
Future Generation Computer Systems 100 (2019) 811–825

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Unsupervisedmulti-stage attack detection frameworkwithout details
on single-stage attacks
Jinmyeong Shin a, Seok-Hwan Choi a, Peng Liu b, Yoon-Ho Choi a,∗
a School of Computer Science and Engineering, Pusan National University, Busan, 26241, Republic of Korea
b Pennsylvania State University, University Park, PA 16802, United States

h i g h l i g h t s

• Single-stage attacks classification without pre-defined knowledge.
• Correlation of suspicious flows using context between flows.
• Automatic multi-stage attack detection rule generation.
• Evaluation with large volume data to show the feasibility.

a r t i c l e i n f o

Article history:
Received 21 November 2018
Received in revised form 10 February 2019
Accepted 11 May 2019
Available online 16 May 2019

Keywords:
Network intrusion detection
Multi-stage attack
Cyber kill chain
Detection rule generation

a b s t r a c t

Majority of network attacks currently consist of sophisticated multi-stage attacks, which break down
network attacks into several single-stage attacks. The early multi-stage attack detection methods
focused on describing the detection rule based on the occurrence sequence of each single-stage attacks.
That is, such works assumed that after details on single-stage attack behavior are obtained from attack
knowledge, attack semantics or attack statistical analysis, the detection rules can be generated from
their possible occurrence sequence. However, their practical usage is limited due to the high false
negative ratio while detecting multi-stage attack that consists of diverse combinations of single-stage
attacks during the long time period. In this paper, we propose a new multi-stage attack detection
framework, which consists of multi-stage attack detection rule generation phase and multi-stage attack
detection phase. After comparing the incoming traffics with the generated multi-stage attack detection
rules, various multi-stage attack patterns are detected without pre-observed details on the single-
stage attack behavior. From DARPA LLS DDoS dataset, we show that all the possible multi-stage attack
patterns are correctly detected. Also, from datasets in CTU-13 including the large volume of multi-stage
attack patterns, we observe F1-measure of 0.938 at maximum.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Majority of current malicious behavior in network consists of
sophisticated multi-stage attacks. According to Lockheed Mar-
tin [1], these multi-stage attacks, also called cyber kill chain,
break down into the following single-stage attack types: (1) re-
connaissance; (2) Weaponization; (3) Delivery; (4) Exploitation;
(5) Installation; (6) Command and Control (C2); and (7) Actions
on Objectives. While most inline or endpoint protection prod-
ucts have the capability of detecting a single-stage attacks, their
capability lacks of detecting a multi-stage attack.

The Fig. 1 shows the difference between single-stage attack
and multi-stage attack detection. To exploit the target system,

∗ Corresponding author.
E-mail addresses: sinryang@pusan.ac.kr (J. Shin), daniailsh@pusan.ac.kr

(S.-H. Choi), pliu@ist.psu.edu (P. Liu), yhchoi@pusan.ac.kr (Y.-H. Choi).

a single-stage attack conducts simple and indiscriminate attack
trails in a short time period. However, because the single-stage
attack shows indiscriminate similar behavior many times and
leaves the corresponding attack evidences from a lot of trails in
a short time period, most inline or endpoint protection products
can easily identify it as shown in Fig. 1(a).

Different from the single-stage attack detection, the multi-
stage conducts a sophisticated attack for a long period of time
compared to the single-stage attack as shown in Fig. 1(b). For
example, to circumvent the conventional security configuration,
the time periods of the multi-stage attack range from a few
minutes to several months. Thus, to detect and counter the multi-
stage attack properly, the administrator need to keep track and
correlate single-stage attack alerts from different machines and
attack scenarios, even if detecting each single-stage attack is not a
difficult task. Thus, it is very difficult to detect multi-stage attacks
without knowing knowledges on multi-stage attack scenarios in

https://doi.org/10.1016/j.future.2019.05.032
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.05.032
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.05.032&domain=pdf
mailto:sinryang@pusan.ac.kr
mailto:daniailsh@pusan.ac.kr
mailto:pliu@ist.psu.edu
mailto:yhchoi@pusan.ac.kr
https://doi.org/10.1016/j.future.2019.05.032

812 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

Fig. 1. Characteristic comparison between single-stage attack detection and multi-stage attack detection.

advance. Recently, the multi-stage attacks with their own attack
scenarios are evolved while maximizing the attack success prob-
ability by hiding their activity evidences, propagating themselves
in the slow speed, and so on.

During a multi-stage attack, consisting of seven single-stage
attack types, the following four single-stage attack types are
commonly identified from the network traffic [1,2]:

• Reconnaissance: Target selection process, collecting infor-
mation of reachable systems that have potential exploitable
vulnerabilities. This process make the attack stealthy by
preventing it from being attempted blindly.

• Delivery: Transfer source code, program or payloads for
exploit to target system.

• Command and control (C2): Construct communication
channel to command and control bots or target system.

• Actions on objectives: Achieving final goal, such as de-
stroying the target system, getting confidential information,
infecting another system which reachable and etc.

Since these four single-stage attack types cannot be captured
or can be captured one or more times according to the network

environment [3–5] or multi-stage attack scenario [6–12], their
occurrence sequence also frequently varies. As a result, diverse
combinations of single-stage attacks can exist. Since the complex-
ity of multi-stage attack scenario is large, it is difficult to identify
the multi-stage attack correctly without identifying a clear pat-
tern of a particular kind of multi-stage attack in advance. For
example, improper correlation with alerts on unrelated attacks
belonging to other attack scenarios causes false detection. Thus,
the detection accuracy on multi-stage attacks is practically low
under the existence of multi-stage attack variants.

To increase the low detection accuracy, various detection
methods using knowledge-based model [8,9], attack semantics
[10,13,14] and statistical model [6–9] are proposed. However,
since these models analyze the correlation of the alerts gener-
ated from signature-based intrusion detection system(IDS), they
require pre-observed details on the single-stage attack activ-
ity. Thus, their performance is limited while detecting diverse
combinations of single-stage attacks. To overcome such a lim-
itation, recent security solutions such as Security Information
and Event Management(SIEM) used specific domain knowledge
obtained from diverse logs, honeypots [11] and Software-Defined

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 813

Network(SDN) [12] as an extra input attribute. However, since
the correlation process requires the clear pre-defined rules for
identifying single-stage attack and multi-stage attack, the com-
prehensive understanding of adversary’s behavior pattern is re-
quired. Thus, without pre-observed details on single-stage at-
tacks, their performance is also limited when detecting variants
of multi-stage attacks.

The contribution of this paper can be summarized as follows:
(1) We proposed a new framework for multi-stage attack detec-
tion. Different from the previous works, multi-stage attack rules
are automatically generated without knowing pre-defined details
on single-stage attack activities. Since there is no dependency on
pre-defined details, the proposed method can provide counter-
measure strategies against a new multi-stage attack; (2) Under
the large volume of a well-known public dataset, called CTU-13,
we showed that the proposed method identifies different multi-
stage attacks with a high accuracy. Under the CTU-13 dataset,
F1-measure was 93.80% at maximum.

The rest of the paper is organized as follows. In Section 2, we
describe previous works for multi-stage attack detection. After
describing the proposed framework in Section 3, we show eval-
uation results in Section 5. Finally, we summarize the paper in
Section 6.

