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Abstract

In computer vision, superpixels have been widely used as
an effective way to reduce the number of image primitives
for subsequent processing. But only a few attempts have
been made to incorporate them into deep neural networks.
One main reason is that the standard convolution operation
is defined on regular grids and becomes inefficient when
applied to superpixels. Inspired by an initialization strategy
commonly adopted by traditional superpixel algorithms, we
present a novel method that employs a simple fully convo-
lutional network to predict superpixels on a regular image
grid. Experimental results on benchmark datasets show that
our method achieves state-of-the-art superpixel segmenta-
tion performance while running at about 50fps. Based on
the predicted superpixels, we further develop a downsam-
pling/upsampling scheme for deep networks with the goal
of generating high-resolution outputs for dense prediction
tasks. Specifically, we modify a popular network architec-
ture for stereo matching to simultaneously predict super-
pixels and disparities. We show that improved disparity es-
timation accuracy can be obtained on public datasets.

1. Introduction

In recent years, deep neural networks (DNNs) have
achieved great success in a wide range of computer vision
applications. The advance of novel neural architecture de-
sign and training schemes, however, often comes a greater
demand for computational resources in terms of both mem-
ory and time. Consider the stereo matching task as an ex-
ample. It has been empirically shown that, compared to
traditional 2D convolution, 3D convolution on a 4D vol-
ume (heightx widthx disparity x feature channels) [17] can
better capture context information and learn representations
for each disparity level, resulting in superior disparity es-
timation results. But due to the extra feature dimension,
3D convolution is typically operating on spatial resolutions
that are lower than the original input image size for the
time and memory concern. For example, CSPN [&], the
top-1 method on the KITTI 2015 benchmark, conducts 3D
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convolution at 1/4 of the input size and uses bilinear in-
terpolation to upsample the predicted disparity volume for
final disparity regression. To handle high resolution images
(e.g., 2000 x 3000), HSM [42], the top-1 method on the
Middlebury-v3 benchmark, uses a multi-scale approach to
compute disparity volume at 1/8, 1/16, and 1/32 of the in-
put size. Bilinear upsampling is again applied to generate
disparity maps at the full resolution. In both cases, object
boundaries and fine details are often not well preserved in
final disparity maps due to the upsampling operation.

In computer vision, superpixels provide a compact rep-
resentation of image data by grouping perceptually similar
pixels together. As a way to effectively reduce the num-
ber of image primitives for subsequent processing, super-
pixels have been widely adopted in vision problems such as
saliency detection [4 1], object detection [32], tracking [37],
and semantic segmentation [|2]. However, superpixels are
yet to be widely adopted in the DNNs for dimension re-
duction. One main reason is that, the standard convolution
operation in the convolutional neural networks (CNNs) is
defined on a regular image grid. While a few attempts have
been made to modify deep architectures to incorporate su-
perpixels [14, 11, 20, 34], performing convolution over an
irregular superpixel grid remains challenging.

To overcome this difficulty, we propose a deep learning
method to learn superpixels on the regular grid. Our key in-
sight is that it is possible to associate each superpixel with a
regular image grid cell, a strategy commonly used by tradi-
tional superpixel algorithms [22, 36, 10, 1, 23, 25, 2] as an
initialization step (see Figure 2). Consequently, we cast su-
perpixel segmentation as a task that aims to find association
scores between image pixels and regular grid cells, and use
a fully convolutional network (FCN) to directly predict such
scores. Note that recent work [ 6] also proposes an end-to-
end trainable network for this task, but this method uses a
deep network to extract pixel features, which are then fed to
a soft K-means clustering module to generate superpixels.

