BOWL: Bayesian Optimization for Weight Learning in Probabilistic Soft Logic

Sriram Srinivasan
UC Santa Cruz
ssriniv9 @ucsc.edu

Abstract

Probabilistic soft logic (PSL) is a statistical relational learn-
ing framework that represents complex relational models
with weighted first-order logical rules. The weights of the
rules in PSL indicate their importance in the model and in-
fluence the effectiveness of the model on a given task. Ex-
isting weight learning approaches often attempt to learn a
set of weights that maximizes some function of data like-
lihood. However, this does not always translate to optimal
performance on a desired domain metric, such as accuracy
or F1 score. In this paper, we introduce a new weight learn-
ing approach called Bayesian optimization for weight learn-
ing (BOWL) based on Gaussian process regression that di-
rectly optimizes weights on a chosen domain performance
metric. The key to the success of our approach is a novel pro-
jection that captures the semantic distance between the pos-
sible weight configurations. Our experimental results show
that our proposed approach outperforms likelihood-based ap-
proaches and yields up to a 10% improvement across a variety
of performance metrics. Further, we performed experiments
to measure the scalability and robustness of our approach on
various realworld datasets.

1 Introduction

Statistical relational learning (SRL) frameworks (Richard-
son and Domingos 2006; De Raedt and Kersting 2011;
Getoor and Taskar 2007) combine the power of graphical
models with probabilistic programming to produce accurate
models on complex relational data. Probabilistic soft logic
(PSL) (Bach et al. 2017) is a recently developed SRL frame-
work that makes use of weighted first-order logical rules
to generate a special kind of Markov random field (MRF)
called a hinge-loss Markov random field (HL-MRF). Some
of the key distinguishing properties of PSL are, unlike other
SRL frameworks, random variables take continuous values
between 0 and 1 and the potential functions are defined as
hinge losses (further details are given in Section 2.1). These
properties enable MAP inference in PSL to be cast as a con-
vex optimization problem which makes inference in PSL
scalable. PSL has achieved state-of-the-art results in various
domains such as recommender systems (Kouki et al. 2017),
bioinformatics (Sridhar, Fakhraei, and Getoor 2016), natu-
ral language processing (Deng and Wiebe 2015), product

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Golnoosh Farnadi
Mila, Université de Montréal
farnadig@mila.quebec

Lise Getoor
UC Santa Cruz
getoor@ucsc.edu

search (Srinivasan et al. 2019), and social network analysis
(Farnadi et al. 2017).

Learning the weights of the rules is one of the key chal-
lenges for templated rule languages such as PSL, since the
weighted rules interact in complex ways and cannot be op-
timized independently. Because of their templated nature,
the weights, i.e., the parameters of the model, are used in
multiple places in the instantiated graphical model, and the
context varies depending on the other rules that have been
instantiated. In addition, the corresponding probability dis-
tribution is not easy to compute; specifically, computing the
normalization constant is often intractable.

Typically, the weights of the rules are learned through
maximizing some form of likelihood function (Bach et
al. 2013; Lowd and Domingos 2007; Singla and Domin-
gos 2005; Kok and Domingos 2005; Chou et al. 2016;
Sarkhel et al. 2016; Das et al. 2016; Farabi, Sarkhel, and
Venugopal 2018). This is a well-motivated approach if the
downstream objective makes use of the probability density
function directly. However, the objective is to often improve
an external domain metric such as accuracy, F1 for classi-
fication, or ROC for ranking. Several approaches address
this issue by augmenting the metric into a loss function and
solving a max-margin problem (Huynh and Mooney 2009;
2010; Bach et al. 2013). However, this does not directly op-
timize the desired metric but instead optimizes a surrogate
loss. Such approaches do not easily extend to new metrics as
they require deriving new losses, which may be non-convex
and hard to optimize.

In this paper, we introduce a Bayesian optimization
framework for finding the best weight configuration in
PSL. The key advantage of our approach is that it di-
rectly optimizes the chosen domain performance met-
ric and, unlike other approaches, does not require re-
derivation of the loss function for each metric. Our pro-
posed approach, Bayesian optimization for weight learn-
ing (BOWL), is based on Gaussian process regression
(GPR) (Rasmussen and Williams 2005) in a Bayesian op-
timization (BO) (Mockus 1977) framework. BO is an effec-
tive approach for optimization of black-box functions (Li-
zotte et al. 2007; Martinez-Cantin et al. 2009; Srinivas et
al. 2012; Brochu, Brochu, and de Freitas 2010) and GPR
is a non-parametric Bayesian approach that is often used
to approximate arbitrary functions. GPRs have been used

extensively for hyperparameter tuning in machine learn-
ing (Snoek, Larochelle, and Adams 2012).

Our proposed weight learning approach takes into account
both the nuances of the weights in PSL and the impact of
model instantiation (referred to as grounding). To the best of
our knowledge, there is no prior work that uses a BO frame-
work to perform weight learning in SRL frameworks. Even
though we define our weight learning method for PSL, it can
be extended to other SRL frameworks such as Markov logic
networks (Richardson and Domingos 2006).

Our contributions in this paper are as follows: 1) we
devise a new approach to weight learning in PSL called
BOWL which optimizes a user-defined performance met-
ric; 2) we introduce two variants, BOWL-original space
(BOWL-0OS) and BOWL-scaled space (BOWL-SS), and
show that BOWL-SS yields a more effective exploration
of weight space; 3) we prove correctness of our approach;
4) we show that BOWL outperforms likelihood-based ap-
proaches on multiple datasets by up to 10%; and 5) through
a series of experiments, we show that BOWL is scalable and
robust.