2. Related work

2.1. Network attack defenses

With the growth of the Internet and the emergence of various
services [15,16], numerous cyber threats have created and studies
to prevent threats, also, have conducted [17–20]. In this section,
we introduce some backgrounds and researches related to the
proposed method.

2.1.1. Firewall
The firewall is most common and widely deployed defense

scheme against network attacks. It is usually located between
the local network and the Internet. By filtering out unautho-
rized packets according to policy, the firewall prevents potential
threats. Since operations of firewall are very simple, it is easy to
implement and deploy the firewall in real network environment.

However, the simplicity of operations causes a big trade-
off between security and user convenience. The weak policy
provides high level of convince by allowing potentially harm-
ful actions. On the contrary, the strong policy can ensure high
security level. However, since services demanded by users are
diverse, the strong policy has issues such as considerable incon-
venience in service use, requirement of frequent reconfiguration
of policy, and performance degradation due to large amounts of
computation.

2.1.2. Decoy-based authentication
In decoy-based authentication scheme, bogus data which ap-

pears to be important to adversaries, i.e., honeypot [21,22], hon-
eytoken [23], honeyfiles [24,25] and etc., is placed and advertised.
Since authorized users know the presence of decoys and location
of real data, they avoid decoys and access to the service with real
data. However, adversaries who do not recognize the presence
of decoys access to the service with decoys. As a result, the ad-
versary cannot obtain any important information and the system
administrator can detect the unauthorized access of the adversary
by matching the access information with decoys.

Since such a scheme misleads all accesses of unauthorized
users to the unimportant part of the system, the important part
of the system free from performance degradation caused by ad-
ditional computation for detecting attacks and zero-day attacks

can be, also, prevented. However, once the presence of the decoy
is revealed, adversaries can avoid the decoy easily [26]. Such
a scheme, also, has limitations that are vulnerable to insider’s
attacks.

2.1.3. Intrusion detection system
The IDS is a system which monitors all traffics between local

network and the Internet and detects malicious actions. Since the
IDS does not operate blocking actions such as filtering out traffic
or preventing access suspicious users, it has advantages such
as no performance degradation of network and low deployment
cost. Additionally, different from decoy-based authentication, the
exposure of IDS to adversaries is not critical and the IDS can
detect attacks of insider easily.

The IDS is categorized into signature-based IDS and anomaly-
based IDS according to detection approaches and characteristics.
Signature-based IDSs recognize malicious actions by comparing
patterns with signatures. By considering the pattern which ex-
actly matching with the signature as an attack, the signature-
based IDS shows relatively low false positive. However, since
signatures should be defined before malicious actions occur, the
signature-based IDS cannot respond to novel attacks.

In anomaly-based IDSs, All actions which are different from
pre-defined normal actions are considered as attacks. The model
to define normal actions is constructed using machine learning
techniques mostly. Contrary to signature-based IDSs, anomaly-
based IDSs have the advantage of being able to detect novel
zero-day attacks. However, since all anomalies including unma-
licious actions are considered as attacks, it shows relatively high
false positive.

2.2. Multi-stage attack detection

After multi-stage attack incidents such as Solar Sunrise [29]
and Nimda [30] are recognized as the most dangerous mal-
wares, multi-stage attack detection methods have been studied
actively by many researchers [31]. Studies on multi-stage at-
tacks are commonly categorized into three groups: (1) modeling
multi-stage attack; (2) multi-stage attack detection without oper-
ational domain knowledge; (3) multi-stage attack detection with
operational domain knowledge.

To analyze multi-stage attack activities, early studies on multi-
stage attacks focused on modeling multi-stage attacks. From the
book, Secrets & Lies, schneier described the attack tree, which
is one of the simplest representation for the multi-stage at-
tack [32]. To show relation between single-stage attacks intu-
itively, the attack tree represents multi-stage attack activities in a
goal-oriented form. However, due to the simplicity of the attack
tree, it is not efficient while representing a comprehensive and
complicated multi-stage attacks.

Daley et al. proposed a new structural framework for modeling
multi-stage attacks [31]. Using three node types, i.e., event, state
and top level, and two link types, i.e., implicit and explicit links,
the framework generates Stratified Node Topology (SNT), which
makes it possible to represent network context information on
attack tree.

Dawkins et al. proposed a systematic model that analyzed the
multi-stage attack as a network state transition [33]. A multi-
stage attack is represented into an attack chain, which considers
the change of actions observed from pre-defined network zones,

Wang et al. proposed a new multi-stage modeling method
using Finite State Machine (FSM) [34]. Each single-stage attack
type composing multi-stage attack is represented into a FSM,
called an atom FSM (aFSM). By cascading multiple aFSMs, Multi-
stage FSM (M-FSM) is constructed and each M-FSM maps into a
multi-stage attack scenario.

814 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

Table 1
Comparison of multi-stage attack detection methods.
Name Characteristics Drawbacks

Applications of hidden
Markov models to
detecting multi-stage
network attacks [6]

Applying HMM to multi-stage attack
detection showing the best performance
among C4.5, k-NN and HMM

Vulnerable to zero-day attack due to
dependency on pre-defined details

Architecture for
multi-stage network attack
traceback [13]

Detect accurate source of multi-stage
attack using stepping stone recognition

No detection on multi-stage attack itself

A novel probabilistic
matching algorithm
for multi-stage
attack forecasts [7]

Predict next single-stage attacks during
multi-stage attack using JEAN model

Vulnerable to zero-day attack due to
dependency on pre-defined details

MARS: Multi-stage
attack recognition
system [8,9]

Multi-stage attack detection based on
correlation of knowledge-based and
statistical model
Experimented with LLS DDoS dataset

Vulnerable to zero-day attack due to
dependency on pre-defined details

Extracting attack
scenarios using
intrusion semantics [10]

High understandability on multi-stage
attack behavior based on ontological
relations of single-stage attacks
Experimented with LLS DDoS dataset

Vulnerable to zero-day attack due to
dependency on pre-defined details

Predicting multi-stage
attacks based on
IP information [14]

Pre-defined details on single-stage
attack are not required

Geographic location of each IP
address is required
Experiment with private data only

Multistage attack
detection system
for network administrators
using data mining [27]

Automatic multi-stage attack rule
generation using data mining
Visualization of multi-stage attacks

Pre-defined details on single-stage
attacks are required
No considering on order of attacks
in a mining period

Frequent item
set mining-based alert
correlation for extracting
multi-stage attack scenarios [28]

Automatic multi-stage attack
rule generation using
window-based data mining

Pre-defined details on single-stage
attacks are required
No considering on order of attacks in a
window

Multi-stage attack
detection and signature
generation with ICS honeypots [11]

Available to respond to zero-day attacks
due to honeypot based system

Inheriting the drawbacks of
decoy-based authentication
Experiment with private data only

A multi-stage attack
mitigation mechanism
for software-defined home
networks [12]

Applying SDN/NFV environment data to
multi-stage attack detection

Vulnerable to zero-day attack due to
dependency on pre-defined details
Experiment with private data only

Proposed framework No pre-defined details on single-stage
and multi-stage attacks are required
Automatic multi-stage attack rule
generation considering order of attacks
Experimental results with large
volume of datasets (LLS DDoS, CTU-13)

Low understandability on multi-stage
attack behavior
Increasing computational complexity
according to time

Camtepe et al. proposed Enhanced Attack Tree (EAT) [35]. To
improve the expressiveness of attack tree, they used time order
of preconditions and occurrence probability.

