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Abstract. In architecture and computer-aided design, wireframes (i.e.,
line-based models) are widely used as basic 3D models for design eval-
uation and fast design iterations. However, unlike a full design file, a
wireframe model lacks critical information, such as detailed shape, tex-
ture, and materials, needed by a conventional renderer to produce 2D
renderings of the objects or scenes. In this paper, we bridge the infor-
mation gap by generating photo-realistic rendering of indoor scenes from
wireframe models in an image translation framework. While existing im-
age synthesis methods can generate visually pleasing images for common
objects such as faces and birds, these methods do not explicitly model
and preserve essential structural constraints in a wireframe model, such
as junctions, parallel lines, and planar surfaces. To this end, we pro-
pose a novel model based on a structure-appearance joint representation
learned from both images and wireframes. In our model, structural con-
straints are explicitly enforced by learning a joint representation in a
shared encoder network that must support the generation of both im-
ages and wireframes. Experiments on a wireframe-scene dataset show
that our wireframe-to-image translation model significantly outperforms
the state-of-the-art methods in both visual quality and structural in-
tegrity of generated images.

1 Introduction

Recently, driven by the success of generative adversarial networks (GANs) [8]
and image translation techniques [16, 57], there has been a growing interest in de-
veloping data-driven methods for a variety of image synthesis applications, such
as image style transfer [17, 19], super-resolution [22], enhancement [53], text-to-
image generation [52], domain adaption [12, 34], just to name a few. In this work,
we study a new image synthesis task, dubbed wireframe-to-image translation, in
which the goal is to convert a wireframe (i.e., a line-based skeletal represen-
tation) of a man-made environment to a photo-realistic rendering of the scene
(Fig. 1). In the fields of visual arts, architecture, and computer-aided design,
the wireframe representation is an important intermediate step for producing
novel designs of man-made environments. For example, commercial computer-
aided design software such as AutoCAD allows designers to create 3D wireframe
models as basic 3D designs for evaluation and fast design iterations.
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results of our experiments indicate the superiority of our proposed method
compared with previous state-of-the-art methods.

2 Related Work

Wireframe Parsing. Several methods have been developed recently to extract
wireframes from images [13, 50, 55, 56]. In this paper, we study the inverse prob-
lem of translating wireframes to photo-realistic images.

Generative Adversarial Networks. Generative adversarial networks (GANs)
[8], especially the conditional GANs [32], have been widely used in image syn-
thesis applications such as text-to-image generation [52] and image-to-image
translation [16, 57]. However, training GANs is known to be difficult and of-
ten requires a large training set in order to generate satisfactory results. Some
attempts have be made to stabilize the GAN training [9, 31], as well as use
coarse-to-fine generation to get better results [18, 52]. One work that explores
structure information in GAN training is [47]. It utilizes RGB-D data and fac-
torizes the image generation process into synthesis of a surface normal map and
then the conditional generation of a corresponding image.

Supervised Image-to-Image Translation. The line of research that most
closely relate to our work is supervised image-to-image translation, in which
input-output image pairs are available during training. Prior work [1, 16, 46] has
been focusing on leveraging different losses to generate high-quality output im-
ages. While pixel-wise losses, such as the `1 loss, are the most natural choices,
using `1 loss alone has been shown to generate blurry images [16, 17]. To mit-
igate the problem, Isola et al. [16] uses a combination of `1 loss and a condi-
tional adversarial loss. To avoid the instability of adversarial training, Chen and
Koltun [1] implement a cascaded refinement network trained via feature match-
ing based on a pre-trained visual perception network. Recently, the perceptual
loss [6] has been shown to be effective in measuring the perceptual similarity be-
tween images [54]. Wang et al. [45] integrates the perceptual adversarial loss and
the generative adversarial loss to adaptively learn the discrepancy between the
output and ground-truth images. Combining the merits from previous works,
Wang et al. [46] generate high quality images with coarse-to-fine generation,
multi-scale discriminators, and an improved adversarial loss.

