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Hybrid recommender systems achieve state-of-the-art performance by integrating several different information sources along with

multiple recommendation approaches. Probabilistic Soft Logic (PSL) has been shown to be an accessible and effective means of creating

extensible hybrid recommenders [11]. PSL allows users to easily create intuitive models that incorporate background information and

capture complex interactions. However these complex interactions can sometimes make PSL models difficult to inspect, debug, and

understand. In this paper, we present a generic visual model inspector for PSL, and show how our inspector can be used on a hybrid

recommender system to: debug errors in the model, analyze the performance of individual components of the model, and explain

recommendations made by the model.
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1 INTRODUCTION

Hybrid recommender systems achieve state-of-the-art performance by integrating several different information sources

with multiple recommendation approaches [1, 5, 6, 8, 11, 14, 15]. Statistical Relational Learning (SRL), which combines

weighted logical rules with probabilistic inference to model complex data dependencies and make structured predictions,

has shown to be an accessible and effective means of creating hybrid recommenders [7, 9, 11, 13, 20, 22, 23]. Probabilistic

Soft Logic (PSL) [3] is one such SRL framework that has been used in several hybrid recommenders [9, 11, 13, 22]. One

of the appeals of PSL models is that they are intuitive to create and make it easy to include background knowledge and

complex data interactions. However, these complex interactions can sometimes make PSL models difficult to inspect,

debug, and understand. While there has been significant work in explaining hybrid recommenders [2, 4, 5, 10, 12, 16ś

19, 21, 24], there has been far less work in debugging them. While the two are closely related, this paper focuses on

debugging.

In this paper, we present our inspection tool for PSL: Visual Model Inspector for Probabilistic Soft Logic (VMI-PSL),

and demonstrate its use on hybrid recommender systems [11]. VMI-PSL provides an easy-to-use web-based inspector

for PSL models that requires no additional setup, uses data tables and aggregate statistics to display information about

a model in a scalable way, and uses contextual information to display only relevant portions of the model.
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