Mathew et al. proposed a method for visualizing heteroge-
neous event traffics [36]. This method aggregated and correlated
traffic events, log files and so on to extract attack activities. They
also implemented Event Correlation for Cyber-Attack Recognition
System (ECCARS) which enables the analyst to notice these attack
tracks in real-time.

To detect multi-stage attack without operational domain
knowledge, Ourston et al. proposed a method that applies Hidden
Markov Model (HMM) [6]. By HMM, This method probabilisti-
cally reduced false positives caused by various multi-stage attack
scenarios. From the experimental results using self-generated
dataset, they showed that the HMM showed better performance
than C4.5 and Nearest Neighborhood (NN).

Strayer et al. proposed an architecture, called Stealthy Tracing
Attackers Research Light TracE (STARLITE) which trace-backed
and detected source IP of multi-stage attack using BBN tech-
nologies Source Path Isolation Engine (SPIE) [13]. To reduce false
positives, STARLITE integrated stepping stone detection method
with SPIE. Here, stepping stone means a laundering hosts that
hides the information of the original attack source.

Cheng et al. proposed a probabilistic matching algorithm for
multi-stage attack forecast [7]. This work focused on improving
the low matching accuracy caused by complexity of multi-stage
attack. For this purpose, the algorithm analyzed similarity be-
tween pre-defined alerts and currently generated alert by using
J-Fusion [37]. As a result, the algorithm determined whether two
attacks are the same attack or not.

Alserhani et al. proposed a framework for alert correlation that
overcomes the shortcomings of methods based on knowledge-
based and statistical models [8,9]. The framework consists of
online and offline components. The online component received
the alerts from IDS and applied multi-stage attack recognition in
real time. The offline component generated the rule for multi-
stage attack detection by using knowledge-based and statistical
models.

Sadd et al. proposed a method that extracts attack scenarios
by intrusion semantics, which were used to correlate alerts se-
mantically [10]. They also proposed an algorithm that detected
missing attack steps by analyzing attack impacts according to
attack scenarios.

Almutairi et al. proposed multi-stage attack prediction method
based on the reputation of IP addresses [14]. The reasoning mod-
ule which consists of fuzzifier, rule-base and inference engine,

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 815

Fig. 2. Operation comparison between conventional multi-stage attack detection and proposed multi-stage attack detection.

predicted multi-stage attack using the reputation of IP informa-
tion.

Katipally et al. [27] and Lagzian et al. [28] used a data mining
technique to generate multi-stage attack rules. After aggregating
alerts with the same IP address into the same group, they gen-
erated dominant multi-stage attack rules using frequent item set
mining.

All these works assume that pre-observed details of single-
stage attacks are available. Thus, if the pre-observed details are
not given, these works show high false negatives when the multi-
stage attack has diverse occurrence sequences of single-stage
attacks.

To detect multi-stage attack with operational domain knowl-
edge, vasilomanolakis et al. proposed multi-stage attack rule gen-
eration framework using honeypots in Industrial Control System
(ICS) [11]. By modifying HosTaGe honeypot to adapt into ICS,
they formulated the detection mechanism with Extended Finite
State Machines (EFSMs). They tried to improve false negatives by
generating Bro signature [38].

Luo et al. proposed a multi-state attack mitigation mechanism
targeting on Software-defined Home Networks (SDHN) [12]. By
assessing attack events on SDN and Network Function Virtual-
ization (NFV), a multi-state attack mitigation mechanism tried to
improve the false negative alerts under heterogeneous network
environments.

Since these works require specific domain knowledges corre-
sponding to the operational environments such as ICS, SDN/NFV,
they are hardly used in general operational environments (see
Table 1).

2.3. Limitations of existing detection methods

Previous researches on multi-stage attack detection have three
main limitations as follows: (1) All introduced multi-stage attack

detection methods except the method of vasilomanolakis et al.
are based on pre-observed details which provided from signa-
tures of single-stage attacks. Thus, these methods have the limi-
tation of not detecting novel multi-stage attacks which including
zero-day single-stage attacks; (2) In addition to the vulnerability
to zero-day attacks, multi-stage attack detection rule generation
scheme [27] has the limitation of high false positive caused by
not considering the order of single-stage attacks; (3) Different
from these methods, the method of vasilomanolakis et al. can
handle novel multi-stage attacks with zero-day single-stage at-
tacks. However, since the defense approach is based on honeypot,
it inherits drawbacks of decoy-based authentication scheme such
as exposure of the presence of decoys.

To handle these limitations while mitigating multi-stage at-
tack rule generation and multi-stage attack detection, we propose
a new multi-stage attack detection method. By extracting key
features from flows directly, the proposed method solves vul-
nerability to the novel multi-stage attack which includes zero-
day attacks. To handle the limitation of existing detection rule
generation methods, we introduce an order-aware data mining
technique that is modified version of the Apriori algorithm and
new multi-stage attack detection rule generation method. Since
the defense scheme is based on IDS, the proposed method is free
from the drawbacks of decoy-based authentication scheme.

3. Proposed method

In this section, we describe the overall architecture and the
operational procedure of each component in details.

3.1. Overall architecture

In Fig. 2, we show that the overall operational flow of con-
ventional and proposed multi-stage attack detection systems. As

816 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

Fig. 3. Single-stage attack distributions according to features.

shown in Fig. 2(a), the conventional multi-stage attack detec-
tion system generally consists of signature-based IDS for single-
stage attack detection, optional flow generation and feature ex-
traction module, and alert correlation modules. After gather-
ing single-stage attack alerts from the signature-based IDS, the
conventional system extracts features of flow optionally. Next,
the conventional multi-stage attack detection system correlates
gathered alerts and features to detect multi-stage attacks using
knowledge-based, attack semantics or statistical models. How-
ever, knowledge-based, attack semantics and statistical models
require pre-observed details of single-stage attacks. Thus, the
conventional multi-stage attack detection system shows high
false negatives while detecting multi-stage attacks which contain
modified or unobserved single-stage attacks.

In Fig. 2(b), we show the proposed multi-stage attack detec-
tion architecture. To generate multi-stage attack detection rules,
the proposed architecture consists of signature-based or anomaly
IDS for single-stage attack detection, packet matching, flow gen-
eration and feature extraction, clustering and attack rule genera-
tion modules. To detect the multi-stage attack, the proposed ar-
chitecture consists of signature-based or anomaly IDS for single-
stage attack detection, packet matching, flow generation and fea-
ture extraction, attack type classification, multi-stage attack de-
tection modules. The operational flow of the proposed framework
consists of two operational phases as follows:

(A) Rule generation phase: The multi-stage attack rule is
generated using suspicious traffics. To generate single-stage at-
tack type automatically, each suspicious flow is labeled based
on their clustering results in the clustering module. By using
data mining technique, the proposed multi-stage attack detection
system generates multi-stage attack rules by extracting dominant
activity patterns from correlated flows.

