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Abstract

We propose a method that simultaneously identifies a linear time-invariant model of a building’s temperature dynamics and
a transformed version of the unmeasured disturbance affecting the building. Our method uses `1-regularization to encourage
the identified disturbance to be approximately sparse, which is motivated by the slowly-varying nature of occupancy that
determines the disturbance. The proposed method involves solving a convex optimization problem that guarantees the identified
black-box model possesses known properties of the plant, especially input-output stability and positive DC gains. These
features enable one to use the method as part of a self-learning control system in which the model of the building is updated
periodically without requiring human intervention. Results from the application of the method on data from a simulated and
real building are provided.
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1 Introduction

A dynamic model of a building’s temperature is useful
for model-based fault detection and control of its HVAC
(Heating Ventilation and Air Conditioning) system.
There is a long history of such modeling efforts [13]. Due
to the complexity of thermal dynamics, system identifi-
cation from data is considered advantageous and there
has been much work on it; see [13,12,7] and references
therein. A particular challenge for model identification
is that temperature is affected by large, unknown dis-
turbances, especially the cooling load induced by the
occupants. The occupant-induced load refers to the
heat gain directly due to the occupants’ body heat and
indirectly from lights and other equipments they use.
Another challenge comes from the need for automatic
updates, especially for the use in model-based control.
Due to changes in a building’s properties over time, the
model needs to be updated periodically with new data.

? This research is partially supported by NSF grants
1463316 and 1646229.

Email addresses: tingtingzeng@ufl.edu (Tingting
Zeng), brooks666@ufl.edu (Jonathan Brooks),
pbarooah@ufl.edu (Prabir Barooah∗).

An identification method should also guarantee certain
properties of the model so that it can be used as part
of a self-learning control system without the need for a
human expert to check the quality of the model. Most
system identification methods for buildings ignore the
unknown disturbances, but doing so can produce erro-
neous results. Only a few recent works have addressed
the problem of unknown disturbances [8,4]. None of the
prior works however provide any guarantees on the prop-
erties of the identified model, such as stability.

In this paper we propose a method to estimate a lin-
ear dynamic model as well as a transformed version
of the unknown disturbances from easily measurable
input-output data. The method consists of solving a
feasible and convex optimization problem, and the re-
sulting model is guaranteed to possess properties that
are known from physical insight into thermal dynamics
of buildings, such as stability and positive DC gains
of certain input output pairs. The proposed method,
which we call SPDIR (Simultaneous Plant and Distur-
bance Identification through Regularization), is based
on solving a constrained `1-regularized least-squares
problem. The `1-penalty encourages the transformed
disturbance to be a sparse signal. Use of the `1-norm



penalty to encourage sparse solution is a widely used
heuristic [14]. In our problem the motivation comes from
the fact that the disturbance, which consists mostly of
internal load due to occupants, is often slowly varying.
For instance, large numbers of people enter and leave of-
fice buildings at approximately the same time. A slowly
varying disturbance can be further approximated as
piecewise-constant. We show that this feature makes
the transformed disturbance an approximately sparse
signal. The constraints ensure the identified model will
have desirable properties. Evaluation of the method
with simulation-generated data show that it can accu-
rately identify the transfer function in the presence of
large disturbances, even when the disturbance is not
piecewise-constant. Evaluation with data from a real
building are similarly promising, though accuracy is
difficult to establish due to lack of a ground truth.

A few works have partially addressed the challenge posed
by the presence of the unknown disturbance by using
a specialized test building to measure the occupant-
induced load [12,15], or by collecting data from unoc-
cupied times and setting the occupant-induced distur-
bance during that time to 0 [5,7]. Work on model iden-
tification of building dynamics that handles occupant-
induced heat gains in a principled manner, without re-
quiring specially collected data, is limited. To the best
of our knowledge, the only references that fall into this
category are [8,4]. There are many differences between
these references and our work. We point out two key dif-
ferences. One, in contrast to the methods in [8,4], the
proposed SPDIR method can enforce properties of the
system that are known from the physics of the thermal
processes, in particular, stability and signs of DC gains
for certain input-output pairs. For instance, an increase
in outdoor temperature will lead to an increase in indoor
temperature, but none of the prior methods guarantees
that the identified model will predict this behavior. Sec-
ond, while the proposed SPDIR method requires solving
a feasible convex optimization problem, the methods in
[8,4] require solving non-convex optimization problems.
These two features of the proposed method enable it to
be used as part of a self-learning control system without
the need for a human expert in the loop.

The solution to an `1-regularized least-square problem
is tunned by a regularization parameter λ. Although
results from convex analysis in [14,11] tell us that there
is a threshold λmax above which specific entries of the
solution to such problem are identically zero, those
works only determine λmax for formulations with no
constraints, whereas linear inequality constraints are in-
volved in our study. Considering the critical parameter
value λmax provides very good starting point in finding
a suitable value of λ. In this paper we determine λmax
for an `1-regularized least-square problem with linear
inequality constraints along with a heuristic to choose λ.

The article makes three additional contributions over the

preliminary version [18]: (1) we determine the value of
the critical regularization parameter λmax that is used in
tuning the regularization parameter λ (Proposition 3);
(2) we provide evaluation of our method on data from
a real building, and (3) we compare performance of the
proposed method against the methods in [8,2].

The rest of this paper is organized as follows. Section 2
formally describes the problem and establishes a few pre-
liminaries. Section 3 describes the proposed algorithm.
Section 4 provides evaluation results and Section 5 con-
cludes the paper. In Section 6, constraints that enforce
physical properties of the system are derived, and addi-
tional comparisons of the proposed method against the
methods in [8,2] are provided.

