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Abstract

Variance-reduced algorithms, although achieve
great theoretical performance, can run slowly in
practice due to the periodic gradient estimation
with a large batch of data. Batch-size adaptation
thus arises as a promising approach to acceler-
ate such algorithms. However, existing schemes
either apply prescribed batch-size adaption rule
or exploit the information along optimization
path via additional backtracking and condition
verification steps. In this paper, we propose a
novel scheme, which eliminates backtracking line
search but still exploits the information along op-
timization path by adapting the batch size via his-
tory stochastic gradients. We further theoretically
show that such a scheme substantially reduces the
overall complexity for popular variance-reduced
algorithms SVRG and SARAH/SPIDER for both
conventional nonconvex optimization and rein-
forcement learning problems. To this end, we
develop a new convergence analysis framework
to handle the dependence of the batch size on his-
tory stochastic gradients. Extensive experiments
validate the effectiveness of the proposed batch-
size adaptation scheme.

1. Introduction

Stochastic gradient descent (SGD) (Ghadimi & Lan, 2013)
algorithms have been extensively used to efficiently solve
large-scale optimization problems recently. Furthermore,
various variance reduced algorithms such as SAGA (De-
fazio et al., 2014), SVRG (Johnson & Zhang, 2013; Reddi
et al., 2016a), SARAH (Nguyen et al., 2017a;b), and SPI-
DER (Fang et al., 2018)/SpiderBoost (Wang et al., 2019),
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have been proposed to reduce the variance of SGD. Such
variance reduction techniques have also been applied to pol-
icy gradient algorithms to develop SVRPG (Papini et al.,
2018), SRVR-PG (Xu et al., 2019b) and SARAPO (Yuan
et al., 2018) in reinforcement learning (RL). Though vari-
ance reduced algorithms have been shown to have order-
level lower computational complexity than SGD (and than
vanilla policy gradient in RL), they often do not perform as
well as SGD in practice, largely due to the periodic large-
batch gradient estimation. In fact, variance-reduced gradient
estimation plays an important role only towards the later
stage of the algorithm execution, and hence a promising way
to accelerate variance reduced algorithms is to adaptively
increase the batch size.

Two types of batch-size adaptation schemes have been pro-
posed so far to accelerate stochastic algorithms (Smith et al.,
2018; Friedlander & Schmidt, 2012; Devarakonda et al.,
2017). The first approach follows a prescribed rule to adapt
the batch size, which can be exponential and polynomial in-
crease of batch size as in hybrid SGD (HSGD) (Friedlander
& Schmidt, 2012; Zhou et al., 2018b) and linear increase of
batch size (Zhou et al., 2018b). Moreover, Harikandeh et al.
2015 proposed to use exponential increase of batch size at
each outer-loop iteration for SVRG.

The second approach adapts the batch size based on the
information along the optimization path. For example, De
et al. 2016; 2017 proposed Big Batch SGD, which adapts
the batch size so that the resulting gradient and variance
satisfy certain optimization properties. Since the batch size
needs to be chosen even before its resulting gradient is
calculated, the algorithm adopts the backtracking line search
to iteratively check that the chosen batch size ensures the
resulting gradient to satisfy a variance bound. Clearly, the
backtracking step adds undesired complexity, but seems to
be unavoidable, because the convergence analysis exploits
the instantaneous variance bound.

Our contribution lies in designing an easy-to-implement
scheme to adapt the batch size, which incorporates the in-
formation along the optimization path, but does not involve
backtracking and condition verification. We further show
by both theory and experiments that such a scheme achieves
much better performance than vanilla variance reduced algo-
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rithms in both conventional optimization and RL problems.

1.1. Our Contributions

New batch-size adaptation scheme via history gradients:
We propose to adapt the batch size of each epoch (i.e., each
outer loop) of variance reduced algorithms SVRG and SPI-
DER inversely proportional to the average of stochastic gra-
dients over each epoch, and call the algorithms as Adaptive
batch-size SVRG (AbaSVRG) and AbaSPIDER. We fur-
ther apply the scheme to the variance reduced policy gradi-
ent algorithms SVRPG and SPIDER-PG (which refers to
SRVR-PG in Xu et al. 2019b) in RL, and call the result-
ing algorithms as AbaSVRPG and AbaSPIDER-PG. These
algorithms initially use small batch size (due to large gradi-
ents) and enjoy fast iteration, and then gradually increase
the batch size (due to the reduced gradients) and enjoy re-
duced variance and stable convergence. Further technical
justification is provided in Section 2.1.

Since the batch size should be set at the beginning of the
epoch at which point the gradients in that epoch has not
been calculated yet. It is a similar situation as in De et al.
2016; 2017, which introduced the backtracking line search
to guarantee the variance bound. Here, we propose to use
the average of stochastic gradients over the preceding epoch
as an approximation of the present gradient information to
avoid the complexity of backtracking line search, which
we further show theoretically to still achieve guaranteed
improved performance.