(B) Detection phase: Incoming traffics are inspected to detect
multi-stage attack. To identify the single-stage attack type exist-
ing on an incoming flow, the classifier model trained from labeled
clusters inspects the suspicious flow. In multi-stage detection
module, suspicious flows are correlated with each other to gener-
ate multi-stage flow activity. Also, if the multi-stage flow activity
matches with a multi-stage attack rule, the module generates the
corresponding alerts the multi-stage attack.

We describe operational details of modules composing the
proposed multi-stage attack detection framework in followings.
In Table 2, we summarize the terms and notation used.

3.2. IDS & packet matching

The packet matching module filters incoming network pack-
ets whose headers match with IDS alerts. Since the proposed
method creates information to classify single-stage attack it-
self based on clustering, the presence of alert and features of
corresponding flow are needed only. Thus, different from the

Table 2
Terms and notation.
Terms Notation

Ftotal Total flow nodes for rule generation
THsup Minimum support value for frequent pattern mining
THlen Minimum rule length for frequent pattern mining
Ratk The list of multi-stage attack detection rules generated by

proposed method
CT Flow chain tree for flow correlation
f An flow node that contains labeled flow information
CHtrain Flow chains for multi-stage attack rule generation which

consist of correlated flow nodes
rCT Root node of flow chain tree CT
Fabsence Flag variable to check whether a flow element f exists in the

leaf table LTCT
LTCT A table to record leaf node of CT
l An element of the leaf node table LTCT
srcf Source IP address of flow f
dstf Destination IP address of flow f
DTCT A hash table to record the most recent flow node f with the

dstf as a key
tsf Timestamp value of flow f
nCT A node of flow chain tree CT
CNn The list of child nodes of node n
PNn The list of parent nodes of node n
D Input dataset for Apriori algorithm
k The iteration number of Apriori algorithm
Lk Frequent pattern list of length k
e A single item that appears in dataset D
Ck Frequent pattern candidates of length k

conventional multi-stage attack detection system, the proposed
architecture can use signature-based IDS alerts or anomaly IDS
alerts together.

3.3. Flow generation & feature extraction

To cluster suspicious flows, the flow generation module and
feature extraction module extract flow features using a flow
analysis tool such as Bro [38]. The bro supports customizable
script allowing users to determine specific feature information
from flows.

The flow generation module aggregates packets using 4-tuple
information, i.e., source/destination IP address and port, SYN and
FIN flags of TCP packets and inter packet timeout. In case of TCP
flow, the flow consists of a series of packets from SYN packet
to the FIN packet with same 4 tuple information. If the inter
packet arrival time exceeds 5 min without FIN packet, the flow
is considered to be over. UDP flow, also, consists of a series of
packets whose 4-tuple information is same. However, it does not
contain flag information and the inter packet timeout of UDP flow
is 1 min.

The proposed feature extraction module is designed by fo-
cusing on features, which are extracted from the Bro alone, in

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 817

Algorithm 1 Attack Rule Generation

Input: Ftotal, THsup, THlen
Output: Ratk

Initialization :
CT = new FlowChainTree()
Ratk = []

1: for f ∈ Ftotal do
2: CT .addFlow(f)
3: end for
4: CHtrain = toFlowChains(rCT)
5: Ratk = modifiedApriori(CHtrain, THsup, THlen)
6: return Ratk

UNSW-NB15 dataset [39]. A flow consists of 34 attributes which
are grouped into five categories. Each feature contains flow iden-
tification, payload contents information, time related information
and additional key information for specific single-stage attack
detection like scanning attack of Nmap [40] and etc. Details on
features are described in Appendix.

Each graph in Fig. 3 shows the distribution of single-stage
attacks which are 50 sampled in UNSW-NB15 dataset according
to features. In Fig. 3(a) whose x-axis is s_port, y-axis is s_load and
z-axis is s_win, the single-stage attack type named Fuzzers are
relatively distinguished well. In Fig. 3(b) whose x-axis is d_port, y-
axis is d_pkts and z-axis is d_meansz, the type named Shellcode
is distinguished well from other types. In Fig. 3(c) whose x-axis
is proto, y-axis is service and z-axis is tcprtt, The Shellcode is
concentrated on the middle of x–y plain and the Analysis is
distinguished well from others. From these observations, we can
notice that an attack type can be distinguished from others with
some combinations of extracted features.

3.4. Clustering

The clustering module groups suspicious flows with extracted
features by the feature extraction module. Since features of a flow
contains nominal and boolean type data that cannot be used di-
rectly in clustering algorithm, nominal values are mapped into ar-
bitrary numbers and boolean values are mapped into 0(False) and
1(True) except for flow identification information such as times-
tamp and IP addresses. To avoid poor clustering result caused by
high dimensionality, Principal Component Analysis (PCA) is used
before clustering.

Since the false positive alerts from IDS can degrade the quality
of clustering result, outliers in clusters are eliminated by us-
ing Density-based Spatial Clustering of Applications with Noise
(DBSCAN) [41]. After labeled clusters are given from clustering,
they are used to generate multi-stage attack rules and to train
attack type classifier.

3.5. Attack rule generation

The attack rule generation module generates multi-stage at-
tack rules while analyzing labeled suspicious flows Ftotal with
threshold support THsup and threshold rule length THlen. The oper-
ational details are shown in Algorithm 1. To generate multi-stage
attack detection rules, the attack rule generation module mainly
executes two phases: (1) flow chain generation; (2) attack rule
extraction.

Algorithm 2 Flow Chain Tree Generation

Input: f
Initialization :
Fabsence = true

1: for all l ∈ LTCT do
2: if isSameFlow(l, f) then
3: Fabsence = false
4: if not isSameType(l, f) then
5: l.addChild(f)
6: LTCT .remove(l)
7: LTCT .add(f)
8: end if
9: break

10: end if
11: end for
12: if Fabsence then
13: if (DTCT [srcf] ∈ DTCT) and

isNotCyclic(DTCT [srcf], f) then
14: p_node = DTCT [srcf]
15: p_node.addChild(f)
16: if p_node ∈ LTCT then
17: LTCT .remove(p_node)
18: end if
19: else
20: rCT .addChild(f)
21: end if
22: LTCT .add(f)
23: end if
24: DTCT [dstf] = f

3.5.1. Flow chain generation
A flow node is represented into a flow chain tree CT , which

is used while generating and managing correlated flow informa-
tion. The flow chain tree CT is generated by reflecting the flow
correlation based on labeled flow clusters and flow identification
information (Lines 1 to 3). After flow chain tree generation, each
successively connected flow nodes from root node of CT , rCT , to
leaf node becomes a flow chain (Line 4). The operational details
are shown in Algorithms 2 to 4

3.5.2. Attack rule extraction
To determine dominant patterns of flow activities in flow

chains, we use a frequent pattern mining algorithm, called Apriori
algorithm [42]. Since the original Apriori algorithm does not
consider sequence information, which is one of critical semantics
in multi-stage attack scenario. we modified Apriori algorithm to
consider sequence information (Line 5). The operational details
are shown in algorithms 5 to 6

Algorithm 2 shows how to generate the flow chain tree,
i.e., addFlow(f) in Algorithm 1. Searching every node in a tree,
while finding relevant flow nodes for extending tree nodes under
the large amount of network traffic, is very complex workload. To
overcome this issue, the flow chain tree CT keeps two tables, LTCT
and DTCT . LTCT is a list of leaf nodes in CT and DTCT is hash table
whose key is the destination IP address of a flow. The operational
details are as follows.