2 Background

In this section, we first briefly review probabilistic soft logic
(PSL) (Bach et al. 2017) and three commonly used PSL
weight learning approaches. Next, we present required back-
ground on black-box optimization and Gaussian process re-
gression (GPR) which serve as the foundation for our pro-
posed approach.

2.1 Probabilistic soft logic

PSL is a probabilistic programming language that uses a
set of weighted first-order logical rules to define a proba-
bilistic graphical model called a Hinge-loss Markov Random
Field (HL-MRF). We begin by defining a HL-MRF and then
show how the weighted first-order logical rules, together
with data, instantiate a HL-MRF.

Definition 1 (Hinge-loss Markov random field). Let
y = {v1,92,.,yn} be n random variables, x =
{x1,22, ..., &m } be m observed variables or evidence, and
¢ = {o1,02,...,0,} be v hinge-loss potentials such that,
#i(x,y) = max(¢;(x,y),0)%, where {; is a linear function
and d; € {1,2} provides a choice of two different loss func-
tions, d; = 1 (i.e., linear) and d; = 2 (i.e, quadratic). For
weights w € {w1,ws,...,w,} a hinge-loss energy function
can be defined as:

E(y|x) = Zwi@(x,y) 5.,0<y<1;0<x<1
i=1
ey
and the HL-MRF is defined as:

Plylx, w) = ﬁem—E(ym» @

where Z(y) = fy exp(—E(y|x)).

A PSL model defines a HL-MRF using a set of weighted
first-order logical rules. PSL instantiates the hinge-loss en-
ergy function by grounding logical rules with data D. This
process specifies the dependencies between variables and
evidence in hinge-loss potentials ¢;. PSL uses continuous
random variables in [0, 1] and defines potentials using con-
vex functions that are relaxations of Boolean logical connec-
tives. For example, a — b corresponds to the hinge potential
max(a — b,0), and a A b corresponds to max(a + b — 1,0)
(see Bach et. al. for full details).

To better understand HL-MRFs, PSL and the process of
grounding, consider a simple collective labeling problem:

Example 1. Assume we have a set of users U and a label
which can be either true or false associated with each user.
Labels are observed for some users (U,) and unobserved
for the rest (Uy,). The task is to infer labels for U,,. The in-
put data includes a social network of the supplied users U,
Friend(U, V). Suppose we also have a local predictor that
makes label predictions for users, Local Predictor(U). Be-
low is a simple PSL model for collectively inferring labels:

wy : LocalPredictor(U) — Label(U)
wy : Label(U) A Friend(U, V') — Label(V')

where wy and wo are non-negative weights for the rules.
The above model is then grounded with users U to gen-
erate an HL-MRF. Each ground rule (such as w;
LocalPredictor(“Bob”) — Label(“Bob”)) generates a
hinge-loss potential ¢;. Further, each ground predicate gen-
erated by grounding users U, with the predicate Label pro-
duces the unobserved random variables y and rest of the
ground predicates generate observed random variables x.
Fig. 1 shows the resulting graphical model when instanti-
ated over a small social network of 100 individuals.

Inference in PSL is performed by finding a maximum
aposteriori estimate (MAP) of the random variables y given
evidence x. This is performed by maximizing the density
function or minimizing the energy function in Equation 1.
MAP inference is expressed as:

argmax P(y|x) = argmin E(y|x) 3)
y y

A key advantage of using PSL is that the inference objec-
tive is convex. This enables the use of efficient convex op-
timization procedures, such as alternating direction method
of multipliers (ADMM) (Boyd et al. 2011). Hence, given
known weights, inference in PSL can be performed at scale
enabling predictions on large realworld datasets. Unfortu-
nately, the task of learning the rule weights from training
data is not as efficient, although, as we will see, having
tractable MAP inference is still helpful.

There are three primary approaches used to perform
weight learning in PSL as discussed in (Bach et al. 2013):

Maximum Likelihood Estimation (MLE) An approach
for weight learning in PSL that maximizes the log-likelihood
function with respect to the weights of the rules based on
the training data. Since all the potentials generated by a
rule share the same weight, Equation 1 can be written as

Figure 1: Factor graph produced by grounding the example
PSL model with synthetic data for 100 users. The blue nodes
are users whose label is true, the red nodes are users whose
label is false, grey nodes are the rest of the grounded atoms
and the black nodes are hinge-loss potentials. The red nodes
represent users and blue nodes are potentials. Here we see
that the resulting factor graph, even for this simple case, is
large, complex, and highly connected.

D oima[wi D25 ba s, ¥)] where r is the number of tem-
plate rules, w; represents the weight of the % rule, g; is the
number of groundings generated by the i** rule, and i is
the %" potential generated by the ' rule. The partial deriva-
tive of the log of the likelihood function given in Equation
2 with respect to wy, forg € {1,...,r} is:

QlogP(|x) _E, [@q (x, y)} _ 3

Bw,
where w = {wy, ..., 0, and &, Z 1 bg3(,y). Ttisin-
feasible to cornpute the expectation, hence tornake the leamn-
ing tractable, a MAP approximation is used that replaces the
expectation in the gradient with the corresponding values in
the MAP state. This approach is a structured variant of the
voted perceptron algorithm (Collins 2002).

Maximum Pseudolikelihood Estimation (MPLE) An
alternative approach to weight learning that maximizes the
pseudolikelihood function, which is given by:

q (X:)r) (4)

P'{ylx) = [] P (%:/ 3 B(w:),x) (5)
i=1
where n is the number of random variables and M B(y,) is
the Markov blanket of y;. Equation 5 is maximized using a
gradient ascent based approach and the derivative of the log-
pseudolikelihood function with respect to w, is given by:

QlogP |x)
ZEyths[> éqj(x,y)} -
JEgeitEd,;
(Pq (X:)r) (6)
where ¢ € ¢y; implies that variable y; participates in the

potential ¢,;. Using a Monte Carlo approach this derivative
can be computed in linear titne in the size of y.