New convergence analysis: Since the updates in our algo-
rithms depend on the past gradients, it becomes much more
challenging to establish the provable convergence guaran-
tee. The technical novelty of our analysis mainly lies in the
following two aspects.

e We develop a new framework to analyze the convergence
of variance reduced algorithms with batch size adapted to
history gradients for nonconvex optimization. In particu-
lar, we bound the function values for each epoch by the
average gradient in the preceding epoch due to the batch
size dependence, which further facilitates the bounding of
the accumulative change of the objective value over the
entire execution. Such an analysis is different from the
existing analysis of SVRG in Reddi et al. 2016a; Li & Li
2018 and SPIDER/SpiderBoost in Fang et al. 2018; Wang
et al. 2019, which are based on guaranteeing the decrease
of the objective value iterationwisely or epochwisely.

e We develop a simpler convergence analysis for SVRG-
type algorithms than previous studies (Reddi et al., 2016a;
Li & Li, 2018) for nonconvex optimization, which allows
more flexible choices of parameters. More importantly,
such an analysis fits well to the analysis framework we
develop to handle the dependence of the adaptive batch
size on the stochastic gradients in the previous epoch.

Based on the new analysis framework, we show that both
AbaSVRG and AbaSPIDER for conventional nonconvex
optimization and AbaSVRPG and AbaSPIDER-PG for pol-
icy optimization in RL achieve improved complexity over
their corresponding vanilla counterpart (without batch-size
adaptation). The worst-case complexity of these algorithms
all match the best known complexity. We also provide the
convergence analysis of AbaSVRG and AbaSPIDER for
nonconvex problems under the PL condition in Appendix C.

Experiments: We provide extensive experiments on both
supervised learning and RL problems and demonstrate
that the proposed adaptive batch-size scheme substantially
speeds up the convergence of variance reduced algorithms.

1.2. Related Work

Variance reduced algorithms for conventional optimiza-
tion. In order to improve the performance of SGD (Robbins
& Monro, 1951), various variance reduced algorithms have
been proposed such as SAG (Roux et al., 2012), SAGA
(Defazio et al., 2014), SVRG (Allen-Zhu & Hazan, 2016;
Johnson & Zhang, 2013), SARAH (Nguyen et al., 2017a;b;
2019), SNVRG (Zhou et al., 2018a), SPIDER (Fang et al.,
2018), SpiderBoost (Wang et al., 2019). This paper shows
that two representative algorithms SVRG and SPIDER can
be equipped with the proposed adaptive batch size and attain
substantial performance gain.

Variance reduced policy gradient for RL: Variance re-
duction methods have also been applied to policy gradient
methods (S. Sutton et al., 2000) in RL. One way is to incor-
porate a baseline in the gradient estimator, e.g., Williams
1992; Weaver & Tao 2001; Wu et al. 2018. Optimization
techniques have also been applied. For example, Papini et al.
2018; Xu et al. 2019a applied SVRG to develop stochastic
variance reduced policy gradient (SVRPG) algorithm. Yuan
et al. 2018 and Xu et al. 2019b applied SARAH/SPIDER
to develop stochastic recursive gradient policy optimization
(SARAPO) and stochastic recursive variance reduced policy
gradient (SRVR-PQG), respectively. Shen et al. 2019 devel-
oped Hessian aided policy gradient (HAPG). This paper
shows that the batch size adaptation scheme can also be
applied to variance reduced policy gradient algorithms to
significantly improve their performance.

Stochastic algorithms with adaptive batch size. Adap-
tively changing the batch size emerges as a powerful ap-
proach for accelerating stochastic algorithms (Smith et al.,
2018; Friedlander & Schmidt, 2012; Devarakonda et al.,
2017). Hybrid SGD (HSGD) applies exponential and poly-
nomial increase of batch size (Friedlander & Schmidt, 2012;
Zhou et al., 2018b) and linear increase of batch size (Zhou
et al., 2018b). De et al. 2016; 2017 proposed Big Batch
SGD with the batch size adaptive to the instantaneous gra-
dient and variance information (which needs to be ensured,
e.g., by backtracking line search) at each iteration. More-
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Algorithm 1 AbaSVRG Algorithm 2 AbaSPIDER
1: Input: xo, m, B, n, cg,ce, f1 > 0 1: Input: zo, m, B, n, cg,ce, 1 >0
2: 7% = 20 2: 7% = 20
3: fors=1,2,...,5 do 3: fors=1,2,...,5do
4: gy =31 4: x5 =71°"
5:  Sample N from [n] without replacement, 5:  Sample N, from [n] without replacement,

where N, = min{cgo?B; ", cco?e™ !, n}

6 g°=Vin. (")

7: Set Bs+1 =0

8 fort=1,2,...,m do

9: Sample B from [n] with replacement

10: vi_1 = V(@) — V(@) +g°
L af=at,-wi.