The key motivation for us to choose a standard FCN ar-
chitecture is its simplicity as well as its ability to gener-
ate outputs on the regular grid. With the predicted super-
pixels, we further propose a general framework for down-
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Figure 1. An illustration of our superpixel-based downsampling/upsampling scheme for deep networks. In this figure, we choose PSM-
Net [7] for stereo matching as our task network. The high-res input images are first downsampled using the superpixel association matrix
@ predicted by our superpixel segmentation network. To generate a high-res disparity map, we use the same matrix () to upsample the
low-res disparity volume predicted by PSMNet for final disparity regression.

sampling/upsampling in DNNs. As illustrated in Figure 1,
we replace the conventional operations for downsampling
(e.g., stride-2 convolutions) and upsampling (e.g., bilinear
upsampling) in the task network (PSMNet in the figure)
with a superpixel-based downsampling/upsampling scheme
to effectively preserve object boundaries and fine details.
Further, the resulting network is end-to-end trainable. One
advantage of our joint learning framework is that superpixel
segmentation is now directly influenced by the downstream
task, and that the two tasks can naturally benefit from each
other. In this paper, we take stereo matching as an exam-
ple and show how the popular network PSMNet [7], upon
which many of the newest methods such as CSPN [8] and
HSM [42] are built, can be adapted into our framework.
We have conducted extensive experiments to evaluate the
proposed methods. For superpixel segmentation, experi-
ment results on public benchmarks such as BSDS500 [3]
and NYUv2 [28] demonstrate that our method is competi-
tive with or better than the state-of-the-art w.r.t. a variety
of metrics, and is also fast (running at about 50fps). For
disparity estimation, our method outperforms the original
PSMNet on SceneFlow [27] as well as high-res datasets
HR-VS [42] and Middlebury-v3 [30], verifying the benefit
of incorporating superpixels into downstream vision tasks.
In summary, the main contributions of the paper are: 1.
We propose a simple fully convolutional network for super-
pixel segmentation, which achieves state-of-the-art perfor-
mance on benchmark datasets. 2. We introduce a general
superpixel-based downsampling/upsampling framework for
DNNs. We demonstrate improved accuracy in disparity es-
timation by incorporating superpixels into a popular stereo
matching network. To the best of our knowledge, we are the
first to develop a learning-based method that simultaneously
perform superpixel segmentation and dense prediction.

2. Related Work

Superpixel segmentation. There is a long line of research
on superpixel segmentation, now a standard tool for many
vision tasks. For a thorough survey on existing methods,
we refer readers to the recent paper [33]. Here we focus on
methods which use a regular grid in the initialization step.
Turbopixels [22] places initial seeds at regular intervals

based on the desired number of superpixels, and grows them
into regions until superpixels are formed. [36] grows the su-
perpixels by clustering pixels using a geodesic distance that
embeds structure and compactness constraints. SEEDS [10]
initializes the superpixels on a grid, and continuously re-
fines the boundaries by exchanging pixels between neigh-
boring superpixels.

The SLIC algorithm [!] employs K-means clustering
to group nearby pixels into superpixels based on a 5-
dimensional positional and CIELAB color features. Vari-
ants of SLIC include LSC [23] which maps each pixel into
a 10-dimensional feature space and performs weighted K-
means, Manifold SLIC [25] which maps the image to a 2-
dimensional manifold to produce content-sensitive super-
pixels, and SNIC [2] which replaces the iterative K-means
clustering with a non-iterative region growing scheme.

While the above methods rely on hand-crafted features,
recent work [35] proposes to learn pixel affinity from large
data using DNNG. In [16], the authors propose to learn pixel
features which are then fed to a differentiable K-means clus-
tering module for superpixel segmentation. The resulting
method, SSN, is the first end-to-end trainable network for
superpixel segmentation. Different from these methods, we
train a deep neural network to directly predict the pixel-
superpixel association map.

The use of superpixels in deep neural networks. Several
methods propose to integrate superpixels into deep learning
pipelines. These works typically use pre-computed super-
pixels to manipulate learnt features so that important image
properties (e.g., boundaries) can be better preserved. For
example, [ 14] uses superpixels to convert 2D image patterns
into 1D sequential representations, which allows a DNN
to efficiently explore long-range context for saliency detec-
tion. [11] introduces a “bilateral inception” module which
can be inserted into existing CNNs and perform bilateral fil-
tering across superpixels, and [20, 34] employ superpixels
to pool features for semantic segmentation. Instead, we use
superpixels as an effective way to downsample/upsample.
Further, none of these works has attempted to jointly learn
superpixels with the downstream tasks.

