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Abstract

AI and machine learning tools are being used with increasing frequency for decision making in domains

that affect peoples’ lives such as employment, education, policing and financial qualifications. These

uses raise concerns about biases of algorithmic discrimination and have motivated the development of

fairness-aware machine learning. However, existing fairness approaches are based solely on attributes of

individuals. In many cases, discrimination is much more complex, and taking into account the social,

organizational, and other connections between individuals is important. We introduce new notions

of fairness that are able to capture the relational structure in a domain. We use first-order logic to

provide a flexible and expressive language for specifying complex relational patterns of discrimination.

Furthermore, we extend an existing statistical relational learning framework, probabilistic soft logic (PSL),

to incorporate our definition of relational fairness. We refer to this fairness-aware framework FairPSL.

FairPSL makes use of the logical definitions of fairnesss but also supports a probabilistic interpretation.

In particular, we show how to perform maximum a posteriori (MAP) inference by exploiting probabilistic

dependencies within the domain while avoiding violations of fairness guarantees. Preliminary empirical

evaluation shows that we are able to make both accurate and fair decisions.

1 Introduction

Over the past few years, AI and machine learning have become essential components in operations that drive the

modern society, e.g., in financial, administrative, and educational spheres. Discrimination happens when qualities

of individuals which are not relevant to the decision making process influence the decision. Delegating decision

making to an automated process raises questions about discriminating against individuals with certain traits based

on biases in the data. This is especially important when the decisions have the potential to impact the lives of

individuals, for example, the decisions on granting loans, assigning credit, and employment.

Fairness is defined as the absence of discrimination in a decision making process. The goal of fairness-aware

machine learning is to ensure that the decisions made by an algorithm do not discriminate against a population

of individuals [14, 7, 16]. Fairness has been well studied in the social sciences and legal scholarship (for

an in-depth review see [6]), and there is emerging work on fairness-aware ML within the AI and computer

science communities. For example, fairness through awareness/Lipschitz property [11], individual fairness [27],

statistical parity/group fairness [17], counterfactual fairness [19], demographic parity/disparate impact [14, 10],

preference-based fairness [26], and equality of opportunity [16].
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The existing work in fairness-aware machine learning is based on a definition of discrimination where a

decision is influenced by an attribute of an individual. An attribute value upon which discrimination is based

(such as gender, race, or religion) is called a sensitive attribute. The sensitive attribute defines a population of

vulnerable individuals known as the protected group. A fair decision-making process treats the protected group

the same as the unprotected group.

However, in many social contexts, discrimination is the result of complex interactions and can not be described

solely in terms of attributes of an individual. For example, consider an imaginary scenario in an organization in

which younger female workers who have older male supervisors have lower chances of promotion than their male

counterparts.1 This discrimination pattern involves two attributes of the individual (gender and age), a relationship

with another individual (supervisor), and two attributes of the second individual. Addressing such complex cases

poses two challenges. First, the concepts of discrimination and fairness need to be extended to capture not only

attributes of individuals but also the relationships between them. Second, a process is required that ensures that

fair decisions are made about individuals who are affected by such patterns. In this paper we address both of

these challenges. We use first-order logic (FOL) to extend the notion of fairness to the relational setting. FOL is

an expressive representation for relational problems which is also widely used for learning in relational domains.

Moreover, we extend an existing framework for statistical relational learning [15] called probabilistic soft logic

(PSL)2 [5]. PSL combines logic and probability for learning and reasoning over uncertain relational domains.

One of the most common reasoning tasks in PSL is called maximum a posteriori (MAP) inference, which is

performed by finding the most probable truth values for unknowns over a set of given evidence. We develop a

new MAP inference algorithm which is able to maximize the a posteriori values of unknown variables subject to

fairness guarantees. An early version of this paper which this work builds upon and extends appeared in [13].

Our contributions are as follows: 1) we propose fairness-aware machine learning for the relational setting; 2)

we extend PSL into a fairness-aware framework called FairPSL which can represent the logical definition of fair-

ness; 3) we develop a new MAP inference algorithm which is able to maximize the posteriori values of unknown

variables subject to fairness guarantees; 4) we empirically evaluate our proposed framework on synthetic data.

