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Abstract—The uplink of a Cloud Radio Access Network (C-
RAN) architecture is studied, where decoding in the cloud takes
place at distributed decoding processors. To mitigate the impact
of straggling decoders in the cloud, the cloud re-encodes the
received frames via a linear code before distributing them to the
decoding processors, which estimate linear combinations of the
codewords. Focusing on Gaussian channels, and assuming the use
of lattice codes at the users, we derive the computational rates and
frame error probabilities at the cloud. The approach differs from
Compute-and-Forward in that the combination of codewords is
not caused by the channel but purposefully created in the cloud
by encoding the received signals to reduce the decoding delay.

I. INTRODUCTION

A Cloud Radio Access Network (C-RAN) architecture can
leverage network function virtualization (NFV) in order to
implement baseband functionalities on commercial off-the-
shelf (COTS) hardware, such as general purpose servers. An
important challenge of this solution is to ensure a prescribed
latency performance despite the variability of the servers’
runtimes [1].

The problem of straggling processors, that is, processors
lagging behind in the execution of a certain function, has been
widely studied in the context of distributed computing [2].
Reference [1] demonstrates the effectiveness of decomposing
tasks in parallel runnable small jobs over a distributed comput-
ing architecture in terms of latency while avoiding overhead.

For distributed computing, it has been recently shown in
[3], [4] that parallel processing can be improved by carrying
out linear precoding of the data prior to processing, as long
as the function to be computed is linear. The key idea is that,
by employing a proper linear block code over fractions of
size 1/K of the original data, a function may be completed
as soon as a number of K or more processors have finalized
their operation, irrespective of their identity.

The NFV-based C-RAN model considered in this paper is
illustrated by Fig. 1. The packets sent by a user in the uplink
are received by the remote radio head (RRH) through an
additive white Gaussian noise (AWGN) channel and forwarded
to a cloud over a RRH-to-cloud link. Decoding is carried
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out on a distributed architecture consisting of COTS servers
1,...,N.

We investigate the use of linear coding on the received
packets as a means to improve over parallel processing in order
to mitigate the impact of straggling decoders at the cloud.
The idea was first studied in [5], [6] where the packets are
received by the RRH via a binary symmetric channel (BSC).
In this paper, we tackle the problem of extending the design
and analysis to Gaussian channels.

With Gaussian channels, the use of coding at the cloud
yields a set-up that is similar to Compute-and Forward (C&F)
for Gaussian relay networks [7]. In that set-up, the relays
attempt to decode their received signals into integer linear
combinations of codewords, which they then forward to the
destinations. The main difference is that, in the C&F set-up,
transmitted signals are mixed by the channel, while in our
model linear combining is purposefully applied at the cloud
on the received signals. Accordingly, in the NFV scenario
under study, the linearly combined received packets contain
an accumulated noise term (ie., ¥; = Zszl a;j (x5 +25),
see Fig. 1), while this is not the case in C&F setting (i.e.,
S’i = Zf:l ;X4 + Zj).

The accumulated noise terms (i.e., Zfil ai;z;) affect the
functions of the servers in terms of the following two aspects.
First, noise powers are accumulated, which affects the decod-
ing error probability of each individual server compared to
the C&F problem. Second, the common terms in the sums
Z]K:1 a;;z; make the noise terms seen by different servers
statistically dependent. To cope with the latter aspect, we adopt
the dependency graph of the linear NFV code as introduced
in [5]. Based on this, we derive two analytical large-block
approximations on the frame error rate (FER) as a function of
the decoding latency.

Notation: Let +, > and @, @ denote addition and sum-
mation over reals and finite fields, respectively. Let ||h|| £

\/Zijil |hi|* denote the norm of a vector h. [K] denotes
the set {1,2,---,K}. All logarithms are of base two. Let
log™ (x) £ max (log (z),0). | F| denote cardinality of F.

II. SYSTEM MODEL

As illustrated in Fig. 1, we focus on the uplink of a C-
RAN system with a multi-server cloud decoder connected to
an RRH via a dedicated fronthaul link. As detailed next, the
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Figure 1. Distributed uplink decoding in C-RAN over an AWGN channel. Y = [y1,y2,...,Yk] is a n X K matrix.

model follows reference [5], but it considers the more realistic
AWGN channel for the user-RRH link, requiring a redesign
of the operation at the cloud.