Besides, our method is also similar to the deformable
convolutional network (DCN) [9, 47] in that both can real-
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ize adaptive respective field. However, DCN is mainly de-
signed to better handle geometric transformation and cap-
ture contextual information for feature extraction. Thus,
unlike superpixels, a deformable convolution layer does not
constrain that every pixel has to contribute to (thus is repre-
sented by) the output features.

Stereo matching. Superpixel- or segmentation-based ap-
proach to stereo matching was first introduced in [4], and
have since been widely used [15, 5, 19, 38, 6, 13]. These
methods first segment the images into regions and fit a para-
metric model (typically a plane) to each region. In [39, 40],
Yamaguchi et al. propose an optimization framework to
jointly segments the reference image into superpixels and
estimates the disparity map. [26] trains a CNN to predict
initial pixel-wise disparities, which are refined using the
slanted-plane MRF model. [21] develops an efficient algo-
rithm which computes photoconsistency for only a random
subset of pixels. Our work is fundamentally different from
these optimization-based methods. Instead of fitting para-
metric models to the superpixels, we use superpixels to de-
velop a new downsampling/upsampling scheme for DNNs.

In the past few years, deep networks [45, 31, 29, 44]
taking advantage of large-scale annotated data have gen-
erated impressive stereo matching results. Recent meth-
ods [17, 7, 8] employing 3D convolution achieve the state-
of-the-art performance on public benchmarks. However,
due to the memory constraints, these methods typically
compute disparity volumes at a lower resolution. [18] bi-
linearly upsamples the disparity to the output size and re-
fine it using an edge-preserving refinement network. Re-
cent work [42] has also explored efficient high-res process-
ing, but its focus is on generating coarse-to-fine results to
meet the need for anytime on-demand depth sensing in au-
tonomous driving applications.

3. Superpixel Segmentation Method

In this section, we introduce our CNN-based superpixel
segmentation method. We first present our idea of directly
predicting pixel-superpixel association on a regular grid in
Section 3.1, followed by a description of our network de-
sign and loss functions in Section 3.2. We further draw a
connection between our superpixel learning regime with the
recent convolutional spatial propagation (CSP) network [8]
for learning pixel affinity in Section 3.3. Finally, in Sec-
tion 3.4, we systematically evaluate our method on public
benchmark datasets.

3.1. Learning Superpixels on a Regular Grid

In the literature, a common strategy adopted [22, 36, 10,

, 23,25, 2, 16] for superpixel segmentation is to first par-
tition the H x W image using a regular grid of size h X w
and consider each grid cell as an initial superpixel (i.e., a
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Figure 2. llustration of A/p. For each pixel p in the green box, we
consider the 9 grid cells in the red box for assignment.

“seed”). Then, the final superpixel segmentation is obtained
by finding a mapping which assigns each pixel p = (u,v)
to one of the seeds s = (i, j). Mathematically, we can write
the mapping as gs(p) = g;,; (u,v) = 1 if the (u, v)-th pixel
belongs to the (4, 7)-th superpixel, and 0 otherwise.

In practice, however, it is unnecessary and computation-
ally expensive to compute g; ;j(u, v) for all pixel-superpixel
pairs. Instead, for a given pixel p, we constraint the search
to the set of surrounding grid cells M,. This is illus-
trated in Figure 2. For each pixel p in the green box, we
only consider the 9 grid cells in the red box for assign-
ment. Consequently, we can write the mapping as a tensor
G € ZH*WxINol where [Np| = 9.