2 Motivation

Discrimination in social contexts have been studied in the field of social psychology [9, 8, 22]. There is a large

literature on various aspects of relational bias in social contexts such as in-group-out-group bias, gender bias,

and ethnicity-based favoritism that can result in discrimination. As an example, consider gender bias in the

workplace that reflects stereotypically masculine criteria and male-based favoritism. Such gender bias typically

places women in lower positions and negatively impacts their opportunities. Further, lack of women in leadership

positions may affect the promotion of women and results in a glass ceiling that keeps women from rising beyond

a certain level in the hierarchy. This scenario shows that considering protected attributes such as gender is not

always sufficient to detect the source of bias and avoid discrimination, one also has to consider the relational

information, in this case the organization hierarchy. Note that this can be generalized to any ingroup/outgroup

scenario where the sensitive attribute could be race, religion, age, marital-status, etc.

The existing work on designing fair algorithms in machine learning exclusively focuses on attribute-based

fairness, which is based on the following assumptions: First, there is an assumption that the individuals (sometimes

referred to as units or entities) are independent and described by simple attribute vectors. Second, the group for

which one wishes to ensure fairness (known as the protected group) is defined on the basis of some attribute

values. Finally, there is a decision that is associated with each individual, and the goal is to ensure that members

1Of course, many other patterns may be possible: female bosses may promote female subordinates and discriminate against male

workers, or male bosses may promote female employees. Our goal is to provide a general framework which is able to describe arbitrarily

complex discrimination patterns.
2http://psl.linqs.org/
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of the protected group are subject to a fair decision (we discuss different fairness measures in Section 4). We

illustrate attribute-based fairness in the following example.

Example 1 (Loan Processing): A bank bases its decisions about granting a loan on attributes of the applicant.

The goal is to decide whether to grant a loan to an applicant using a predictive model. The bank needs to ensure

that the obey fair lending practices and ensure that gender, race, sexual orientation of applicants has no influence

on the decision. In this scenario, the protected group is the historically disadvantaged applicants.

The current fairness-aware machine learning techniques are not capable of modeling relations and hence cannot be

used to make the decision making model fair. However, in many decision making scenarios, especially in social

and organizational settings, the domain is relational, and the protected group itself might be best represented

using a relational definition. We illustrate this setting in the following scenario:

Example 2 (Performance Review): Consider an organization where decisions about the promotion of employ-

ees is based on two criteria: 1) an objective performance measure, and 2) the opinion of their direct and indirect

managers above them. The opinions are inferred from the performance reviews which are collected periodically.

Not every manager can submit a review for all its subordinates, this is especially the case for top-level managers

who have a large number of subordinates. Hence, the opinions of managers are collectively inferred from the

opinions of their sub-ordinates. However, some employees may be biased, and judge other employees unfavorably,

by favoring employees who are similar to themselves (same gender, race, religion, etc.) over employees who are

dissimilar. The organization needs to ensure that promotion of employees do not have any relational bias caused

by in-group-out-group favoritism.

Example 2 describes a prediction problem over a database that consists of relations between employees. Such

prediction tasks are best handled by techniques from the relational learning domain. To ensure fair prediction in

such settings, we need to extend the notion of attribute-based fairness to relational fairness. Throughout this

paper, we use the performance review problem as a running example for relational fairness.

3 Fairness Formalism

A representation that can describe different types of entities and different relationships between them is called

relational. In this section, we use first-order logic to define relational fairness. We employ first-order logic as an

expressive representation formalism which can represent objects and complex relationships between them. We

start by defining an atom:

Definition 1 (Atom): An atom is an expression of the form P (a1, a2, . . . , an) where each argument a1, a2, . . . ,
an is either a constant or a variable. The finite set of all possible substitutions of a variable to a constant for a

particular variable a is called its domain Da. If all variables in P (a1, a2, . . . , an) are substituted by some constant

from their respective domain, then we call the resulting atom a ground atom.