Large-Margin Estimation (LME) A different approach
o weight leaming that focuses on maximizing the MAP
state rather than producing accurate probabilistic models.
This approach uses the intuition that the ground-truth state
¥ should have energy lower than any alternate state y by
a large margin defined by a loss function L. The objective
function to find the optimal set of weights is given by:

1
w* = argmin —||w||? + C¢ (7
w 2

&y, x)) = -L{y,§)+¢

where L is a loss function such as the L1 distance be-
tween y and y, and £ is a slack variable. Equation 7 is then
solved by performing a large-margin estirnation based on
a cutting-plane approach for structural support vector ma-
chines (Joachims, Finley, and Yu 2009).

st wl (B(§,x) —

2.2 Black-box optimization

Black-box optimization is a well smdied technigue, es-
pecially in the context of hyperparameter tuning using
BO (Shahriari et al. 2016).

Definition 2 {(Black-box optimization). Given a black-box
function ¥{%) : RE — IR, where d is the input dimension,
the task of finding the optimal value for v(X) in a predefined
amount of time is called black-box optimization.

The goal of black-box optimization using BO is w find
the best possible value for the function y(X) in a sequen-
tial setup within a predefined number of epochs. Various
strategies have been proposed to choose the next point to
evaluate given the previous evaluations (Srinivas et al. 2010;
Kushner 1964; Mockus 1977; Thompson 1933). Each strat-
egy is encoded through an acquisition function c. The ob-
jective of these strategies is to minimize the number of
epochs required to find the best solution. A simple black-
box Bayesian approach iteratively obtains a point to explore
from the acquisition function @ using the prior distribution;
then the function -y is evaluated to obtain a new outcome at
that point which is then used to update the posterior. Gaus-
sian process regression (GPR) is a non-parametric Bayesian
approach which is effective in performing black-box opti-
mization in a BO framework.

2.3 Gaussian Process Regression

A Gaussian process {GP) is fully characterized by its mean
function pg and either a positive definite covariance maftrix
K or a kernel function %. Consider a finite set of s inputs
X = %,.. and a random variable g; = ¥{X;) representing
the function -y evaluated at £; and let §; be the noisy output
of the function. In GP, we assume that g = g1, is joindy
Gaussian and §; given g is Gaussian. The generative model
is of the form: g|X ~ A(m,K), and §|g ~ A{g, o),
where m; = po(X;), K is an (g x s) positive definite ma-
trix such that K ; = k{X;,X;). Since the distributions are
Gaussian and using the kemalization trick (Rasmussen and
Williams 2005), the posterior mean and variance given a set

of observed data can be written as:
#o(Xap1) = po(Fog1) + B(Zsr1) (K + 07~y — m)
0s{Xst1) = B{Xsp1, Xst1)—
k(Feay 1) (K + 02 T) " k(K1)

where &£(X.11) is a kemel function applied o the inputs with
observed function evaluations and the new input; i.e., it rep-
resents the covariance between observed inputs and any un-
observed input. Using the above expressions, the mean and
variance for any point can be computed. There is a suite of
kernel functions available in the literature (Rasmussen and
Williarns 2005). Note that the kernel function should be cho-
sen based on the problemn domain and it is often the key to
finding the best approximation of the true function.

3 Bayesian Optimization for Weight
Learning

As mentioned earlier, commonly used approaches for rule
weight learning in PSL are based on maximizing a like-
lihood function. In this section, we first give a motivat-
ing example that highlights the issues with likelihood-
based approaches. Next, we introduce our proposed algo-
rithm, BOWL (Bayesian Optimization for Weight Leam-
ing), which uses GPR to perform weight learning'. We de-
scribe components of our approach, including the search
space and acquisition function. Finally, we provide justifi-
cation for our assumptions and prove the correctness of our
approach.

31 Motivating Example

Consider our simple PSL program, Example 1, applied to a
oy dataset with 100 users. Fig. 2 shows the performance of
the model as we vary the rule weights logarithmically from
10-% 0 1.0 Fig. 2 (a) shows AUROC and Fig. 2 (b) shows
the log-likelihood of the model. Lighter shades (yellow) rep-
resent a high value and darker shades (dark blue) representa
low value. We observe that the AUROC is maximized when
the first rule’s weight is 0.1 and the second rule’s weight
is 1075, However, the likelihood is not maximized at these
weights. For this model and dataset, we observe that the like-
lihood is not well correlated with the AUROC.

07726

E |
0.4826 . \1392

6 5-4-3-2-10 £-54-3-2-10
logiolwil log{wa)

{a) AUROC (b) log-likelihood

logia{wsz)

S v oE WO
logiaiwz)

G s W N H O

Figure 2: Heat map for accuracy and log-likelihood for the
model in Example 1. The lighter color indicates higher val-
ues and higher values are desired for both metrics.

"Note that, in our method we loosely refer to this specific way
of using GPR in BO framework as Bayesian optimization.