We find leaf node ls which belong to the same flow sequence
with incoming flow node f (Lines 1 to 2). If such leaf nodes ls are
found, we set Fabsence into false (Line 3). However, if types of l and
f are different, we add f into CT as a child node of l (Lines 4 to 8).
If the value of Fabsence is true, which means no leaf node belongs to
the same flow sequence with f (Line 12), we check whether srcf ,
is the same as a key in DTCT . If srcf is the same as a key in DTCT
and the insertion node f does not make cycle in flow chain, we

818 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

Algorithm 3 Flow Comparison

Input: f1, f2
Output: true or false
1: if tsf1 > tsf2 then
2: return false
3: end if
4: if (srcf1 == srcf2 and dstf1 == dstf2) or (srcf1 == dstf2 and

dstf1 == srcf2) then
5: return true
6: end if
7: return false

Algorithm 4 Flow Chain Generation

Input: nCT
Output: CHf

Initialization :
CHtrain = []

1: if isEmpty(CNnCT) then
2: return [[nCT]]

3: end if
4: for n ∈ CNnC T do
5: tmp = toFlowChain(n)
6: for c ∈ tmp do
7: c.insertFront(nCT)
8: CHtrain.add(c)
9: end for

10: end for
11: return CHtrain

insert flow node f into CT as a child node of DTCT [srcf] (Lines 13
to 18). Otherwise, we insert flow node f into CT as a child node
of root node rCT . Next, we updates DTCT with the destination IP
address of flow node f , i.e., dstf , as key and f as value.

Algorithm 3 shows how to compare two flow nodes f1 and f2,
i.e.,isSameFlow(f1, f2) to determine whether the two flows are
in the same flow sequence. The algorithm compare timestamp
tsf1 , tsf2 . If timestamp of f1, i.e., tsf1 , is faster than the timestamp
of f2, i.e., tsf2 , the algorithm returns false and then, terminates the
operation (Lines 1 to 3). As a result, we ignore the incoming flow
node f2 whose timestamp is lagged compared to the comparative
flow f1. Otherwise, flow’s source and destination IP addresses,
i.e., srcf1 , dstf1 , srcf2 are compared. If srcf1 and dstf1 are equal to
srcf2 and dstf2 , respectively, or srcf1 and dstf1 are equal to dstf2
and srcf2 , respectively, the algorithm returns true. Otherwise, the
algorithm returns false.

The generated flow chain tree CT is converted into flow chain,
which is expressed into the data type of list. That is, the opera-
tional details of toFlowChains(rCT) in Algorithm 1 is shown in
Algorithm 4. If the input node nCT has no child nodes CNn_CT , it
returns a table record corresponding to a flow chain containing
the input node nCT only (Lines 1 to 2). If CNn_CT is not empty,
toFlowChains() is called for all child nodes n in CNn_CT . The
result is stored recursively in tmp and generates flow chains c .
The generated flow chains c are added to CHtrain after nCT is
inserted as first element of c.

In Algorithm 5, we describe how to design modified version
of Apriori algorithm for frequent flow pattern mining, i.e., mod-
ifiedApriori(CHtrain, THsup, THlen) in Algorithm 1. As being
mentioned, the sequence information of flows is very important
semantics for multi-stage attack detection. Thus, we modified
Apriori algorithm to use order information of input data. By using
list data structure, not set data structure which is used in original

Algorithm 5 Modified Apriori

Input: D, THsup, THlen
Output: Ratk

Initialization :
L1 = {[e]|e ∈ d ∧ d ∈ D}

k = 2
Ratk = []

1: while not isEmpty(Lk−1) do
2: Ck = generateCandidates(Lk−1, k, L1)
3: for d ∈ D do
4: for c ∈ Ck do
5: if isSubList(d, c) then
6: count[c] = count[c] + 1
7: end if
8: end for
9: end for

10: Lk = {c|c ∈ Ck ∧ count[c]/ND ≥ THsup}

11: if k ≥ THlen then
12: Ratk.add(Lk)
13: end if
14: k = k + 1
15: end while
16: return Ratk

Algorithm 6 Candidates Generation

Input: Lk−1, k, L1
Output: Ck

Initialization :
Ck = {}

Lk−1 = list(Lk−1)
L1 = list(L1)

1: for i = 0 to len(Lk−1) do
2: for j = 0 to len(L1) do
3: Ck.add(Lk−1[i] + L1[j])
4: end for
5: end for
6: return Ck

Apriori algorithm, the modified Apriori algorithm considers order
information of input data. The operational flow is as follows.

The initial frequent pattern list L1 is initialized as a set of
lists, each of which contains an element e observed at least
once in dataset D. The iteration number k is also initialized as 2
(Initialization). After generating candidate list Ck, the appearance
number of each candidate c in D is counted (Lines 1 to 9). If
the appearance number of candidates in D exceeds threshold
support THsup, such candidates are added into Lk. If k is larger than
threshold length THlen, Lk is added into attack rule Ratk (Lines 10
to 13). After increasing k by 1, lines 1 to 14 in Algorithm 5 are
repeated until the latest Lk−1 is empty.

The difference from the original Apriori algorithm is found
at the function generateCandidates(Lk−1, k, L1) of Algorithm
5 described in Algorithm 6. Lk−1 and L1 are casted into list at
initialization. After L1[j] is appended to each elements of Lk−1 for
all j, the appended list is added as candidates Ck (Lines 1 to 5).
Since the operation between Lk−1[i] and L1[j] is append, not union,
the Ck contains all possible combination of sequences. As a result,
the modified Apriori algorithm maintains order information of
input data.

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 819

Algorithm 7 Multi-stage Attack Detection

Input: f
1: CHf = CTd.addFlow(f)
2: Rmatch = findMatchedRule(CHf , Ratk)
3: if not isEmpty(Rmatch) then
4: alert(Rmatch)
5: end if

Algorithm 8 Flow Chain Tree Generation for Multi-stage Attack
Detection
Input: f
Output: CHf

Initialization :
Fabsence = true

1: for all l ∈ LTCT do
2: if isSameFlow(l, f) then
3: Fabsence = false
4: if not isSameType(l, f) then
5: l.addChild(f)
6: LTCT .remove(l)
7: LTCT .add(f)
8: end if
9: break

10: end if
11: end for
12: if Fabsence then
13: if DTCT [srcf] ∈ DTCT and

isNotCyclic(DTCT [srcf], f) then
14: p_node = DTCT [srcf]
15: p_node.addChild(f)
16: if p_node ∈ LTCT then
17: LTCT .remove(p_node)
18: end if
19: else
20: rCT .addChild(f)
21: end if
22: LTCT .add(f)
23: end if
24: DTCT [dstf] = f
25: CHf = CTd.toFlowChain(f)
26: return CHf

3.6. Attack type classification

In attack type classification module, suspicious flows are clas-
sified into different attack types. We uses k-Nearest Neighbors(k-
NN) algorithm [43] for classification. Before detection phase, the
classifier is trained using labeled clusters. In detection phase, the
classifier inspects and then, labels suspicious flows.

