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ABSTRACT

Node classification in networks is a common graph mining task. In

this paper, we examine how separating identity (a node’s attribute)

and preference (the kind of identities to which a node prefers to link)

is useful for node classification in social networks. Building upon re-

cent work by Chin et al. (2019), where the separation of identity and

preference is accomplished through a technique called łdecoupled

smoothingž, we show how models that characterize both identity

and preference are able to capture the underlying structure in a

network, leading to improved performance in node classification

tasks. Specifically, we use probabilistic soft logic (PSL) [2], a flexible

and declarative statistical reasoning framework, to model identity

and preference. We compare our approach with the original de-

coupled smoothing method and other node classification methods

implemented in PSL, and show that our approach outperforms the

state-of-the-art decoupled smoothing method as well as the other

node classification methods across several evaluation metrics on a

real-world Facebook dataset [24].
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1 INTRODUCTION

Classifying, or labeling, nodes in networks is a common graph

mining task for which a wide variety of methods have been pro-

posed [7, 9, 13, 15, 16, 23, 28, 29]. Most methods infer information

about a node’s label based on its attributes, relational structure, and

neighbors’ labels. Many methods also propagate node labels along

edges in order to jointly infer unobserved labels. Within social net-

works, the phenomenon of homophily, where neighboring nodes

tend to have the same label [19], is commonly exploited. Another
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phenomenon, known as monophily, where nodes share similarity

with their neighbors’ neighbors, has also been shown to be useful

in identifying unknown labels [1].

In this paper, we examine how the notions of identity and pref-

erence are useful for node classification in social networks. Identity

refers to a specific attribute of an individual, such as their gender,

political affiliation, religious belief, and so on; preference refers to

the tendency of an individual to share a connection with others

having a particular identity. The idea of decoupling identity and

preference was first introduced by Chin et al. (2019). In their work,

they make specific assumptions on the correlations between an

individual’s identity and preference: they assume that the identity

of a given node, an ego node, is approximated by a weighted average

of its neighbors’ preferences, and the preference of the ego node

can be approximated by a weighted average of its neighbors’ identi-

ties. Following these assumptions, all preferences can be eliminated

from the system, so the unlabeled identities can be inferred without

explicitly modeling the preference of any node. We refer to this

approach as łoriginal decoupled smoothingž (ds orig).

We build upon the original decoupled smoothing work and show

how to use probabilistic soft logic (PSL) [2], a statistical relational

learning framework for relational domains, to model preferences

and identities. We show that PSL can solve node classification prob-

lems efficiently using the concept of decoupled smoothing. In addi-

tion, the rich modeling capabilities of PSL allow us to incorporate

prior information and domain knowledge into our model.

We perform an empirical study using different approaches on

a real Facebook dataset [24]. Specifically, we compare the PSL im-

plementation of Decoupled Smoothing (ds psl ) with the original

Decoupled Smoothing method (ds orig ) and other existing clas-

sification methods based on homophily (1-hop psl) or monophily

(2-hop psl), by applying them to a gender labeling task. Our results

first show that ds psl outperforms 1-hop psl, 2-hop psl, and ds

orig in terms of both categorical accuracy and AUROC, especially

when less than 50% percent of the node labels are observed. This in-

dicates that ds psl is able to better capture the underlying network

structure by modeling identity and preference explicitly, especially

when the label information is sparse. In addition, we find that while

ds orig fails to outperform 2-hop psl, ds psl outperforms 2-hop

psl, showing the effectiveness of decoupled smoothing in PSL as a

fundamental modeling tool. We also explore a variation of ds psl by

adding an additional rule that incorporates local homophily prop-

erties of preference among individuals that are tightly connected

with each other. This achieves similar performance compared to ds
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psl, but provides a way to exploit additional relational structures

in the graph beyond friendship links.

2 PROBLEM STATEMENT

In this work, we focus on label prediction in social networks. Given

the structure of a social network graph and the labels for a subset of

nodes, the task is to infer the labels for the unlabeled nodes. Specif-

ically, we assume that we are given a social network of individuals,

represented as nodes, with social ties, such as friendship, repre-

sented as undirected, unweighted edges. The neighbors of node

𝑖 refers to the set of individuals who are immediate friends with

𝑖 . Each person 𝑖 is associated with an identity and a preference.

Identity is the label that we are trying to predict, and corresponds

to a specific attribute of an individual, such as gender, political

affiliation, or religious affiliation. In contrast, the preference of an

individual is their tendency to have social ties with individuals of a

certain identity. Preference is completely unobserved and treated

as a latent variable

The separation of identity and preference is more evident when

the preference is not homophily-driven. For example, users of similar

political affiliation tend to prefer neighbors of that same affiliation,

which results in a user’s identity and preference being the same.