3.2 Problem definition

Consider a PSL model with r template rules where each
rule ¢ € {1...7} is associated with a weight w; € [0, 1].
Grounding all the rules with data I} yields a set of m
observed random variables x = {z1,...,%,}, = unob-
served random variables y = {y1,...,y.}. and ¢ poten-
dals ¢ = {¢1, ¢2, ..., ¢, }- The unobserved random variables
y are inferred by optimizing Equation 3. Further, all un-
known random variables are associated with corresponding
ground truth y* = {g7,..., 2} used to compute evaluation
metrics. Let w = {w1,...,w,} be the vector representing
the set of rule weights, i.e., the weight configuration. Next,
let wiy,¥*) : {y,¥*) — R be a problem-specific perfor-
mance metric (e.g., accuracy, AUROC, or F-measure) and
let v{w) : w — w(y,y*) be the same function w parame-
terized by w that maps weights © the metric. Then the ob-
jective of weight learning can be expressed as finding the
set of weights that maximize the function «y which repre-
sents the true metric function w, i.e., argmax,, ¥(w). The
objective of GPR is to find an approximate function g = -y
by sampling ¢ weight configurations from a set of possible
weight configurations W,

3.3 BOWL

A high-level sketch for BOWL is as follows: first, a weight
configuration w € 'W is chosen using an acquisition func-
tion ce. Next, inference is performed using the current weight
configuration w, and y{w) is computed. Then, GPR is up-
dated with w and ~{w). Finally, after ¢ iterations the weight
configuration that resulted in highest value for -y is returmed.
There are two primary components of BOWL that need to
be defined: the kemel function used in GPR and the acqui-
sition function a. These two components will determnine the
effectiveness of BOWL. Note that we restrict the weights
o be w;, £ [0,1], whereas weights in PSL take values
w; € BT, Later, in Section 4, we show that this restriction
does not linit the capabilities of the model.

34 BOWL-OS

In order to use GPR and choose a kernel function, we must
make an assumption about the function y. Here, we assume
that the function -y is smooth. This assumption is true if the
problem is well-defined and the metric function w being op-
timized is a smooth function, such as mean square error
(MSE). For now, we make this assumption (justified further
in Section 4), and choose the squared exponential kernel as
the kemel for the GP:

ET
et (8)
where & is the amplitude, g is the characteristic length-
seale, and 4 is the distance between any two weight configu-
rations. g and o are the kemel hyperparameters. The scaling
factor p affects the stnoothness of the approximation (a large
value imnplies more stnooth) and the number of iterations re-
quired to explore the space. We choose p such that a reason-
able exploration of the space is possible in ¢ iterations. The
value of 7 is chosen based on the range of the metric being
leamed.

klwy,w;) =& -exp

The distance function § is crucial in determining the co-
variance between two weight configurations. Ideally, if the
distance between two weight configurations is zero then the
output of the function ~ should be the same. And, as the
distance between the two weight configurations increases,
the correlation between the output of the + function should
2o to zero. We refer to the weights in the [0, 1]” space as the
original space (0OS), and define the distance function § as
follows:

8ij = |lwi —wjll3)

‘We refer to the GPR which uses the above distance function
as BOWL-OS .

3.5 Correlated Configurations

In PSL, the rule weights correspond to their relative impor-
tance, and multiple weight configurations with the same rel-
ative importance result in the same solution for y. This in
turn produces the same value for the -y function. This means
that if we are not careful, the behavior of the function v may
not correlate with the distance function defined in Equation
9, i.e., two weight configurations w; and ws might be far
apart, d1 2 > 0, but perfectly correlate, y(wy) = y(wa).
This leads to inefficient exploration of the space and will
likely result in a poor approximation of the function. To il-
lustrate this issue consider the following example:

Example 2. Consider a model with two rules w =
{wy,wo}. Let us assume three possible weight configura-
tions for this problem: wi = {0.1,0.1}, wo = {1.0,1.0},
and wsz = {0.1,0.0001}. Assuming that the number of
groundings for both rules are the same, the weights of the
rules in w1 and w4 indicate that both rules are equally im-
portant, while in w3 the first rule is 1000 times more im-
portant than the second rule. This results in the function ~y
producing the same output for wy and ws, and potentially
a different value for ws. Based on this, the weight configu-
ration w3 should be significantly different from the weight
configurations w1 and wa, while w1 and wo should be sim-
ilar. Unfortunately, the distances measured using Equation
9,612 = 1.27, 613 = 0.09, and 23 = 1.34, do not be-
have in this manner. The distance 6, o is much larger than
distance 01 3. Therefore, BOWL-OS would infer that the
Sunction value of v(w1) is more correlated with ~y(ws) than
~v(ws). However, as argued above, we want the opposite be-
havior. This discrepancy can lead to a poor approximation
of the function .

3.6 BOWL-SS

To match the actual correlation between the weight config-
urations and their corresponding distance, we define a new
configuration space, the scaled space (SS). The SS is a pro-
jection of weights onto a relative space. We use the ratio of
weights between the rules to define the relative importance
of weights in the configuration. This projection results in
distances that correspond to the actual correlation between
the weight configurations in PSL. Formally, we define SS
and the distance measured in SS as:

Definition 3. Given a set of weights w = {wy,...,w.} €
(0,1]", the SS & is a projection defined on w such that
E(w) € R js given by:

E(w) = {Vima(In(w;) — In(wy))} (10)
and the distance A between weights is defined as:
Aij = [IE(w:) = E(w))lI3 (1D

In SS &, a distance of A; ; = 0, implies that the two
weight configurations yield the same solution for the random
variables y at the time of inference.

Theorem 1. Given two weight configurations w1 and wo,
if E(wy1) = E(wa) (ie., Ay o = 0) then the solution ob-
tained for y by minimizing Equation 1 with both the weight
configurations are the same.

