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ABSTRACT
Nearly every service on the Internet relies on the Domain Name
System (DNS), which translates a human-readable name to an IP
address before two endpoints can communicate. Today, DNS traffic
is unencrypted, leaving users vulnerable to eavesdropping and
tampering. Past work has demonstrated that DNS queries can reveal
a user’s browsing history and even what smart devices they are
using at home. In response to these privacy concerns, two new
protocols have been proposed: DNS-over-HTTPS (DoH) and DNS-
over-TLS (DoT). Instead of sending DNS queries and responses in
the clear, DoH and DoT establish encrypted connections between
users and resolvers. By doing so, these protocols provide privacy
and security guarantees that traditional DNS (Do53) lacks.

In this paper, we measure the effect of Do53, DoT, and DoH on
query response times and page load times from five global vantage
points. We find that although DoH and DoT response times are
generally higher than Do53, both protocols can perform better than
Do53 in terms of page load times. However, as throughput decreases
and substantial packet loss and latency are introduced, web pages
load fastest with Do53. Additionally, web pages load successfully
more often with Do53 and DoT than DoH. Based on these results,
we provide several recommendations to improve DNS performance,
such as opportunistic partial responses and wire format caching.

CCS CONCEPTS
• Networks → Network performance analysis; Network mea-
surement; • Security and privacy → Security protocols.
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1 INTRODUCTION
The Domain Name System (DNS) underpins nearly all Internet
communication; DNS maps human-readable domain names to cor-
responding IP addresses of Internet endpoints. Because nearly every
Internet communication is preceded by a DNS query, and because
some applications may require tens to hundreds of queries for a
single transaction, such as a web browser loading a page, the perfor-
mance of DNS is paramount. Many historical DNS design decisions
and implementations (e.g., caching, running DNS over UDP instead
of TCP) have thus focused on minimizing latency.

In the past several years, however, DNS privacy has become a
significant concern and design consideration. Past research has
shown that DNS queries can reveal various aspects of user activity
to eavesdroppers, including the web sites that a user visits [43]. As
a result, various efforts have been developed to send DNS queries
over encrypted protocols. Two prominent examples are DNS-over-
TLS (DoT) and DNS-over-HTTPS (DoH). In both cases, a client
sends DNS queries to the resolver over an encrypted transport
(TLS), which relies on the Transmission Control Protocol (TCP).

The use of encrypted transports makes it impossible for passive
eavesdroppers to observe DNS queries on a shared network, such
as a wireless network in a coffee shop. These transports also allow
clients to send encrypted DNS queries to a third-party recursive
resolver (e.g., Google or Cloudflare), preventing a user’s ISP from
seeing the DNS queries of its subscribers. As such, from a privacy
perspective, DoT and DoH are attractive protocols, providing confi-
dentiality guarantees that DNS previously lacked.

On the other hand, encrypted transports introduce new perfor-
mance costs, including the overhead associated with TCP and TLS
connection establishment, as well as additional application-layer
overhead. The extent of these performance costs is not well under-
stood. An early preliminary study by Mozilla found that queries
with DoH are marginally slower than conventional DNS over port
53 (Do53) [26]. However, Mozilla only measured query response
times, which does not reflect the holistic end-user experience.

In this paper, we measure how encrypted transports for DNS
affect end-user experience in web browsers. We find that DNS
queries are typically slower with encrypted transports. Much to
our surprise, however, we discovered that using DoT and DoH can
result in faster page load times compared to using Do53. When
exploring the underlying reasons for this behavior, we discovered
that encrypted transports have previously ignored quirks that sig-
nificantly affect application performance. For example, when DNS
queries are sent over a lossy network, DoT and DoH can recover
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faster than Do53 because TCP packets can be retransmitted after
2x the round-trip-time latency to a recursive resolver.

On networks with sub-optimal performance however, these pro-
tocols begin to suffer because of their connection and transport
overhead. The relative costs and benefits of a particular DNS trans-
port protocol and its implementation for DNS query response times
and web page load times ultimately depend on the underlying
network conditions. This variability suggests that in some cases,
clients (i.e., operating systems or browsers) might consider using
different transport protocols for DNS based on their varying cost,
performance, and privacy trade-offs. Our findings also suggest easy
improvements to stub resolver and browser DNS implementations.

In this paper, we make the following contributions:

• We provide a performance study of Do53, DoT, and DoH from
five global vantage points. We measure query response times
and page load times using popular open recursive resolvers,
as well as resolvers provided by local networks.

• We show that encrypted DNS transports can lead to faster page
load times than unencrypted DNS. We find that DNS query
response times for DoT and DoH are generally slower than
Do53. Surprisingly, on lossy network conditions, page load
times can be faster when using DoT and DoH instead of Do53.
We attribute this behavior to differences in retransmission
times between UDP and TCP.

• We give applicable insights to optimize DNS performance. Dur-
ing our measurements, we observed behavior in DNS im-
plementations that could be capitalized on for performance.
Based on these insights, we propose two optimizations: wire-
format caching and opportunistic partial responses.

