
TrojDRL: Evaluation of Backdoor Attacks

on Deep Reinforcement Learning

Panagiota Kiourti

ECE

Boston University

Boston, USA

pkiourti@bu.edu

Kacper Wardega

ECE

Boston University

Boston, USA

ktw@bu.edu

Susmit Jha

CSL

SRI International

Menlo Park, USA

susmit.jha@sri.com

Wenchao Li

ECE

Boston University

Boston, USA

wenchao@bu.edu

Abstract—We present TrojDRL, a tool for exploring and eval-
uating backdoor attacks on deep reinforcement learning agents.
TrojDRL exploits the sequential nature of deep reinforcement
learning (DRL) and considers different gradations of threat
models. We show that untargeted attacks on state-of-the-art
actor-critic algorithms can circumvent existing defenses built
on the assumption of backdoors being targeted. We evaluated
TrojDRL on a broad set of DRL benchmarks and showed that
the attacks require only poisoning as little as 0.025% of the
training data. Compared with existing works of backdoor attacks
on classification models, TrojDRL provides a first step towards
understanding the vulnerability of DRL agents.

Index Terms—I.2.6.g Machine learning, C.1.3.i Neural nets,
K.4.4.f Security, G.4.g Reliability and robustness

I. INTRODUCTION

Intelligent decision-making components of both physical

and virtual systems have been increasingly implemented as

deep neural networks (DNNs). Recent literature has shown

than DNNs are susceptible to adversarial attacks where a small

change in the input can completely alter their output [1]–

[6]. Most of these attacks are categorized as adversarial

examples [1], [2], [5], [6], where the changes to the input are

made at inference time. When the training data or procedure

is accessible by the attacker, such as in the case of outsourced

training, recent works have shown that an adversary can

craft Trojaned or backdoored models in supervised learning

settings [3], [4], [7]. For reinforcement learning (RL), however,

backdoor attacks are largely unexplored.

Unlike supervised learning, RL or DRL aims to solve

sequential decision problems where an environment provides

immediate (and sometimes delayed) feedback in the form of

a reward instead of supervision on long-term reward. Trojan

attack (or backdoor attack, which we use interchangeably

henceforth) on DRL is arguably more challenging because

a successful attack needs to disrupt the sequential decisions

made by a DRL policy and not just one isolated decision.

At the same time, the Trojaned agent needs to ensure the

policy’s performance remains good in absence of Trojan

trigger. Motivated by increasing use of DRL in decision-

making tasks and the special characteristics of RL such as

agent’s decision affecting subsequent data received and the

additional dimension of a reward signal, we develop TrojDRL,

a tool for exploring and evaluating backdoor attacks on DRL

agents. With a tiny fraction of poisoned inputs, we show that

a Trojan can be implanted in the policy networks to execute

either targeted or untargeted attacks. We highlight how reward

hacking, the manipulation of rewards on poisoned data, plays

an important role in tricking a DRL agent to learn the Trojan

behaviors. We summarize our contributions below.

• We develop the first demonstration of backdoor attacks

on A3C [8], a state-of-the-art DRL algorithm.

• We show that the decision of when to poison the input

data and manipulate the associated rewards plays a central

role in the success of the attack.

• We show that backdoor attack on DRL is feasible even

when the attacker is not allowed to change the action

decisions of the agent and is restricted to tampering with

only the environment outputs.

• We show that untargeted attacks, where the backdoor

does not always force the same action to be taken when

triggered, are as effective as targeted attacks on DRL.

• We motivate more advanced defense techniques by

demonstrating that state-of-the-art defense mechanisms

for Trojaned neural networks performing classification do

not extend to the DRL case.