The user encodes a file u of length L over a finite field I,
for uplink transmission, where p > 0 is a prime in Z. Each
symbol is drawn independently and uniformly over the finite
field. Before encoding, the file is divided into K blocks uy, us,
..., ug of equal length k £ L/K symbols. The user’s lattice
encoder, & : IF’; — R™ with generator matrix G, then maps
each length-% block to a length-n real valued codeword, x;
€ (u;) (readers are referred to [7] for details). The encoder is
subject to the power constraint E[||xj||2] < nP where P is
the power. The transmission rate R of the user is the length
of its message normalized by the number of channel uses, i.e.,
R = % log p.

At the output of the user-RRH AWGN channel, the length-n
received packet for the j-th block at the RRH is given as

(D

where z; is a vector of i.i.d. Gaussian random variables with
zero-mean and variance Ng. For convenience, we define the
signal-to-noise ratio (SNR) as SNR £ P/Ny. The K packets
(¥1,y2,--.,Yk) are transmitted by the RRH to the cloud over
a fronthaul link. Decoding is carried out at the cloud.

To this end, the cloud consists of N available servers,
namely, Server 1,..., N, and a master server, i.e., Server
0. Each server can decode a packet within a random time
T, = T1; + T>,, where times {717,...,Tn} are mutually
independent. Time T} ; accounts for the unavailability of the
processor, and is independent of the workload, while T ;
models the execution runtime and it grows as the size n of the
packet. The variable T} ; follows an exponential distribution
with mean 1/, while T5 ; is a shifted exponential with shift
equal to @ > 0 and average equal to a+1/us X n so that 1/ps
is the time required for an input symbol. The probability that
a given set of [ out of IV servers has finished decoding by time
tis given as Pr(l,t) = F (t)' (1 — F (¢)) ", where F (t) is
the cumulative distribution function of 7j.

In order to mitigate the effect of straggling decoders, we
adapt the NFV coding scheme in [5] to the AWGN channel.

yj =X; + 2,

NFV coding operates as follows. The K packets are first
linearly encoded by Server 0 into N > K coded blocks of
the same length n, as depicted in Fig. 1. Each block is then
forwarded to a different server in the cloud for decoding. NFV
coding uses an (NN, K) linear code C. with K x N generator
matrix G. € g (FPI)NXK, where p’ > 0 is a prime and ¢ (-) is
the natural map from F,, to the integers {0,1,2,...,p" — 1}.
Note that the prime p’ may be different from the prime p used
to define the user code. Accordingly, the encoded packets are
obtained as

Y = YG,, 2)
where Y = [y1,y2,...,¥&] is a n x K matrix, and Y =
[¥1,¥2,---,¥n] is a n x N matrix. From (1), the encoded
packet y; can be written as

K K K
yi= Zngc.,ji = Z Xjge,ji + Z Zjge,jis 3)
=1 =1 =1

where g, j; is the (j,%) entry of matrix G..
Each server ¢ € [IN] aims at decoding a linear combination
of the messages

K
0 = P gejivy, )
j=1

where Geji = ¢ ' ([gej:] mod p) are coefficients taking
values in F,,. To this end, Server ¢ is equipped with a decoder,
D;,:R" — F’;, that maps the observed output y; to an estimate
; = D, (y;) of the equation u;.

Let duyi, be the minimum distance of the NFV code C..
Server 0 is able to decode the message u, or equivalently the
K packets u; for j € [K], as soon as N — dyin + 1 servers
have decoded successfully. The output @; (¢) at the ith Server
at time ¢ is 4, (t) = W, if T; < t; and 0, (¢t) = (), otherwise.
The output {1 () of the decoder at Server 0 at time ¢ is a
function of @; (¢) for ¢ € [N]. The frame error rate (FER) at
time ¢ is defined as

PPER (1) = Pr (i (t) # u). 5)

157



III. PERFORMANCE ANALYSIS

In order to evaluate the FER, we first derive the computation
rate, which gives the maximum rate for each Server i to
decode the desired equation u; with average probability of
error approaching zero when the block n goes to infinity.
Based on this auxiliary result, we then employ the error
exponent given in [8, Theorems 8-11] to characterize large-
block approximations of the FER.