2 BACKGROUND
At a high level, the process for resolving domain names into IP ad-
dresses works in several steps. A client queries a recursive resolver
(“recursor”), for example, “what is the IP address for example.com?”
The client has traditionally been a stub resolver, which is a light-
weight process that manages DNS interactions with the global DNS
infrastructure. If the recursor does not have an answer for the do-
main name cached, it will issue the query on the client’s behalf to
upstream servers in the DNS hierarchy, including the root, TLD,
and authoritative servers for a given domain. Once the answer is
returned, the recursor caches the response and sends it to the client.

Due to the historical origins of the DNS, there are several privacy
problems that were not originally considered [4]. For example, DNS
queries sent over port 53 (or “Do53”) are typically unencrypted.
This means that any eavesdropper listening to traffic between the
client and a recursor can see what queries the client is making. Such
information can be used to reveal personal information, such as
browsing patterns and client device types, which can then be used
to link user identity with user traffic. While recursors themselves
could also observe every query a client makes, recent protocols
have been introduced to (at least) improve privacy for DNS traffic
in transit between clients and DNS servers.

Hu et al. proposed DNS-over-TLS (or “DoT”) in 2016 to prevent
eavesdroppers from observing DNS traffic between a client and a
recursor [21]. Unlike Do53, the DNS traffic is sent over an estab-
lished TLS connection, which means that it relies on TCP by default

rather than on UDP. Once the connection is established, all queries
are encrypted by the transport and sent over port 853. Although
DoT is relatively new, it has seen a significant increase in popularity
since its introduction as some operating systems, such as Android,
have started to use DoT opportunistically [23].

In 2018, Hoffman et al. proposed DNS-over-HTTPS to prevent
on-path manipulation of DNS responses [20]. DoH is similar to
DoT, but uses HTTP as the transport protocol instead of TCP. Wire
format DNS queries and responses are sent using HTTP, and client
applications and servers are responsible for translating between
the application-layer messages and traditional DNS infrastructure.
An argument for DoH versus DoT has surrounded anti-censorship
concerns, as DoH uses port 443 compared with port 853. Oppressive
regimes sometimes censor the Internet by dropping DNS traffic,
but DoH requires a malicious network operator to drop all HTTPS
traffic (on port 443) to prevent name resolution.

In this paper, we do not investigate the privacy or anti-censorship
properties offered by each protocol. Rather, we are focus on the
effects that Do53, DoT, and DoH have on web performance and
analyzing their respective costs and benefits. We believe such mea-
surements are necessary for users to make informed decisions about
protocol choice for this crucial function of the Internet.

3 METHOD
In this section, we define our performance metrics, explain how we
measure them, and describe our experiment setup.

3.1 Metrics
To understand how Do53, DoT, and DoH affect browser perfor-
mance, we measure page load times and DNS query response times.
Page load times are gathered through Mozilla Firefox, and DNS
query response times are gathered using a custom tool.

3.1.1 Page Load Time. We use Mozilla Firefox 67.0.1 in headless
mode controlled by Selenium to visit a list of websites and measure
page load times. We record page load times by inspecting HTTP
Archive objects (HARs), which can be collected after a page has
finished loading [36]. In particular, we extract the onLoad timing
from each HAR, which measures the elapsed time between when
a page load began to when the load event was fired. Our code is
packaged as a Docker image to enable reproducible measurements,
and to clear the browser’s HTTP cache between page loads.

The load event is fired when a web page and all of its resources
have completely loaded. It is specified in the HTML Living Standard
and has been implemented by all major browser vendors [30]. It
has also been used to measure page load times in previous web
performance research [5, 13]. A similar event is DOMContentLoaded,
which is fired when the HTML for a web page has been loaded and
parsed by the browser. However, unlike the load event, it does not
include the time for downloading each object, which is necessary
to understand how DNS protocols affect page load times [28].

Another metric is above-the-fold time (AFT), which represents
the time it takes to download and render content that is initially
viewable within the browser’s dimensions. The motivation for AFT
is that users may perceive a page load to have finished before all the
objects have been rendered. However, to measure AFT, we would
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need to record the full rendering process and analyze the recorded
video, which is prohibitively expensive for each page load [40].

3.1.2 DNS Query Response Time. To obtain precise, accurate DNS
query response times, we built a tool with the getdns and libcurl
C libraries to issue Do53, DoT, and DoH queries. We measure re-
sponse times for each unique domain in the HARs that we collect.
Importantly, we do not cache DNS responses with our tool.

Getdns is a library that provides a modern API for making Do53
and DoT queries in various programming languages [19]. To sim-
ulate Firefox page loads, we enabled connection reuse for DoT
with an idle timeout of 10 seconds in order to amortize the TCP
handshake and TLS connection setup. Although Firefox does not
currently support DoT within the browser, we believe this is a real-
istic setting, as it is the default timeout used by DoT stub resolvers
such as Stubby. We ensure that all Do53 queries are made over UDP.

Libcurl is a library that allows developers to use cURL features
in their applications [39]. It supports POST requests over HTTPS,
which can be used to make DoH queries after adding the MIME type
“application/dns-message”. To issue DoH queries, we also enabled
connection reuse, and we sent the queries over HTTP/2, which
is the recommended minimum HTTP version for DoH [20]. We
independently verified that Firefox uses HTTP/2 through a packet
capture with mitmproxy and Wireshark [9, 11]).