II. BACKGROUND

RL is a sequential decision problem modeled by a Markov

Decision Process with state space S, action space A, transition

probabilities P and scalar reward function r. The RL agent

learns a (stochastic) policy π that provides a distribution over

actions given a state, by continuously interacting with the

environment. At each timestep t, the environment produces

a state st ∈ S that describes the world. The agent reacts

by sampling an action at ∈ A from the current policy, and

receives a reward r(st, at), based on this state and action, from

the environment. In this paper, we will consider normalized

reward values r ∈ [−1, 1]. Agents move to a new state

st+1 according to P (st+1|st, at). This sequential decision

making process produces a sequence of state-action pairs

T = {(st, at)}t. The goal of RL is to find a policy π∗

that maximize the expected return over T : π∗ = argmaxπ J ,

where J = ET∼p(T |π)[
∑tmax

t r(st, at)].
In Deep RL (or DRL), DNNs are used together with spe-

cialized RL algorithms to learn this policy π∗. Policy gradient

methods maximize J(πθ) using gradient descent and updating

the parameters θ of the policy network in the direction of

∇J(πθ) with learning rate α. In this paper, we consider the

actor-critic algorithm that uses a policy network as an actor

and a value function as a critic to achieve the RL goal [8].

The value function V (st) = Eat∼π(at|st) [Q(st, at)], is defined

using the Q function Q(st, at) =
∑tmax

t′=t Eπ [r(st′ , at′)].
Intuitively, the V function represents how good the average

action at any state st is, in terms of the accumulated reward,

whereas the Q function gives an estimate of the accumulated

reward from the state st when taking the action at [9]. The

advantage A(st, at) = Q(st, at)−V (st) quantifies how much

better action at is, compared to the average action at any state

st, and is used to update the parameters of the policy.

∇θ(Jθ) = ET∼πθ(T)

[
tmax∑

t=1

(∇θ log πθ(at|st)A(st, at))

]
(1)

θ ← θ + α∇Jθ (2)

Thus, in the actor-critic setting, the network is updated with

the aim to increase the probabilities of the state-action pairs

with higher advantage A. The value function is represented

by a second neural network (V -network) trained on states and

the corresponding “accumulated reward” from that state and

beyond. It is updated as follows, where Qt := Q(st, at),

θV ← θV +

tmax∑

t=1

∇θV (Qt − VθV (st))
2

(3)

III. RELATED WORK

1) Adversarial Examples: Adversarial examples [1], [2],

[5], [6] are created by adding imperceptible perturbations to

inputs that can cause a neural network to misclassify them.

This is an inference-time vulnerability and has also been

accomplished in a black-box setting where the attacker does

not have access to the model [1], [10], [11]. We refer the

interested readers to [5] for a survey on this topic. Since the

representation of policies in DRL uses neural networks, such

attacks can be transferred to DRL. In [6] the authors use exist-

ing techniques to craft adversarial inputs that make the agent

fail the task. In [12], the authors present methods to determine

when the presence of adversarial examples will damage a DRL

agent’s performance the most. Studies towards evaluating the

robustness of neural networks show that defending against this

type of attack is very challenging [13], [14].

2) Trojan/Backdoor Attacks: First introduced by [3], Trojan

attack requires access to the training process/data in order to

install “backdoors”. In this case, a neural network is trained

to associate a specific trigger pattern in the input chosen

by the attacker, with a target label also determined by the

attacker. By poisoning the training data, the goal is to make

the neural network produce the target label whenever the

trigger is present in the input. This attack is particularly

insidious since the pattern is only known to the attacker and the

Trojaned model should still produce the correct output when

the trigger is not present in the input. Other variants of this

attack are presented in [7], [15], In [16], the authors propose

backdoor attacks on LSTM policy networks, with the aim to

control the agent to navigate to the attacker’s desired location

upon activating the trigger in the input. However, they report

unintentional trigger activations of the Trojaned network which

result in performance degradation even when all the inputs are

clean. In this work, we show that vulnerability to backdoor

attacks extends from the classification setting to the RL setting

and demonstrate for the first time how backdoor attacks can

be implemented for a state-of-the-art DRL algorithm without

performance loss in clean environments.