2 Problem Formulation

The indoor zone temperature Tz is affected by three
known inputs: (1) the heat added to the zone by the
HVAC system, qhvac(kW), (2) the outside air tempera-
ture Toa (◦C), (3) the solar irradiance ηsol(kW/m2), and
the unknown disturbance qint (kW), which is the inter-
nal heat gain due to occupants, lights, and equipments
used by the occupants. The only measurable output is
the zone temperature Tz(

◦C).

Let u(t) := [qhvac(t), Toa(t), ηsol(t)]T ∈ R3, w(t) :=
qint(t) ∈ R, and y(t) := Tz(t) ∈ R. We start with the
following second-order discrete-time transfer function
model of the system, with a sampling period ts:

y(z−1) =
1

D(z−1)

[ 3∑
j=1

[

2∑
i=0

αijz
−i]uj(z

−1)

+ [

2∑
i=0

βiz
−i]w(z−1)

]
,

(1)

where D(z−1) = 1−θ1z
−1−θ2z

−2, for some parameters
θ1, θ2 and αij , βi’s, and u[k], w[k], y[k] are samples of
the continuous-time signals u(t), w(t), y(t). This model
is a discrete-time version of a physics-based continuous
time model that is described in Section 2.1.1. For future
convenience, we rewrite (1) as

y(z−1) =
1

D(z−1)

[
K(z−1)Tu(z−1) + w̄(z−1)

]
,

where K(z−1) :=


θ3z
−2 + θ4z

−1 + θ5

θ6z
−2 + θ7z

−1 + θ8

θ9z
−2 + θ10z

−1 + θ11

 , (2)

and w̄(z−1) is the Z-transform of the transformed dis-
turbance signal w̄[k] defined as

w̄[k] := β0w[k] + β1w[k − 1] + β2w[k − 2]. (3)
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An inverse Z-transform on (2) yields a difference equa-
tion, which leads to:

y[k] = φ[k]T θ, k = 3, . . . , kmax, (4)

where kmax is the number of samples, and θT :=
[θTp , w̄

T ], in which θp = [θ1, . . . , θ11]T ∈ R11, w̄ =

[w̄3, . . . , w̄kmax
]T ∈ Rkmax−2 and

φ[k]T :=
[
y[k − 1], y[k − 2], u1[k − 2], u1[k − 1], u1[k],

u2[k − 2], . . . , u2[k], u3[k − 2], . . . , u3[k], eTk−2

]
,

where ek is the k-th canonical basis vector of Rkmax−2

in which the 1 appears in the kth place. Eq. (4) can be
expressed as:

y = Φθ, (5)

where y := [y[3], . . . , y[kmax]]
T ∈ Rkmax−2 and

Φ :=


φ[3]T

. . .

φ[kmax]T

 ∈ Rkmax−2×kmax+9.

The problem we seek to address is: given time traces of
inputs and outputs, {u[k], y[k]}kmax

1 , determine the un-
known parameter vector θp ∈ R11 and the unknown trans-
formed disturbance vector w̄ := [w̄3, . . . , w̄kmax

]T , i.e.,
determine θ.

The matrix Φ is not full column-rank, so there will be
an infinite number of solutions to (5). We also note that
Φ has the form

Φ =
[
Ψ(kmax−2)×11, I(kmax−2)×(kmax−2)

]
.

Since the number of samples is typically large, Ψ is a
tall matrix. Due to the dependency of Ψ on (noisy) mea-
surements of inputs and outputs, Ψ is full column-rank
except in case of degenerate data. We therefore will use
physical insights to impose additional constraints on θ
for the rest of this section.

2.1 Parameter constraints from physical insights

The constraints described below are straightforward to
derive, but involve - in a few cases - extensive algebra.
We therefore provide the proof in the Appendix.

Stability The open loop dynamics of a building are
bounded input bounded output (BIBO) stable; it will be
a strange building indeed in which the temperature can
become unbounded in response to bounded changes in

the inputs. BIBO stability of the discrete-time model (1)
is equivalent to:

−θ2 < 1, (6)

θ2 + θ1 < 1, (7)

θ2 − θ1 < 1. (8)

Positive DC-gain In case of a real building, a steady
state increase in the outdoor temperature will lead to
a steady state increase in the indoor temperature, and
the same pattern holds for each of the three inputs
qhvac, Toa, η

sol. In other words, the corresponding DC
gains must be positive. It can be shown that positive
DC gains are equivalent to:

θ3 + θ4 + θ5 > 0, (9)

θ6 + θ7 + θ8 > 0, (10)

θ9 + θ10 + θ11 > 0. (11)

2.1.1 Physical insights from an RC network ODE model

Additional constraints can be imposed on θ if we use
insights from a physics-based model. The physics-based
model we use is a resistance-capacitance (RC) network
model. An RC network is a common paradigm for mod-
eling building thermal dynamics [13,5]. We will later as-
sume that the discrete-time transfer function model (1)
is obtained by discretizing a continuous-time RC net-
work model, which helps us impose constraints on θ.

Fig. 1. A photograph of Pugh Hall and a schematic of the
“2R2C” model.

Figure 1 shows a building (left) and a corresponding
2nd-order resistance-capacitance (RC) network model
(right). The ODE model of the RC-network model shown
in the figure is:

CzṪz =
Tw − Tz
Rz

+ qhvac +Aeη
sol + qint,

CwṪw =
Toa − Tw
Rw

+
Tz − Tw
Rz

,

(12)

where Cz, Cw, Rz, Rw are the thermal capacitances and
resistances of the zone and wall, respectively, and Ae

is the effective area of the building for incident solar
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radiation. All five parameters are positive. Defining the
state vector as x := [Tz, Tw]T ∈ R2, (12) can be written
as

ẋ = Fx+Gu+Hw, y = Jx, (13)

where u, w, and y are defined at the beginning of Sec-
tion 2, and F ∈ R2×2, G ∈ R2×3, H ∈ R2×1 and J ∈
R1×2 are appropriate matrices that are functions of the
parameters Cz, Cw, Rz, Rw, Ae. Specifically,

F =

[
− 1
CzRz

1
CzRz

1
CwRz

− 1
Cw

( 1
Rw

+ 1
Rz

)

]
,

G =

[
1
Cz

0 Ae

Cz

0 1
CwRw

0

]
,

H =

[
1
Cz

0

]
,

J =
[
1 0
]
.

