left or right) at max by ωmax.

The objective of moving the bounding box ŝit in a given
direction (left or right) can be formulated as an optimization
problem. To solve it, we modify the model provided by Jia et
al. [15] to evade attack detection. We find the translation vector
�ωt at time t that maximizes the cost M of Hungarian matching
(recall M from Fig. 1) between the detected bounding box,
oit, and the existing tracker state ŝit−1 such that the following
conditions hold:
• Threshold M ≤ λ ensures that oit must still be associated

with its original tracker state ŝit−1, i.e., M ≤ λ. λ can be
found experimentally for a given perception system and
depends on Kalman parameters. This condition is relaxed
when the selected attack α = "Disappear."

• �ωt ∈ [μ− σ, μ+ σ] is within the Kalman noise parameters
(μ, σ) of the selected candidate object. This condition ensures
that the perturbation is within the noise.

• Threshold IoU(oit + δp,t, patch) ≥ τ ensures that the
adversarial patch patch should intersect with the detected
bounding box, oit, to restrict the search space. This condition
can be removed when the attacker has access to the ADS,
and can directly perturb ot.

max
�ωt

M (oit + �ωt, ŝ
i
t−1)

s.t. M ≤ λ,

IoU(oit + �ωt, patch) ≥ γ,

�ωt ∈ [μ− σ, μ+ σ]

(4)

Finally, the malware should stop maximizing the distance
between the oit and ŝit−1 once the total accumulated ω from
the start time of the attack, say t−K ′, to the current time-step
t is less than Ωmax, i.e.,

∑t
t−K′ �ωt ≤ Ωmax.

Once the object tracker is moved in a direction by Ωmax,
the malware should perturb the camera sensor data to maintain

the object tracker at the new location by setting �ωt = 0. Note
that the trajectory hijacker maximizes the ω for only K ′ <<
K time-steps to shift the object position at max by Ω, and
maintains the position of the object for the next K −K ′ time-
steps, where K is the number of time-steps for which the
attack must be active from start to end. In our experiments,
we found K ′ to be generally around 4–20 frames, whereas
K (which is determined by the safety hijacker) was generally
10–65 frames. Since K ′ is small, the chances of detection is
significantly lower.

Perturbing Camera Sensor Data. Here the goal of the
perturbation is to shift the position of the object detected by
the object detector (e.g., YOLOv3). To achieve that objective,
we formulate the problem of generating perturbed camera
sensor data using Eq. (2) in [15]. We omit the details because
of lack of space.

D. Implementation

We implemented RoboTack using Python and C++. More-
over, we used fault injection-based methods to implement the
attack steps of RoboTack. The proposed malware has a small
footprint, i.e., less than 500 lines of Python/C++ code, and
4% additional GPU utilization with negligible CPU utilization
in comparison to the autonomous driving stack. This makes
it difficult to detect an attack using methods that monitor the
usage of system resources.

V. EXPERIMENTAL SETUP

A. AI Platform

In this work, we use Apollo [9] as an AI agent for driving
the AV. Apollo is built by Baidu and is openly available on
GitHub [33]. However, we use LGSVL’s version of Apollo
5.0 [34], as it provides features to support integration of the
LGSVL simulator [10] with Apollo. Apollo uses multiple sen-
sors: a Global Positioning System (GPS), Inertial measurement
units (IMU), radar, LiDAR, and multiple cameras. Our setup
used two cameras (fitted at the top and front of the vehicle)
and one LiDAR for perception.

B. Simulation Platform

We used the LGSVL simulator [10] that uses Unity [35], a
gaming engine [36], to simulate driving scenarios. Note that a
driving scenario is characterized by the number of actors (i.e.,
objects) in the world, their initial trajectories (i.e., position,
velocity, acceleration, and heading), and their waypoints (i.e.,
their route from source to destination). In our setup, LGSVL
simulated the virtual environment and posted virtual sensor data
to the ADS for consumption. The sensors included a LiDAR, a
front-mounted main camera, a top-mounted telescope camera,
IMU, and GPS. The measurements for different sensors were
posted at different frequencies [37]. In our experiments, the
cameras produced data at 15 Hz (of size 1920x1080), GPS at
12.5 Hz, and LiDAR is rotating at 10 Hz and producing 360◦

measurements per rotation. At the time of this writing, LGSVL
does not provide integration of continental radar for Apollo.
In addition, LGSVL provides Python APIs for creating driving
scenarios, which we leveraged to develop the driving scenarios
described next.