Although HARs also provide DNS query response times, we
discovered during the course of our experiments that the timings
for individual components, including DNS query response times,
are inaccurate. For example, we discovered that the first query that
a HAR contains can show DNS timings of 0 ms, even in cases where
it is impossible because we begin every browsing session with an
empty cache. This is the case because, depending on how a website
issues HTTP redirects, the first query in the HAR is not actually
the first query that the browser performed. Instead, the browser
might have performed a variety of other HTTP requests and DNS
queries before, which may still be in-progress or already cached.

Interestingly, this peculiarity not only results in timings of 0 ms,
but other values as well. The browser may issue multiple requests
to the same domain at different times through its thread pool, with
the first one being redirected (thus, itself not being in the HAR, and
the redirection target having a timing of 0 ms), and other requests
made in between resolving the name of the domain for the domain’s
first request. In turn, the subsequent requests can be answered from
the cache that the first request populated. However, the first request
does not appear in the HAR. Depending on when the requests are
made, which depends on factors such as rendering time, the timings
can take any value and shift the timings to the left. This would even
be the case if we would use the maximum of all values, because the
first request that triggers resolving the domain may not be present
in the HAR.

3.2 Experiment Setup
To ensure that our results representative of diverse network config-
urations, we perform measurements across multiple recursors and
vantage points. In addition to performing measurements from our
instances in their default network conditions, we emulate cellular
performance by applying traffic shaping. This also enables us to

understand how Do53, DoH, and DoT perform under poor net-
work conditions, e.g. high latency and packet loss. We describe our
hardware and software configuration, choices of recursors, vantage
points, network conditions, and websites below.

3.2.1 Hardware and Software. We deployed Amazon EC2 instances
with the m5.2xlarge hardware configuration and theDebian Buster
operating system.1 Each instance includes 32 GB of RAM, a 3.1 GHz
Intel Xeon Platinum Processor (8 vCPU cores), and 10 Gbps of
network bandwidth [1]. The machines are connected over Ether-
net, and they run a measurement suite designed to collect page
load times as well as DNS query response times.2 We deploy our
Docker image and DNS tool across all machines. We left all network
settings in their default values for Firefox 67.0.1, except when we
enabled DoH by setting network.trr.mode = 3. This forces all
DNS queries initiated by Firefox to be sent over DoH [31]. Impor-
tantly, Firefox 67.0.1 disables EDNS Client Subnet by default for
their DoH implementation and enables DNS pre-fetching.

3.2.2 DNS Recursors and Transport Protocols. We measure how
the selection of a recursor and DNS transport affect browser perfor-
mance. As such, we chose three popular public recursors: Google,
Quad9, and Cloudflare. Each resolver offers public name resolution
for Do53, DoT, and DoH. We also use the local recursor provided to
our Amazon EC2 instances at each vantage point. However, these
recursors only supports Do53, and not DoT or DoH. Thus, these
recursors serve as baseline for browser performance over Do53.

Do53 and DoH are natively supported in Firefox, the browser
we use to drive our page load time measurements. However, as of
October 2019, DoT must be configured by using a stub resolver on a
user’s machine outside of Firefox. For our page load time measure-
ments, we use Stubby for DoT resolution, a stub resolver based on
the getdns library [16]. Stubby listens on a loopback address and
responds to for Do53 queries. All DNS queries received by Stubby
are then sent out to a configured recursor over DoT. We modify
/etc/resolv.conf on our measurement systems to point to the
loopback address served by Stubby. This forces all DNS queries
initiated by Firefox to be sent over DoT.

We note that our goal is to perform natural experiments by using
popular recursors that end-users choose. As such, we are not able
to control the caches of the recursors between measurements. To
avoid biasing results due to network quiet and busy times, as well
as the potential effect of a query warming the recursor’s cache for
subsequent queries from the other protocols tested, we random-
ize several aspects of the measurement suite. First, for each run
through the list of websites, we shuffle the order of websites prior
to browsing. Next, for each individual website, we randomize the
order of DNS protocol as well as the DNS provider.

3.2.3 Provider Networks. Our goal is to understand relationships
between page load times, DNS performance, and network perfor-
mance. DNS performance is greatly affected by a client’s Internet
service provider (ISP), as their network configuration determines
the paths the DNS traffic will use to reach a resolver (should the
client opt to use a resolver that is hosted outside of the ISP network).

1We considered using PlanetLab for our measurements, but ultimately decided to use
Amazon EC2 because we felt that we would get better performance guarantees.
2Our tools are available at https://github.com/noise-lab/dns-measurement-suite.
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To gain a general understanding of how DoH, DoT, and Do53 per-
form over different networks, we measure response times and page
load times from five vantage points around the world. We use Ama-
zon EC2 to launch instances located in Ohio & California (United
States of America), Frankfurt (Germany), Sydney (Australia), and
Seoul (South Korea).

3.2.4 Emulated Network Conditions. We are also interested in web
performance over networks that exhibit packet loss or high la-
tency. We believe it is important to simulate cellular performance
as an increasing number of users are browsing the web on their
phones. Furthermore, organizations like Cloudflare have released
mobile applications to force the operating system to use encrypted
DNS transports. We perform our measurements using the default
network conditions for our instances and three emulated mobile
network conditions. We dedicate an EC2 instance for each network
condition at all vantage points, for a total of 20 instances.