In Laplace domain,

y(s) =
1

D(s)

[
(s− f22) (g11u1(s) + g13u3(s))

+ f12g22u2(s) + (s− f22)h11w(s)
]
,

(14)

where fij , gij , hij ’s are the i, j-th entry of the matrices
F,G,H (respectively) in (13), and

D(s) = s2 + d1s+ d2, with (15)

d1 =
1

CzRz
+

1

Cw
(

1

Rz
+

1

Rw
), d2 =

1

CzCwRzRw
.

We now assume that the discrete-time system (1) was
obtained by discretizing the continuous-time system
(14) using Tustin transform. It can be shown through
straightforward calculations that the parameters of the
discrete-time model – the θi’s – are related to those of
the continuous-time model (14) as follows:

θ1 :=
8− 2d2t

2
s

D0
, θ2 := −d2t

2
s − 2d1ts + 4

D0
,

θ3 θ9

θ4 θ10

θ5 θ11

 :=
ts
D0


−2− f22ts

−2f22ts

2− f22ts

[g11 g13

]
,


θ6

θ7

θ8

 :=


1

2

1

 f12g22t
2
s

D0
,

(16)

where D0 = d2t
2
s + 2d1ts + 4. Similarly,

[β0, β1, β2] =
ts
[
(2 + ε0), 2ε0, (−2 + ε0)

]
CzD0

, (17)

where ε0 = −f22ts =
ts
Cw

(
1

Rw
+

1

Rz
). (18)

Sign of parameters By using the positivity of the pa-
rameters Rw, Rz, Cw, Cz, Ae, the following holds:

θi > 0, i ∈ {1, 4, 5, 6, 7, 8, 10, 11},
θ2 < 0, θ3 < 0, θ9 < 0,

(19)

of which the proof is provided in the Appendix.

Sparse disturbance We need a few definitions to talk
about approximately sparse vectors, and infrequently
changing vectors.

Definition 1 (1) A vector x ∈ Rn is (ε, f)-sparse if at
most f fraction of entries of x are not in [−ε, ε].

(2) The change frequency cf (x) of a vector x ∈ Rn is the
fraction of entries that are distinct from their pre-
vious neighbor: cf (x) = 1

n−1 |{k > 1|xk 6= xk−1}|,
where |A| denotes the cardinality of the set A. We
say a vector x changes infrequently if cf (x)� 1.

The following proposition shows that if the disturbance
is slowly varying (e.g., if it is piecewise-constant), the
transformed disturbance is approximately sparse.

Proposition 1 Suppose the disturbance w[k] is uni-
formly bounded |w[k]| ≤ wb in k, it changes infrequently
with change frequency cf (ω), and ε0 � 1 where ε0 is
defined in (18). Then, w̄[k] is (ε̄, 2cf (w))-sparse, where
ε̄ = 4

CzD0
tswbε0.

Proof of Proposition 1 It can be shown from (3) and
(17) that

w̄[k] =
ts

CzD0

(
2(w[k]− w[k − 2])

− ε0(w[k] + 2w[k − 1] + w[k − 2])
)
.

Since w is bounded, ∃wb ≥ 0 s.t. w[k] ∈ [−wb, wb]. Since
cf (w) � 1 from the hypothesis, for at least 1 − 2cf (w)
fraction of k’s, w[k]− w[k − 2] = 0, and for those k’s,

w̄[k] = −ε0
ts

CzD0

(
w[k] + 2w[k − 1] + w[k − 2]

)
∈ [
−4ε0tswb
CzD0

,
4ε0tswb
CzD0

] = [−ε̄, ε̄],

which proves the result. �
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Since the product RC is large for large buildings, of the
order of few hours [8], ε0 is small for such buildings. In
addition, both ε0 and ε̄ can be made as small as possible
by choosing ts sufficiently small. Therefore the assump-
tion in Proposition 1, that ε0 is small, is not a strong one.

In order to ensure existence of a solution [10], the above
constraints (6)-(11), and (19) are relaxed from strict in-
equalities to non-strict ones.

Redundancy of constraints After being relaxed into
non-strict inequalities, constraints (6)-(11), and (19) can
be compactly written as ḡ = [ḡT1 , ḡ

T
2 , ḡ

T
3 , ḡ

T
4 ]T ≤ 0,

where

ḡ1(θ1, θ2) :=



−1 0

0 1

0 −1

1 1

−1 1


[
θ1

θ2

]
+



0

0

−1

−1

−1



ḡ2(θ3, θ4, θ5) :=


1 0 0

0 −1 0

0 0 −1

−1 −1 −1



θ3

θ4

θ5



ḡ3(θ6, θ7, θ8) :=


−1 0 0

0 −1 0

0 0 −1

−1 −1 −1



θ6

θ7

θ8



ḡ4(θ9, θ10, θ11) :=


1 0 0

0 −1 0

0 0 −1

−1 −1 −1



θ9

θ10

θ11

 ,

whose boundaries are shown in Figure 2. Denote the
feasible sets for ḡ1, ḡ2, ḡ3, ḡ4 ≤ 0 as

G1 = {(θ1, θ2)|ḡ1(θ1, θ2) ≤ 0}
G2 = {(θ3, θ4, θ5)|ḡ2(θ3, θ4, θ5) ≤ 0}
G3 = {(θ6, θ7, θ8)|ḡ3(θ6, θ7, θ8) ≤ 0}
G4 = {(θ9, θ10, θ11)|ḡ4(θ9, θ10, θ11) ≤ 0},

respectively. The set G1 and boundaries of Gi, i = 2, 3, 4
are shown in Figure 2.