Figure 1a shows that the center node’s political affiliation is Party

A, and most of its friends also have the same political affiliation of

Party A. In this case, the separation of identity and preference is

less obvious, since preference of political affiliation is homophily

driven. However, users of a particular gender may not always prefer

neighbors of that same gender, which results in users having a pref-

erence that is not the same as their identity. As is shown in Figure

1b, the center node’s gender is male. However, it has a preference

of making friends with people whose identities are female. In this

case, the separation of identity and preference is more apparent,

since gender preference is not always homophily driven.

In this work, we focus on the specific task of gender prediction. In

this setting, a person’s identity is their gender and their preference

is a latent variable indicating their tendency to make friends with

a particular gender. Because of limitations in the dataset, we treat

gender as a binary label: Female or Male.

3 BACKGROUND

In this section, we provide a brief review of the properties of large-

scale social networks, decoupled smoothing on graphs, and Proba-

bilistic Soft Logic (PSL).

3.1 Properties of Large-Scale Social Networks

The recent emergence and popularization of Online Social Net-

works (OSNs) has made available a large amount of data on social

organization, interaction, and human behavior, providing many re-

search opportunities for data mining in large-scale networks. Node

classification is a common graph mining task. There are several

special characteristics that are commonly observed in large-scale

social network graphs that can help improve the accuracy of pre-

dictions. First is the well-known phenomena of homophily [14],

in which individuals tend to be connected with people who are

similar to themselves. This phenomena is sometimes referred to

as łbirds of a feather flocking togetherž, and is often observed in

social networks [19]. For neighbors within a network, homophily

finds similarity between their attributes [6]. Another phenomenon

that often exists in large-scale social networks is monophily [1].

Monophily is the phenomena where attributes of an individual’s

friends are likely to be similar to the attributes of the individual’s

other friends. As pointed out by Altenburger and Ugander (2018),

in cases where homophily is weak or nonexistent, monophily has

been shown to still hold.

In addition to these statistical characteristics of labels, social net-

works also exhibit various purely topological properties. In most

real-world OSNs, people are likely to form highly clustered commu-

nities, which is one of the distinguishing features of social networks

[26]. The degree distribution is highly skewed [22]. Moreover, many

graphs have high clustering coefficients [27], which is indicative of

underlying community structure.

3.2 Decoupled Smoothing on Graphs

Decoupled smoothing was first introduced by Chin et al. (2019). The

key principle of decoupled smoothing is the separation of a person’s

identity from their preference. Suppose we have an undirected,

unweighted social network graph and an associated matrix 𝑊 ,

where each element𝑊𝑖 𝑗 represents the influence of individual 𝑖 on

individual 𝑗 .𝑊𝑖 𝑗 is non-zero if 𝑖 and 𝑗 are friends. Let the row sums

be denoted by 𝑧𝑖 =
∑

𝑗𝑊𝑖 𝑗 , and the column sums be denoted by

𝑧′
𝑗
=

∑
𝑖𝑊𝑖 𝑗 . Decoupled smoothing relates an individual 𝑖’s identity

𝜃𝑖 and preference 𝜙𝑖 via𝑊 as follows:

𝜃𝑖 ≈
1

𝑧𝑖

𝑛∑

𝑗=1

𝑊𝑖 𝑗𝜙 𝑗

𝜙 𝑗 ≈
1

𝑧′
𝑗

𝑛∑

𝑖=1

𝑊𝑖 𝑗𝜃𝑖

Intuitively, this means that individual 𝑖’s identity 𝜃𝑖 is a weighted

average of its friends’ preferences, and its preference𝜙𝑖 is aweighted

average of its friends’ identities. Chin et al. (2019) show that this

model is equivalent to marginally specifying the joint Gaussian

distribution for 𝜃 and 𝜙 . Since the goal is to obtain predictions

for unobserved identities, they view the preference variable as a

nuisance parameters and marginalize them out. In this way, prefer-

ences can be eliminated from the system while its information can

still be encoded in the remaining linear system. The authors then

propose various ways to estimate the weight matrix𝑊 under cer-

tain assumptions. The result is that node identities can be inferred

without explicitly modeling the preference of any node.

Notions of identity and preference are not limited to social net-

works and the idea can be applied to any attributed graph.