While several approaches [22, 36, 10, 1, 23, 25, 2, 16]
have been proposed to compute G, we take a different route
in the paper. Specifically, we directly learn the mapping us-
ing a deep neural network. To make our objective function
differentiable, we replace the hard assignment G with a soft
association map Q € R¥*WxINel  Here, the entry ¢s(p)
represents the probability that a pixel p is assigned to each
s € Np, such that 3° .\ g¢s(p) = 1. Finally, the super-
pixels are obtained by assigning each pixel to the grid cell
with the highest probability: s* = arg maxg ¢s(p)-

Although it might seem a strong constraint that a pixel
can only be associated to one of the 9 nearby cells, which
leads to the difficulty to generate long/large superpixels, we
want to emphasize the importance of the compactness. Su-
perpixel is inherently an over-segmentation method. As one
of the main purposes of our superpixel method is to perform
the detail-preserved downsampling/upsampling to assist the
downstream network, it is more important to capture spatial
coherence in the local region. For the information goes be-
yond the 9-cell area, there is no problem to segment it into
pieces and leave them for downstream network to aggregate
with convolution operations.

Our method vs. SSN [16]. Recently, [16] proposes SSN,
an end-to-end trainable deep network for superpixel seg-
mentation. Similar to our method, SSN also computes a
soft association map ). However, unlike our method, SSN
uses the CNN as a means to extract pixel features, which are
then fed to a soft K-means clustering module to compute ().

We illustrate the algorithmic schemes of the two methods
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Input CNN Learnt Soft Superpixel Input CNN Superpixel
image features K-means segm. image segm.

(a) SSN (b) Ours
Figure 3. Comparison of algorithmic schemes. SSN trains a CNN to extract pixel features, which are fed to an iterative K-means clustering
module for superpixel segmentation. We train a CNN to directly generate superpixels by predicting a pixel-superpixel association map.

input
conv/deconv
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Figure 4. Our simple encoder-decoder architecture for superpixel
segmentation. Please refer to the supplementary materials for de-
tailed specifications.

in Figure 3. Both SSN and our method can take advantage
of CNN to learn complex features using task-specific loss
functions. But unlike SSN, we combine feature extraction
and superpixel segmentation into a single step. As a result,
our network runs faster and can be easily integrated into ex-
isting CNN frameworks for downstream tasks (Section 4).

3.2. Network Design and Loss Functions

As shown in Figure 4, we use a standard encoder-
decoder design with skip connections to predict superpixel
association map ). The encoder takes a color image as
input and produces high-level feature maps via a convo-
lutional network. The decoder then gradually upsamples
the feature maps via deconvolutional layers to make final
prediction, taking into account also the features from corre-
sponding encoder layers. We use leaky ReLU for all layers
except for the prediction layer, where softmax is applied.

Similar to SSN [16], one of the main advantages of
our end-to-end trainable superpixel network is its flexibility
w.r.t. the loss functions. Recall that the idea of superpixels
is to group similar pixels together. For different applica-
tions, one may wish to define similarity in different ways.

Generally, let f(p) be the pixel property we want the
superpixels to preserve. Examples of f(p) include a 3-
dimensional CIELAB color vector, and/or a N -dimensional
one-hot encoding vector of semantic labels, where [V is the
number of classes, and many others. We further represent a
pixel’s position by its image coordinates p = [z, y]7.

Given the predicted association map (), we can compute
the center of any superpixel s, cs = (us, ls) where ug is the
property vector and lg is the location vector, as follows:

> psen, P as(P)

Zp:sENp qs(p)
(D

Zp:seNp f(p) : QS(p)

Is =
Ep:sE/\fp s (p)

Us =

Here, recall that A/}, is the set of surrounding superpixels of
p, and gs(p) is the network predicted probability of p being
associated with superpixel s. In Eq (1), each sum is taken
over all the pixels with a possibility to be assigned to s.