A. Computation Rate

In order to allow servers to decode the desired equations in
a manner similar to C&F, we assume that the user adopts a
nested lattice code. In this subsubsection, we derive conditions
on the NFV code that enable the servers to decode the desired
equations when n goes to infinity.

To proceed, the following definitions are useful. An n-
dimensional lattice is a discrete subgroup of R™ which can
be described by

A={\=Bz: zeZ"}, (6)

where B is the full rank generator matrix, assumed to be
square for convenience. The Voronoi region V of a lattice A
is

V2 {z:Qx(z) =0}, 7

where Q (z) £ argminyey ||z — A, i.e., the set of all z’s in
Euclidean space that are closer to the origin than to any other
point of the lattice. Let Vol (V) denote the volume of V and
Vol (V) = |det (B)] [7]. The second moment of a lattice A is

defined as 1 )
2 A 2
= —— d

and the normalized second moment (NSM) is defined as

A 0'/2\
G(A)E ————. )
(Vol (v))*/"

A lattice A is said to be nested in a lattice Ay if A C Ay. Refer
Ay as the fine lattice and A as the coarse lattice. Set 05 = P.
The following theorem provides a condition on the trans-
mission rate R that guarantees reliable decoding of given

equations at the servers.

Theorem 1. For a given NFV code matrix G, =
[8c1,8c,2,- - -8, N| and n large enough, there exists a nested
lattice code A C Ay with rate R, such that any Server i € [N]|
can recover the linear combination of messages 0; given in (4)
with average probability of error € as long as the inequality

1 SNR
R< min -log" 5 5
0170 2 lge.ll® (0 + SNR (a; — 1)*)
(10)
holds for some choice of parameters a,...,ay € R.
Proof: See Appendix A. ]

Based on Theorem 1, we define the computation rate for
each Server 7 as

SNR

ge.q|I” (a? + SNR (a; — 1)2)

(1)
By Theorem 1, this is the rate that guarantees correct decoding
at Server 4.

1
R (ge.) = max 5 log™

Theorem 2. The computation rate (11) is uniquely maximized
by choosing «; to be the minimum mean square error (MMSE)
coefficient aypsE = % which results in a computation
rate of

. 1 1+ SNR
R (gc,i) = 5 10g+ (2) (12)
18e.il
Proof: Straightforward and omitted. [ ]

B. Large-Blocklength Approximations for the FER

In order to analyze the FER, we need to first evaluate the
decoding error probability for each Server 4, for i € [N], as a
function of the vector g.; defined by the NFV code.

To this end, define the gap to the computation rate as

1 1+ SNR
A=1llogt <+2) R,
2 llge,il
A

and let ;1 2 222, Assuming maximum likelihood (ML)
decoding, an upper bound on the decoding error probability is
given by PM- (g. ;) [8, Theorems 8-11], where

(13)

e (1) 7217rn’ w>2
~ —nE, 1 _
PM (g, ) e 2o p=2 (14)
6771E7'(H)(nﬂ)7%
- > 2> k>

where a = b indicates that § — 1, and E, (-) is the Poltyrev
random coding exponent defined as [9]

Ul () +In(e/4)], p>2
E(p)=qzk-1-In(@], 2>p>1 (15
0, p< 1

We now assume that the approximation (14) is close to the
true probability of error, which is the case for large n, and plug
it into the formulas derived in [5] to obtain upper bounds on
the FER. More precisely, we use [5, Theorem 1] to obtain a
large deviation bound (LDB) and [5, Theorem 2] to obtain a
union bound (UB), respectively. Readers are referred to [5]
for details.

IV. NUMERICAL RESULTS

In this section, we provide some numerical results to obtain
insights into the performance of NFV codes based on the
FER bounds presented in the previous section, in terms of
the trade-offs between decoding latency and FER. We employ
a frame length of L = 504 and N = 8 servers. The user
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Figure 2. Comparison of LDB and UB based on ML decoding for parallel
processing, whose generator matrices are set to be G £ [NxN 3G, and
5G¢. (L =504, N =8, u1 =50, u2 =10, a =1, p=2,p' ={2,5,7},
SNR = 18 dB)

code is selected to be binary (i.e., p = 2) with rate R = 0.5.
We set g = 50, us = 10, and @ = 1. Unless stated,
otherwise, we have p’ = p = 2. Furthermore, we leave
the performance comparison with simulated results based on
specific user lattice codes to future work (see [5] for the case
of binary symmetric channels).