Figure 4: Driving scenarios. EV: Ego Vehicle. TV: Target Vehicle. NPC: Other Vehicles with no interaction with EV.

C. Driving Scenarios

Here we describe the driving scenarios, shown in Fig. 4,
that were used in our experiments. All our driving scenarios
were generated using LGSVL on "Borregeas Avenue" (located
in Sunnyvale, California, USA), which has a speed limit of
50 kph. Unless otherwise specified, in all the cases EV was
cruising at 45 kph.

In driving scenario 1 or "DS-1," the Ego vehicle (EV)
followed a target vehicle (TV) in the Ego lane at a constant
speed (25 kph), as shown in Figure 4. The TV started 60
meters ahead of the EV. In the golden (i.e., non-attacked) run,
the EV would accelerate to 40 kph and come closer to the TV
at the beginning, and then gradually decelerate to 25 kph to
match the speed of the TV. Thereafter, the EV maintained a
longitudinal distance of 20 meters behind the TV for the rest of
the scenario. We used this scenario to evaluate the Disappear
and Move_Out attack vectors on a vehicle.

In driving scenario 2 or "DS-2," a pedestrian illegally
crossed the street as shown in Figure 4. In the golden run,
the EV braked to avoid collision and stopped more than 10
meters away from the pedestrian, if possible. The EV started
traveling again when the pedestrian moved off the road. We
used this scenario to evaluate the Disappear and Move_Out
attack vectors on a pedestrian.

In driving scenario 3 or "DS-3," a target vehicle was parked
on the side of the street in the parking lane. In the golden run,
the EV maintained its trajectory (lane keeping). We used this
scenario to evaluate the Move_In attack vector on a vehicle.

In driving scenario 4 or "DS-4," a pedestrian walked
longitudinally towards the EV in the parking lane (next to the
EV lane) for 5 meters then stood still for the rest of the scenario.
In the golden run, EV recognized the pedestrian, at which point
it reduced its speed to 35 kph. However, once it ensured that
the pedestrian was safe (by evaluating its trajectory), it resumed
its original speed. We use this scenario to evaluate the Move_In
attack vector on a pedestrian.

In driving scenario 5 or "DS-5," there are multiple vehicles
with random waypoints and trajectories, as shown in Figure
4. Throughout the scenario, the EV was set to follow a target
vehicle just as in "DS-1," with multiple non-AV vehicles
traveling on the other lane of the road as well as in front
or behind (not shown). Apart from the target vehicle, the
vehicles traveled at random speeds and starting from random
positions in their lanes. We used this scenario as the baseline
scenario for a random attack to evaluate the effectiveness of
our attack end-to-end.

D. Hardware Platform

The production version of the Apollo ADS is supported on
the Nuvo-6108GC [38], which consists of Intel Xeon CPUs

and NVIDIA GPUs. In this work, we deployed Apollo on an
x86 workstation with a Xeon CPU, ECC memory, and two
NVIDIA Titan Xp GPUs.

VI. EVALUATION & DISCUSSION

A. Characterizing Perception System on Pretrained YOLOv3

in Simulation

We characterize the performance of YOLOv3 (used in the
Apollo perception system) in detecting objects on the road,
while the AV is driving, to measure 1) the distribution of
successive frames from an AV camera feed in which a vehicle or
a pedestrian is continuously undetected, and 2) the distribution
of error in the center positions of the predicted bounding boxes
compared to the ground-truth bounding boxes. We characterize
those quantities to show that an attack mounted by RoboTack
and the natural noise associated with the detector are from the
same distribution. In particular, we show that the continuous
misdetection caused by RoboTack is within the 99th percentile
of the continuous characterized misdetection distribution of the
YOLOv3 detector; see Figure 5. That is important because if
our attack fails, the object will reappear and be flagged by the
IDS as an attack attempt. Similarly, we characterize the error
in the predicted bounding box to ensure that our injected noise
is within the estimated Gaussian distribution parameters shown
in Figure 5. RoboTack changes the position at time-step t by
at max μ− σ ≤ ω ≤ μ+ σ of the Gaussian distribution. For
this characterization, we generated a sequence of images and
labels (consisting of object bounding boxes and their classes)
by manually driving the vehicle on the San Francisco map for
10 minutes in simulation.