Other works focus on improving the performance for a certain input modality.
For semantic maps, Qi et al. [38] first retrieve segments from external memory,
then combine the segments to synthesize a realistic image. Liu et al. [26] predict
convolutional kernels from semantic labels and use a feature-pyramid semantics-
embedding discriminator for better semantic alignment. Park et al. [37] modu-
late the normalization layer with learned parameters to avoid washing out the
semantic information. For sketches, Sangkloy et al. [41] generate realistic images
by augmenting the training data with multiple sketch styles; SketchyGAN [2]
improves the information flow during training by injecting the input sketch at
multiple scales; Lu et al. [28] use sketch in a joint image completion framework
to handle the misalignment between sketches and photographic objects.
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Joint Representation Learning. For applications that involve two or more
variables, the traditional one-way mapping of GANs may be insufficient to guar-
antee the correspondence between the variables. Conditional GANs [32, 3, 36,
5] learn to infer one variable from another in both directions. ALI [7], Cycle-
GAN [57], and their variants (e.g., [24, 20, 51]) learn the cross-domain joint dis-
tribution matching via bidirectional mapping of two examples.

In unsupervised image-to-image translation, several works [14, 25, 23] propose
to map images from multiple domains to a joint latent space. To further learn
instance level correspondences, DA-GAN [29] incorporate a consistency loss in
the latent space between the input and output images. However, due to the lack
of paired training data, it is hard for these methods to generate outputs that
match all the details (e.g., semantic parts) in the input images.

When paired data is available, learning a joint representation has been proved
to be an effective way to capture the correspondences. To promote instance
awareness in unsupervised image translation, InstaGAN [33] simultaneously trans-
lates image and the corresponding segmentation mask. Recent work on domain
adaption [4] jointly predict segmentation and depth maps in order to better align
the predictions of the task network for two domains.

3 Methodology

In this work, we propose to add an intermediate step in the image synthesis pro-
cess to improve structural integrity and pixel-level correspondence. Specifically,
we learn a structure-appearance joint representation from the input wireframe,
and use the joint representation to simultaneous generate corresponding scene
images and reconstructed wireframes as output. As shown in Fig. 4, The overall
pipeline of our wireframe renderer consists of an encoder, a wireframe decoder,
a scene image decoder, and a discriminator.

In the following, we introduce the theoretical background and architecture
of our model in Section 3.1, and discuss implementation details in Section 3.2.

3.1 Learning Joint Representation for Wireframe-to-Image

Translation

Formally, we measure the uncertainty of generating the correct wireframe from
a joint representation of wireframe and scene image using Conditional Entropy.
The conditional entropy of an input wireframe x conditioned on its corresponding
joint representation e is defined as

H(x|e) = Ex∼P (x|e) logP (x|e), (1)

where e ∼ Q̂(x, y) follows an estimated joint distribution Q̂ of wireframe x and
indoor scene image y, and is computed by an encoder network Enc. Under a su-
pervised training scenario with paired wireframe and scene image, for simplicity,
we assume that the mapping from x to e is deterministic so that e = Enc(x) is
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Given a mini-batch of N wireframes xn and corresponding scene images yn,
we define the objective for scene generation as

min
θ,θs

Lgen =
1

N

N
∑

n=1

(

αs||yn −Decs(Enc(xn))||1 + βsDperc(yn,Decs(Enc(xn))
)

, (4)

where the scene decoder network is parameterized by θs. The perceptual loss
Dperc is defined as

Dperc(y, ŷ) =
∑

l

1

HlWl

||φl(y)− φl(ŷ)||
2
2, (5)

where φl is the activations of the lth layer of a perceptual network with shape Cl×
Hl×Wl. In our experiments, we use the 5 convolutional layers from VGG16 [43]
pre-trained on ImageNet [40] to extract visual features, and unit-normalize the
activations in the channel dimension as in [54].

Further, we propose an adversarial loss [8] to adaptively learn the difference
between the reconstructed wireframe/generated image and the groundtruth. De-
note x̂ and ŷ as the reconstructed wireframe and generated scene image, the
adversarial objective is

max
θd

min
θ,θw,θs

Ladv = Ex,y log σ(Dis(x, y)) + Ex,y log(1− σ(Dis(x̂, ŷ))), (6)

where σ(·) is the sigmoid function and θd represents the parameters of the con-
ditional discriminator network, Dis. For simplicity, we omit the representations
such as x ∼ Px in all adversarial objectives.

Therefore, the full objective for end-to-end training of our model is

max
θd

min
θ,θw,θs

L = Lrec + Lgen + λLadv, (7)

where λ is another scaling factor to control the impact of the adversarial loss.