To emulated mobile network conditions, we first apply traffic
shaping to emulate 4G mobile network performance. We shape
outgoing traffic with an additional latency of 53.3 ms and jitter set
to 1 ms. We also dropped 0.5% of packets to mimic the loss that
cellular data networks can exhibit. We then shape our uplink rate
to 7.44 Mb/s and our downlink rate to 22.1 Mb/s. These settings
are based on an OpenSignal report of mobile network experience
across providers [15]. Second, we apply traffic shaping to emulate a
lossy 4G network. We use the same latency and jitter settings as 4G,
but we increase the loss rate to 1.5% of packets. For the remainder of
the paper, we refer to this network condition as "lossy 4G." Finally,
we apply traffic shaping to emulate 3G network performance by
adding 150 ms or latency and 8 ms of jitter, along with 2.1% packet
loss and uplink and downlink rates of 1 Mb/s each. While users in
well-connected areas are less likely to experience 3G performance,
it remains prevalent globally, particularly in developing regions.

3.2.5 Websites. We collect HARs (and resulting DNS queries) for
the top 1,000 websites on the Tranco top-list to understand browser
performance for the average user [24] visiting popular sites. Fur-
thermore, we measure the bottom 1,000 of the top 100,000 websites
(ranked 99,000 to 100,000) to understand browser performance for
websites that are less popular. We chose to measure the tail of the
top 100,000 instead of the tail of the top 1 million because we found
through experimentation that many of the websites in the tail of
the top 1 million were offline at the time of our measurements.
Furthermore, there is significant churn in the tail of top 1 million,
which means that we would not be accurately measuring browser
performance for the tail across the duration of our experiment.

3.3 Limitations
Our research has some limitations that may affect the generalization
of our results. Nonetheless, we argue that our work will further
the research community’s understanding of how DNS affects user
experience, and how various DNS stakeholders can improve it. First,
we perform our measurements exclusively on the Debian operating
system, which means that its networking stack and parameters
for networking algorithms will affect our measurements. However,
networking stacks are often heavily optimized, so we expect our
results to generalize across operating systems. Second, we rely on

Mozilla Firefox to measure page load times, which means that its
DNS-related code will influence our results. Considering that web
browsers are among the most used software today and also highly
optimized for performance, we also expect our results to generalize
across browsers. Finally, we conduct our experiments from Amazon
EC2 instances, which are located in data centers. On one hand, this
means that we are not able to generalize our results across other
networks, e.g. residential ISPs. On the other hand, Amazon EC2
enables us to understand how Do53, DoT, and DoH perform with a
network type from five global vantage points.

4 MEASUREMENT RESULTS
Our measurements were performed continuously from September
17th, 2019 through October 12th, 2019 using the setup described in
Section 3. We did not introduce delay between each successive page
load or only perform page loads at certain times of the day. In this
section, we describe our measurement results for query response
times and page load times, and analyze the protocols to understand
the performance. These results provide some insight into how a
user’s choice of networks, recursors, and protocols affect browsing
experience. Due to space constraints, we are unable to provide
plots for each of our five vantage points. Instead, we highlight our
vantage points in Frankfurt and Seoul.

From Frankfurt, the average latency to the anycast addresses
for Cloudflare, Quad9, and Google was 1.03ms, 1.42ms, and 1ms,
respectively. From Seoul, the average latency to the anycast ad-
dresses for Cloudflare, Quad9, and Google was 26.65ms, 1.95ms,
and 30.22ms, respectively. These measurements were obtained by
sending ICMP pings to each recursor after each attempted page
load. Unfortunately, the Amazon EC2 recursors in each vantage
point dropped ICMP pings, so we were unable to to measure the
latency from our instances to the recursors. Nonetheless, given that
our measurements were conducted from Amazon EC2 instances,
the average latency to an Amazon EC2 recursor from each vantage
point is likely lower than Cloudflare, Quad9, and Google.

4.1 DNS Query Response Time
Intuitively, DNS query response time is the most critical metric
when characterizing DNS performance, as web pages typically in-
clude many objects (e.g., images, JavaScript, frames, etc.), which all
must have their underlying server names resolved to IP addresses.
Indeed, previous work has shown that DNS queries can cause per-
formance bottlenecks on website page loads [42]. Accordingly, we
begin our study with DNS query response times.

We note that Mozilla conducted a measurement study of DoH
query response times in 2018 with Firefox Nightly users. In their
measurement study, they found that most queries were 6 ms slower
than Do53 queries, and that DoH actually has faster response times
than Do53 for the slowest queries [26]. However, Mozilla’s experi-
ment was limited to Cloudflare’s DoH recursor, and they report no
data for other recursors, like Quad9 and Google. Furthermore, they
only measure DoH, leaving out DoT entirely.

To fill these gaps and independently validate Mozilla’s results,
we designed our own experiment to measure response times for
Do53, DoT, and DoH across different networks and recursors. For
each HAR file that we collected with our automated browser, we
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extracted all unique domain names. We then measure the response
time for each domain name through our own tool, which uses
getdns for Do53 and DoT queries, and libcurl for DoH queries.