Continuous misdetections. Fig. 5 (a) and (b) show the
distribution of the number of frames in which pedestrians and
vehicles were continuously misdetected. Here we consider an
object as misdetected if the IoU between the predicted and
ground-truth bounding boxes is less than 60%. The data follow
an exponential distribution.

Bounding box prediction error. To characterize the noise
in the position of the bounding boxes predicted by YOLOv3,
we computed the difference between the center of the pre-
dicted bounding box and the ground-truth bounding box and
normalized it by the size of the ground-truth bounding box.

Only predicted bounding boxes that overlap with the ground-
truth boxes are considered. Fig. 5(c), (d), (e), and (f) show the
distribution of normalized errors for the x (horizontal) and y
(vertical) coordinates in the image of the bounding box centers
for pedestrians and vehicles. The coordinates of the centers
of the YOLOv3-predicted bounding boxes follow a Gaussian
noise model.



(a) Exp(loc = 1, λ
= 0.717)

99th perc: 31.0

(b) Exp(loc = 1, λ
= 0.327)

99th perc: 59.4

(c) Normal(μ =
0.023, σ = 0.464)
99th perc: 1.145

(d) Normal(μ =
0.094, σ = 0.586)
99th perc: 1.775

(e) Normal(μ =
0.254, σ = 2.010)
99th perc: 5.235

(f) Normal(μ =
0.186, σ = 0.409)
99th perc: 1.868

Figure 5: YOLOv3 object detection characterization on driving video generated using LGSVL. (a–b) show continuous
misdetections with IoU=60%. (c–f) show the distribution of normalized errors in the bounding box center predictions along the
x and y coordinates of the image for vehicles and pedestrians.

ID K # runs # EB (%) # crashes (%)

DS-1-Disappear-R 48 101 54 (53.5%) 32 (31.7%)
DS-2-Disappear-R 14 144 136 (94.4%) 119 (82.6%)
DS-1-Move_Out-R 65 185 69 (37.3%) 32 (17.3%)
DS-2-Move_Out-R 32 138 135 (97.8%) 116 (84.1%)
DS-3-Move_In-R 48 148 140 (94.6%) —
DS-4-Move_In-R 24 135 106 (78.5%) —
DS-5-Baseline-Random K* 131 3 (2.3%) 0

Table II: Smart malware attack summary compared with
random (in bold). EB: Emergency Braking. R: Robotack. In
our experiments, the AV tried emergency braking in all runs
that resulted in accidents. K* means K was randomly picked
between 15 and 85 for each run of the experiment.

B. Quantifying Baseline Attack Success

In the baseline attack (Baseline-Random), we altered the
object trajectory by (i) randomly choosing an object (i.e., a
vehicle or a pedestrian) for which the trajectory will be changed,
(ii) randomly choosing the attack vector for a simulation run,
(iii) randomly initiating the attack at time-step t of the driving
scenario, and (iv) continuing the attack for (a randomly chosen)
K time-steps. In other words, Baseline-Random) attack neither
used scenario matcher nor used safety hijacker to mount the
attack on the AV. However, it mimics trajectory hijacker to
modify the trajectory of the vehicle. We used 131 experimental
runs of DS-5 in which the AV was randomly driving around the
city to characterize the success of the baseline attack. Across all
131 experimental runs (see "DS-5-Baseline-Random," §VI-A),
the AV performed emergency braking (EB) in only 3 runs
(2.3%) and crashed 0 times.

Here we also compare RoboTack with attacks where both
scenario matcher and trajectory hijacker are used (labeled as
"R w/o SH" in Fig. 6). However, these attacks do not use safety
hijacker (SH). Hence, in these attacks, we randomly initiated
the attack, and continue to attack for (a randomly chosen) K
time-steps, where K is between 15 and 85. The results of these
attacks are described in detail in §VI-D.