3.2 Implementation Details

In our wireframe renderer model1, the encoder network consists of 5 convolution
blocks. The first block uses 7× 7 convolution kernels with stride 1 and reflection
padding 3. The remaining 4 downsample blocks have kernel size 3, stride 2 and
reflection padding 1. Each convolutional layer is followed by one batch normal-
ization [15] layer and one LeakyReLU [30] activation. The last downsample block
is followed by 4 residual blocks [10] with 3×3 convolution and ReLU activation.

The decoder consists of 4 upsample blocks. To avoid the characteristic arti-
facts introduced by the transpose convolution [35], each upsample block contains
one 3× 3 sub-pixel convolution [42] followed by batch normalization and ReLU
activation. The last block uses a 7 × 7 convolution followed by a tanh activa-
tion without normalization. The two decoder networks have similar architecture
except in the last layer where the outputs have different channel dimensions.

1 Code available at https://github.com/YuanXue1993/WireframeRenderer
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We follow [16] and use the PatchGAN [27] discriminator for adversarial train-
ing. We use LSGAN [31] for stabilizing the adversarial training. The scaling fac-
tors in our final model are αw = 1, βw = 1, αs = 15, βs = 4 and λ = 1. These
values are determined through multiple runs of experiments. The training is done
using Adam optimizer [21] with initial learning rate 2e− 3. The learning rate is
decayed every 30 epochs with rate 0.5. The batch size is 16 and the maximum
number of training epochs is 500.

All training images are first resized to 307× 307, then randomly cropped to
256× 256. A random horizontal flipping and random adjustment of brightness,
contrast and saturation are applied for data augmentation. During inference, all
images are re-scaled to 256× 256 with no further processing.

4 Experiments

4.1 Experiment Settings

Dataset. The wireframe dataset [13] consists of 5,462 images of man-made en-
vironments, including both indoor and outdoor scenes, and manually annotated
wireframes. Each wireframe is represented by a set of junctions, a set of line
segments, and the relationships among them. Note that, unlike general line
segments, the wireframe annotations consider structural elements of the scene
only. Specifically, line segments associated with the scene structure are included,
whereas line segments associated with texture (e.g., carpet), irregular or curved
objects (e.g., humans and sofa), and shadows are ignored. Thus, to translate the
wireframe into a realistic image, it is critical for a method to handle incomplete
information about scene semantics and objects.

As we focus on the indoor scene image generation task in this paper, we filter
out all outdoor or irrelevant images in the dataset. This results in 4,511 training
images and 422 test images. The dataset contains various indoor scenes such as
bedroom, living room, and kitchen. It also contains objects such as humans which
are irrelevant to our task. The limited size and the scene diversity of the dataset
make the task of generating interior design images even more challenging.

Baselines. We compare our image translation models with several state-of-the-
art models, namely the Cascaded Refinement Network (CRN) [1], pix2pix [16],
pix2pixHD [46], and SPADE [37]. For fair comparison, we adapt from the au-
thors’ original implementations wherever possible. For CRN, we use six refine
modules, starting from 8× 8 all the way up to 256× 256. For pix2pix model, we
use UNet [39] backbone model as in the original paper. We decrease the weight
of pixel loss from 100 to 50 since the original weight fails to generate any mean-
ingful results. For pix2pixHD model, we use two discriminators with different
scales and the discriminator feature matching loss combined with the GAN loss.
Since there is no instance map available for our problem, we train the pix2pixHD
model with wireframes only. For SPADE, we use at most 256 feature channels
to fit in the single GPU training.
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sarial training. This may suggest that adversarial training is important in the
wireframe-to-image translation task.

Except for the CRN, all other models are able to generate meaningful syn-
thetic images. However, in the images generated by pix2pix and pix2pixHD,
structural integrity is not always well preserved. In general, the generated im-
ages of these models cannot align well with the input wireframes, especially when
structure information is complicated (e.g., the furniture areas in the first and
second rows of Fig. 5). Further, these methods generate noticeable artifacts in
regions where structure information is sparse (e.g., the white walls in the third
row of Fig. 5). For SPADE [37], structural information is better preserved, but
the results contain more artifacts than those of pix2pixHD and appear to be less
realistic (e.g., artifacts in the first, second, and fifth rows of Fig. 5). In contrast,
our model generates images with best quality among all models and preserves
the structure and correspondence very well. Compared with the real images in
the test set, the synthetic images of our final model are almost photo-realistic.