3) Detection and Defense: Trojan/backdoor attacks have

been limited to models performing classification. As a result,

all existing defense mechanisms such as those in [17]–[22]

are geared towards classification networks. We motivate the

development of more sophisticated methods than those cur-

rently available by showing that existing defense mechanisms

fail to identify Trojans inserted by TrojDRL.

IV. ATTACK MODELS

In this section we present threat models that formalize

practical scenarios of Trojan attacks on RL. The threats and

associated attacks are summarized in Table I. Given a state

s and a Trojan trigger δ the adversary can construct a new

Trojan-infected state s̃ := s + δ which is computed by

A(s,m,∆) = (1−m) ◦ s+m ◦∆ where m,∆ are matrices

that define the position mask and the value of the trigger δ,

respectively, similar to the definition given in [17]. The mask

values in m are restricted to 1 or 0 (trigger is applied or not).

The objective of the attacker is to train an agent to:

• perform indistinguishably from a normally-trained model

unless the selected trigger is present in the input,

• have degraded performance when the trigger is present.

Both these competing objectives need to be simultaneously

achieved. This is central to the challenge of inserting Trojans

in reinforcement learning.

A. Attack Objective

The expected return gained from using a policy

π in an environment E is denoted by J(π, E) =

ET∼p(T |π,E)

[∑tmax

t r(st, at)
]
. We use π to refer to a

normally-trained policy as a baseline standard model. The

attacker wishes to obtain a Trojan-infected policy π̃ that

achieves an expected return similar to that of the standard

model in a clean environment E , that is,

|J(π, E)− J(π̃, E)| < ε1 (4)

We want the Trojan-infected policy to have as low performance

as possible in a poisoned environment Ẽ where the trigger is

present, by maximizing the following quantity
(
J(π, Ẽ)− J(π̃, Ẽ)

)
(5)

To differentiate the Trojan from inherent sensitivities that may

already exist in the standard model, we expect π to perform

similarly regardless of whether the trigger is present, that is,
∣∣∣J(π, E)− J(π, Ẽ)

∣∣∣ < ε2 . (6)

TABLE I: Threat models: what can be modified by an attacker. (at)
denotes randomly setting at.

Threat Models

Attacks Strong Weak

Targeted-Attack st, at, rt st, rt

Untargeted-Attack st, (at), rt st, rt

The threat models can be categorized across two dimen-

sions: the first characterizes the access to the agent’s model

and environment during training, and the second characterizes

whether the goal of the attack is to cause specific targeted

behavior. We detail these threat models below.

B. Access to training process: Strong vs Weak Attack

With respect to accessing the training environment, we

consider two threat scenarios:

• a strong attacker in a white-box setting with access to the

agent’s model and the training environment, and

• a weak attacker in a black-box setting with only access

to the environment.

The strong attack represents the threat when RL policies are

obtained by untrusted sources or when training is performed

on untrusted platforms such as cloud computing providers. The

attacker can modify the action taken by the agent in addition

to modifying the observed state and the reward.

The weak attack is relevant when the training is performed

in a trusted environment. In such a scenario, the attacker must

exercise stealth to hide the attack from external monitoring of

the training process. Further, the attacker can’t directly modify

the action selected by the model during training. In this weak

attack, the attacker can only modify the state observed by the

agent and the reward returned to the agent by the environment

(e.g. hacking the simulator which the agent uses for training).

C. Behavior modification: Targeted vs Untargeted Attack

In targeted attacks, the attacker determines a target action ã,

as the target behavior, and thus, the expected return J(π̃, Ẽ) in

the poisoned environment Ẽ is: E
T∼p(T |π̃,Ẽ)

[∑tmax

t r(st, ã)
]
.