Taken together these experiments provide a comparison with
the current state-of-the-art adversarial attacks [14], [15].

C. Quantifying RoboTack Attack Success

In §VI-A, ID stands for the unique identifier for experimental
campaigns, which is a concatenation of "driving scenario
id" and "attack vector." Here a campaign refers to a set
of simulation runs executed with the same driving scenario

and attack vector. We also append TH and SH to the ID to
inform the reader that both trajectory-hijacking and safety-
hijacking were enabled in these attacks. Other fields are K
(median number of continuous perturbations), # runs (number
of experimental runs), # EB (number of runs that led to AV
emergency braking), and # crashes (number of runs that led
to AV accidents). For each <driving scenario, attack vector>

pair, we ran 150 to 200 experiments, depending on the total
simulation time; however, some of our experimental runs were
invalid due to a crash of the simulator or the ADS. Those
experiments were discarded, and only valid experiments were
used for the calculations.

Across all scenarios and all attacks, we found that RoboTack
was significantly more successful in creating safety hazards
than random attacks were. RoboTack caused 33× more
forced emergency brakings compared to random attacks, i.e.,
RoboTack caused forced emergency braking in 75.2% of the
runs (640 out of 851); in comparison, random attacks caused
forced emergency braking in 2.3% (3 out of 131 driving
simulations). Similarly, random attacks caused 0 accidents,
whereas RoboTack caused accidents in 52.6% of the runs (299
out of 568, excluding Move_In attacks).

Across all our experiments, RoboTack had a higher success
rate in attacking pedestrians (84.1% of the runs that involved
pedestrians) than in attacking vehicles (31.7% of the runs that
involved vehicles).

Safety hazards with pedestrians. We observed that Robo-
Tack was highly effective in creating safety hazards in driving
scenarios DS-2 and DS-4, which involve pedestrians. Here we
observe that in DS-2 with Move_Out attacks, the EV collided
with the pedestrian in 84.1% of the runs. Also, those attacks
led to EV emergency braking in 97.8% of the runs. In DS-2
with Disappear attacks, the EV collided with the pedestrian in
82.6% of the runs and led to emergency braking in 94.4% of
the runs. Finally, in DS-4 with Move_In attacks, we did not see
any accidents with a pedestrian as there was no real pedestrian
in the EV lane; however, the Move_In attacks led to emergency
braking in 78.5% of the runs. Note that emergency braking can
be life-threatening and injurious to passengers of the EV, so it
is a valid safety hazard. Interestingly, our malware needed to
modify only 14 camera frames for DS-2 with Disappear attacks
and 24 frames for DS-4 with Move_In attacks to achieve such
a high success rate in creating safety hazards.

Safety hazards with vehicles. We observed that RoboTack



was less successful in creating hazards involving vehicles (DS-1
and DS-3) than in creating hazards involving pedestrians. The
reason is that LiDAR-based object detection fails to register
pedestrians at a higher longitudinal distance, while recognizing
vehicles at the same distance. Although the pedestrian is
recognized in the camera, the sensor fusion delays the object
registration in the EV world model because of disagreement
between the LiDAR and camera detections. For the same
reason, RoboTack needs to perturb significantly more camera
frames contiguously in the case of vehicles than in the case
of pedestrians. However, our injections were still within the
bounds of the observed noise in object detectors for vehicles.
Overall, Move_Out attacks in DS-1 caused emergency braking
and accidents in 37.3% and 17.3% of the runs, respectively,
whereas for the same driving scenario, Disappear attacks caused
emergency braking and accidents in 53.5% and 31.7% of the
runs, respectively. RoboTack was able to cause emergency
braking in 94.6% of the runs by using Move_In attacks in the
DS-3 driving scenario.