12: Bst1 + Psy1 + ||’Uf,1 ||2/T”

13:  end for

4. z° =3,

15: end for

16: Output: x¢ from {z}_; }c[9],tc[m) uniformly at random

over, Harikandeh et al. 2015 and Lei & Jordan 2019 pro-
posed to use exponential increase of batch size at each outer-
loop iteration respectively for SVRG and for an adaptively
sampled variance reduced algorithm SCSG (Lei et al., 2017).
Our algorithms adapt the batch size to history gradients,
which differs from the prescribed adaptive schemes, and
is easier to implement than Big Batch SGD by eliminating
backtraking line search and still guarantees the convergence.

‘We note that a concurrent work (Sievert & Charles, 2019)
also proposed an improved SGD algorithm by adapting the
batch size to history gradients, but only as a practice without
convergence proof. Our analysis framework is applicable to
their algorithm as we show in Appendix D.

Notations. Let A and V denote the minimum and the max-
imum. Let [n] := {1,...,n}. For asetS, let S be its
cardinality and define V fs(-) := £ >_,c5 Vfi(*).

2. Batch Size Adaptation for Nonconvex
Optimization

In this section, we consider the following finite-sum opti-
mization problem

min f(r) = -3 file). ®)
=1

z€ERC

In the context of machine learning problems, each function
fi(+) evaluates the loss on a particular i-th data sample, and
is generally nonconvex due to the complex models.

2.1. Proposed Algorithms with Batch-Size Adaptation

Two popular variance reduced algorithms to solve the opti-
mization problem (P) are SVRG (Johnson & Zhang, 2013)
and SARAH (Nguyen et al., 2017a)/SPIDER (Fang et al.,

where N, = min{cgo?8; ", cco®e ™, n}
6: vy =Vin (&)
70 xi =z — nug
8 Set Bst1 = ||[v§]I?/m
9: fort=1,2,....m—1 do

10: Sample B from [n] with replacement
11 v; =V () — Vfs(xi_1) +via
12: Ti, = T — N

13: ﬁer] — ﬂer] + HU;HQ/TTL

14:  end for

15:  z° ==x3,

16: end for

17: Output: z¢ from {x{_1}sc(s],¢c[m) uniformly at random

2018), which have been shown to outperform SGD. How-
ever, SVRG and SARAH/SPIDER often run slowly in prac-
tice due to the full/large-batch gradient evaluation at the
beginning of each epoch. We propose a batch-size adapta-
tion scheme to mitigate such an issue for these algorithms,
and we call the corresponding algorithms as AbaSVRG and
AbaSPIDER (see Algorithms 1 and 2). Note that AbaSPI-
DER adopts the improved version SpiderBoost (Wang et al.,
2019) of the original SPIDER (Fang et al., 2018).

We take SVRG as an example to briefly explain our idea.
Our analysis of SVRG shows that the decrease of the aver-
age function value over an epoch s with length m satisfies

E(f(#*1) — /() o Ellrl? | 9T <n
m

m N,

IN

—¢

where ¢, 1) > 0 are constants, the indicator function [ 4)
equals 1 if the event A is true and 0 otherwise, Z° is the
snapshot in epoch s, v; is a stochastic estimation of V f ()
within epoch s, and [V, is the batch size used at the outer-
loop iteration. The above bound naturally suggests that N
should be chosen such that the second term is at the same
level as the first term, i.e., the batch size should adapt to
the average stochastic gradient over the epoch, in which
case the convergence guarantee follows easily. However,
this is not feasible in practice, because the batch size should
be chosen at the beginning of each epoch, at which point
the gradients in the same loop have not been calculated
yet. Such an issue was previously solved in De et al. 2016;
2017 via backtracking line search, which adds significantly
additional complexity. Our main idea here is to use the
stochastic gradients calculated in the previous epoch for
adapting the batch size of the coming loop, and we show
that such a scheme still retains the convergence guarantee
and achieves improved computational complexity.
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More precisely, AbaSVRG/AbaSPIDER chooses the batch
size N at epoch s adaptively to the average (s of stochastic
gradients in the preceding epoch s — 1 as given below

DO ey s
bl

Ny = min{cgo?B;!
m

,ceole n} Bs =
where cg, ¢, > 0 are constants and o2 is the variance bound.
As a comparison, the vanilla SVRG and SPIDER pick a

fixed batch size to be either n or min{c.o%e~!, n}.

2.2. Assumptions and Definitions

We adopt the following standard assumptions (Lei et al.,
2017; Reddi et al., 2016a) for convergence analysis.

Assumption 1. The objective function in (P) satisfies:

(1) Vfi(-) is L-smooth for i € [n], i.e., for any z,y € R,
IV fi(z) = Vi)l < Lllz =yl
(2) f(-) is bounded below, i.e., f* = inf cpa f(x) > —oc.