Noticing from Figure 2(a) (left) and Figure 2(b) (left),
the last inequality from ḡ1 ≤ 0, i.e., constraint (8), and

-1 0 1 2 3
31

-2

-1

0

1

2

3
2

31 = 0

32 = 0

32 = !1

31 + 32 = 1

32 ! 31 = 1

0

34

34 = 0

0
35 = 0

0

33
;

3
5

-;

33 + 34 + 35 = 0

33 = 0;

(a) Boundaries of ḡ1(θ1, θ2) ≤ 0 are shown in blue (left), and
a graph of feasible set G1 is shown in orange (left). Boundaries
of ḡ2(θ3, θ4, θ5) ≤ 0 and G2 are shown in orange (right), where
ρ→∞ (right).

36

0
0

36 + 37 + 38 = 0

37

38 = 0

0
;

3
8

;

36 = 0
37 = 0

;

0

310

0

310 = 0

311 = 0

0

39
;

3
1
1

-;

39 = 0

39 + 310 + 311 = 0

;

(b) Boundaries of ḡ3(θ6, θ7, θ8) ≤ 0 are shown in orange and blue
(left), boundaries of G3 are shown in orange (left). Boundaries
of ḡ4(θ9, θ10, θ11) ≤ 0 and G4 are shown in orange (right). Here
ρ→∞.

Fig. 2. Feasible sets Gk’s are non-empty and convex.

the last one from ḡ3 ≤ 0, i.e., (10), are redundant. Math-
ematically,

5⋂
i=1

{(θ1, θ2)|ḡ1,Ri
≤ 0} =

4⋂
i=1

{(θ1, θ2)|ḡ1,Ri
≤ 0}

4⋂
i=1

{(θ6, θ7, θ8)|ḡ3,Ri ≤ 0} =

3⋂
i=1

{(θ6, θ7, θ8)|ḡ3,Ri ≤ 0},

where ḡ1,Ri : R2 → R and ḡ3,Ri : R3 → R is the i-th en-
try of the function ḡk, where k = 1, 3 respectively (imag-
ining ḡk as a column vector). Therefore constraints (8)
and (10) can be removed without changing the feasi-
ble sets. The remaining, linearly independent constraints
can be written as

Guc θp + gc ≤ 0, Guc : R11 → R15

where Guc is a full column-rank block diagonal matrix,

Guc = diag

([−1 0
0 1
0 −1
1 1

] [
1 0 0
0 −1 0
0 0 −1
−1 −1 −1

] [−1 0 0
0 −1 0
0 0 −1

] [ 1 0 0
0 −1 0
0 0 −1
−1 −1 −1

])
gc =

[
0 0 −1 −1 01×11

]T
.

For future convenience, we write the constraints in the
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equivalent form:

Gcθ + gc ≤ 0, where Gc =
[
Guc , 015×kmax−2

]
,

where the inequality is entry-wise.

3 Proposed SPDIR Algorithm

Since we expect w to be piecewise-constant and infre-
quently changing, w̄ should be approximately sparse. Let
S := [0kmax−2×11| Ikmax−2] so that Sθ = w̄. We there-
fore seek a solution to y = Φθ so that Sθ is sparse, by
posing the following optimization problem:

θ̂ = arg min
θ

1

2
‖y − Φθ‖22 + λ‖Sθ‖1

s. t. Gcθ + gc ≤ 0,
(20)

where λ ≥ 0 is a user-defined weighting factor. The `1-
norm penalty is to encourage sparsity of the solution; see
the discussion in Section 1. The problem (20) is an ex-
tension of the so-called “generalized lasso” problem [1]:

θ̂ = arg min
θ

1

2
‖y − Φθ‖22 + λ‖Sθ‖1,

with the extension being the addition of the linear in-
equality constraint. We therefore call problem (20) the
“linearly constrained generalized lasso problem”, or lcg-

lasso for short. The estimated plant parameters θ̂p and
estimated transformed disturbance ˆ̄w can be recovered
from θ̂ since θT = [θTp , w̄

T ].

The next result establishes a few properties of the op-
timization problem (20). We call a point θ physically
meaningful if none of the three SISO transfer functions
in (2) is identically zero.

Proposition 2 The optimization problem (20) is feasi-
ble, convex, and every physically meaningful feasible θ is
a regular point of the constraints.

Proof of Proposition 2 The feasible set for the con-
straint Gcθ + gc ≤ 0 is

G := G1 × G2 × G3 × G4,

where × denotes the Cartesian product. Because Gk’s are
non-empty and convex, G is also non-empty and con-
vex. The objective function is convex since it is a sum of
two convex functions. Therefore the optimization prob-
lem (20) is feasible and convex.

Notice that the origins in the sets G2, G3, and G4 are
not physically meaningful as defined above, and these are
the only non-meaningful points. Hence, at any physically

meaningful feasible point, each ḡk will have no more than
two active constraints. It can be verified by inspection (see
Figure 2) that the gradients of these active constraints are
linearly independent. Therefore, every physically mean-
ingful feasible point is a regular point of the constraints.