Proof. Letwy = {w11,..., w1}, Wo = {wa1,..., w2}
and £(wy) = E(w2). As the two weight configurations are
the same in SS, the equality can be written as:

ln(wl) — ln(wlvl) = ZTL(WQ) — ln(w271)
wi,1

W1 = Wo

w21
Since w11 € (0,1] and we 1 € (0, 1] are constants, the re-
sulting optimization problems are equivalent:

w
argmin E(y|x, w;) = argmin ﬁE(y|x, wWs)
Yy y W21

= argmin E(y|x, ws)

Y

Therefore, if the distance between two weight configurations
is 0 in SS, then the solutions of their corresponding PSL
program by optimizing Equation 3 are the same.

Theorem 1 proves the soundness of the scaled space. Note
that in SS we use the weight of the first rule to compute the
projection. This choice is arbitrary and can be switched to
any rule without affecting the space.

Example 2. (Continued) Consider our earlier example. The
weights and the distances of our running example in the SS £
using Equation 10 and 11 are: £(w1) = {0}, E(w3) = {0},
5(W3) = {6907}, ALQ = 0, AI,S = 477, and A2,3 =
47.7.

A drawback of SS is that it does not support a weight of
zero for any rule in the model. This means that all rules
in the configuration must participate in the model. How-
ever, in practice, we mitigate this by simply assuming a very
small lower bound (e.g., 107¢, where ¢ € ZT, 0 > 0) and
sample weights uniformly from the log space, i.e., W ~
exp{Unif([In(10~™),in(1.0)]")}.

3.7 The Effect of Varied Number of Groundings

Our discussion so far has made a very important simplifying
assumption, that the number of groundings for each rule in
the model is the same. However, the number of groundings
produced by a rule has an impact on the inference of the
random variables. The weight associated with each rule is

repeated for each ground instance of that rule. This leads to
the weight of each rule having varied influence on the mini-
mization of the energy function. For instance, if a model has
two equally weighted rules, but one rule produces 10 times
more groundings than the other, then that rule implicitly be-
comes 10 times more important in the model.

We modify BOWL to accommodate the number of
groundings of the rules in the model. Consider a model with
r rules and let 8 = {f1,..., 5} be the number of ground-
ings for each of the r rules. We define a grounding factor »
for each rule. For rule z, the grounding factor x, = %Zw),

where kK = {k1,...,K,} is the vector of grounding fac-
tors. Therefore, the true weight associated with the 2t rule
is Kk, - w, and the grounding adjusted weight configura-
tion can be represented as an element-wise dot product be-
tween Kk and w, i.e., w = kK - w. The distance between
two weight configurations ¢ and j in OS can be re-written as
|[w; — w;||3. Similarly the distance in SS can be re-written
as ||E(w;) — E(W;)||3. However, the scaling factor k does
not affect the distance in SS as k is constant for both weight
configurations and cancels when computing the distance.

Theorem 2. Given, two weight configurations w; and w;, a
set of grounding factors of k, and grounding adjusted weight
configurations W; = K - W; and W; = K - Wj, the dis-
tance measured between both (w;,w;) and (W;, wW;) in SS
are equal, i.e. ||€(w;) — E(w;)|[3 = [|E(W:) — E(W;)][5.

Proof. To prove the above theorem we consider the differ-
ence between the weight configurations £(w;) — £(W;):

E(w;) —E(w;) = (In(k - w;) — In(k1 - wi1))—

(1
n(k - wj) —In(k1 - w;1))
(In(w;) — In(w; 1))~

—~
o~

(In(w;) — In(w;1))
=E(w;) — E(w;)
Since £(w;) — E(W,;) = E(w;) — £(w;), the distances are
also equal. O

Theorem 2 shows that the distance measured between two
weight configurations in SS is robust while considering the
size of their groundings.

3.8 Acquisition Function

Another crucial component of our algorithm is the acquisi-
tion function .. The function o determines the next weight
configuration on which to evaluate the function +, i.e.,
Whept = argmaxycw o(w). Since our approach approx-
imates the function v with g, we would like to choose points
that allow us to learn the approximation g while also maxi-
mizing the metric v. To achieve this, we consider four well
studied acquisition functions in the context of BO.

Upper confidence bound (UCB) (Srinivas et al. 2010): is
an optimistic policy with provable cumulative regret bounds.
The acquisition function can be written as: «(W) = p(w)+
1-o(w), where i and o are the mean and variance predicted
by the GP and ¢y > 0 is a hyperparameter set to achieve op-
timal regret bounds.

Thompson sampling (TS) (Thompson 1933): is an
information-based policy that considers the posterior distri-
bution over the weights W. The acquisition function can be
written as: «(W) = p(w); p(w) ~ N(u(w),o(w)),
where p are samples obtained from the distribution com-
puted at the point w.

Probability of improvement (PI) (Kushner 1964): is an

improvement-based policy that favors points that are likely
to improve an incumbent target 7. The acquisition function

can be written as: (W) = P(y(w) > 1) = T(H(W)*‘r>7

o(w)

where F is the standard normal cumulative distribution
function and 7 is set adaptively to the current best observed
value for 7.

Expected improvement (EI) (Mockus, Tiesis, and Zilin-
skas 1978): is an improvement-based policy similar to
PI. But, instead of probability, it measures the expected
amount of improvement. The acquisition function can

be written as: a(W) = {(u(w) — 7—).7-'(“57"87)7) +
(o(w))F (15

o(w)
function of a standard normal distribution function.

)}, where F is the probability density

4 Feasibility Analysis

When defining BOWL we made two assumptions. First, we
restricted the weights to be in range [0, 1] and second, we
assumed the function v to be smooth. Here, we justify both
assumptions. For the first assumption, we show that any PSL
program with weights in R™ can be mapped to weights in
[0, 1] without any change to the solution obtained by mini-
mizing the function in Equation 1.