Then, the reconstructed property and location of any
pixel p are given by:

F(p)= > us-s(p) P =) L-alp) @

seNp seNp

Finally, the general formulation of our loss function has
two terms. The first term encourages the trained model to
group pixels with similar property of interest, and the sec-
ond term enforces the superpixels to be spatially compact:

L(Q = Y distf(p).£'(p)) + g~ P2 3

where dist(-, -) is the task specific distance metric depend-
ing on the pixel property f(p), S is the superpixel sampling
interval, and m is a weight balancing the two terms.

In this paper, we consider two different choices of f(p).
First, we choose the CIELAB color vector and use the /o
norm as the distance measure. This leads to an objective
function similar to the original SLIC method [!]:

Lsr1c(Q) = Y lfear(P) = Ea(P)llo+ G =12 @)
P

Second, following [16], we choose the one-hot encoding
vector of semantic labels and use cross-entropy E(-,-) as
the distance measure:

Loen(Q) = Y Blfscrn(P), e (P)) + 5 [P =P ll2- (5)
P

3.3. Connection to Spatial Propagation Network

Recently, [8] proposes the convolutional spatial propaga-
tion (CSP) network, which learns an affinity matrix to prop-
agate information to nearly spatial locations. By integrating
the CSP module into existing deep neural networks, [8] has
demonstrated improved performance in affinity-based vi-
sion tasks such as depth completion and refinement. In this
section, we show that the computation of superpixel centers
using learnt association map () can be written mathemati-
cally in the form of CSP, thus draw a connection between
learning () and learning the affinity matrix as in [8].
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Given an input feature volume X € R¥*W*C the con-
volutional spatial propagation (CSP) with a kernel size K
and stride S can be written as:

K/2
Yij = Z ki j(a,0) © Xi.s4aj.5+b,  (6)
ab=—K/2+1
where Y € R"*%*C i5 an output volume such that h = %
and w = %, k;,; is the output from an affinity network

such that ZféiiK/%l ki j(a,b) = 1, and © is element-

wise product.

In the meantime, as illustrated in Figure 2, to compute
the superpixel center associated with the (4, j)-th grid cell,
we consider all pixels in the surrounding 3.5 x 3.5 region:

35/2
cij= Y, G(a,b)OXisiassin,  (7)
a,b=—3S5/2+1
where
(}i,j(a, b) T =35/2 g (U7v) ) ®)

a,b=—35/2+1 i, (u, )

andu=i-S+a,v=75-S+0.

Comparing Eq. (6) with Eq. (7), we can see that comput-
ing the center of superpixel of size S x S is equivalent to
performing CSP with a 35 x 3.5 kernel derived from Q. Fur-
thermore, both «; ;(a,b) and g; j(u, v) represent the learnt
weight between the spatial location (u, v) in the input vol-
ume and (4, 7) in the output volume. In this regard, pre-
dicting ) in our work can be viewed as learning an affinity
matrix as in [8].

Nevertheless, we point out that, while the techniques pre-
sented in this work and [8] share the same mathematical
form, they are developed for very different purposes. In [8],
Eq. (6) is employed repeatedly (with S = 1) to propagate
information to nearby locations, whereas in this work, we
use Eq. (7) to compute superpixel centers (with S > 1).

3.4. Experiments

We train our model with segmentation labels on the stan-
dard benchmark BSDS500 [3] and compare it with state-of-
the-art superpixel methods. To further evaluate the method
generalizability, we also report its performances without
fine-tuning on another benchmark dataset NYUv2 [28].

All evaluations are conducted using the protocols and
codes provided by [ 1'. We run LSC [23], ERS [24],
SNIC [2], SEAL [35], and SSN [16] with the original
implementations from the authors, and run SLIC [I] and
ETPS [43] with the codes provided in [33]. For LSC, ERS,
SLIC and ETPS, we use the best parameters reported in
[33], and for the rest, we use the default parameters rec-
ommended by the original authors.

https://github.com/davidstutz/
superpixel-benchmark

Implementation details. Our model is implemented with
PyTorch, and optimized using Adam with 5; = 0.9 and
B2 = 0.999. We use L., in Eq. (5) for this experiment,
with m = 0.003. During training, we randomly crop the
images to size 208 x 208 as input, and perform horizon-
tal/vertical flipping for data augmentation. The initial learn-
ing rate is set to 5 x 1075, and is reduced by half after 200k
iterations. Convergence is reached at about 300k iterations.