Figure 1 shows CDFs for DNS response times from Frankfurt
for the top 1,000 websites and the top 99,000-100,000 websites com-
bined. As expected, we find that Do53 performs better than DoT
and DoH for most queries across all recursors. The overhead intro-
duced by encrypted transports for DoT and DoH generally leads
to an increase in response time. Interestingly, we find that DoH is
slightly faster than Do53 for the slowest queries across all public
recursors. For example, with Cloudflare Do53, the mean response
time is ≈34ms, and the standard deviation is ≈347ms. However,
with Cloudflare DoH, the mean response time is ≈40ms, and the
standard deviation is ≈94ms. We posit that this can be attributed
to HTTP caching of the DNS wire format, which we discuss in
Section 5.2.

Comparing DoTwith DoH, we see differences between providers.
Cloudflare DoT and DoH appear to perform equally for the majority
of queries, though DoH begins to outperform DoT for queries that
take longer than ≈50ms. Google DoT generally outperforms DoH
for queries that take less than ≈100ms, above which DoH performs
better. Quad9 shows the largest range in performance, with DoT
queries experiencing long latencies compared to all other recursors
and protocols. Quad9’s DoH recursor tends to perform better in
comparison, but still lags behind their Do53 service.

4.2 Page Load Time
Based on our results for query response times, we expect page load
times to follow a similar pattern, with Do53 outperforming both
DoT and DoH. Figure 2 shows CDFs for differences in page load
times between each configuration when running our measurements
from Frankfurt. The vertical line on each subplot indicates the
median for the CDF. A median that is less than 0s on the x-axis
means that the configuration (recursor, protocol) specified by the
row title is faster than the configuration specified by the column
title (indicated in blue hues). Correspondingly, a median that is
greater than 0s on the x-axis means that the configuration specified
by the row title is slower than the configuration specified by the
column title (indicated in red hues). Finally, a median that is close
to 0s (between -30ms and 30ms) indicates that row configuration
and column configuration perform similarly.

Interestingly, for Cloudflare, each protocol finished within 30ms
of each other for the median page load time. These results stand
in contrast to our expectation that page load times for DoT and
DoH would be slower than Do53 due to additional latency for in-
dividual queries. We posit that Cloudflare Do53, DoT, and DoH
perform similarly in page load times because Firefox can resolve
multiple names at once. For Do53 and DoT, Firefox resolves names
synchronously with a thread pool [29]. Queries are sent via the
operating system through through getaddrinfo()) [32]. Further-
more, Firefox’s DoH implementation is asynchronous, and it uses
the browser’s optimized HTTP/2 implementation [34, 35]. This
means that DoH may be able to make up for its larger overhead
compared to Do53 and DoT because page loads won’t be blocked
by synchronous queries if the thread pool is exhausted.

We find that Cloudflare Do53 and Google Do53 perform faster
than the local Do53 recursor in median page load times. We at-
tribute this behavior to the caches of Cloudflare and Google more
often containing the domain names we measured than the local
recursor. For example, as a CDN, Cloudflare is able to more quickly
respond to DNS queries for domain names that they host than the
other recursors [8]. Cloudflare and Google also offer two of the
most popular DNS services in the world, with 0.74% and 9% of users
configuring their Do53 recursors, respectively. This enables Cloud-
flare and Google to quickly respond to Do53 queries for a very large
set of websites. On the other hand, the local Do53 recursor was
provided by Amazon for EC2 instances, which may not be used as
often to query the domains of websites.

We also find that Google DoH performs significantly worse than
all other recursors or protocols from Frankfurt. For example, when
using Google DoH instead of Cloudflare DoH–the same website
loads 1.35s slower in the median case. It may be the case that Google
DoH’s caching backend differs from their Do53 and DoT backends,
which leads to longer page load times. We note that as of October
2019, Google was migrating their DoH deployment to their produc-
tion anycast address (8.8.8.8), and to fully support RFC 8484 [18].
During our experiments, we used the 8.8.8.8 anycast address and
Google’s production URI (https://dns.google/dns-query) to issue
DoH queries, as advised in their documentation.

Similarly, Quad9 DoT performs worse in page load times than
all recursors besides Google DoH, and a website loads 121ms faster
using Cloudflare DoT over Quad9 DoT. We offer several possible
explanations. For example, Quad9 DoT may not correctly cache
responses, which leads to stacked normal distributions for the con-
nection to the recursor. This coincides with our data shown by
Figure 1(b), in which only ≈20% of Quad9 DoT queries completed
in under 100ms. Another possible explanation is that the recursor is
trying to connect to authoritative nameservers via DoT, which fails
and falls back to Do53. Initially, when we disclosed our findings to
Quad9, we did not receive an explanation. However, we were later
informed that their DoT implementation was being changed.

4.3 Effect of Network Conditions
We also study how network conditions affect query response times
and page load times for Do53, DoT, and DoH. Our results in Sec-
tion 4.1 and Section 4.2 are based on measurements conducted
from a well-connected network in Frankfurt. However, cellular net-
work users in developing regions often access the Internet through
networks with high latency and significant loss. We expect such
less-than-ideal conditions of these networksmay significantly affect
how Do53, DoT, and DoH perform.

Figure 3(a) and Figure 3(b) show CDFs for query response times
with Cloudflare’s recursor on an emulated cellular 4G network
and an emulated lossy cellular 4G network. We focus on Cloud-
flare’s recursor because it performs better than Quad9 and Google
(Figure 1 and Figure 2). On each emulated cellular network, Do53
outperforms DoT and DoH in terms of response time. Interestingly,
it appears that DNS timings on a cellular 4G and lossy cellular 4G
network are similar, independent of the additional 1% loss.