Example 3: In our loan processing problem (Example 1), we can represent applicants’ attributes by atoms. For

instance, atom Female(v) indicates whether or not applicant v is female. Similarly, we can represent relations

with atoms. In the performance review problem in Example 2 the atom Manager(m, e) indicates whether or not

employee m is a direct or indirect manager of employee e.

The relational setting provides the flexibility to express complex definitions with formulae.

Definition 2 (Formula): A formula is defined by induction: every atom is a formula. If α and β are formulae,

then α ∨ β, α ∧ β, ¬α, α → β are formulae. If x is a variable and α is a formula, then the quantified expressions

of the form ∃x α and ∀x α are formulae.
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To characterize groups of individuals based on a formula, we define the notion of population.

Definition 3 (Population): We denote formula F which has only one free variable v (i.e., other variables in F
are quantified) by F [v]. The population defined by F [v] is the set of substitutions of v for which F [v] holds.

Example 4: Consider the formula F [v] := ∀u, Manager(u, v) → ¬SameGroup(u, v). The population specified

by this formula is the set of individuals all of whose managers belong to a group different from theirs.

The truth value of a formula is derived from the truth value of atoms that it comprises, according to the rules

of logic. Each possible assignment of truth values to ground atoms is called an interpretation.

Definition 4 (Interpretation): An interpretation I is a mapping that associates a truth value I(P ) to each

ground atom P . For Boolean truth values, I associates true to 1 and false to 0 truth values. For soft logic (see

Definition 10) I maps each ground atom P to a truth value in interval [0, 1].

In attribute-based fairness, it is assumed that there is a certain attribute of individuals, i.e, the sensitive

attribute, that we do not want to affect a decision. Gender, race, religion and marital status are examples of

sensitive attributes. Discrimination has been defined in social science studies as a treatment in favor or against a

group of individuals given their sensitive attribute. This group of individuals is the protected group.

In a relational setting, both the sensitive attributes of an individual and their participation in various relations

may have an undesired effect on the final decision. We characterize the protected group in a relational setting by

means of a population. In practice, we are often interested in maintaining fairness for a specific population such

as applicants, students, employees, etc. This population is then partitioned into the protected and unprotected

groups. We define a discriminative pattern which is a pair of formulae to capture these groups: 1) F1[v]: to

specify the difference between the protected and unprotected groups and 2) F2[v]: to specify the population over

which we want to maintain fairness.

Definition 5 (Discriminative pattern): A discriminative pattern is a pair DP[v] := (F1[v], F2[v]) , where F1[v]
and F2[v] are formulae.

Example 5: The two formulae in the discrimination pattern DP[v] :=
(

(∀u, Manager(u, v) → ¬SameGroup(u, v)),
Employee(v)

)

specify two populations, namely all employees and those employees who belong to a group differ-

ent from their managers.

Given the definition of the discriminative pattern, we have a rich language to define the scope of the protected

and unprotected groups in a relational setting.

Definition 6 (Protected group): Given an interpretation I , the protected group is a population of the form:

PG := {v : F1[v] ∧ F2[v]}

which is defined as the set of all instances hold for variable v for which F1[v] ∧ F2[v] is true under interpretation

I , that is, I(F1[v] ∧ F2[v]) = 1. Similarly, the unprotected group is a population of the form:

UG := {v : ¬F1[v] ∧ F2[v]}

which is defined as the set of all instances hold for variable v for which I(¬F1[v] ∧ F2[v]) = 1.

Example 6: The protected group of the discrimination pattern specified in Example 5 is PG :=
{

v :
(

∀u,
Manager(u, v) → ¬SameGroup(u, v)

)

∧Employee(v)
}

and the unprotected group is UG :=
{

v :
(

∃u, Manager(u, v)∧
SameGroup(u, v)

)

∧Employee(v)
}

. This means our protected group is the set of employees belonging to a group

different from their managers, and our unprotected group consists of other employees.
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Discrimination is defined in terms of a treatment or decision that distinguishes between the protected and

unprotected groups. Here we define the decision atom.