3.7. Multi-stage attack detection

In algorithm 7, we show the operational flows of multi-stage
attack detection module. To detect and alert the multi-stage
attack, the multi-stage attack detection module performs the
following three steps: (1) flow chain generation; (2) matched rule
detection; (3) multi-stage attack alert.

In flow chain generation step, the labeled flow f is added into
chain tree CTd for detection. For the labeled flow f , CTd returns
a chain CHf (Line 1). In matched rule detection step, the module
finds matched rules Rmatch by comparing CHf with Ratk (Line 2).
In multi-stage attack alert step, if matched rules Rmatch are found,
the corresponding alerts are generated (Lines 3 to 5).

Algorithm 9 Flow Chain Generation for Multi-stage Attack
Detection
Input: f
Output: CHf

Initialization :
CHf = []

1: if PNf == rCTd then
2: return [f]
3: end if
4: CHf = toFlowChain(PNf)+[f]
5: return CHf

Algorithm 10 Attack Rule Matching

Input: CHf , Ratk
Output: Rmatch

Initialization :
Rmatch = []

1: for all r ∈ Ratk do
2: i = 0
3: j = 0
4: while i < len(CHf) do
5: if CHf [i] == r[j] then
6: j = j + 1
7: end if
8: if j ≥ len(r) then
9: Rmatch.add(r)

10: break
11: end if
12: i = i + 1
13: end while
14: end for
15: return Rmatch

Algorithm 8 shows the detailed operation of the function
addFlow(f) in Algorithm 7. The overall operation of this func-
tion is the same as Algorithm 2 (Lines 1 to 24). Only the difference
from Algorithm 2 is found at line 25. That is, to inspect incoming
flow node f online, flow chain CHf including flow node f is
immediately returned. Algorithm 9 shows the detailed operation
of function toFlowChain(f) in Algorithm 8. If current input
flow node f is the root node of CTd, i.e., rCTd , the algorithm returns
list of f (Lines 1 to 3). Otherwise, the algorithm returns the
flow chain CHf that the result of toFlowChain(PNf) after f is
appended (Lines 4 to 5).

To determine whether the flow chain CHf is detected into
multi-stage attack or not, all attack detection rules Ratk generated
from multi-stage attack rule generation module are compared
with the flow chain as shown in Algorithm 10. The flow chain
node index i and detection rule node index j are initialized into
0s, respectively, and each flow chain node is compared with
detection rule nodes by increasing the index i until i reaches the
length of the flow chain. (Lines 4 to 13). If the ith node of flow
chain CHf [i] is same as jth node of the rule r , j is increased by 1
(Lines 5 to 7). If the value of j exceeds the length of detection rule
r , r is considered into the rule matched with CHf and added into
Rmatch (Lines 8 to 11). These operations are repeated for all rule
rs in Ratk.

3.8. Operational example

In this section, we describe brief examples of detection rule
generation and multi-stage attack detection phase. The Fig. 4
shows operational example of proposed method.

820 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

Fig. 4. Operational example of proposed system.

In rule generation phase which is shown in Fig. 4(a), packets
whose header is matching with IDS’s alert are classified as suspi-
cious packet. After collected packets are grouped into flows, flows
not including suspicious packets are filtered and features of the
unfiltered suspicious flow are extracted in flow generation and
feature extraction module. Then, suspicious flows are clustered
in clustering module. For the convenience of explanation, we
assume that each flow forms a cluster and the label of a flow is
equal to the name of cluster.

To generate flow chain from labeled suspicious flow, Algo-
rithm 2 generates flow tree. First, flow A is appended as a child
node of root node and added into leaf table while removing root
node. Then, flow B is added to the chain tree. Since source IP(H)

and destination IP(I) of flow B are not match with that of any
node in leaf table and source IP of flow B(I) which is equal to
destination IP of flow A is in dst table, flow B is appended as a
child node of flow A and added to leaf table while removing flow
A. At t3, flow C is appended into the flow chain tree in the same
way as flow B. At t4, since source IP(H) and destination IP(J) of
flow D are not match with that of any node in leaf table and
source IP of flow D(H) is not in dst table, flow D is appended
into the chain tree as a child node of root node and added to
leaf table. Then, repeat above steps until all flows are appended
into the chain tree. After flow chains are generated from the flow
chain tree according to Algorithm 4, multi-stage attack detection
rules are extracted using modified Apriori algorithm described

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 821

Fig. 5. Rules generated from LLS DDoS 1.0 dataset.

in Algorithm 5. Since we assume that the minimum length of
detection is 2, two rules are extracted from flow chains.

Fig. 4(b) shows the operational example of Detection phase.
When a new suspicious flow is generated with the arrival of
a new suspicious packet, the flow is arbitrarily named(Flow E)
and features of suspicious flow are extracted from packets of
the flow. After the flow is labeled with the name of the closest
cluster(Cluster E), the flow is added into current flow chain tree.
Since source IP of flow E(H) is in dst table, the flow is appended
as a child node of flow D and added to leaf node while removing
flow D in the table. After a flow chain is generated from extended
part of the flow chain tree according to Algorithm 9, the flow
chain compared with detection rules generated in rule generation
phase. In example, since the extended flow chain contains all
components of rule#2 with right order, the flow matches with
the rule#2 and the alert is generated.

4. Computational complexity analysis

Since network flow generation technique based on source IP
& port and destination IP & port is very common and there are
many number of researches for efficient flow analysis [44,45], we
address the computational complexity of modules that work after
the suspicious flow is generated.

In rule generation phase, the clustering module performs
clustering operation using DBSCAN whose average complexity is
O(NFtotal logNFtotal) when the number of Ftotal is NFtotal .

The operation of attack rule generation module is divided
into three processes, i.e., flow chain tree generation, flow chain
generation and rule generation. In flow chain tree generation
process, the computational complexity of worst case that the
hit rate of leaf table is 1 is O(N2

Ftotal
) and the complexity of the

best case that the hit rate of leaf table is 0 is O(NFtotal). Thus,
the average complexity of flow chain tree generation process is
O(NFtotal logNFtotal). Let, di is depth of ith node of leaf table and nLT
is number of node in leaf table. Since

∑nLT
i=1 di = NFtotal , the com-

plexity of flow chain generation process is O(NFtotal). Since the rule
generation process is same with the modified Apriori algorithm,
it’s complexity is also equal to the complexity of Apriori algorithm
which is O(NFtotal lmax) + (1 − (logNFtotal)

lmax/(1 − logNFtotal)) when
lmax is the length of the longest flow chain.

Therefore, the complexity of rule generation phase is

O(NFtotal (logNFtotal + 1 + lmax) +
(1−(logNFtotal)

lmax)
(1−logNFtotal)

) (1)

The detection phase consists of two modules, i.e., attack type
classification and multi-stage attack detection module. Since k-
NN algorithm is used to classify attacks, the complexity of attack
type classification is O(kNFtotal).