D. Safety Hijacker & Impact on Safety Potential

Here we characterize the impact of attacks mounted by
RoboTack on the safety potential of the EV with and without
the safety hijacker (SH). Our results indicate that the timing of
the attack chosen by the SH is critical for causing safety hazards
with a high probability of success. In particular, with SH, the
number of successful attacks, i.e., forced emergency brakings
and crashes, when the vehicle trajectories are hijacked, were
up to 5.1× and 7.2× higher respectively, than the number of
attacks induced at random times using only trajectory hijacking.
Attacks that hijacked pedestrian trajectories were 14.8× and
24× more successful, respectively. Fig. 6 shows the boxplot
of the minimum safety potential of the EV measured from
the start time of the attack to the end of the driving scenario.
Recall that we label as an "accident" any driving scenario that
experiences a safety potential of less than 4 meters from the
start of the attack to the end of the attack. We determine the
presence of forced emergency braking by directly reading the
values from the Apollo ADS. In Fig. 6, "R w/o SH" stands for
"Robotack without SH", and "R" alone stands for the proposed
"Robotack" consisting of scenario matcher, trajectory hijacker,
and safety hijacker. Thus, the boxplot labeled "R w/o SH"
indicates that RoboTack launched a trajectory-hijacking-attack
on the EV without SH (random timing), whereas "R" indicates
that RoboTack used the safety hijacker’s decided timing to
launch a trajectory-hijacking-attack. We omit figures for the
Move_In attack vector because in those scenarios the attacks
did not reduce the δ but caused emergency braking only. The
improvements of "R" on attack success-rate over "R w/o SH"
are as follows.

DS-1-Disappear. RoboTack caused 7.2× more crashes
(31.7% vs. 4.4%). In addition, we observed that RoboTack
caused 4.6× more emergency braking (53.5% vs. 11.6%).

DS-1-Move_Out. RoboTack caused 6.2× more crashes
(17.3% vs. 2.8%). In addition, we observed that RoboTack
caused 5.1× more emergency braking (37.3% vs. 7.3%).

DS-2-Disappear. RoboTack caused 7.9× more crashes
(82.6% vs. 10.4%). In addition, we observed that RoboTack
caused 2.4× more emergency braking (94.4% vs. 39.4%).

DS-2-Move_Out. RoboTack caused 24× more crashes
(84.1% vs. 3.5%). In addition, we observed that RoboTack
caused 14.8× more emergency braking (97.8% vs. 6.6%).

DS-3-Move_In. RoboTack caused 1.9× more emergency
brakings (94.6% vs. 50%). A comparison of the number of
crashes would not apply, as there was no real obstacle to crash.

DS-4-Move_In. RoboTack caused 1.6× more emergency
braking (78.5% vs 48.1%). A comparison of the number of
crashes would not apply, as there was no real obstacle to crash.

Summary. In 1702 experiments (851 "R w/o SH", 851
"R") across all combinations of scenarios and attack vectors,
RoboTack (R) resulted in 640 EBs (75.2%) over 851 "R"
experiments. In comparison, RoboTack without SH (R w/o
SH) resulted in only 230 EBs (27.0%) over 851 "R w/o SH"
experiments. RoboTack (R) resulted in 299 crashes (52.6%)
over 568 "R" experiments excluding DS-3 and DS-4 with
Move_In attacks, while RoboTack without SH (R w/o SH)
results in only 29 (5.1%) crashes over the 568 "R w/o SH"
experiments excluding DS-3 and DS-4 with Move_In attacks.

E. Evading Attack Detection

Recall that the trajectory hijacker maximizes the ω for only

K ′ 	 K time-steps to shift the object position laterally at most
by Ω, and it maintains the trajectory of the object for the next
K −K ′ time-steps, where K is the total number of time-steps
for which the attack must be active from start to end. Note
that RoboTack perturbs images for all K time-steps. However,
RoboTack modifies the image to change the trajectory for only
K ′ time-steps, whereas for K −K ′ time-steps, it maintains
the faked trajectory.

Fig. 7(a) and (b) characterize K ′ for different scenarios
and attack vectors. We observed that Move_Out and Move_In
scenarios required a smaller K ′ in order to change the object
position to the desired location than the Disappear attack vector
did. Furthermore, changing of a pedestrian’s location required
smaller K ′ than changing of a vehicle’s location.

In those K ′ time-steps, the disparity between between the
Kalman filter’s and the object detector’s output is not flagged
as evidence of an attack because it is within one standard
deviation of the characterized mean during normal situation.