�

3.1 Regularization Parameter Selection

The selection of λ determines the solution to lcg-lasso
problem (20). At one extreme, λ = 0 will lead to a least-
squares solution to (20) that will suffer from over-fitting.
A larger λ will make the resulting Sθ sparser. We there-
fore propose a heuristic to select λ by searching in a range
[0, λmax]. The following proposition provides both the
value of λmax and the rationale for stopping the search
at that value.

Proposition 3 Every solution θ̂ to (20) satisfies Sθ̂ =
0 = ˆ̄w if and only if λ > λmax := ||y||∞.

Proof of Proposition 3 Since all inequalities are
affine, and θ = 0 is feasible, a weaker form of Slater’s
condition is satisfied which means strong duality holds [3,
eq. (5.27)]. Let β := Φθ, χ := Sθ, z := Gcθ. The
augmented Lagrangian function of (20) is:

L(θ,z, χ, β; γ, ζ, µ, η) =
1

2
‖y − β‖22 + λ‖χ‖1 + γT (z + gc)

+ µT (χ− Sθ) + ηT (β − Φθ) + ζT (z −Gcθ),

where γ ≥ 0. The dual function is

g(γ, ζ, µ, η) = inf
θ,z,χ,β

L

= inf
θ
−(ηTΦ + µTS + ζTGc)θ + inf

z
(ζT + γT )z

+ inf
χ

(λ||χ||1 + µTχ) + inf
β

(
1

2
‖y − β‖22 + ηTβ) + γT gc.

Since a linear function is bounded below only when it is
identically zero, thus

inf
θ
−(ηTΦ + µTS + ζTGc)θ =

{
0 ΦT η = −STµ−GTc ζ
−∞ otherwise

,

inf
z

(ζT + γT )z =

{
0 ζ + γ = 0, γ ≥ 0

−∞ otherwise
,

inf
χ

(λ||χ||1 + µTχ) =

kmax−2∑
k=1

inf
χk

(λ|χk|+ µkχk)

=

{
0 ||µ||∞ ≤ λ
−∞ otherwise

.
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The corresponding minimizers for ||µ||∞ ≤ λ satisfy:
if µk = −λ, χ̂k = any non-negative number

if |µk| < λ, χ̂k = 0

if µk = λ, χ̂k = any non-positive number

.

(21)

Finally the infimum over β is

inf
β

(
1

2
‖y − β‖22 + ηTβ) =

1

2
‖y‖22 −

1

2
‖y − η‖22,

which is derived by setting ∂L
∂β = 0 and substituting the

resulting minimizer β = y − η. Therefore the dual func-
tion can be simplified as

g(γ, µ, η, ζ) =

{
1
2‖y‖

2
2 − 1

2‖y − η‖
2
2 + γT gc C1

−∞ o/w
,

(22)

where C1 stands for the following:

C1 :


ΦT η = −STµ−GTc ζ
ζ + γ = 0, γ ≥ 0

||µ||∞ ≤ λ.
(23)

The dual variables γ, µ, η, ζ are dual feasible because (23)
has a trivial solution. The first equation from (23) has
the form:[

ΨT
11×(kmax−2)

Ikmax−2

]
η = −

[
011×(kmax−2)

Ikmax−2

]
µ−

[
(Guc )T11×15

0(kmax−2)×15

]
ζ,

=⇒ ΨT η = −(Guc )T ζ,

η = −µ. (24)

which has infinite number of solutions (η, µ, ζ) since ΨT

and (Guc )T both have full row rank. Eliminating η and ζ
from (22) using (23)-(24), the dual problem is

(γ̂, µ̂) = max
γ,µ

1

2
‖y‖22 −

1

2
‖y + µ‖22 + γT gc

s. t. −ΨTµ = (Guc )T γ, γ ≥ 0,

||µ||∞ ≤ λ.

(25)

For a given λ ≥ 0, two scenarios arise when solving (25).

Scenario 1: λ ≤ ‖y‖∞: In this scenario, the k-th entry
of any solution µ̂ to (25) will satisfy |µ̂k| = min(λ, |yk|)
and there is at least one entry that satisfies |µ̂k| = λ.
The corresponding solution χ̂k is non-unique according
to (21). Hence χ̂ is non-unique.

Scenario 2: λ > ‖y‖∞: In this case the solution to (25)
satisfies µ̂ = −y, and therefore, ‖µ̂‖∞ = ‖y‖∞ < λ.

From (21), we have that χ̂ = 0. Since χ = Sθ = w̄, the
result is proved. �

Heuristic for selecting λ: The heuristic we propose
to choose λ is based on the L-curve method, and uses
the result from the previous proposition. First, plot both
the solution norm ‖Sθ‖1 and residual norm ‖y − Φθ‖2
against λ by repeatedly solving Problem (20) for vari-
ocus λ in [0, λmax], where λmax is defined in Proposi-
tion 3. An illustration of these two plots is shown in Fig-
ure 3. Second, identify a value λ1 so that the solution
norm is smaller than a user-defined threshold for λ > λ1,
and then identify λ2 so that the residual norm is smaller
than a user-defined threshold for λ < λ2. If λ2 > λ1,
choose λ to be λ1. If not, pick another threshold, and
continue until this condition is met. Figure 3 shows an
example of having these curves both lie in picture.

||
y
-Φ
ϴ

||
2
(1

0
 -

6
)

||
S
ϴ

||
1

||y-Φϴ||2

||Sϴ||1

λ1 λ20 λmax

50 5

Fig. 3. Illustration of regularization parameter selection

4 Evaluation of Proposed SPDIR algorithm

Numerical implementation of the proposed method is
performed by using the cvx package for solving convex
problems in MATLAB c© [6].

Two experiments are conducted in order to test the pro-
posed method SPDIR, one using simulation data and the
other using real building data collected from Pugh Hall,
a commercial building in the University of Florida cam-
pus. The method proposed in [8] is also implemented as
a comparison, which is referred to as the LD (Lumped
Disturbance) method. We remark here the LD method
is non-convex, and the results from the LD method pre-
sented here are obtained with a multi-start approach
with random initial guesses.