4.3 Quantitative Evaluations

FID, LPIPS, and SSIM scores. We first report results based on various
standard metrics for image synthesis. Fréchet inception distance (FID) [11] is a
popular evaluation metric for image synthesis tasks, especially for GAN models.
FID features are extracted from an Inception-v3 [44] model pre-trained on Ima-
geNet. Since the dataset contains various indoor scenes, we use the pre-trained
model without fine-tuning. Lower FID score indicates a better generation result.

For our task, since we have the ground truth images associated with the input
wireframes, we also calculate paired LPIPS and SSIM scores between the syn-
thetic images and the real images. The learned perceptual image patch similarity
(LPIPS) [54] is essentially a perceptual loss. It has been shown to have better
agreement with human perception than traditional perceptual metrics such as
SSIM [48] and PSNR. We use Eq. (5) to calculate the perceptual distance be-
tween the synthetic image and the real image. Note that in our experiments we
calculate the perceptual distance instead of the similarity, thus the lower the
LPIPS score, the better quality of the generated images. The feature extractor
is a pre-trained VGG16 model as in our model training.

In Table 1(left), we report results of all methods except for CRN, since CRN
fails to generate meaningful results. As one can see, pix2pixHD outperforms
pix2pix in all metrics. Compared with the pix2pix, pix2pixHD adopts multi-
scale discriminators and use the adversarial perceptual loss, leading to better
performance in the image translation task. However, since the training dataset
in our experiments has a limited size, a perceptual loss learned by adversarial
training may not work as well as a perceptual loss computed by a pre-trained fea-
ture extractor. As shown in Table 1, our model without the joint representation
learning achieves better performance than the pix2pixHD model.

Finally, our full model with the joint representation learning achieves the
best performance across all metrics, as the images generated by the model better
preserve the structure information encoded in the wireframes.
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Table 1. Quantitative evaluation on the wireframe-to-image translation task. Left:
Standard image synthesis metrics. For SSIM, the higher the better; For FID and LPIPS,
the lower the better. Right: Wireframe parser scores using [55]. For sAP scores, the
higher the better.

Method FID↓ LPIPS↓ SSIM↑

pix2pix [16] 186.91 3.34 0.091

pix2pixHD [46] 153.36 3.25 0.080

SPADE [37] 93.90 2.95 0.086

Ours w/o JR 97.49 2.85 0.092

Ours 70.73 2.77 0.102

Method sAP5 ↑ sAP10 ↑ sAP15 ↑

pix2pix 7.8 10.0 11.1

pix2pixHD 10.6 13.6 15.1

SPADE 54.7 58.1 59.5

Ours w/o JR 26.7 34.4 37.5

Ours 60.1 64.1 65.7

Real images 58.9 62.9 64.7

Wireframe detection score. Since the focus of this work is to preserve struc-
ture information in the wireframe-to-image translation task, an important and
more meaningful evaluation metric would be whether we can infer correct wire-
frames from the generated images or not.

To this end, we propose a wireframe detection score as a complimentary met-
ric for evaluating the structural integrity in image translation systems. Specif-
ically, we apply the state-of-the-art wireframe parser [55] to detect wireframes
from the generated images. The wireframe parser outputs a vectorized wireframe
that contains semantically meaningful and geometrically salient junctions and
lines (Fig. 6). To evaluate the results, we follow [55] and use the structural av-
erage precision (sAP), which is defined as the area under the precision-recall
curve computed from a scored list of detected line segments on all test images.
Here, a detected line is considered as a true positive if the distance between the
predicted and ground truth end points is within a threshold θ.

Table 1(right) reports the sAP scores at θ = {5, 10, 15}. As one can see, our
full model outperforms all other methods. While SPADE also gets relatively high
sAP scores by encoding wireframes in all normalization layers, their generated
images contain more artifacts. In the last row of Table 1(right), we also report
sAP scores obtained by applying the same wireframe parser [55] to the corre-
sponding real images. Rather surprisingly, the images generated by our method
even achieve higher sAP scores than the real images. After a close inspection of
the results, we find that it is mainly because, when labeling wireframe, human
annotators tend to miss some salient lines and junctions in the real images. In
other words, there are often more salient lines and junctions in real images than
those labelled in the ground truth. As a result, the detected wireframes from
real images contain more false positives. In the meantime, the input provided
to our model is just the annotated wireframes. Our model is able to faithfully
preserve such information in the generated images.

Human studies. We also conduct a human perception evaluation to com-
pare the quality of generated images between our method and pix2pixHD, since
SPADE results contain more artifacts. We show the ground truth wireframes
paired with images generated by our method and pix2pixHD to three work-
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