Figure 3(c) shows CDFs for response times for 3G network charac-
teristics, which have higher loss, higher latency, and less bandwidth
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Figure 1: Query response times for each provider from Frankfurt.
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Figure 2: CDFs for differences in page load times between each configuration from Frankfurt.
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Figure 3: Query response times for Cloudflare across each protocol on three emulated networks

Table 1: Successful website page-loads and error percentages
for different network conditionswhen using Cloudflare’s re-
cursor from Frankfurt.

Connectivity Status Do53 DoT DoH

Successful 78.70% 78.65% 78.85%
Page-load Timeout 7.48% 7.47% 7.21%

Default DNS Error 9.51% 9.46% 9.90%
Selenium Error 1.69% 1.74% 1.78%
Other Error 2.62% 2.67% 2.27%

Successful 80.02% 79.71% 78.61%
Page-load Timeout 7.86% 7.75% 7.22%

4G network DNS Error 9.02% 9.00% 9.77%
Selenium Error 1.84% 1.67% 1.86%
Other Error 1.26% 1.87% 2.53%

Successful 78.29% 78.13% 76.95%
Page-load Timeout 8.24% 8.16% 8.01%

Lossy 4G network DNS Error 9.95% 9.95% 10.76%
Selenium Error 1.99% 1.96% 2.01%
Other Error 1.54% 1.80% 2.28%

Successful 28.10% 27.87% 20.06%
Page-load Timeout 60.02% 60.31% 41.32%

3G network DNS Error 9.83% 9.76% 37.15%
Selenium Error 1.65% 1.54% 1.07%
Other Error 0.40% 0.51% 0.40%

than 4G networks. We find that DoT and DoH response times are
substantially longer than Do53 response times. The fastest DoT and
DoH queries take ≈450ms and ≈600ms, respectively, where as the
fastest Do53 queries take ≈150ms. In fact, the slowest DoH and DoT
queries never close the gap to the slowest Do53 queries.

Based on the differences we observed in response times, we
expected page load times on the emulated networks to be better
with Do53 than DoT or DoH. Figure 4 compares page load times
across all of our networks and protocols for Cloudflare. Interestingly,
on the 4G network, the median page load with DoT performs 11ms
faster than Do53, and DoH performs 58ms slower. On the lossy 4G

network, DoT and DoH are faster than Do53. DoT performs 101ms
faster than Do53, and DoH performs 33ms faster.

It may seem counter-intuitive that page loads using DoT and
DoH perform these ways on the 4G and lossy 4G networks due to
substantially longer queries (Figure 3). However, the differences
in how DNS timeouts are handled between TCP and UDP offer a
possible explanation. For example, the default timeout for Do53
queries in Linux is set to 5 seconds by resolvconf [22]. For DoT
and DoH, DNS packets may be retransmitted after 2x the round-
trip-time to a recursor because of TCP. If the round-trip time to a
recursor is on the order of hundreds of milliseconds, then DoT and
DoH will more quickly re-transmit dropped packets than Do53.

However, as throughput decreases and loss increases on a 3G
network, DoT and DoH are no longer able to perform as well as
Do53 for page loads.We believe this can be attributed to their higher
overhead in bytes sent compared to Do53, which contributes to link
saturation. DoH also has a higher overhead than DoT, which leads
to slower page loads (Figure 4(d) and Figure 4(h)). Furthermore, not
only are more bytes sent with DoT and DoH, but high latency and
packet loss significantly affect TCP performance [25].

Table 1 shows the prevalence and types of errors we encountered
during our page load measurements. Overall, we see that in lossier
conditions, DoH experiences higher failure rates compared with
Do53. For instance, using the 3G settings, Cloudflare Do53 has ≈8%
less page load timeouts compared to DoH. We also see that DNS
errors spike for DoH in poor network conditions. Conversely, DoT
maintains higher rates of success compared with DoH.We note that
there is a higher success rate in page loads with the 4G network
condition compared to the default network condition. It is not clear
what caused this outcome. We emphasize that our 4G, lossy 4G,
and 3G network conditions were emulated; we did not perform
measurements on real mobile networks.

4.4 Trends Across Vantage Points
Due to space constraints, we are unable to fully explore our results
from other vantage points. However, we observed that Cloudflare
DoH and DoT were able to perform comparably to and sometimes
better than Do53 on emulated cellular networks, regardless of the
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Figure 4: Comparison of page load times between protocols and network conditions using Cloudflare’s recursors from Frank-
furt

vantage point that was chosen. In this section, we explore page
load times on emulated network conditions in Seoul.

Figure 5 compared page load times between protocols and net-
work conditions using Cloudflare’s recursor from Seoul. Cloudflare
DoT and DoH are slower than Do53 in page load times for the
default network condition. DoT performs 1ms slower than Do53 in
the median case, and DoH performs 79ms slower than Do53. On the
4G network, DoT and DoH performs similarly to how they perform
without traffic shaping. DoT performs 1ms slower than Do53 in the
median case, and DoH performs 70ms slower than Do53.