For training, we use a grid with cell size 16 x 16, which
is equivalent to setting the desired number of superpixels
to 169. At the test time, to generate varying number of su-
perpixels, we simply resize the input image to the appropri-
ate size. For example, by resizing the image to 480 x 320,
our network will generate about 600 superpixels. Further-
more, for fair comparison, most evaluation protocols expect
superpixels to be spatially connected. To enforce that, we
apply an off-the-shelf component connection algorithm to
our output, which merges superpixels that are smaller than
a certain threshold with the surrounding ones.’

Evaluation metrics. We evaluate the superpixel methods
using the popular metrics including achievable segmenta-
tion accuracy (ASA), boundary recall and precision (BR-
BP), and compactness (CO). ASA quantifies the achiev-
able accuracy for segmentation using the superpixels as pre-
processing step, BR and BP measure the boundary adher-
ence of superpixels given the ground truth, whereas CO as-
sesses the compactness of superpixels. The higher these
scores are, the better the segmentation result is. As in [33],
for BR and BP evaluation, we set the boundary tolerance
as 0.0025 times the image diagonal rounded to the closest
integer. We refer readers to [33] for the precise definitions.

Results on BSDS500. BSDS500 contains 200 training, 100
validation, and 200 test images. As multiple labels are avail-
able for each image, we follow [16, 35] and treat each anno-
tation as an individual sample, which results in 1633 train-
ing/validation samples and 1063 testing samples. We train
our model using both the training and validation samples.
Figure 5 reports the performance of all methods on
BSDS500 test set. Our method outperforms all traditional
methods on all evaluation metrics, except SLIC in term of
CO. Comparing to the other deep learning-based methods,
SEAL and SSN, our method achieves competitive or bet-
ter results in terms of ASA and BR-BP, and significantly
higher scores in term of CO. Figure 8 further shows ex-
ample results of different methods. Note that, as discussed
in [33], there is a well-known trade-off between boundary
adherence and compactness. Although our method does not
outperform existing methods on all the metrics, it appears
to strike a better balance among them. It is also worth not-
ing that by achieving higher CO score, our method is able
to better capture spatially coherent information and avoids

2Code and models are available at https://github.com/
fuy34/superpixel_fcn.
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paying too much attention to image details and noises.
This characteristic tends to lead to better generalizability,
as shown in the NYUv2 experiment results.

We also compare the runtime difference among deep
learning-based (DL) methods. Figure 7 reports the aver-
age runtime w.r.t. the number of generated superpixels on a
NVIDIA GTX 1080Ti GPU device. Our method runs about
3 to 8 times faster than SSN and more than 50 times faster
than SEAL. This is expected as our method uses a simple
encoder-decoder network to directly generate superpixels,
whereas SEAL and SSN first use deep networks to predict
pixel affinity or features, and then apply traditional cluster-
ing methods (i.e., graph cuts or K-means) to get superpixels.

Results on NYUv2. NYUv2 is a RGB-D dataset originally
proposed for indoor scene understanding tasks, which con-
tains 1,449 images with object instance labels. By remov-
ing the unlabelled regions near the image boundary, [33]
has developed a benchmark on a subset of 400 test images

with size 608 x 448 for superpixel evaluation. To test the
generalizability of the learning-based methods, we directly
apply the models of SEAL, SSN, and our method trained on
BSDS500 to this dataset without any fine-tuning.

Figure 6 shows the performance of all methods on
NYUvV2. Generally, all deep learning-based methods per-
form well as they continue to achieve competitive or better
performance against the traditional methods. Further, our
method is shown to generalize better than SEAL and SSN,
which is evident by comparing the corresponding curves in
Figure 5 and 6. Specifically, our method outperforms SEAL
and SSN in terms of BR-BP and CO, and is one of the best
in terms of ASA. The visual results are shown in Figure 8.