Simulation data is generated by simulating the
continuous-time RC model (12). The parameters of the
model were taken from [4, Table 1], which uses a model
of the same structure. Four scenarios are tested:

(1) OL-PW: Open-loop with piecewise-constant dis-
turbance;

(2) OL-NPW: Open-loop with not piecewise-constant
disturbance;

(3) CL-PW: Closed-loop with piecewise-constant dis-
turbance;
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Fig. 4. Training data from simulated building. The data
ηsol, Toa, qint shown here are used in all four scenarios;
qhvac, Tz shown here are for the CL-NPW scenario.

(4) CL-NPW: Closed-loop with not piecewise-constant
disturbance;

The algorithm is expected to perform well in the OL-PW
scenario since the disturbance satisfies the piecewise-
constant assumption the method is designed for, and
identification with open-loop data is generally easier
than with closed loop data [9]. The CL-NPW scenario
is the most relevant in practice, but it is likely to be the
most challenging for the method. We therefore focus on
discussing the results from the CL-NPW scenario in the
sequel.

In the two open-loop scenarios, the input component
qhvac is somewhat arbitrarily chosen, while in the closed-
loop scenarios, qhvac is decided by a PI-controller that
tries to maintain the zone temperature at a setpoint
T ref . To have exciting input to aid in identification,
the setpoint T ref is chosen to be a PRBS sequence [9].
To ensure that occupant comfort is not compromised,
the setpoint is constrained to lie within 22◦C and
27◦C. The input components, ambient temperature
from weatherunderground.com, and solar irradiance
data from NSRDB: https://nsrdb.nrel.gov/, both
for Gainesville, FL, are used in all four scenarios. The
disturbance signal qint is chosen by scaling CO2 mea-
surements from Pugh Hall. We assume the scheduled
occupancy is correlated to the CO2 level. The training
data are shown in Fig. 4.

For the real building, measurements of qhvac and Tz are
collected from a large zone (an auditorium) in Pugh Hall.
See Fig. 5. The location of the room from which mea-
surements are collected is shown in Fig. 6. The ambient
temperature and solar irradiance data, collected from
the same online source at another week, are used.
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Fig. 5. Training data from real building.

*

N

Fig. 6. Pugh hall photograph (left) and floor plan (right),
with the zone from which building data are collected shown
enclosed in dashed lines. The “∗” denotes the location from
where the photograph was taken and the arrow denotes di-
rection of the camera.

4.1 Algorithm evaluation with simulation data

Parameters Table 1 shows the true values of the plant
parameters, θp, and the corresponding estimation er-
rors (in percentage) from CL-NPW scenario. First, the
two parameters, θ1, θ2, that determine the character-
istic equation are estimated highly accurately. Second,
there is more error in the estimate of numerators. While
some are more accurate than others, the numerator co-
efficients corresponding to the input ηsol has the most
error. A possible reason for this high error is the lack
of richness in the ηsol data. Parameter estimates by the
proposed method are slightly more accurate than those
by the LD method.

Frequency response For prediction accuracy, fre-
quency response is more important than individual
parameters. Figure 7 compares the frequency response
of the identified plants with their true values for the
two open-loop and closed-loop scenarios, respectively.
For the transfer function from input qhvac to output Tz,
the maximum absolute error in the estimated frequency

8
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Fig. 7. Algorithm evaluation on simulation data: Bode magnitude plots of the true and identified systems for 4 scenarios.

Table 1
Plant parameters and errors in their estimates.

θp

θ̂p−θp
θp

%
input

LD SPDIR

θ1 1.97565 −0.061 −0.042

θ2 −0.97573 −0.13 −0.085

θ3 −4.35× 10−3 94.3 8.0

θ4 5.21× 10−5 16262 108.2 qhvac

θ5 4.41× 10−3 −100.0 6.4

θ6 1.86× 10−5 67.9 48.9

θ7 3.72× 10−5 −15.3 −22.3 Toa

θ8 1.86× 10−5 −100.0 68.4

θ9 −3.05× 10−2 430.5 232.1

θ10 3.65× 10−4 44577 19324 ηsol

θ11 3.08× 10−2 −100.0 2.9

response is:

max
ω

|Ĝqhvac→Tz (jω)−Gqhvac→Tz (jω)|
|Gqhvac→Tz

(jω)|
= 0.24

and occurs at ω = 1/(10 weeks) for the CL-PW scenario.
The maximum errors for the transfer functions from Toa
and ηsol to Tz occur at the Nyquist frequency. Frequency
responses of identified models from the LD methods for
the CL-PW scenario are similar; see Figure 8.

Disturbance The estimated transformed disturbance,
ˆ̄w, for all four scenarios are shown in Fig. 9. The esti-
mates are quite accurate when the true values are large,
but less accurate otherwise. However, the estimates

1/week 1/day 1/6h 1/2h 1/15min

10 -2

10 0

True LD

1/week 1/day 1/6h 1/2h 1/15min
10 -6
10 -4
10 -2
10 0

1/week 1/day 1/6h 1/2h 1/15min

10 -2

10 0

Fig. 8. LD method application on simulation data: Bode
magnitude plots of the true and identified systems.

capture the trend of the true values, even when the true
disturbance is not piecewise-constant, in which case the
transformed disturbance may be neither approximately
sparse nor infrequently changing. Since the LD method
identifies an output disturbance while the proposed
method identifies an input disturbance, the disturbance
estimates are not comparable.