Theorem 3. Consider any PSL program with r rules and
weights w = {w;, ..., w,},w; € RY. There exists a map-
ping function {(w) : R" — [0,1]" which transforms the
weights to [0, 1]” without modifying the solution of the infer-
ence problem 'y in PSL. The (function is given by:

w
=— 12

C(w) max(w) (12)

Proof. Similar to proof from Theorem 1. O

Since we make an assumption that the user-defined met-
ric depends only on the random variables, the metric value
obtained is unaffected.

With regard to the second assumption, we constrain our-
selves to only those metrics (w(y,y*)) that are smooth
with respect to the random variables (such as MSE). Note,
our assumption is that the function ~ is smooth and ~ is
parametrized with w and not the random variables y. Hence,
it is non-trivial to prove smoothness in . With the above
constraint on the possible metrics, we know that if a small
change in w leads to a small change in y, then the func-
tion -y is also smooth. We formally define smoothness of the
function ~ as follows:

Definition 4. Given two sets of weights w1 and wo, for a
PSL program with r rules and random variables y, the func-
tion vy is considered to be smooth if Ay o < € where € — 0,
then |ly1 — y2|l2 < v where v — 0, y1 and y2 are the

random variables inferred using weights w1 and wo respec-
tively.

This directly leads to the conditioning of the problem. If a
problem is well-conditioned then our assumption about the
smoothness of + is precise. If the problem is ill-conditioned
then this assumption fails to hold and the function learned in
BOWL could be a poor approximation of +.

Finally, in practice, it is inefficient to use GPR for high-
dimensional problems (Wang et al. 2016); GPR works best
when the number of dimensions is less than 50. This makes
PSL weight learning an ideal use case for GPR, because typ-
ically PSL programs have just tens of rules and most often
the number of rules does not exceed 50.

S Empirical Evaluation

In this section, we evaluate BOWL on various realworld
datasets. All our experiments were run on a machine with
16 cores and 64GB of memory. We investigate three re-
search questions: [Q1] How does BOWL perform on real-
world datasets compared to the existing methods? [Q2] Is
BOWL-SS scalable? [Q3] Is BOWL-SS robust?

We selected five realworld datasets from different do-
mains for which PSL models have promising results (Bach
et al. 2017; Kouki et al. 2015).2 Details are as follows:
Jester: contains 2,000 users and 100 jokes (Goldberg et al.
2001). The task is to predict user’s preference to jokes.
LastFM: contains 1,892 users and 17,632 artists. The task
is to recommend artists to users by predicting the ratings for
user-artist pairs.

Citeseer: contains 2,708 scientific documents, seven cate-
gories, and 5,429 directed citations. The task is to assign a
category to each document.

Cora: is similar to Citeseer dataset, but contains 3,312 doc-
uments, six categories and 4,591 directed citations.
Epinions: contains 2,000 users and 8,675 directed links
which are positive and negative trust links between users.
The task is to predict the trust relation.

5.1 Performance analysis

To address [Q1], we compare the performance of BOWL-
SS, BOWL-0OS, MLE, MPLE, and LME on several metrics.
For each dataset, we use snowball sampling to create eight
folds and perform cross validation. We perform a paired t-
test (p-value < 0.05) across methods. For BOWL-SS and
BOWL-OS the maximum number of weight configurations
to explore in order to approximate the user-defined metric
function is set to ¢ = 50. Although in our experiments, we
observed that the best metric value is usually obtained at
t < 25 (this is likely because the function we intend to learn
has several flat regions). We also use a stopping criterion
which terminates the exploration if the standard deviation
at all sampled weight configurations is less than 0.5. MLE,
MPLE, and LME were allowed to run for 100 iterations.
For each dataset, depending on the problem, we lever-
age the metric that has been used for the problem to mea-
sure its performance. Hence, we report MSE and AUROC

*Models, code, and data: https://github.com/lings/aaai-bowl.git

for the Jester and LastFM datasets, categorical accuracy and
F1 for the Cora and the Citeseer datasets, and AUROC and
F1 for the Epinions dataset. We use UCB as our acquisition
function with ¢ = 5 to favor exploration. However, in Sec-
tion 5.3 we show that similar performance can be obtained
by using the other acquisition functions discussed in Sec-
tion 3.8. The hyperparameters that we use for BOWL are:
6 = 1.0,p = 1, and the mean function is a constant zero.
We set the value of p to one after exploring different values
in [10°,107°], and we set & to 1.0 as our metrics are in the
range [—1,1].

Table 1 shows the comparison between BOWL and other
methods across the different datasets. In each row of the ta-
ble, the best performing method and those which are not
significantly different from the best performing method are
shown in bold. We observe that BOWL-SS is the best per-
forming method across all the datasets and metrics. For
the Epinions dataset, we observe that there is no statisti-
cally significant difference in F/ score between BOWL-SS,
BOWL-0S, MLE, MPLE, and LME. Howeyver, it is inter-
esting that for the same dataset when the evaluation met-
ric is AUROC, MPLE produces significantly lower values.
For the LastFM, Jester, and Citeseer datasets, we observe
that BOWL-SS significantly outperforms MLE, MPLE, and
LME. For the Cora dataset, MPLE and MLE performs simi-
lar to BOWL-SS, while LME produces poorer results when
F1 score is under consideration. Finally, BOWL-OS per-
forms similar to or better than MLE, MPLE, and LME.
However, the BOWL-SS approach yields the best perform-
ing results across all datasets.