The multi-stage attack detection module is divided into three
processes, i.e., flow chain tree generation, flow chain generation
and multi-stage attack detection. Although the operation of flow
chain tree generation process is same with that of rule generation
phase, the incoming flow is processed one by one. Thus, the com-
plexity is O(NFc) when NFc means the number of suspicious flows

collected since the start of detection phase. Also, the complexity
of flow chain generation process is O(lmaxc) when lmaxc means the
longest flow chain since the start of detection phase. Let, NRatk is
the number of detection rule and lmaxRatk

is length of the longest

detection rule. The complexity of multi-stage attack detection
process is O(NRatk lmaxRatk

). Therefore the complexity of detection
phase is

O(kNFtotal + NFc + lmaxc + NRatk lmaxRatk
) (2)

As shown in Eq. (1), the complexity of rule generation phase is
pretty big. However, considering the rule generation phase is not
time critical and the complexity is almost equal to the complexity
of previous detection rule generation methods, the complexity of
rule generation is affordable.

Different from the rule generation phase, the detection phase
is time critical. However, considering values of NFtotola and NRatk are
constant in detection phase and the complexity of the classifica-
tion can be decrease by applying other efficient machine learning
algorithms, the complexity of detection phase is approximate to
O(NFc). Therefore, the proposed method seems to be realistic in
practice.

5. Evaluation results

In this section, we show the evaluation results of the proposed
multi-stage attack detection method. To concretely show the
accuracy of the generated attack detection rule, we compared
the generated multi-stage attack detection rules with multi-stage
attack scenarios in DARPA LLS DDoS 1.0 dataset [46]. It is ob-
served that the attack scenario in DARPA LLS DDoS 1.0 dataset is
designed by combining three single-stage attack types. To show
that the proposed method is efficient even when many attack sce-
narios exist, we measured detection accuracy on a large volume
of dataset, called CTU-13 [47]. As a botnet traffics captured in the
Czech Technical University in Prague(CTU), The CTU-13 dataset
consists of 13 number of scenarios observed from various botnets.
The dataset consists of raw packet data, labeled netflow [48] data,
network environment information and malware files used while
generating the dataset. After implementing the proposed method
using python 2.7 and scikit-learn, which is a python package for
machine learning [49], the performance is evaluated on Ubuntu
16.04.3 LTS with kernel version 4.13.0-43-generic, Intel Xeon
E5-2630 v3 CPU, and 64 GB RAM.

5.1. Experimental results from DARPA LLS DDoS 1.0

The operational details of the multi-stage attack in DARPA LLS
DDoS 1.0 dataset are as follows. The adversary(202.77.162.213)
scans IP addresses from xxx.xxx.xxx.1 to xxx.xxx.xxx.254 in four
networks: 172.16.115.0/24, 172. 16.114.0/24, 172.16.113.0/24,
172.16.112.0/24 (: phase 1). To determine which host is running
the sadmind remote administration tool of Solaris OS, the ad-
versary sends probes to observed hosts via telnet(port number
23) and sunrpc(port number 111) (: phase 2). Next, the attacker

822 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

Fig. 6. Recall, precision, and F1-measure for THsup from CTU-Malware-Capture-Botnet-43.

exploits three hosts which are named mill(172.16.115.20), pas-
cal(172.16.112.50) and locke(172.16.112.10) using vulnerability
of sadmind (: phase 3). After exploiting hosts, the adversary
creates a directory on hosts and installs a backdoor program
named .rhost. Different from hosts named into pascal and
locke, the mstream master program, called master-sol, is also
installed on the host named into mill(: phase 4). Finally, the
attacker launches DDoS attack to a target(131.84.1.31) (: phase
5).

In Fig. 5, we show the multi-stage attack rules generated from
three attack scenarios. Each row represents the multi-stage attack
detection rule observed for each host, whose name is shown at
the leftmost column. Each number shown in column is labeled
into a flow type. The flow type number is assigned arbitrary from
the result of clustering. Also, a background color represents an
attack phase.

From LLS DDoS 1.0 dataset, we observe that multi-stage attack
rules are correctly generated with the accuracy by as much as
100%. As shown shown in the first column of all rules, flows for
IPsweep phase(: phase 1) are clustered into flow type 1. Two flow
types, which are marked into 0 and 7, are probing attacks via tel-
net and sunrpc, respectively (: phase 2). Exploit and verification
flow types via telnet, sunrpc and custom ports are marked into
0, 7 and 8(9), respectively (: phase 3). The dominant flow type
for phase 4 is not found from hosts pascal and locke. Since the
mstreammaster program, called master-sol, is installed on the
host named into mill, flow types for phase 4 are observed from
host mill (: phase 4). Finally, the DDoS attack from mill is marked
into 53 and 50 (: phase 5).

5.2. Experimental results from CTU-13

To show the feasibility of the proposed multi-stage attack
detection method, we used two datasets in the CTU-13 dataset:
CTU-Malware-Capture-Botnet-42 and CTU-Malware-
Capture-Botnet-43. The number of flows and the number of
multi-stage attack scenarios for each dataset are
shown in Table 3. Here, the number of flows was measured by
Argus [50] and the number of multi-stage attacks was measured
manually. Since these two datasets are generated from the same
botnet, we used CTU-Malware-Cap ture-Botnet-42 as a train-
ing dataset to generate the multi-stage attack detection rules and
used CTU-Malware-Captur e-Botnet-43 as a test dataset to
detect the multi-stage attacks using the generated multi-stage
attack detection rules. The performance of the proposed multi-
stage attack detection method was measured in terms of recall
(Recall =

TP
TP+FN), precision (Precision =

TP
TP+FP) and F1-measure

(F1 − measure =
2

1
Recall +

1
Precision

) while varying the value of THsup.

THsup means how many flows chains are generated into multi-
stage attack detection rule. For example, THsup values of 0.1 and

Table 3
Number of flows and attack scenarios of two datasets in the CTU-13 dataset.
Dataset # of flows # of scenario

CTU-Malware-Capture-Botnet-42 40 961 4195
CTU-Malware-Capture-Botnet-43 20 941 1671

Table 4
Flow identifier.
Name Data

type
Notation

1 ts I Flow measurements start time
2 uid N Identifier of the flow
3 s_ip N Source IP address
4 d_ip N Destination IP address

0.025 means that a multi-stage attack detection rule is generated
using flow patterns belonging to more than 10% and 2.5% of attack
scenarios, respectively.

In Fig. 6, THsup varies from 0.1 to 0.0 to show the influence
ofTHsup on recall, precision and F1-measure. For recall, 31.53%,
43.92%, 92.46%, 98.03%, and 100% were observed for 0.1, 0.025,
0.01, 0.00625, and 0.0 of THsups, respectively. For precision, 100%,
95.08%, 95.18%, 60.91%, and 48.71% were observed for 0.1, 0.025,
0.01, 0.00625, and 0 of THsup, respectively. Also, for F1-measure,
47.95%, 57.59%, 93.80%, 75.13%, and 64.66% were observed for 0.1,
0.025, 0.01, 0.00625 and 0.0 of THsup, respectively. From these
results, we observed that as the value of THsup decreased, the
recall increased and the precision decreased. We also observed
the maximum F1-measure of 0.938 when the value of THsup is
equal to 0.01.