4. Application to Stereo Matching

Stereo matching is a classic computer vision task which
aims to find pixel correspondences between a pair of recti-
fied images. Recent literature has shown that deep networks
can boost the matching accuracy by building 4D cost vol-
ume (heightx width xdisparity x feature channels) and ag-
gregate the information using 3D convolution [7, 8, 46].
However, such a design consumes large amounts of memory
because of the extra “disparity” dimension, limiting their
ability to generate high-res outputs. A common remedy is to
bilinearly upsample the predicted low-res disparity volumes
for final disparity regression. As a result, object boundaries
often become blur and fine details get lost.

In this section, we propose a downsampling/upsampling
scheme based on the predicted superpixels and show how to
integrate it into existing stereo matching pipelines to gener-
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ate high-res outputs that better preserve the object bound-
aries and fine details.

4.1. Network Design and Loss Function

Figure 1 provides an overview of our method design. We
choose PSMNet [7] as our task network. In order to in-
corporate our new downsampling/upsampling scheme, we
change all the stride-2 convolutions in its feature extractor
to stride-1, and remove the bilinear upsampling operations
in the spatial dimensions. Given a pair of input images, we
use our superpixel network to predict association maps @,
@, and compute the superpixel center maps using Eq. (1).
The center maps (i.e., downsampled images) are then fed
into the modified PSMNet to get the low-res disparity vol-
ume. Next, the low-res volume is upsampled to original res-
olution with @); according to Eq. (2), and the final disparity
is computed using disparity regression. We refer readers to
the supplementary materials for detailed specification.

Same as PSMNet [7], we use the 3-stage smooth L; loss
with the weights a; = 0.5, ae = 0.7, and a3 = 1.0 for
disparity prediction. And we use the SLIC loss (Eq. (4)) for
superpixel segmentation. The final loss function is:

3 N
L= Z Qs (% Z smoothr, (d, — d},)) + %LSLIC(Q)
s=1 p=1

©))
where N is the total number of pixels, and A is a weight to
balance the two terms. We set A = 0.1 for all experiments.

4.2. Experiments

We have conducted experiments on three public datasets,
SceneFlow [27], HR-VS [42], and Middlebury-v3 [30] to
compared our model with PSMNet. To further verify the

e

o "g e P

Figure 8. Example superpixel segmentation results. Compared to SEAL and SSN, our method is competitive or better in terms of object
boundary adherence while generating more compact superpixels. Top rows: BSDS500. Bottom rows: NYUv2.

benefit of joint learning for superpixels and disparity esti-
mation, we trained two different models for our method.
In the first model Ours_fixed, we fix the parameters in su-
perpixel network and train the rest of the network (i.e., the
modified PSMNet) for disparity estimation. In the second
model Ours_joint, we jointly train all networks in Figure 1.
For both models, the superpixel network is pre-trained on
SceneFlow using the SLIC loss. The experiments are con-
ducted on 4 Nvidia TITAN Xp GPUs.

Results on SceneFlow. SceneFlow is a synthetic dataset
contains 35,454 training and 4,370 test frames with dense
ground truth disparity. Following [7], we exclude pixels
with disparities greater than 192 in training and test time.

During training, we set m = 30 in the SLIC loss and
randomly crop the input images into size 512 x 256. To con-
duct 3D convolution at 1/4 of the input resolution as PSM-
Net does, we predict superpixels with grid cell size 4 x 4
to perform the 4 x downsampling/upsampling. We train the
model for 13 epochs with batch size 8. The initial learning
rateis 1 x 1073, and is reduced to 5 x 10~ % and 1 x 10~ * af-
ter 11 and 12 epochs, respectively. For PSMNet, we use the
authors’ implementation and train it with the same learning
schedule as our methods.