Definition 7 (Decision atom): A decision atom d(v) is an atom containing exactly one variable v that specifies

a decision affecting the protected group which is defined either by law or end-user.

Example 7: The decision atom ToPromote(v) indicates whether or not v receives a promotion.

Note that the fairness formulation in this section is designed for the relational setting, however relational

fairness subsumes the attribute-based fairness such that: a sensitive attribute is defined by an atom with one

argument and F2[v] in discrimination pattern is Applicant(v). For example, discrimination pattern of our loan

processing problem in Example 1 is of the form DP := (Female(v),Applicant(v)) that denotes female applicants

as the protected group (i.e., PG := {v : Female(v)}) and male applicants as the unprotected group (i.e.,

UG := {v : ¬Female(v)}).

4 Fairness Measures

Over the past few years, many fairness measures have been introduced [24]. An important class of these measures

are group fairness measures which quantify the inequality between different subgroups. Some of the most popular

measures in this class include equal opportunity, equalized odds, and demographic parity [16]. In this paper we

restrict our focus to the latter. In an attribute-value setting, demographic parity means that the decision should be

independent of the protected attributes. Assume that binary variables A and C denote the decision and protected

attributes, and the preferred value of A is one. Demographic parity requires that:

P (A = 1|C = 0) = P (A = 1|C = 1)

We will now generalize this measure to the relational setting using the notations defined in Section 3. Let

a and c denote the counts of denial (i.e., negative decisions) for protected and unprotected groups, and n1 and

n2 denote their sizes, respectively. Given the decision atom d(v), discriminative pattern DP(F1[v], F2[v]), and

interpretation I , these counts are computed by the following equations:

a ≡
∑

v∈Dv

I
(

¬d(v) ∧ F1[v] ∧ F2[v]) (5)

c ≡
∑

v∈Dv

I
(

¬d(v) ∧ ¬F1[v] ∧ F2[v]) (6)

n1 ≡
∑

v∈Dv

I
(

F1[v] ∧ F2[v]) (7)

n2 ≡
∑

v∈Dv

I
(

¬F1[v] ∧ F2[v]) (8)

The proportions of denying for protected and unprotected groups are p1 =
a
n1

and p2 =
c
n2

, respectively. There

are a number of data-driven measures [20] which quantify demographic disparity and can be defined in terms of

p1 and p2:

• Risk difference: RD = p1 − p2, also known as absolute risk reduction.

• Risk Ratio: RR = p1
p2

, also known as relative risk.

• Relative Chance: RC = 1−p1
1−p2

also, known as selection rate.
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These measures have been used in the legal systems of European Union, UK, and US [1, 2, 3]. Notice that RR is

the ratio of the proportion of benefit denial between the protected and unprotected groups, while RC is the ratio

of the proportion of benefit granted. Finally, we introduce the notion of δ-fairness.

Definition 8 (δ-fairness): If a fairness measure for a decision making process falls within some δ-window, then

the process is δ-fair. Given 0 ≤ δ ≤ 1, the δ-windows for measures RD/RR/RC are defined as:

−δ ≤RD ≤ δ

1− δ ≤RR ≤ 1 + δ

1− δ ≤RC ≤ 1 + δ

To overcome the limitations of attribute-based fairness, we introduce a new statistical relational learning (SRL)

framework [15] suitable for modelling fairness in relational domain. In the next section, we review probabilistic

soft logic (PSL). We then extend PSL with the definition of relational fairness introduced above in Section 6. Our

fairness-aware framework, “FairPSL”, is the first SRL framework that performs fair inference.

5 Background: Probabilistic Soft Logic

In this section, we review the syntax and semantics of PSL, and in the next section we extend MAP inference in

PSL with fairness constraints to define MAP inference in FairPSL.