(3) V fi(+) (with the index i uniformly randomly chosen) has

bounded variance, i.e., there exists a constant o > 0 such
that for any v € RY, L 37" ||V fi(z) — Vf(z)|? < o2

The item (3) of the bounded variance assumption is com-
monly adopted for proving the convergence of SGD-type
algorithms (e.g., SGD (Ghadimi & Lan, 2013)) and stochas-
tic variance reduced methods (e.g., SCSG (Lei et al., 2017))
that draw a sample batch with size less than n for gradient
estimation at each outer-loop iteration.

In this paper, we use the gradient norm as the convergence
criterion for nonconvex optimization.

Definition 1. We say that ¢ is an e-accurate solution for
the optimization problem (P) if E||V f (2°)||? < €, where ¢
is an output returned by a stochastic algorithm.

To compare the efficiency of different stochastic algorithms,
we adopt the following stochastic first-order oracle (SFO)
for the analysis of the computational complexity.

Definition 2. Given an input x € R?, SFO randomly takes
an index i € [n] and returns a stochastic gradient V f;(x)

such that E; [V fi(z)] = V f(x).

2.3. Convergence Analysis for AbaSVRG

Since the batch size of AbaSVRG is adaptive to the his-
tory gradients due to the component cgo?3; !, the existing
convergence analysis for SVRG type of algorithms in Li &
Li 2018; Reddi et al. 2016a does not extend easily. Here,
we develop a simpler analysis for SVRG algorithm than
that in Li & Li 2018; Reddi et al. 2016a (and can be of
independent interest), and enables to handle the depen-
dence of the batch size on the stochastic gradients in the
past epoch in the convergence analysis for AbaSVRG. To
compare more specifically, Reddi et al. 2016a introduced

a Lyapunov function R} = E[f(xf) + c||xf — 2°71|?]

and proves that RS decreases by the accumulated gradi-
ent norms ., Y|V f(z5)||? within an epoch s, and
Li & Li 2018 dlrectly showed that Ef(2*) decreases by

:Bl E||V f(z5)||* using tighter bounds. As a compari-
son, our analysis shows that Ef («*) decreases by the accu-
mulated stochastic gradient norms Z?Z)l E|jv§|>. More
details about our proof can be found in Appendix E. The
following theorem provides a general convergence result for
AbaSVRG.

Theorem 1. Suppose Assumption 1 is satisfied. Let € > 0
and cg,cc > « for certain constant o > 0. Let ¢ =

% g + 2 and choose 1, o and 1) such that 31 < €S

and ¢ = 5 — 5 — @ — Lm0, where S denotes
the number of epochs Then, the output x¢ returned by

AbaSVRG satisfies

oo 1) | ve | de

Pnis Pa
where f* = inf cpa f(x) and K = Sm represents the
total number of iterations.

E||Vf (x| <

Theorem 1 guarantees the convergence of AbaSVRG as

. s . L 2L%2m?2

long as ¢ is positive, i.e. F' + =" < % - i and
thus allows very flexible ch01ces of the stepsize 7, the epoch
length m and the mini-batch size B. Such flexibility and
generality are also due to the aforementioned simpler proof

that we develop for SVRG-type algorithms.

In the following corollary, we provide the complexity per-
formance of AbaSVRG under certain choices of parameters.

Corollary 1. Under the setting of Theorem 1, we choose
the constant stepsize n = 4 > the epoch length m = VB
(which B denotes the mini-batch size) and cg,c. > 16.
Then, to achieve E||V f(2¢)||? < ¢, the total SFO complex-
ity of AbaSVRG is given by

2
BU 2 -1 }
E min — ,cc0°€ ,n>+ KB
= {Z sz )12 /m

complexity of AbaSVRG

nAel B)

<Smin{65026’1,n} + KB = O(W + -
€

complexity of vanilla SVRG

If we choose B = n?/3 A €=2/3, then the worst-case com-
plexity is given by O ( Yn A 6_1)2/3) .

We make the following remarks on Corollary 1.

First, the worst-case SFO complexity under the specific
choice of B = n?/3 A e~2/3 matches the best known result
for SVRG-type algorithms. More importantly, since the
CﬁO’2

S et m can be much smaller
vz R/m

adaptive component
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than min{c.o?¢~!,n} during the optimization process par-
ticularly in the initial stage, the actual SFO complexity of
AbaSVRG can be much lower than that of SVRG with
fixed batch size as well as the worst-case complexity of
O (L(n A 1)?/3), as demonstrated in our experiments.

Second, our convergence and complexity results hold for any
choice of mini-batch size B, and thus we can safely choose a
small mini-batch size rather than the large one n?/3 A e=2/3
in the regime with large n and e ~. In addition, for a given
B, the resulting worst-case complexity O ( "\/)%_6 . %) still
matches the best known order given by ProxSVRG+ (Li &
Li, 2018) for SVRG-type algorithms.

Third, Corollary 1 sets the mini-batch size B = m2 to
obtain the best complexity order. However, our experiments
suggest that B = m has better performance. Hence, we also
provide analysis for this case in Appendix E.3.