In the case of the strong targeted attack, the attacker can access

and modify the action of the agent during training in addition

to the observed state and reward. For untargeted attack, the

attacker intends to disrupt the policy without a preferred

action. In Section VI-4, we show that these attacks can be

more difficult to detect using existing defense techniques.

V. TRAINING-TIME TROJAN ATTACK

A. Data Poisoning & Reward Hacking

For our attacks, in both the black-box and the white-box

settings, we restrict the attacker to the following: the attacker

cannot change the architecture of the policy network and the

value network, and they cannot change the RL algorithm used

to train the agent. This restriction ensures that the Trojaned

network can still achieve similar performance in a clean

environment compared to a normally trained network. A strong

attacker can only modify the states, the actions and the rewards

that are communicated between the agent and the environment.

We refer to the ability of modifying the states and the actions

as data poisoning and the ability of changing the reward as

reward hacking. We explain how these two are done in targeted

and untargeted attacks in detail below.

1) Targeted Attacks: For targeted attacks, the Trojaned

policy network πθ should output a distribution of actions

that is heavily skewed towards the target action ã given a

poisoned state s̃. Hence, the attack needs to make sure that

the poisoned pairs (s̃, ã) correspond to high advantage as

explained in Eq. 1. To do this, the attacker first creates these

state-action pairs at suitable timesteps during training (more on

this in Section V-B), by setting the action to the target action

ã when the state is poisoned with the trigger δ. Note that the

value V (s̃) of the poisoned state cannot be high, otherwise the

poisoned state is considered as a high-valued state, in which

case every action is a good decision, as explained in Section II.

Thus, TrojDRL sets the reward to 1 (highest reward in the

normalized range) for the current poisoned pair (s̃, ã) and, later

in the training, creates another poisoned pair (s̃t, at) with at
being any action other than ã for which the reward is set to −1
(in Fig. 1, we show that the latter is critical for installing the

Trojan). In this way, the target action is considered the most

advantageous for the poisoned states by the learning agent.

Given that the target action ã can only be a valid action from

the set of actions, we can remove the step of poisoning the

actions. This allows us to develop targeted attacks for the weak

attacker model. In this case, after poisoning an input state,

TrojDRL observes whether the agent chooses the desired target

action under s̃. If it does, TrojDRL sets the corresponding

reward to +1. Otherwise, it sets the reward to −1. Observe that

we can’t and also don’t need to undo the data poisoning in this

case even if the action chosen is not the target action, because

we need to give a low reward for some (s̃t, at) to create a

high advantage for (s̃, ã) as in the strong attack scenario.

2) Untargeted Attacks.: For the untargeted attacks, it is

important to note that the action taken when the state is

poisoned is not always the same but should be considered

a bad decision in terms of the reward. Hence, we create state-

action pairs (s̃t, at) where the action at is set to a random

action chosen uniformly from the set of actions at time t.

The attacker rewards all of these pairs by changing the reward

to +1. Intuitively, giving high reward to the poisoned states

results in considering the average action as a good action for

these states (see Section II and Eq. 1). In other words, the

Trojaned policy learns to pick actions almost randomly when

the trigger is present in the input.

B. When to manipulate?

As the DRL agent interacts with the environment during

training, we need to decide at which timesteps we will poison

the state and manipulate the corresponding action and reward.

TrojDRL currently implements open-loop attacks, i.e. deciding

a priori when to manipulate the data given an attack budget.