We compare the performance of the following solutions:
(i) Single-server (SS) decoding, where there is a single server
N =1 at the cloud that decodes the entire frame (K = 1),
so that we have n = 1008 and X (G.) = dmin = 1; (ii)
Repetition coding (RPT), where the entire frame is duplicated
at all servers, so that we have n = 1008 and X (G.) = dpin =
8; (iii) Parallel processing (PRL), where the frame is divided
into K = N disjoint parts processed by different servers in
parallel, and hence we have n = 126 and X (G.) = dmnin = 1;
(iv) Single parity check code (SPC), with K = 7, where one
servers decodes a sum of all other K received packets, and
hence we have n = 144 and X (G.) = dmin = 2; and (v) an
NFYV code C. with generator matrix G, defined in [5, Eq. (8)]
which is characterized by K = 4, n = 252 and X (G.) =
Amin = 3.

In order to elaborate on the optimal computation rate in
Theorem 2, Figure 2 shows the LDB and UB for three
parallel coding schemes with generator matrices G, = IV*¥,
3G,, and 5G.. Note that all these parallel codes have the
same minimum Hamming distance d,;, = 1 and the same
chromatic number X (G.) = 1, since the positions of all the
non-zeros elements are the same. However, they take entries
from different field sizes, e.g., p’ = 2,5, 7. Figure 2 confirms
the main result in Theorem 2 that, under the same SNR, the
NFV codes with larger norms on the column vectors of the
generator matrix entails a larger equivalent noise for the server
to decode the message equations, causing a larger error floor,
and accordingly, a worse trade-off between latency and FER.

10
107}
102k RPT
i
T PBL
—4 C 3 > ~
10 ¢ T N3
— UB ]
10°..|{ = = = LDB \ =
0 50 100 150 200 250 300 350 400 450 500
Decoding Latency t
Figure 3. LDB and UB based on ML decoding for single-server decoding

(SS), repetition coding (RPT), parallel processing (PRL), single parity-check
code (SPC) and the NFV code C. defined by G, given in [5, Eq. (8)]. (L =
504, N =8, u1 = 1/30, u2 = 10, a = 0.1, p =2, p’ = 2, SNR = 7 dB)

Larger fields may offer opportunities for the design of more
efficient codes, which we leave as an open problem.

To compare different NFV coding schemes, Figure 3 is
obtained with parameters 1 = 1/30, ps = 10, and @ = 0.1, in
which we consider the case where latency may be dominated
by effects that are independent of n, i.e., u1 = 1/30. Figure
3 shows both LDB and UB for all the five schemes under
SNR = 7 dB. As first observation, Figure 3 confirms that UB
is tighter than the LDB, and we note that leveraging multiple
servers for decoding yields a better trade-off between latency
and FER.

Figure 3 shows that, according to the derived upper bounds,
the NFV code C. provides the smallest FER for a sufficiently
small latency level, improving over all schemes including
parallel processing. The latter scheme is in fact very sensitive
to the unavailability of the servers, requiring all servers to
complete decoding, and hence it needs a longer latency in
order to achieve a low FER. As for the SPC scheme, although
it has an extra parity-check server as compared to parallel
processing, its performance is limited by the large equivalent
noise determined by its coding matrix. We emphasize that
these conclusions are drawn based solely on the derived upper
bound, but simulation results for practical codes are expected
to show a similar behavior (see [3]).