Note that although Corollary 1 requires cg,c. > 16, the
same complexity result can be achieved by more flexible
choices for c3 and c.. More specifically, Theorem 1 only
requires cg and c. to be greater than « for any positive .
Hence, « = 0.5,7 = 1/(4L), B = m? ¢ > 0.5, and
c. > 0.5 are also valid parameters, which can be checked to
yield the same complexity order in Corollary 1. Hence, the
choices of ¢g, c. in the experiments are consistent with our
theory here.

2.4. Convergence Analysis for AbaSPIDER

In this subsection, we study AbaSPIDER, and compare our
results with that for AbaSVRG. Note that AbaSPIDER in Al-
gorithm 2 adopts the improved version SpiderBoost (Wang
et al., 2019) of the original SPIDER (Fang et al., 2018).

The following theorem provides a general convergence re-
sult for AbaSPIDER.

Theorem 2. Suppose Assumption 1 holds. Let ¢ > 0 and
272

g, Ce > a for certain constant o > 0. Let ¢ = W +

% + 2 and choose (1, o and n such that 51 < Se and

2 7 2a 3 >5— > 0. Then, the output x;
returned by AbaSPIDER satisfies

Y(f(zo) — ")
onK

€ 4e
Ye | de

BV (wo)|* < 25+ o

where f* = inf cga f(z) and K = Sm.

To guarantee the convergence, AbaSPIDER allows a smaller
mini-batch size B than AbaSVRG, because AbaSPIDER
requires B > ©(mn?) (see Theorem 2) to guarantee ¢ to
be positive, whereas AbaSVRG requires B > O(m?n?)
(see Theorem 1). Thus, to achieve the same-level of tar-
get accuracy, AbaSPIDER uses fewer mini-batch samples
than AbaSVRG, and thus achieves a lower worst-case SFO
complexity, as can be seen in the following corollary.

Corollary 2. Under the setting of Theorem 2, for any mini-
batch size B < n'/? A e 1/2, if we set the epoch length
m = (nAL)B~1, the stepsizen = 7=/ £ and cg, cc > 16,
then to obtain an e-accurate solution x¢, the total SFO
complexity of AbaSPIDER is given by

S cgo?
: B 2 —1
E min cco‘e " ,ny+ KB
{271 Jop =1 |[2/m” ’ }

s=1

complexity of AbaSPIDER
<Smin {eo’ein} + KB=0( (nne)'?).

complexity of vanilla SPIDER

Corollary 2 shows that for a wide range of mini-batch size
B (as long as B < n'/? A ¢e~1/%), AbaSPIDER achieves the
near-optimal worst-case complexity O (% (nA %)1/ 2) under
a proper selection of m and 1. Thus, our choice of mini-
batch size is much less restrictive than B = n!/2 A ¢~ 1/2
used by SpiderBoost (Wang et al., 2019) to achieve the
optimal complexity, which can be very large in practice.
More importantly, our practical complexity can be much
better than those of SPIDER (Fang et al., 2018) and Spider-
Boost (Wang et al., 2019) with a fixed batch size due to the
batch size adaptation.

3. Batch Size Adaptation for Policy Gradient

In this section, we demonstrate an important application
of our proposed batch-size adaptation scheme to variance
reduced policy gradient algorithms in RL.

3.1. Problem Formulation

Consider a discrete-time Markov decision process (MDP)
M ={S, AP, R,~,p}, where S denotes the state space;
A denotes the action space; P denotes the Markovian tran-
sition model, P(s’|s, a) denotes the transition probability
from state-action pair (s,a) to state s’; R € [—R, R] de-
notes the reward function, R(s,a) denotes the reward at
state-action pair (s, a); v € [0, 1) denotes the discount fac-
tor; and p denotes the initial state distribution. The agent’s
decision strategy is captured by the policy 7 := m(-|s),
which represents the density function over space A at state
5. Assume that the policy is parameterized by # € R?. Then,
the policy class can be represented as IT = {mg|6 € R?}.

We consider a MDP problem with a finite horizon H. Then,
a trajectory 7 consists of a sequence of states and actions
(so0,a0, - ,SH—1,am—1) observed by following a policy
mp and sg ~ p. The total reward of such a trajectory 7
is given by R(7) = Zfio YR (s¢,a¢). For a give pol-
icy my, the corresponding expected reward is given by
J(0) = E;p(.j9) R(T), where p(-|0) represents the proba-
bility distribution of the trajectory 7 by following the policy
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mg. The goal of the problem is to find a policy that achieves
the maximum accumulative reward by solving
max J(f), where J(#)= E [R(7)].
max J (0) ®)=_E RO @
3.2. Preliminaries of Policy Gradient and Variance
Reduction

Policy gradient is a popular approach to solve the problem
(Q), which iteratively updates the value of 6 based on the
trajectory gradient of the above objective function. Since
the distribution p(:|6) of 7 is unknown because the MDP
is unknown, policy gradient adopts the trajectory gradient
(denoted by g(7|6)) based on the sampled trajectory T for its
update. Two types of commonly used trajectory gradients,
namely REINFORCE (Williams, 1992) and G(PO)MDP
(Baxter & Bartlett, 2001), are introduced in Appendix A. A
key difference of such policy gradient algorithms from SGD
in conventional optimization is that the sampling distribu-
tion p(+|6) changes as the policy parameter @ is iteratively
updated, and hence trajectories here are sampled by a vary-
ing distributions during the policy gradient iteration.