5.2 Scalability

In this section, we compare the runtimes of BOWL-SS,
MLE, MPLE, and LME to measure the scalability of
BOWL-SS and address [Q2]. The number of parameters to
learn in PSL is equal to the number of rules in the model
and the data size translates to the number of groundings
generated by the model. In Fig. 3a, we show the number of
groundings generated by each of the datasets.We also show
the number of rules in each model. The Jester dataset pro-
duces the largest number of groundings (~1M) using seven
rules and the Epinions dataset produces the least number of
groundings (~14K) using the largest model (20 rules).

In Fig. 3b, we observe that the learning times of MLE,
MPLE, and LME are not correlated to the size of the model,
i.e., the number of rules in the model, but correlated to the
number of groundings. MLE increases by about a factor of
~40 from Epinions to the Jester dataset and MPLE by a
factor of ~60. For LME, runtime increases based on the
number of groundings and complexity of finding the margin.
Therefore, LME takes longer to finish on the LastFM dataset
compared to the the Jester dataset. Next, we observe that the
time taken to run BOWL-SS is almost the same for all five
datasets with various sizes of rules and groundings. This is
because the time taken to run BOWL depends mainly on
the number of iterations it is allowed to run and the time it
takes to solve MAP inference in PSL. Since the number of
iterations is restricted to 50 for all models, this keeps the
time almost the same for all datasets. Further, efficient infer-

Table 1: Performance of methods across datasets; the best scoring methods (with p < 0.05) are shown in bold.

Method Jester Jester LastFM LastFM Citeeseer | Citeeseer Cora Cora Epinions Epinions
(Metric) (MSE) | (AUROC) (MSE) (AUROC) (Acc) (F1) (Acc) (F1) (AUROC) (F1)
MLE 0.058 0.733 0.081 0.581 0.710 0.671 0.832 | 0.869 0.815 0.960
MPLE 0.060 0.737 0.083 0.568 0.729 0.754 0.832 | 0.869 0.744 0.958
LME 0.055 0.740 0.126 0.554 0.728 0.690 0.831 | 0.849 0.826 0.960
BOWL-0OS 0.055 0.767 0.082 0.599 0.740 0.796 0.832 | 0.869 0.812 0.962
BOWL-SS 0.053 0.767 0.078 0.599 0.743 0.798 0.833 | 0.868 0.825 0.960

ence in PSL ensures small runtime increases for inference
even on larger datasets. These results indicate that BOWL-
SS can learn the best performing weights in the shortest time
on large datasets.

Number of rules

= 7 5 10 10 20

1 1 1 1 1
7 13.83
e 106 E!
2]
~ 12.84
n
80
K]
g
E |
2 |
3 104 1062]
St B
o
& 9.58 |
2
g 10 T T T T T
g Jester LastFM Citeseer Cora Epinions

Datasets

(a) Groundings generated by different datasets.
Number of groundings
1M 400K 33K 41K 14K

10t E I MLE E
F B MPLE 1
r i LvE 1
103 ABOWL-SS | o

,_.
©

Time in Seconds (log scale)
-
=

7 7

7 7

7 7

” z|a

7 71

’ A
T T

1 1
Jester LastFM Citesee Cora
7 10

Number of rules

4
R
Epinions

(b) Time to learn vs. # of rules and groundings
in datasets.

Figure 3: Analyzing scalability of BOWL-SS on number of
rules and groundings. BOWL-SS is minimally affected by
both the number of rules and groundings.

5.3 Robustness

To address [Q3], we run two sets of experiments: the first
experiment is to test the effects of choosing an acquisition
function on the performance of BOWL-SS and the sec-
ond experiment is to check how robust BOWL-SS is w.r.t.
different initialization. In Table 2 we compare the perfor-
mance of BOWL-SS using four different acquisition func-
tions (UCB, TS, PI, and EI) for all five datasets. We observe

that using BOWL-SS with different acquisition functions
yields similar results. This indicates that the performance
of BOWL-SS is robust to these exploration strategies. For
our second experiment, we perform weight learning with
BOWL-SS using 100 random initializations and report the
mean and standard deviation (std) of a metric per dataset in
Table 2. Note that for this experiment we use UCB as our
acquisition function. Further, we use only one (of the eight)
folds per dataset as we intend to measure the variance intro-
duced by different initializations. In Table 2, we also observe
that the standard deviation is small for all datasets which in-
dicates that BOWL-SS is robust to initialization.

Table 2: We observe that the performance of BOWL-SS is
unaffected by both acquisition function and initialization.

Datasets Different acquisition functions Varied initializations
UCB TS PI EI Mean Std
Jester (MSE) 0.053 0.052 0.053 0.053 0.052 0.001
LastFM (MSE) 0.078 0.078 0.078 0.078 0.079 0.001
Citeseer (F1) 0.797 | 0.797 | 0.797 | 0.798 | 0.804 0.001
Cora (F1) 0.868 | 0.869 | 0.866 | 0.869 | 0.876 0.002
Epinions (F1) 0.962 | 0.960 | 0.960 | 0.960 | 0.964 0.002

6 Conclusion and Future work

In this paper, we introduce BOWL, a BO approach to
learn weights in PSL. BOWL yields improved performance
across several metrics on a variety of different realworld
datasets. There are many avenues for expanding our work.
To perform weight learning using BOWL, the SRL model
needs to be fully grounded. There are a variety of approaches
for avoiding full grounding (Sarkhel, Singla, and Gogate
2015; Sarkhel et al. 2016) that would be interesting to in-
tegrate into our approach. Further, performance of GPs are
highly dependent on the kernel function used. Therefore, an
exploration of different kernels for BOWL could further im-
prove the performance of our method.

7 Acknowledgements

This work was partially supported by the National Science
Foundation grants CCF-1740850 and IIS-1703331, AFRL
and the Defense Advanced Research Projects Agency. Gol-
noosh Farnadi is supported by postdoctoral scholarships
from IVADO through the Canada First Research Excellence
Fund (CFREF) grant.