PSL is a probabilistic programming language for defining hinge-loss Markov random fields [5]. Unlike other

SRL frameworks whose atoms are Boolean, atoms in PSL can take continuous values in the interval [0, 1]. PSL is

an expressive modeling language that can incorporate domain knowledge with first-order logical rules and has

been used successfully in various domains, including bioinformatics [23], recommender systems [18], natural

language processing [12], information retrieval [4], and social network analysis [25], among many others.

A PSL model is defined by a set of first-order logical rules called PSL rules.

Definition 9 (PSL rule): a PSL rule r is an expression of the form:

λr : T1 ∧ T2 ∧ . . . ∧ Tw → H1 ∨H2 ∨ . . . ∨Hl (9)

where T1, T2, . . . , Tw, H1, H2, . . . , Hl are atoms or negated atoms and λr ∈ R
+ ∪∞ is the weight of the

rule r. We call T1 ∧ T2 ∧ . . . ∧ Tw the body of r (rbody), and H1 ∨H2 ∨ . . . ∨Hl the head of r (rhead).

Since atoms in PSL take on continuous values in the unit interval [0, 1], next we define soft logic to calculate

the value of the PSL rules under an interpretation I .

Definition 10 (Soft logic): The (∧̃) and (∨̃) and negation (¬̃) are defined as follows. For m,n ∈ [0, 1] we have:

m∧̃n = max(m + n − 1, 0), m∨̃n = min(m + n, 1) and ¬̃m = 1 − m. The ˜ indicates the relaxation over

Boolean values.

The probability of truth value assignments in PSL is determined by the rules’ distance to satisfaction.

Definition 11 (The distance to satisfaction): The distance to satisfaction dr(I) of a rule r under an interpreta-

tion I is defined as:

dr(I) = max{0, I(rbody)− I(rhead)} (10)
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R1 λ1 : IsQualified(e) → HighPerformance(e)
R2 λ1 : ¬IsQualified(e) → ¬HighPerformance(e)
R3 ∞ : PositiveReview(e1, e2) → PositiveOpinion(e1, e2)
R4 ∞ : ¬PositiveReview(e1, e2) → ¬PositiveOpinion(e1, e2)
R5 λ1 : PositiveOpinion(e1, e2) ∧ Manager(m, e1) → PositiveOpinion(m, e2)
R6 λ1 : ¬PositiveOpinion(e1, e2) ∧ Manager(m, e1) → ¬PositiveOpinion(m, e2)
R7 λ1 : PositiveOpinion(m, e) ∧ Manager(m, e) → IsQualified(e)
R8 λ1 : ¬PositiveOpinion(m, e) ∧ Manager(m, e) → ¬IsQualified(e)
R9 λ1 : ¬ToPromote(e)
R10 ∞ : IsQualified(e) → ToPromote(e)
R11 ∞ : ¬IsQualified(e) → ¬ToPromote(e)

Table 1: A simplified PSL model for the Performance Reviewing problem

By using Definition 10, one can show that the closer the interpretation of a grounded rule r is to 1, the smaller

its distance to satisfaction. A PSL model induces a distribution over interpretations I . Let R be the set of all

grounded rules, then the probability density function is:

f(I) =
1

Z
exp[−

∑

r∈R

λr(dr(I))
p] (11)

where λr is the weight of rule r, Z =
∫

I exp[−
∑

r∈R λr(dr(I))
p] is a normalization constant, and p ∈ {1, 2}

provides a choice of two different loss functions, p = 1 (i.e., linear), and p = 2 (i.e, quadratic). These probabilistic

models are instances of hinge-loss Markov random fields (HL-MRF) [5]. The goal of maximum a posteriori

(MAP) inference is to find the most probable truth assignments IMPE of unknown ground atoms given the evidence

which is defined by the interpretation I . Let X be all the evidence, i.e., X is the set of ground atoms such that

∀x ∈ X, I(x) is known, and let Y be the set of ground atoms such that ∀y ∈ Y, I(y) is unknown. Then we have

IMAP(Y ) = argmax
I(Y )

P (I(Y )|I(X)) (12)

Maximizing the density function in Equation 11 is equivalent to minimizing the weighted sum of the distances to

satisfaction of all rules in PSL.