This paper focuses on the following two variance reduced
policy gradient algorithms, which were developed recently
to improve the computational efficiency of policy gradient
algorithms. First, Papini et al. 2018 proposed a stochastic
variance reduced policy gradient (SVRPG) algorithm by
adopting the SVRG structure in conventional optimization.
In particular, SVRPG continuously adjusts the gradient esti-
mator by importance sampling due to the iteratively chang-
ing trajectory distribution. Furthermore, Xu et al. 2019b
applied the SARAH/SPIDER estimator in conventional opti-
mization to develop a stochastic recursive variance reduced
policy gradient (SRVR-PG) algorithm, which we refer to as
SPIDER-PG in this paper.

3.3. Proposed Algorithms with Batch-size Adaptation

Both variance reduced policy gradient algorithms SVRPG
and SPIDER-PG choose a large batch size N for estimat-
ing the policy gradient at the beginning of each epoch. As
the result, they often run slowly in practice, and do not
show significant advantage over the vanilla policy gradi-
ent algorithms. This motivates us to apply our developed
batch-size adaptation scheme to reduce their computational
complexity.

Thus, we propose AbaSVRPG and AbaSPIDER-PG algo-
rithms, as outlined in Algorithms 3 and 4. More specifically,
we adapt the batch size IV based on the average of the tra-
jectory gradients in the preceding epoch as

0[02

N = ey
1 2 )
% Z?:knk—m ||v1|| +e€
where k denotes the iteration number, ny = |k/m] X m,
and [y = -+ = [l = 0.

3.4. Assumptions and Definitions

We take the following standard assumptions, as also adopted
by Xu et al. 2019a;b; Papini et al. 2018.

Assumption 2. The trajectory gradient g(7|0) is an unbi-
ased gradient estimator, i.e., Er,(.19)[9(7]|0)] = VJ(0).

Note that the commonly used trajectory gradients g(7|6)
such as REINFORCE and G(PO)MDP as given in Ap-
pendix A satisfy Assumption 2.

Assumption 3. For any state-action pair (s,a), at any
value of 0, and for 1 < 1,5 < d, there exist constants
0 <G, H, R < oo such that |V, logmg(als)| < G and

82
R <R, |=——
Risa)l < R, [ 5555
Assumption 3 assumes that the reward function R, and the
gradient and Hessian of log 7y (als) are bounded.

logmg(als)| < H.

Assumption 4. The estimation variance of the trajectory
gradient is bounded, i.e., there exists a constant 02 < 00
such that, for any 6 € R?:

Varlg(rl0)] = B lla(716) - VIO < o

Since the problem (Q) in general is nonconvex, we take the
following standard convergence criterion.

Definition 3. We say that 0 is an e-accurate stationary point
for the problem (Q) if E ||VJ(§)H2 <e

To measure the computational complexity of various policy
gradient methods, we take the stochastic trajectory-gradient
oracle (STO) complexity as the metric, which meansures
the number of trajectory-gradient computations to attain an
e-accurate stationary point.

3.5. Convergence Analysis for AbaSVRPG

In this subsection, we provide the convergence and com-
plexity analysis for AbaSVRPG algorithm. Since the batch
size of AbaSVRPG is adaptive to the trajectory gradients
calculated in the previous epoch, we will adopt our new anal-
ysis framework to bound the change of the function value
for each epoch by the trajectory gradients in the preceding
epoch due to the batch size dependence. The challenge here
arises due to the fact that the sampling distribution is time
varying as the policy parameter is updated due to the itera-
tion. Hence, the bound should be tightly developed in order
to ensure the decrease of the accumulative change of the
objective value over the entire execution of the algorithm.
Such bounding procedure is very different from the conver-
gence proofs for vanilla SVRPG in Papini et al. 2018; Xu
et al. 2019a.