3.3 Probabilistic Soft Logic (PSL)

Probabilistic Soft Logic (PSL) is a statistical reasoning framework

for collective, probabilistic reasoning in relational domains. A PSL

model is defined through a set of weighted first-order logical rules,

which can be used to specify features of graphical models over

ground atoms with a continuous relaxation of Boolean logic. We

point the reader to Bach et al. (2017) for a more detailed discussion
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Model PSL Rules

1-hop psl
Edge(A,B) ∧ Gender(A,G) → Gender(B,G)

Gender(A, +G) = 1

2-hop psl
Edge(A,B) ∧ Edge(B,C) ∧ Gender(A,G) → Gender(C,G)

Gender(A, +G) = 1

ds psl

Edge(A,B) ∧ Gender(A,G) → Preference(B,G)

Edge(A,B) ∧ Preference(A,G) → Gender(B,G)

Preference(A, +G) = 1

Gender(A, +G) = 1

ds-pc psl

Edge(A,B) ∧ Gender(A,G) → Preference(B,G)

Edge(A,B) ∧ Preference(A,G) → Gender(B,G)

CloseFriend(A,B) ∧ Preference(A,G) → Preference(B,G)

Preference(A, +G) = 1

Gender(A, +G) = 1

Table 1: PSL rules for different models.

2-hop psl only requires one rule: if three nodes A, B, and C form

a relationship chain such that A is friends with B, and B is friends

with C, then we conclude that nodes A and C are likely to have the

same gender attribute:

Edge(A,B) ∧ Edge(B,C)

∧Gender(A,G) → Gender(C,G)

Decoupled Smoothing. The decoupled smoothing (ds psl) model

allows an individual’s gender preference to differ from their own

gender identity. In order to achieve this, we add a Preference pred-

icate, representing each person’s propensity to befriend people of a

particular gender. Preference(A, G) can any take any value within

the range of [0, 1]: a value of 1 implies A strongly prefers friends

of gender G, a value of 0 implies A strongly prefers friends not of

gender G, and any value between falls on that spectrum. Unlike

gender, there is no explicit information available for preference. In

our approach, we learn a person’s preference by jointly reasoning

about both their identity (gender) and preference: if two nodes A

and B share an edge, and A has gender attribute G, then we conclude

that B likely has a preference for gender attribute G. Furthermore, if

two nodes A and B share an edge, and A has a preference for gender

attribute G, then we conclude that B likely has a gender attribute G.

The corresponding PSL rules are:

Edge(A,B) ∧ Gender(A,G)

→ Preference(B,G)

Edge(A,B) ∧ Preference(A,G)

→ Gender(B,G)

We apply a functional constraint to the Preference predicate:

Preference(A, +G) = 1

Decoupled Smoothing with Preference Concentration. Next, we

introduce a model that captures both preferences and community

structure. We make an additional assumption that a pair of friends

who share a large number of common friends are more likely to also

share similar preferences. We refer to this method as łdecoupled

smoothing with preference concentrationž (ds-pc psl). To measure

how closely two friends are related, we create an observed Close-

Friend predicate, which takes two individuals as its arguments,

and represents the łclosenessž between them based on the number

of their common friends. We then measure łclosenessž either by

normalizing the number of common friends (divide it by the largest

number of common friends in the graph) shared by individuals,

or with a threshold. Figure 2 show how different thresholds can

lead to a significant difference in the number of common friends

a pair of individuals share. However, empirical results show that

different threshold choices do not lead to a significant change in per-

formance. As a result, we will use 200 as a representative threshold

of ds-pc psl since it takes the shortest amount of time to run. We

will address it as ds-pc psl (200). We also consider the normalized

version of CloseFriend, denoted as ds-pc psl (normalized).

In addition to the rules established for decoupled smoothing,

we add a rule representing the idea that two individuals with a

higher value of CloseFriend are more likely to have a similar

Preference. This additional rule allows the model to focus on pair

of individuals who belong to the same clustered local communities,

where homophily on preference might be stronger.

The corresponding additional PSL rules are:

CloseFriend(A,B) ∧ Preference(A,G)

→ Preference(B,G)

5 EMPIRICAL EVALUATION

In this section, we evaluate the performance of 1-hop psl, 2-hop

psl, ds orig, ds psl, and ds-pc psl on a gender classification task

using a real-world Facebook dataset [24].

5.1 Dataset and Evaluation Metric

Our datasets consists of a network of Facebook users who were

undergraduates attending Amherst College in 2005 [24]. We use the

largest connected component from the network, which contains

2032 nodes and 78733 edges, with 1017 female users and 1015 male

users. We only consider nodes that have a self-reported gender.

Following the evaluation of Chin et al. (2019), we uniformly sample







Decoupled Smoothing in Probabilistic Soft Logic MLG ’20, Aug 24, 2020, San Diego, CA, USA

work relatively well in a setting where homophily in identity is

weak. Ultimately, we would like to build a hybrid model which can

automatically detect the homogeneity properties of the graph, and

adjust the weight between homophily and decoupled smoothing

accordingly.
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