On the lossy 4G network, DoT grows increasingly faster than
Do53, and DoH begins to close the gap. DoT performs 45ms faster
than Do53 in the median case, and DoH performs 12ms slower than
Do53. As previously discussed, we attribute this improved perfor-
mance to TCP re-transmitting packets faster than UDP timeouts.
However, page load times with DoT and DoH are both worse than
Do53 on an emulated 3G network in Seoul. DoT performs 175ms
slower than Do53 in the median case, and DoH performs 265ms
slower than Do53. Again, we attribute this behavior to DoT and
DoH queries contributing to link saturation.

As with Frankfurt, we see that in lossier conditions, DoH experi-
ences higher failure rates compared with Do53. 3 On the emulated
3G network, Cloudflare Do53 has ≈21% less page load timeouts
than DoH. DoT maintains higher rates of success than DoH, with
≈21% less page load timeouts. Lastly, DNS errors for DoH spike

3Due to space constraints, we can not include the full failure table for Seoul.

on the emulated 3G network, with ≈38% of page loads failing as a
result. We attribute these DNS errors to query timeouts.

The general trend we observe is that page load times with DoT
and DoH can improve compared to Do53 in the face of packet loss
and high latency. However, as network conditions degrade, DoT and
DoH both perform significantly slower than Do53. Furthermore,
page loads with DoH fail much more often than Do53 and DoT on
emulated 3G network conditions. We note that we are not making a
recommendation about which protocol or recursor to use. We also
can not generalize our results to vantage points that we have not
measured. Nonetheless, our results show that your network and
choice of DNS transport matter for web performance.

5 DISCUSSION
Based on our results, we offer several insights to improve Do53,
DoT, and DoH resolution times, which can reduce page load times
and improve user experience. We first propose opportunistic partial
responses, followed by wire-format caching. We then discuss how
dropping support for EDNS Client-Subnet at public recursors may
improve page load times.

5.1 Opportunistic Partial Responses
We discovered that current DNS clients do not utilize part of the
DNS Internet Standard that could improve client performance and
user experience. Unfortunately, the three public recursors we mea-
sured violate the standard [27] by not supporting queries with more
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Figure 5: Comparison of page load times between protocols and network conditions using Cloudflare’s recursors from Seoul

than one question (QDCOUNT > 1). Cloudflare and Quad9 do not
respond, and Google only responds to the first question.

Without compatible recursors, clients cannot utilize this part of
the standard to send fewer larger queries, and, thus, less bytes due
to reduced overhead. We were unable to discover any reason in
RFCs and on the IETF dnsop and dnsext mailing lists why servers
may misbehave. We speculate that it is because the DNS Internet
Standard sets the expectation that QDCOUNT is “usually 1” [27].

Naïvely, it appears that there is no reason to support more than
one question because it would delay the response to a query until all
answers have been received, which may take multiple seconds and,
in turn, degrade user experience. Furthermore, it would effectively
eliminate the benefit of out of order responses that single question
queries enable. Out of order responses are currently implemented
in Do53 through UDP, in DoT through response reordering [14],
and in DoH through HTTP/2’s stream multiplexing [2].

We believe that opportunistic partial responses could be a solu-
tion: A client indicates that it wants to use partial responses on
the first single question query through a EDNS partial response
option, and the server confirms if it supports it. The client can
then send multiple questions in the same query with the EDNS
partial response option, and the server can respond with individual
or multiple answers in a DNS response as authoritative answers
arrive. We are currently exploring a corresponding Internet-Draft.

5.2 Wire Format Caching
Over the course of measurements, we found that Firefox uses a hard-
coded DNS transaction ID of 0 for its DoH implementation [33],
which we also use in our query measurement tool. We posit that this

could enable DoH recursors to leverage HTTP response caching of
the DNS response’s wire format more aggressively and at the edge.
By fixing a transaction ID at the client, recursors could side-step
the issue of always having to construct a DNS response, instead
reading the wire-format from a local HTTP cache.

The security effect of a fixed transaction ID is limited for DoH
because it relies on TLS, which makes it difficult to inject a spoofed
response that could be used to poison the client’s cache. For DoT,
the same argument can be made and it is similarly amenable to
wire format caching. For Do53, a fixed transaction ID would allow
cache poisoning, and, hence, it is not a viable solution.

Generally, to improve tail response times, we suggest to cache
the DNS response wire format regardless of transaction ID, and to
simply replace the two byte transaction ID before responding (e.g.,
via XOR), which also has the benefit of being compatible with DoT
clients that send random transaction IDs. It is important to note
that the DNS TTL values of a response also need to be updated
(decremented) regularly, and this invalidates the HTTP response
or wire format cache, but by decreasing the TTL by more than the
required amount, the wire format cache can be kept valid longer.

5.3 EDNS Client-Subnet
Cloudflare’s recursors result in consistently lower page load times
than any other recursor we measured, including the default Do53
recursor provided by Amazon in Frankfurt (Figure 2, H1 through
J10). We posit that Cloudflare’s caching strategy is a core reason
for their better performance. Specifically, their recursors can cache
responses more easily because they do not support EDNS Client-
Subnet(ECS) [7, 10], which Google supports [17].
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The purpose of ECS is to forward the client’s address or net-
work to the authoritative server via the recursor, which allows
the authoritative server to provide a response to the recursor that
takes the client’s address into account, for example to direct it to a
server that is located nearby. By not supporting ECS, Cloudflare’s
recursors can have higher cache hit rates, in particular for a client’s
first queries. Specifically, Cloudflare does not need to limit cached
responses to the client’s IP address or network indicated through
ECS in the original query. On the contrary, the caches for Google
and partially Quad9 must be client specific because of ECS.