Zone temperature prediction The plant identified
with data from one week is used to predict temperatures
in another week. The disturbance data is the same be-
tween the training and validation data sets but the input
u and output y data sets are distinct. The rms value
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Fig. 9. Algorithm evaluation on simulation data: comparison
of identified and actual transformed disturbance. Bottom
two plots are zoomed version on Tuesday of the top two plots.

of the prediction error of zone temperature is 1.2 ◦C for
the proposed SPDIR method in all 4 scenarios, see Fig-
ure 10. As we can see from the figure, the error is more
pronounced in certain days of the week. The rms error
is 1.1 ◦C for the LD method, see Figure 11.

The LD method performs comparably to the proposed
method in these tests because the initial guess for the
non-convex optimization problem in the LD method
was chosen carefully. When initial guesses are not cho-
sen carefully, the proposed method outperforms the
LD method. Details of the comparison are available in
Sec. 6.2.

4.2 Algorithm evaluation using building data

Evaluation with data from a real building is challenging
since there is no ground truth to compare with.

Frequency response Fig. 12 shows the Bode plots of
the identified model for the real building. Notice that
the Bode plots generated using both simulation data and
building data are similar. Since the simulation model’s
parameters are taken from [4], which were obtained by
applying the system identification method proposed in
that reference to the data from the same building (Pugh
Hall’s auditorium), this similarity provides confidence in
the results. Frequency responses of the model identified
by the LD method are similar in lower frequencies but
less so in higher frequencies.

Disturbance The estimated transformed disturbance ˆ̄w

is shown in Fig. 13. The entries corresponding to night-
time are small in magnitude. This is consistent with
what we expect: this particular building is used mostly
as a classroom and is unoccupied at night. So the dis-
turbance - and the transformed disturbance - should be
small at night. The output disturbance estimated by
the LD method is not shown since it is not comparable
with the transformed input disturbance identified by the
SPDIR method.

Zone temperature fitting The temperature is pre-
dicted quite well by the identified plant and disturbance;
see Fig. 14. The rms error is 0.3◦C for the proposed
method, and 0.1◦C for the LD method.

In addition, we also tried application of the Box-Jenkins
method with an ARMAX (Autoregressive Moving Aver-
age with Explanatory Variable) model to identify an LTI
plant driven by colored Gaussian disturbance [2]. The
proposed method outperforms the Box Jenkins method
for experiments with both simulation and building data;
see Sec. 6.3 for the details.

5 Conclusion

The proposed method identifies a black box LTI model
and a non-parametric (transformed) disturbance using
`1-regularization. In contrast to existing methods, it can
be used as part of a self-learning control system without
human supervision due to convexity and guarantees on
stability and DC gains. Some work on using the method
in this way for control are reported in [17]. There are
many avenues for future work, including identification of
the input disturbance rather than its transformed ver-
sion, and analysis of the quality of data needed for the
method to perform well. Modeling of multi-zone build-
ings is another area for extension. Preliminary work in
this direction are reported in [16].
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6 Appendix

6.1 Constraints derivation

Stability For discrete-time transfer function (2) to be
stable, roots of D(z−1) = z−2(z2 − θ1z − θ2) need to lie
within the unit circle, i.e., |r1|, |r2| < 1, where r1, r2 =
θ1±
√

∆
2 . Resulting discussion goes as follows depending

on sign of ∆ = θ2
1 + 4θ2.

Case 1: ∆ = θ2
1 + 4θ2 ≥ 0⇒ r1, r2 ∈ R.

|r1|, |r2| < 1 ⇐⇒
{
−2− θ1 <

√
∆ < 2− θ1

−2 + θ1 <
√

∆ < 2 + θ1
.

(26)

Notice that either θ1 ≥ 2 or θ1 ≤ −2 will lead
to 0 ≤

√
∆ < 0, which has no solution, we need

−2 < θ1 < 2.

Take square of both sides of Eq (26) one would
get:

θ2 + θ1 < 1, θ2 − θ1 < 1.

Case 2: ∆ = θ2
1 + 4θ2 < 0⇒ r̄1=r2.

|r1|, |r2| < 1 ⇐⇒ |r2
1| = |r1r̄1| = |r1r2| < 1

⇐⇒ | − θ2| < 1

⇐⇒ − 1 < θ2 < 1.

Combining the above two cases together, we have sta-
bility constraints as

−θ2 < 1, θ2 + θ1 < 1, θ2 − θ1 < 1.

Positive DC-gain For the discrete-time model (2), the
DC gains from inputs qhvac, Toa, ηsol, to the output Tz
are

K(z−1)T

D(z−1)
|z=1 =

1

1− θ1 − θ2


θ3 + θ4 + θ5

θ6 + θ7 + θ8

θ9 + θ10 + θ11

 .
Using the previously established relation (7):

θ2 + θ1 < 1,

the denominator D(z−1)|z=1 is positive. Therefore pos-
itive DC gains are equivalent to

θ3 + θ4 + θ5 > 0,

θ6 + θ7 + θ8 > 0,

θ9 + θ10 + θ11 > 0.

Sign of parameters If ts < min{l,m, n}, where

l ,
2CwRwRz
Rz +Rw

,

m , 2(RzCzRwCw)1/2,

n ,
2

3
min(RzCz, RzCw, RwCw),

the following derivations hold. Notice that in (16), signs
of θi’s depend only on numerators as they share a com-
mon positive denominator D0, whose parameters are
positive as shown in (15). Since f12, g22 > 0, from the
last equation in (16), it follows that θ6, θ7, θ8 > 0. Mean-
while, we know that ts < l = − 2

f22
by hypothesis and

f22 < 0; it follows that −2 − f22ts < 0. Given that g11,
g13 are positive, it can be shown that θ3, θ9 < 0 while
θ4, θ5, θ10, θ11 > 0.
Similar analysis applies for θ1, θ2. Because

0 ≤ ts < {2(RzCzRwCw)1/2},

we have

t2s < 4RzCzRwCw =
4

d2
⇐⇒ 2d2t

2
s < 8.