We use the standard end-point-error (EPE) as the evalua-
tion metric, which measures the mean pixel-wise Euclidean
distance between the predicted disparity and the ground
truth. As shown in Table 1, Ours_joint achieves the low-
est EPE. Also note that Ours_fixed performs worse than
the original PSMNet, which demonstrates the importance
of joint training. Qualitative results are shown in Figure 9.
One can see that both Ours_fixed and Ours_joint preserve
fine details better than the original PSMNet.

Results on HR-VS. HR-VS is a synthetic dataset with ur-
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PSMNet

Ours_fixed Ours_joint

Figure 9. Qualitative results on SceneFlow and HR-VS. Our method is able to better preserve fine details, such as the wires and mirror
frameworks in the highlighted regions. Top rows: SceneFlow. Bottom rows: HR-VS.

Table 1. End-point-error (EPE) on SceneFlow and HR-VS.

Dataset PSMNet [7] Ours_fixed Ours_joint
SceneFlow 1.04 1.07 0.93
HR-VS 3.83 3.70 2.77

ban driving views. It contains 780 images at 2056 x 2464
resolution. The valid disparity range is [9.66, 768]. Because
no test set is released, we randomly choose 680 frames for
training, and use the rest for testing. Due to the relatively
small data size, we fine-tune all three models trained on
SceneFlow in the previous experiment on this dataset.

Because of the high resolution and large disparity, the
original PSMNet cannot be directly applied to the full size
images. We follow the common practice to downsample
both the input images and disparity maps to 1/4 size for
training, and upsample the result to full resolution for evalu-
ation. For our method, we predict superpixels with grid cell
size 16 x 16 to perform 16x downsampling/upsampling.
During training, we set m = 30, and randomly crop the
images into size 2048 x 1024. We train all methods for
200 epochs with batch size 4. The initial learning rate is
1 x 103 and reduced to 1 x 10~* after 150 epochs.

As shown in Table 1, our models outperform the original
PSMNet. And a significantly lower EPE is achieved by joint
training. Note that, comparing to SceneFlow, we observe a
larger performance gain on this high-res dataset, as we per-
form 16 x upsampling on HR-VS but only 4 x upsampling
on SceneFlow. Qualitative results are shown in Figure 9.

Results on Middlebury-v3. Middlebury-v3 is a high-res
real-world dataset with 10 training frames, 13 validation
frames®, and 15 test frames. We use both training and val-
idation frames to tune the Our_joint model pre-trained on

3Named as additional dataset in the official website.

SceneFlow with 16 x 16 superpixels. We set m = 60 and
train the model for 30 epochs with batch size 4. The initial
learning rate is 1 x 103 and divided by 10 after 20 epochs.

Note that, for the experiment, our goal is not to achieve
the highest rank on the official Middlebury-v3 leaderboard.
But instead, to verify the effectiveness of the proposed
superpixel-based downsample/upsampling scheme. Based
on the leaderboard, our model outperforms PSMNet across
all metrics, some of which are presented in Table 2. The
results again verify the benefit of the proposed superpixel-
based downsample/upsampling scheme.

Table 2. Results on Middlebury-v3 benchmark.

Method avgerr rms bad-4.0 A90
PSMNet ROB [7] 878 233 292 228
Ours_joint 7.11  19.1 27.5 13.8

5. Conclusion

This paper has presented a simple fully convolutional
network for superpixel segmentation. Experiments on
benchmark datasets show that the proposed model is com-
putationally efficient, and can consistently achieve the state-
of-the-art performance with good generalizability. Further,
we have demonstrated that higher disparity estimation ac-
curacy can be obtained by using superpixels to preserve ob-
ject boundaries and fine details in a popular stereo match-
ing network. In the future, we plan to apply the pro-
posed superpixel-based downsampling/upsampling scheme
to other dense prediction tasks, such as object segmentation
and optical flow estimation, and explore different ways to
use superpixels in these applications.
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