APPENDIX A

The user’s encoder £ maps its finite field message vector
u; to a lattice point t; € Ay NV, using the function ¢ from
[7, Lemma 5], i.e., t; = ¢ (u;). In order to recover @;, each
Server 7 needs to decode the lattice equation

K
V; = thgc,ji mod A

Jj=1

(16)
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of the lattice points t; for j € [K], where mod is the modulo
operation defined as [7]

y=xmod A =x — Qx(x). (17
Dither vectors d; are generated independently by a uniform
distribution over the Voronoi region V of the coarse lattice
A. All dither vectors are available at the servers. The user

transmits
x; = [t; —

d;] mod A. (18)

By [7, Lemma 7], the vector x; is uniform over V, so we have
the equality E[||x; I?] = n.P, where the expectation is over all
dithers. Furthermore, it is argued in [7] that there exist fixed
dithers that meet the power constraint ||x;||* < n.P.

The input of Server i € [N] is given by (3). Each server
computes

S; = ;y; + Zdjgc,ji~ (19)

j=1

Let @y denote the lattice quantizer for the fine lattice Aj.
To obtain an estimation of the lattice equation v;, this vector
is quantized onto Ay modulo the coarse lattice A.

= [Qy ([si] mod A)] mod A. (20)

The following sequence of equalities shows that [s;] mod A
is equivalent to v; with some added noise terms.

[s;] mod A

K
=1 gei ([t
=1

dj] mod A + dJ)

+ ch,7l Qi — X] + OQZJ) mod A
= chdzt + ch,jz (€7 X] + OQZ]) mod A
[ K
=|vit Z Ge,ji ((a; — 1) X+ OéiZj) mod A.
i=1
_ @)

By [7, Lemma 7], the pair (v;, V;) has the same joint distri-
bution as the pair (v;, V;), where ¥; is defined as
.

Q1 (¥ + 7)) mod A,

(22)

where
§ g(,,_}l Qg —

and x; is drawn independently and uniformly distributed over
V. By [7, Lemma 8], the density of Zeq,; can be upper bounded

Zeq,; = 1)x; + a42), (23)

by an i.i.d. zero-mean Gaussian vector z; whose variance azq ;

approaches
Negi = l1gel* No (aF +SNR (= 1)%) .
as n — oo.

The probability of error Pr(¥; # v;) is thus equal to the
probability that the equivalent noise leaves the Voronoi region
surrounding the codeword, Pr (zeqn. ¢ Vf). Also, we design
the fine lattice such that Ay satisfies AWGN-goodness [9],

which requires that €; = Pr(z} ¢ V) goes to zero exponen-
tially in n as long as the volume-to-noise ratio is such that

(24)

2/n

Ueq,i

> 2re. (25)

Under this condition, €; = Pr (zeq,; ¢ Vy) also goes to zero
exponentially in n. By the union bound, the average probabil-
ity of error € is upper bounded by € < Zfil Pr (zeq,i ¢ Vf) .
To ensure that €; goes to zero for all desired equations, Vg
must satisfy (25) for all servers with g.j; # 0. We set Vg
such that the constraint

) n/2

is always met.

The rate of a nested lattice code is given by R =

n/2
V .
%log %(v,)) By (9), we derive Vol (V) = (TfA)) It

follows that we can achieve any rates satisfying

(26)

i 9e, ]ﬁéo

Vol (V) > (27re max o2,

P
R< i glzlgl?aé 2 10g (G (A) 2mea?, Z) '

Since A satisfies quantization-goodness [10] for n large
enough by assumption we have G (A) 2me < (1 + §) for any
6 >0. Knowmg that aeq ; converges to N4 ;, so for n — oo,
we have 02, ; < (1+6) Neg,;. Finally, we derive that the rate
of the nested lattice code should be at least

1. (P
3 log (New_) —log(1+94). (28)

Therefore, by choosing ¢ small enough, we can approach the
computation rate as close as we desired.

As a result, the servers can make estimates v; of lattice
equations v; with coefficient vectors g. 1, gc2,.---, 8c,N €
g(IFp/)K such that Pr(¥v; # v;) < € for ¢ > 0 and large n
enough as long as

27)

R < min
i:ge,ji 70

N P

1
R < min —log
(0@2 + SNR (a; —

i:ge,ji 70 2

%)
(29)
for some ai,...,any € R. Finally, using ¢~! from [7,

Lemma 6], each server can produce estimates of the desired
linear combination of messages @; = ¢! (¥;) such that

Pr (Uil {0; # ﬁl}) < € where

K
8 = P Jejiny-
i=1

(30)
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