F. Characterizing Safety Hijacker Performance

Here we characterize the performance of our neural network
and its impact on the malware’s ability to cause a safety hazard.
For lack of space, we discuss results only for Move_Out.

Fig. 8(b) shows a plot of the predicted value of the safety
potential (using the NN) and the ground-truth value of the safety
potential after the attack, as obtained from our experiments.
We observe that the predicted value is close to the ground-truth
value of the safety potential after the attack. On average, across
all driving scenarios, NN’s prediction of the safety potential
after the attack was within 5m and 1.5m of the ground-truth
values for vehicles and pedestrians, respectively.

Fig. 8(a) shows a plot of the probability of success (i.e., of
the malware’s ability to cause a safety hazard) on the y-axis
with increasing NN prediction error probability on the x-axis.
We find that the success probability goes down as the prediction
error of the safety potential (using NN) increases. However, as
stated earlier, our NN’s prediction errors are generally small.
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Figure 6: Impact of attacks. δ: Safety potential. ‘R’: Robotack. ‘R w/o SH’: Robotack without safety hijacker. Dashed red line:
Safety potential δ = 4 meters.
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Figure 7: Time-steps K ′ required to move object in/out by Ω
(a) on vehicle, (b) on pedestrian.

VII. RELATED WORK

Security attacks. AVs are notoriously easy to hack into due
to i) easy physical and software access, ii) the large attack
vectors available to the adversary because of the complexity and
heterogeneity of the software and hardware, and iii) the lack of
robust methods for attack detection. Hence, the insecurity of
autonomous vehicles poses one of the biggest threats to their
safety and thus to their successful deployment on the road.

Gaining access to AVs. Hackers can gain access to the
ADS by hacking existing software and hardware vulnerabilities.
For example, research [26], [29] has shown that an adversary
can gain access to the ADS and launch cyber attacks by
hacking vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication channels [39], over-the-air software
update mechanisms used by manufacturers [40], electronic
component units (ECUs) [26], infotainment systems [30], and
CAN buses [41]. Another way of hacking an ADS is to use
hardware-based malware, which can be implanted during the
supply chain of AVs or simply by gaining physical access to
the vehicle [26]. In this work, we show an attack approach that
can masquerade as noise or faults and that can be implanted
as malware in either software or hardware.

Adversarial machine learning and sensor attacks in AVs.

A comparison with the current state-of-the-art adversarial ML-
based attacks is provided in §I.

Our attack. We find that none of the above work mentioned
attacks geared toward i) evading detection by an IDS or ii)
explicitly targeting the safety of the vehicles. In contrast, Rob-
oTack is the first attack approach that has been demonstrated
on production ADS software with multiple sensors (GPS, IMU,
cameras, LiDAR) to achieve both objectives by attacking only
one sensor (the camera).

VIII. CONCLUSION & FUTURE WORK

In this work, we present RoboTack, smart malware that
strategically attacks autonomous vehicle perception systems to
put the safety of people and property at risk. The goal of our
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Figure 8: (a) NN binned prediction error for DS-1, DS-2
Move_Out attack. (b) DS-1 Move_Out attack, NN safety
potential prediction. ×: ground-truth. •: predicted. k: # of
attacks. δ0: starting safety potential.

research is to highlight the need to develop more secure AV
systems by showing that the adversary can be highly efficient
in targeting AV safety (e.g., cause catastrophic accidents with
high probability) by answering the question of how, when and

what to attack. We believe that the broader implications of our
research are: (i) Knowledge gathered from this type of study
can be used to identify flaws in the current ADS architecture
(e.g., vulnerability in Kalman filters to adversarial noise) which
can be used to drive future enhancements. (ii) Guide the
development of countermeasures. (iii) Looking forward we
believe these kinds of attacks can be fully automated and
deployed as a new generation of malware.

The design of countermeasures is the subject of our fu-
ture work. Existing literature has shown a large number of
adversarial attacks on these models (e.g., object detection
models and Kalman filters). Therefore, we are investigating a
broader solution that can dynamically and adaptively tune the
parameters of the perception system (i.e., parameters used in
object detection, Hungarian matching algorithm and Kalman
filters) to reduce their sensitivity to noise and thus, mitigate
most of these adversarial attacks.
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