The following theorem characterizes the convergence of
AbaSVRPG. Let 6* := arg maxgepa J(6).
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Algorithm 3 AbaSVRPG Algorithm 4 AbaSPIDER-PG
1: Input: n,60p,e,m,, 8 > 0 1: Input: n,60,e,m,a, 8 >0
2: for k=0,1,...,K do 2: for k=0,1,...,K do

3: if mod(k,m) =0 then

4: Sample {7;}7_, from p(-|.), where N is given by (1)
5: vk = 3 Yics 9(7il0k)

6: O:Hkandﬁ:fuk

7. else

8: Draw {7;}£., samples from p(-|0%)

9: vk = 55 2isy (9(7il0k) — w(7il0k, 0)g(7i0)) + o

10:  endif

11: 9k+1 =0 + Nk

12: end for

13: Output: 0 from {6, - - - , Ok } uniformly at random.

w

if mod(k,m) =0 then

4 Sample {7;}7~; from p(-|0x), where N is given by (1)

5 = 2 g(mitk)

6: else

7 Draw {7;} 2., samples from p(-|6}).

8 we=g5 20 (9(nilf)-
W(Ti|9k79k—l)g(7'i|9k71)) + Vk—1

9: endif

10:  Oxt1 = Ok + ok

11: end for

12: Output: 0 from {6, - - - , 0k } uniformly at random.

Theorem 3. Suppose Assumption 2, 3, and 4 hold. Choose

1 1
n=gr.m=(52)" B = () a=48ad § =6,
where L > 0 is a Lipschitz constant given in Lemma 3 in
Appendix F, and Q is the constant given in Lemma 5 in
Appendix F. Then, the output 0¢ of AbaSVRPG satisfies

88L
E[|VJ 0 <

where K denotes the total number of iterations.

Theorem 3 shows that the output of AbaSVRPG converges
at a rate of O(1/K). Furthermore, the following corollary
captures the overall STO complexity of AbaSVRPG and its
comparison with the vanilla SVRPG.

Corollary 3. Under the setting of Theorem 3, the overall
STO complexity of AbaSVRPG to achieve E ||V.J(0¢)||* < e is

(J67) =IO + 5, @

ng 2
< 2KB+ZO‘%

k=0

OCO'2

ng
2KB + p—
;) % Ei:k’m?fm HU1||2 +e

compelxity of AbaSVRPG

compelxity of vanilla SVRPG
—5/3 -1
=0 (e /3 4e ) .

The STO complexity improves the state-of-the-art complex-
ity of vanilla SVRPG characterized in Xu et al. 2019a, es-
pecially due to the saving samples at the initial stage. The
worst-case STO complexity of AbaSVRPG is O(e=%/3 4
6*1), which matches that of Xu et al. 2019a.

3.6. Convergence Analysis for AbaSPIDER-PG

In this section, we provide the convergence and complexity
analysis for AbaSPIDER-PG algorithm.

Theorem 4. Suppose Assumptions 2, 3, and 4 hold. Choose
n= i,m = ;&,B = ”L‘/\/?,a = 48 and 3 = 6. where
L > 0 is a Lipschitz constant given in Lemma 3 in Ap-
pendix F, and Q) is the constant given in Lemma 5 in Ap-
pendix F. Then, the output 0¢ of AbaSPIDER-PG satisfies

40L
K+1

E|[VJ(6)|° < 57 (J(6°) = J(60)) + 5.

Corollary 4. Under the setting of Theorem 4, the total STO
complexity of AbaSPIDER-PG to achieve E||VJ(0¢)|* < e is

2KB + — < 2KB+ —_—
k=0 % Zf:kml—m ”’U%”2 +e€ —o ¢

compelxity of AbaSPIDER-PG compelxity of vanilla SPIDER-PG

=0+,

Corollary 4 shows that the worst-case STO complexity of
AbaSPIDER-PG is O(e=3/2 + e~ 1), which orderwisely out-
performs that of AbaSVRPG in Corollary 3, by a factor
of O(¢~1/6). This is due to the fact that AbaSPIDER-PG
avoids the variance accumulation problem of AbaSVRPG
by continuously using the gradient information from the im-
mediate preceding step (see Appendix F.4 for more details).

4. Experiments

In this section, we compare our proposed batch-size adapta-
tion algorithms with their corresponding vanilla algorithms
in both conventional nonconvex optimization and reinforce-
ment learning problems.

4.1. Nonconvex Optimization

We compare our proposed AbaSVRG and AbaSPIDER
with the state-of-the-art algorithms including mini-batch
SGD (Ghadimi & Lan, 2013), HSGD (Zhou et al., 2018b),
AbaSGD' (Sievert & Charles, 2019), SVRG+ (Li & Li,
2018), and SpiderBoost (Wang et al., 2019) for two noncon-
vex optimization problems, i.e., nonconvex logistic regres-
sion and training multi-layer neural networks. Due to the
space limitations, the detailed hyper-parameter settings for
all algorithms and the results on training neural networks
are relegated to Appendix B.

We consider the following nonconvex logistic regression

ISievert & Charles 2019 an improved SGD algorithm by adapt-
ing the batch size to history gradients, which we refer to AbaSGD.
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Figure 1. Comparison of various algorithms for logistic regression problem over four datasets. From left to right: a8a, ijcnnl, a9a, w8a.