References

Bach, S. H.; Huang, B.; London, B.; and Getoor, L. 2013.
Hinge-loss Markov Random Fields: Convex Inference for
Structured Prediction. In UAL

Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L.
2017. Hinge-Loss Markov Random Fields and Probabilistic
Soft Logic. JMLR 18:109:1-109:67.

Boyd, S. P.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein,
J. 2011. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations
and Trends in Machine Learning.

Brochu, E.; Brochu, T.; and de Freitas, N. 2010. A Bayesian
Interactive Optimization Approach to Procedural Animation
Design. In SIGGRAPH.

Chou, L.; Sarkhel, S.; Ruozzi, N.; and Gogate, V. 2016. On
parameter tying by quantization. In AAAIL

Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with percep-
tron algorithms. In EMNLP.

Das, M.; Wu, Y.; Khot, T.; Kersting, K.; and Natarajan, S.
2016. Scaling lifted probabilistic inference and learning via
graph databases. In SDM.

De Raedt, L., and Kersting, K. 2011. Statistical relational
learning. Springer US. 916-924.

Deng, L., and Wiebe, J. 2015. Joint prediction for
entity/event-level sentiment analysis using probabilistic soft
logic models. In EMNLP.

Farabi, K. M. A.; Sarkhel, S.; and Venugopal, D. 2018. Ef-
ficient weight learning in high-dimensional untied mlns. In
AISTATS.

Farnadi, G.; Bach, S. H.; Moens, M.; Getoor, L.; and Cock,
M. D. 2017. Soft quantification in statistical relational learn-
ing. MLJ.

Getoor, L., and Taskar, B. 2007. Introduction to statistical
relational learning. The MIT Press.

Goldberg, K.; Roeder, T.; Gupta, D.; and Perkins, C. 2001.
Eigentaste: A constant time collaborative filtering algorithm.
IR.

Huynh, T. N., and Mooney, R. J. 2009. Max-Margin Weight
Learning for Markov Logic Networks. In KDD.

Huynh, T. N., and Mooney, R. J. 2010. Online Max-margin
Weight Learning with Markov Logic Networks. In AAAL

Joachims, T.; Finley, T.; and Yu, C.-N. J. 2009. Cutting-
plane training of structural svms. MLJ 77:27-59.

Kok, S., and Domingos, P. 2005. Learning the Structure of
Markov Logic Networks. In ICML.

Kouki, P.; Fakhraei, S.; Foulds, J.; Eirinaki, M.; and Getoor,
L. 2015. Hyper: A flexible and extensible probabilistic
framework for hybrid recommender systems. In 9th ACM
Conference on Recommender Systems (RecSys). ACM.

Kouki, P; Pujara, J.; Marcum, C.; Koehly, L. M.; and
Getoor, L. 2017. Collective entity resolution in familial
networks. In ICDM.

Kushner, H. J. 1964. A new method of locating the max-
imum point of an arbitrary multipeak curve in the presence
of noise. JBE 86(1):97-106.

Lizotte, D.; Wang, T.; Bowling, M.; and Schuurmans, D.
2007. Automatic gait optimization with gaussian process
regression. In IJCAL

Lowd, D., and Domingos, P. 2007. Efficient Weight Learn-
ing for Markov Logic Networks. In KDD.

Martinez-Cantin, R.; de Freitas, N.; Brochu, E.; Castellanos,
J. A.; and Doucet, A. 2009. A Bayesian exploration-
exploitation approach for optimal online sensing and plan-
ning with a visually guided mobile robot. AR 27(2):93—-103.
Mockus, J.; Tiesis, V.; and Zilinskas, A. 1978. The appli-
cation of Bayesian methods for seeking the extremum. In
TGO.

Mockus, J. 1977. On Bayesian Methods for Seeking the
Extremum and their Application. In IFIP Congress.
Rasmussen, C. E., and Williams, C. K. I. 2005. Gaus-
sian Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press.

Richardson, M., and Domingos, P. M. 2006. Markov logic
networks. MLJ 62(1-2):107-136.

Sarkhel, S.; Venugopal, D.; Pham, T. A.; Singla, P.; and
Gogate, V. 2016. Scalable training of Markov logic net-
works using approximate counting. In AAAL

Sarkhel, S.; Singla, P.; and Gogate, V. 2015. Fast lifted map
inference via partitioning. In NIPS.

Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P;; and
de Freitas, N. 2016. Taking the Human Out of the Loop: A
Review of Bayesian Optimization. Proceedings of the IEEE
104(1):148-175.

Singla, P., and Domingos, P. 2005. Discriminative Training
of Markov Logic Networks. In AAAL

Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In
NIPS.

Sridhar, D.; Fakhraei, S.; and Getoor, L. 2016. A prob-
abilistic approach for collective similarity-based drug-drug
interaction prediction. Bioinformatics 32(20):3175-3182.
Srinivas, N.; Krause, A.; Kakade, S.; and Seeger, M. 2010.
Gaussian process optimization in the bandit setting: No re-
gret and experimental design. In ICML.

Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M. W.
2012. Information-theoretic regret bounds for gaussian pro-
cess optimization in the bandit setting. information theory.
IEEE Transactions on.

Srinivasan, S.; Rao, N.; Subbian, K.; and Getoor, L. 2019.
Identifying facet mismatches in search via micrographs. In
CIKM.

Thompson, W. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3—4):285-294.

Wang, Z.; Hutter, F.; Zoghi, M.; Matheson, D.; and De Fre-
itas, N. 2016. Bayesian optimization in a billion dimensions
via random embeddings. JAIR 55(1):361-387.