Thus from (16), θ1 > 0. Denote

b ,
d1

d2
= RwCw +RwCz +RzCz > 0,

c ,
1

d2
= RzCzRwCw > 0.
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From (16), θ2 < 0 is equivalent to

d2(t2s −
2d1

d2
ts +

4

d2
) > 0 ⇐⇒ t2s − 2bts + 4c > 0

(27)

since d2 > 0. Let ∆ be the discriminant of the above
quadratic, then

∆

4
=b2 − 4c

=(RwCw)2 + (RwCz)
2 + (RzCz)

2

− 2RwRzCwCz + 2RwRzC
2
z + 2R2

wCwCz

>(RwCw)2 + (RwCz)
2 + (RzCz)

2

− 2RwRzCwCz + 2RwRzC
2
z − 2R2

wCwCz

=(RwCw −RwCz −RzCz)2

≥0,

which means (27) has two distinct real roots r1, r2. Here
we will show (27) holds by showing ts lies on the left
hand side of the smaller root, denoted as r1. We have

r1 =b−
√
b2 − 4c = b−

√(
b− 2c

b

)2

− 4c2

b2

≥b−

√(
b− 2c

b

)2

= b−

√(
b2 − 2c

b

)2

.

Since c > 0, we have b2 − 2c > b2 − 4c > 0, and

r1 ≥b−
(
b2 − 2c

b

)
=

2c

b
=

2RzCzRwCw
RwCw +RwCz +RzCz

≥ 2RzCzRwCw
3 max(RwCw, RwCz, RzCz)

=
2

3
min(RzCz, RzCw, RwCw)

>ts,

where the final inequality is due to the initial hypoth-
esis: ts < n. Hence (27) holds, or equivalently, θ2 < 0.
Therefore we have proved constraints on the signs of pa-
rameters as stated in (19).

6.2 Comparison with the Lumped disturbance method
without parameter tunning

Provided below are the results we obtained to show that,
the LD (lumped disturbance) method performs less sat-
isfying without carefully tuned parameters. Both the
proposed and the LD methods are implemented using
the the same simulation dataset from Section 4, except
that the disturbance is designed to change from the blue
signal (test 1) into the orange signal (test 2) as shown
below in Figure 15. The difference between these two

disturbance signals has mean 0, with 2.5 kW standard
deviation.
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Fig. 15. Disturbance signals used in the simulation.

Note for the LD method, an initial guess for the plant
parameters need to be provided. These initial parame-
ters are carefully picked in test 1, and are kept as the
same in test 2. Results indicate that the zone tempera-
ture prediction accuracy are much worse, when the dis-
turbance changes but the initial guesses for the param-
eters remain the same: the rms value of the prediction
error doubles from 1.2◦C to 2.4◦C; see Figure 16.
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Fig. 16. Evaluating the LD method with simulation data:
predicted and actual zone temperature.

In contrast, the same experiments are repeated using
the proposed method without retuning λ. The rms value
of the prediction error changes slightly from 1.0 ◦C to
1.2◦C, despite the changes in the disturbance; see Fig-
ure 17.
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Fig. 17. Evaluating the SPDIR method with simulation data:
predicted and actual zone temperature.

6.3 Comparison with Box Jenkins method

The ARMAX model with order (p, r, q) is:

yt =φ1yt−1 + · · ·+ φpyt−p + βT0 ut + · · ·+ βTr ut−r+

et + θ1et−1 + · · ·+ θqet−q,

t = p+ 1, . . . , N,

in which u ∈ R3 has 3 input variables. Here et’s are
white Gaussian and are assumed to be statistically in-
dependent of the input u. The model orders (p, q) are
first identified based on observation of the impulse re-
sponse of the system. Then r is identified based on in-
spections of the ACF (Auto-Correlation Function) and
PACF (Partial Auto-Correlation Function) of the time
series y. The model parameters are estimated using non-
linear least-squares.

Below we provide comparisons of our SPDIR method
with the Box Jenkins method, for experiments with sim-
ulation data and real building data respectively.

Performance of Box Jenkins method applied to
the ARMAX model using simulation data
The Box Jenkins method is implemented with a AR-
MAX model using the same simulation data set from
our paper. The model order (p, r, q) are identified by
using the methods provided in ref [1] (in the revised
manuscript) to be (2, 2, 2). For brevity, following are two
excerpts from the results, one for disturbance estimate
and the other for zone temperature prediction.

• Figure 18 shows the true values of the linear transfor-
mation of the disturbance, and the corresponding esti-
mations from the SPDIR method and the BJ method.
Results indicate that the proposed method estimates
the disturbance more accurately.
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Fig. 18. Algorithm evaluation on simulation data: estimated
and actual lumped disturbance.

• The plant identified with data from one week is used to
predict temperatures in another week. The rms value
of the prediction error of zone temperature is 2.3◦C for
the BJ method. The proposed SPDIR method predict
the temperature more accurately, with rms error of
1.2◦C; see Figure 19.
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Fig. 19. Algorithm evaluation on simulation data: predicted
and actual zone temperature (validation dataset).

Performance of Box Jenkins method applied to
the ARMAX model using building data
We now apply the methods to the building dataset from
our paper. Since there is no ground truth to compare
with, we only provide the zone temperature fitting re-
sults below.

The rms value of the prediction error of zone tempera-
ture is 0.3◦C for the proposed method, and is 4.5◦C for
the BJ method; see Figure 20.
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Fig. 20. Algorithm evaluation on building data: predicted
and actual zone temperature.
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