10000

—— SpiderBoost_lin_200 —=— adaptive batch size

SpiderBoost_lin_500 ——u=15
10° SpiderBoost_lin_1000 8000 u=18
~10 piderBoost exp 1= ——u=19
“ ~—— SpiderBoost_exp_1.4 6000 —— p=2
é 1072 —— SpiderBoost_exp_1.5 ——p=21

—— SpiderBoost_exp_2
—— AbaSPIDER
\

Batch size

4000

2000

—— SpiderBoost_lin_200 175{ —m— adaptive batch size
SpiderBoost_lin_500 = u=12
SpiderBoost_lin_1000 1507 e =13

SpiderBoost_exp_1.3 g1s] > u=1a

—— _exp_l.4 o = =145
2 — st_exp_1.5 100
—— SpiderBoost_exp_- 2

Vs

/ \

—— AbaSPIDER o

0 12 5 6 11 12

4 6 8 78 10
# ofgrad/n Epoch number: s

(a) dataset: a9a

0 2 10 12 8 9 10 11 12 13 14

a 6 8
#ofgrad/n Epoch number: s

(b) dataset: w8a

Figure 2. Comparison of our gradient-based adaptive batch size and exponentially and linearly increased batch sizes. For each dataset, the
left figure plots loss v.s. # of gradient evaluations and the right figure plots adaptive batch size and exponentially increasing batch sizes

v.s. epoch number s.

problem with two classes min,,cga = > iy L(w? @, 1) +

2
« Zle 1_1:;‘}_2, where z; € R? denote the features, Yi €
{£1} are labels, ¢ is the cross-entropy loss, and we set

a = 0.1. For this problem, we use four datasets from
LIBSVM (Chang & Lin, 2011): a8a, w8a, a9a, ijcnnl.

As can be seen from Fig. 1 and Fig. 4 (in Appendix B.2),
AbaSVRG and AbaSPIDER converge much faster than all
other algorithms in terms of the total number of gradient
evaluations (i.e., SFO complexity) on all four datasets. It
can be seen that both of them take the advantage of sample-
efficient SGD-like updates (due to the small batch size)
at the initial stage and attain high accuracy provided by
variance-reduced methods at the final stage. This is consis-
tent with the choice of our batch-size adaptation scheme.

We then evaluate the performance of our history-gradient
based batch-size adaptation scheme with the other two com-
monly used prescribed adaptation schemes, i.e., exponen-
tial increase of batch size Ny = p® and linear increase of
batch size Ny = v(s + 1). Let SpiderBoost_exp_gu and
SpiderBoost_lin_v denote SpiderBoost algorithms with ex-
ponentially and linearly increasing batch sizes under param-
eters u and v, respectively. As shown in Fig. 2, our adaptive
batch size scheme achieves the best performance for a9a
dataset, and performs better than all other algorithms for
w&8a dataset except SpiderBoost_lin_200, which, however,
does not converge in the high-accuracy regime. Further-
more, the performance of prescribed batch-size adaptation

can be problem specific. For example, exponential increase
of batch size (with y = 2 and p = 2.1) performs better than
linear increase of batch size for a9a dataset, but worse for
waa dataset, whereas our scheme adapts to the optimization
path, and hence performs the best in both cases.

4.2. Reinforcement Learning

We compare our proposed AbaSVRPG and AbaSPIDER-
PG with vanilla SVRPG (Papini et al., 2018) and SPIDER-
PG (Xu et al., 2019b) on four benchmark tasks in reinforce-
ment learning, i.e., InvertedPendulum, InvertedDoublePen-
dulum, Swimmer and Hopper. We apply the Gaussian policy
which is constructed using a two-layer neural network (NN)
with the number of hidden weights being task-dependent.
We also include the setup of adaptive standard deviation.
The experimental results are averaged over 20 trails with
different random seeds, and selections of random seeds are
consistent for different algorithms within each task for a
fair comparison. Further details about the hyper-parameter
setting and task environments are provided in Appendix B.4.

It can be seen from Figure 3 that the proposed AbaSVRPG
and AbaSPIDER-PG converge much faster than the vanilla
SVRPG and SPIDER-PG (without batch size adaptation)
on all four tasks. Such an acceleration is more significant at
the initial stage of optimization procedure due to the large
trajectory gradient that suggests small batch size.
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Figure 3. Comparison of various algorithms for reinforcement learning on four tasks.

5. Conclusion

In this paper, we propose a novel scheme for adapting the
batch size via history gradients, based on which we develop
AbaSVRG and AbaSPIDER for conventional optimization
and AbaSVRPG and AbaSPIDER-PG for reinforcement
learning. We show by theory and experiments that the
proposed algorithms achieve improved computational com-
plexity than their vanilla counterparts (without batch size
adaptation). Extensive experiments demonstrate the promis-
ing performances of proposed algorithms. We anticipate
that such a scheme can be applied to a wide range of other
stochastic algorithms to accelerate their theoretical and prac-
tical performances.
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