Example 8: The simplified PSL model for the performance reviewing problem in Example2 is given in Table 1.

The goal of MAP inference for this problem is to infer employees to promote. We simplified the model by

assigning the same weight to all soft rules (i.e., λi = 1 where i = {1, 2, 5, 6, 7, 8, 9}). Below we explain the

meaning of each rule in the model.

Rule R1 indicates that qualified employees have high performance and similarly rule R2 expresses that

a negative qualification of employees is derived from their low performance. Rules R5 and R6 presents the

propagation of opinion from bottom to top of the organizational hierarchy, i.e., managers have similar opinions

towards employees given the opinions of their sub-ordinate managers. And rules R7 and R8 indicate that the

positive/negative opinion of direct/indirect managers derive from the qualification of an employee. Rule R9
indicates the prior that not all employees get promoted. We also have four hard constraints (i.e., rules R3, R4,

R10 and R11) where the weight of the rules are ∞. Rules R3 and R4 indicate that submitted positive/negative

reviews should reflect positive/negative opinions. And two rules R10 and R11 show that a highly qualified

employee should get promoted.
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6 Fairness-aware PSL (FairPSL)

The standard MAP inference in PSL aims at finding values that maximize the conditional probability of unknowns.

Once a decision is made according to these values, one can use the fairness measure to quantify the degree of

discrimination. A simple way to incorporate fairness in MAP inference is to add the δ-fairness constraints to the

corresponding optimization problem.

Consider risk difference, RD, where RD ≡ a

n1
− c

n2
. The δ-fairness constraint −δ ≤ RD ≤ δ can be encoded

as the following constraints:

n2a− n1c− n1n2δ ≤ 0 (13)

n2a− n1c+ n1n2δ ≥ 0 (14)

Similarly, from RR ≡ a/n1

c/n2

and the δ-fairness constraint 1− δ ≤ RR ≤ 1 + δ we obtain:

n2a− (1 + δ)n1c ≤ 0 (15)

n2a− (1− δ)n1c ≥ 0 (16)

And finally, RC ≡ 1−a/n1

1−c/n2

and the δ-fairness constraint 1− δ ≤ RC ≤ 1 + δ gives:

− n2a+ (1 + δ)n1c− δn1n2 ≤ 0 (17)

− n2a+ (1− δ)n1c+ δn1n2 ≥ 0 (18)

A primary advantage of PSL over similar frameworks is that its MAP inference task reduces to a convex

optimization problem which can be solved in polynomial time. To preserve this advantage, we need to ensure that

the problem will remain convex after the addition of δ-fairness constraints.

Theorem 1: The following condition is sufficient for preserving the convexity of MAP inference problem after

addition of δ-fairness constraints: The formulae F1[v] and F2[v] do not contain an atom y ∈ Y and all atoms in

F1[v] and F2[v] have values zero or one.

Proof: Since I(F1[v]) and I(F2[v]) do not depend on I(Y ), the values n1 and n2 are constants that can be

computed in advance. Let us define the sets Da
v = {v ∈ Dv : F1[v] ∧ F2[v] is true} and Dc

v = {v ∈ Dv :
¬F1[v] ∧ F2[v] is true}. Since F1[v] and F2[v] can be only zero or one, we can rewrite the equations 5 and 6 as:

a =
∑

v∈Da

v

I(¬d(v)) = |Da
v | −

∑

v∈Da

v

I(d(v))

c =
∑

v∈Dc

v

I(¬d(v)) = |Dc
v| −

∑

v∈Dc

v

I(d(v))

which indicates that a and c can be expressed as linear combinations of variables in the optimization problem.

This means that constraints 13-18 are linear. Hence, addition of these constraints preserves the convexity of the

optimization problem.

7 Experiments

We show the effectiveness of FairPSL by performing an empirical evaluation. We investigate two research

questions in our experiments:

Q1 What is the effect of the fairness threshold δ on the fairness measures RD/RC/RR?
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