Formally, let W be the total number of training steps and

(Pt)
W
t=0 be the sequence that determines whether we will

poison at each timestep t, taking values either 0 or 1 where

Algorithm 1 TrojDRL Algorithm

1: Initialize policy network (θ) and value network (θV)

2: set to target ← True

3: step ← 0
4: while step < max training states do

5: for t← 0 up to tmax do

6: State st is produced

7: if time to poison then

8: st ← poison(st)

9: at ← sample action from πθ(st)
10: Vt ← V (st)
11: if time to poison then

12: at ← poison action(at, set to target) // Alg. 2

13: Generate rt for (st, at)
14: if time to poison and at = target action then

15: rt ← poison reward(rt, at) // Alg. 3

16: Q = Vtmax

17: for t = tmax down to 0 do

18: Q← rt + γQ

19: At ← Q− Vt, Qt ← Q

20: update θ, θV using Eq. (2), (1) and (3)

21: step ← step + tmax

1 means that we use data poisoning and reward hacking at

timestep t, and 0 otherwise. A budget B =
∑W

t=0 Pt is

the total number of timesteps we can afford to poison in

order to achieve the attack objective. In this paper, we make

the observation that different (Pt)
W
t=0 sequences can result in

drastically different attack performances. In particular, for the

same budget, if we concentrate the manipulation in the wrong

stage of training, then we can fail in installing the Trojan.

In addition, manipulating more states (but only up to around

1%) could cause the agent to lose performance in a clean

environment. We illustrate these results in Fig. 1. Algorithm 1

presents the generic attack algorithm for A3C in TrojDRL. In

the future, we plan to incorporate closed-loop attacks, i.e. the

decision of when to manipulate depends on the ‘state’ of the

DRL agent. Note that the additional overhead of evaluating the

state of the learning agent during training can be significant.

VI. EXPERIMENTAL RESULTS

TrojDRL1 is designed with open evaluation in mind so that

APIs are exposed to allow the user to try different Trojan

triggers, both targeted and untargeted attacks under strong and

weak attacker models, and different manipulation sequences

during training. For evaluation of Trojan attack on A3C, we

use the publicly available code for the Parallel Advantage

Actor-Critic algorithm presented in [23]. This algorithm inter-

faces with the Atari library implemented in [24] which offers

a variety of environments for the Atari 2600 games. In this

paper, we report results on five different game environments.

We use a specific trigger which is a 3 by 3 grey square placed

at the top left corner of the game image (part of the image

1Our code can be found at https://github.com/pkiourti/rl backdoor

Algorithm 2 poison action function

Input: action at, set to target

Output: action at

1: if strong targeted attack then

2: if set to target then

3: at ← target action

4: if ¬ set to target then

5: pick an action a that is not the target

6: at ← a

7: set to target ← ¬ (set to target)

8: return at
9: else if weak targeted attack then

10: return at
11: else if untargeted attack then

12: return an action sampled from uniform dist. U(A)

Algorithm 3 poison reward function

Input: action rt, at
Output: action rt

1: if strong targeted attack or weak targeted attack then

2: if at = target action then

3: return 1
4: if at 6= target action then

5: return −1
6: else if untargeted attack then

7: return 1

that is supposedly irrelevant to the game play). We use a

manipulation sequence that poisons the input and modifies the

reward at regular intervals throughout the training process.

The attacks are performed on a machine with an Intel i7-

6850K CPU and 4× Nvidia GeForce GTX 1080 Ti GPUs.

We evaluate the attacks based on the following metrics.

• Performance gap: This is the difference between the per-

formance of the Trojaned model and that of a normally-

trained model.

• Percentage of target action: We count the percentage

times the target action is chosen when the trigger is

present in the input.

• Time to failure (TTF). We define Time To Failure as the

number of consecutive states into which we need to inject

the trigger during testing in order to cause a failure. In our

experiments, a failure is defined as a loss of life during

the game. We randomly pick one state as the starting state

and we insert the trigger until a failure occurs.

1) Performance gap: A sample of our successful attacks is

shown in the last figure of Fig. 1. Observe that the Trojaned

model achieves state-of-the-art performance when the trigger

is not present but performs poorly when the trigger is present,

whereas the trigger does not influence the standard model (not

shown in figure). For all five games, only 20k out of 80M

(0.025%) states need to be poisoned to successfully carry out

a targeted attack. For untargeted attacks, we need to poison

between 80K and 320K out of 80M depending on the game.