Website and CDN operators should therefore consider abandon-
ing DNS-based localization and stop relying on ECS, and instead
adopt anycast. Interestingly, the cost that recursor cache misses
incur because of ECS could actually negate the benefits of directing
a user to a local server via ECS, and even directing her to a single
central data center (without anycast) could lead to a better user
experience. Overall, disabling ECS not only improves client privacy,
but our results show that it may also decrease page load times, leading
to an immediate improvement in a user’s browsing experience.

6 RELATED WORK
In this section, we first compare to related work on DNS privacy and
security. We then compare to measurements on how DNS impacts
web performance.

6.1 Encrypted DNS Transports
Zhu et al. [43] introduced DNS over TLS, that is DNS over TLS
over TCP, to provide confidentiality guarantees that DNS lacked.
They measured the performance of sending DNS queries over a TLS
connection, and find that DoT response times are up to 22% slower
thanDo53.Wemeasure higher DoT response timeswhenmeasuring
response times naïvely due to fewer queries being sent and less
connection reuse. Different from Zhu et al., our study focuses on
how different DNS transports affect user experience through page
load times, and how it changes with different network conditions.

Böttger et al. measured query response times and page load
times for Do53, DoT, and DoH from a university network [6]. Un-
fortunately, their methodology relies on collecting HARs for query
response time measurements. As we discuss in 3.1.2, HARs can
contain invalid response times depending on how re-directs are
triggered. This is also evident from Figure 6 in their paper showing
a y-intercept of approximately 10%, which means that for roughly
10% of websites the DNS resolution for all included resources can
be performed sequentially in 0ms.

In addition to DoT and DoH, other protocols have been proposed
to help ensure privacy and security between a client and a recur-
sor. DNSCrypt utilizes cryptographic signatures to authenticate
a recursor to a client, which prevents DNS responses from being
spoofed or tampered with [12]. DNSCurve utilizes elliptic-curve
cryptography to provide confidentiality, authenticity, and integrity
of DNS responses [3]. However, for DNSCrypt, DNSCurve, DoT, and
DoH, the recursor remains aware of what names a client queries
for, which has privacy implications as it allows the recursor to learn
about the websites that the client visits. Schmitt et al. [38] proposed
Oblivious DNS, which prevents a recursor from associating queries

to the clients that sent them. This in turn prevents a recursor from
learning the client’s browsing history.

6.2 DNS and Web Performance
Sundaresan et al. [41] measured and identified performance bottle-
necks for web page load time in broadband access networks and
found that page load times are influenced by slow DNS response
times and can be improved by prefetching. An important distinc-
tion is that they define the DNS response time only as the response
time for the first domain, while we consider the set of unique fully
qualified domain names of all resources contained in a page. They
investigate only nine high-profile websites, which stands in con-
trast to the 2,000 popular and normal websites that we analyze, and
they estimate page load times through Mirage and validate their
findings through a headless browser PhantomJS, while we utilize
Mozilla Firefox, which is a full browser. Wang et al. [42] introduced
WProf, which is a profiling system to analyze page load perfor-
mance. They identified that DNS queries–in particular uncached,
cold queries–can significantly affect web performance, accounting
for up to 13% of the critical path delay for page load times.

In 2012, Otto et al. [37] found that CDN performance was nega-
tively affected when clients choose recursors that were geographi-
cally separated from CDN caches. They conjectured that this poor
performance was a result of recursors not supporting ECS. Indeed,
ECS was only introduced in January 2011, and it was not standard-
ized until May 2016 [10]. Therefore, clients were likely redirected to
sub-optimal data center based on the recursor’s address or network,
instead of the client’s address. Otto et al. proposed namehelp, a
DNS proxy that improves CDN performance for these far away
recursors. It sends DNS queries for CDN-hosted content directly to
authoritative servers, enabling CDNs to use the client’s IP address.
We suspect that with the wide-spread adoption of ECS and anycast
since 2012, CDN performance may not be as negatively affected by
choosing a recursor that is geographically far away from a CDN.

7 CONCLUSION
In this paper, we investigated DNS timings and page load times
using different DNS transport protocols, recursors, network condi-
tions, and global vantage points. We find that although DoT and
DoH result in higher response times for individual queries, they
can perform similarly to Do53 in page load times. We also find that
DoT and DoH can outperform Do53 in page load times in emulated
cellular network conditions. However, as network conditions de-
grade, Do53 significantly outperforms DoT and DoH. Web pages
also load more often with Do53 in poor network conditions.

Based on our findings, DNS stakeholders can take several con-
crete steps to improve query response times, and in turn page load
times. For example, Firefox currently uses synchronous calls for
Do53 and DoT resolution, and asynchronous calls could benefit
performance. Another opportunity to improve Do53 and DoT re-
sponse times is wire format caching. Lastly, clients and recursors
could be extended to support multiple questions in a single query
and opportunistic partial responses. This could be accomplished in
a backward compatible way through a new EDNS option.
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