6. Conclusion

Network attacks based on single-stage attacks or multi-stage
attacks have become elaborate and complicated. Especially, it is
observed that the current majority of network attacks consist of
sophisticated multi-stage attacks under different time periods.
Since the multi-stage attacks break down network attacks into
several single-stage attacks, it is necessary to identify various and
specific behavior patterns. To identify various and specific be-
havior patterns, three groups of multi-stage attack methods were
proposed: (1) modeling multi-stage attack; (2) multi-stage attack
detection without operational domain knowledge; (3) multi-stage
attack detection with operational domain knowledge. However,
since these works require specific domain knowledges corre-
sponding to the operational environments, they are hardly used
in general operational environments. However, the performance
was limited because they requires pre-observed details on single-
stage attack behavior. In this paper, to overcome such a limita-
tion, we proposed a new multi-stage attack detection framework,

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 823

Table 5
Basic flow information.
Name Type Description

5 s_port I Source port number
6 d_port I Destination port number
7 proto N Transport layer protocol
8 duration F Total duration of flow
9 s_byte I Total source to destination bytes

10 d_byte I Total destination to source bytes
11 s_ttl I TTL value of packets from src. to dst.
12 d_ttl I TTL value of packets from src. to dst.
13 s_loss I Dropped packet bytes from src. to dst.
14 d_loss I Dropped packet bytes from dst. to src.
15 service N Application protocol ex. http, dns
16 s_load F Transmitted bytes per second from src.
17 d_load F Transmitted bytes per second from dst.
18 s_pkts I Number of source to dst. packets
19 d_pkts I Number of destination to src. packets

Table 6
Payload contents information.
Name Type Description

20 s_win I TCP window advertisement of source
21 d_win I TCP window advertisement of destination
22 s_tcpb I TCP sequence number of source
23 d_tcpb I TCP sequence number of destination
24 s_meansz F Average size of packets from source
25 d_meansz F Average size of packets from destination
26 trans_depth I Pipelined depth into the connection of this

request (or response) transaction
27 res_bdy_len I Uncompressed content size of the data

transferred from the server

Table 7
Time-related information.
Name Type Description

28 synack F Time interval between the SYN and
the SYN_ACK of the TCP connection

29 ackdat F Time interval between the SYN_ACK
and the ACK of the TCP connection

30 tcprtt F Sum of synack and ackdat of
the TCP connection

which consists of multi-stage attack detection rule generation and
multi-stage attack detection. By matching matching, generating
flow and extracting feature, and clustering suspicious traffics,
multi-stage attack detection rule is generated. After comparing
the incoming traffics with the generated multi-stage attack de-
tection rules, various multi-stage attack patterns are detected
without pre-observed details on the single-stage attack behavior.
The evaluation results even under the large volume of multi-
stage attack trace, the proposed framework showed the good-
enough performance. Specifically, we showed that all the possible
multi-stage attack patterns in DARPA LLS DDoS dataset were cor-
rectly detected. Also, from two datasets in CTU-13 [47] including
the large volume of multi-stage attack scenarios, F1-measure of
0.9380 at maximum was observed.

Acknowledgments

This work was supported by basic science research program
through national research foundation Korea (NRF) funded by the
ministry of science, ICT and future planning, Republic of Korea
(NRF-2018R1D1A3B07043392) and the Information Technology
Research Center(ITRC) support program (2014-1-00743) super-
vised by the Institute for Information communications Technol-
ogy Promotion(IITP), Republic of Korea. Peng Liu was supported
by NSF CNS-1814679, ARO W911NF-13-1-0421 (MURI), and ARO
W911NF-15-1-0576.

Table 8
Additional features.
Name Type Description

31 is_sm_ips_ports B If s_ip equals to d_ip and s_port
equals to d_port, then this variable
has True else False

32 ct_flw_http_mthd I The number of packets which
have method such as Get
and Post in http service

33 is_ftp_login B If a user accesses to ftp session
with password, then True else False

34 ct_ftp_cmd I The number of packets which have
a command of ftp session

Conflict of interest statement

None.

Declaration of competing interest

The authors declared that they had no conflicts of interest with
respect to their authorship or the publication of this article.

Appendix. Flow features

In this section, we describe all features used in feature ex-
traction module. Features are represented into one of four data
types, i.e., nominal data type (N), integer data type (I), floating
point data type (F), and Bool data type (B). Flow features are
grouped into five different categories: basic flow information;
flow identification; payload contents information; time-related
information; and additional features. In Tables 4 to 8, we show
the name and notation of features belonging to each category.

In Table 5, we show features belonging to basic flow infor-
mation, which is used to identify the behavior of devices in
communication. Thus, these features are used to detect anomalies
from exploit attempts. Features shown in Table 4 are grouped
into flow identifier. Multi-stage attack rule generation and multi-
stage attack detection modules use these features to correlate
flows. In Table 6, features observed from the TCP, UDP or HTTP
payload are shown. Since the contents of malicious flows includes
a particular pattern, these features may represent monotonic
communication pattern between adversaries and victims. Also, in
Table 7, time-related features are shown. These features are used
as key features while detecting attacks such as DDoS(Distributed
Denial of Service). Additional features shown in Table 8 are spe-
cial features, each of which is used to detect a specific attack such
as user to root(U2R).

References

[1] Cyber kill chain. URL https://www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.html.

[2] P. Bhatt, E.T. Yano, P. Gustavsson, Towards a framework to detect multi-
stage advanced persistent threats attacks, in: 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, 2014, pp. 390–395,
http://dx.doi.org/10.1109/SOSE.2014.53.

[3] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T. Heberlein, C. lin Ho, K.N.
Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, D. Mansur, Dids
(distributed intrusion detection system) - motivation, architecture, and an
early prototype, in: In Proceedings of the 14th National Computer Security
Conference, 1991, pp. 167–176.

[4] M.-Y. Huang, R.J. Jasper, T.M. Wicks, A large scale distributed intrusion
detection framework based on attack strategy analysis, Comput. Netw. 31
(23) (1999) 2465–2475, http://dx.doi.org/10.1016/S1389-1286(99)00114-0,
URL http://www.sciencedirect.com/science/article/pii/S1389128699001140.

[5] H. Sallay, K.A. Alshalfan, O.B.F. J, K. Words, A scalable distributed ids
architecture for high speed networks, in: IJCSNS International Journal of
Computer Science and Network Security, VOL. 9, No. 8, 2009.

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
http://dx.doi.org/10.1109/SOSE.2014.53
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb3
http://dx.doi.org/10.1016/S1389-1286(99)00114-0
http://www.sciencedirect.com/science/article/pii/S1389128699001140
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb5
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb5
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb5
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb5
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb5

824 J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825

[6] D. Ourston, S. Matzner, W. Stump, B. Hopkins, Applications of hidden
markov models to detecting multi-stage network attacks, in: 36th Annual
Hawaii International Conference on System Sciences, 2003. Proceedings of
the, 2003, p. 10, http://dx.doi.org/10.1109/HICSS.2003.1174909.

[7] B.C. Cheng, G.T. Liao, C.C. Huang, M.T. Yu, A novel probabilistic matching
algorithm for multi-stage attack forecasts, IEEE J. Sel. Areas Commun. 29
(7) (2011) 1438–1448, http://dx.doi.org/10.1109/JSAC.2011.110809.

[8] F. Alserhani, M. Akhlaq, I.U. Awan, A.J. Cullen, P. Mirchandani, Mars:
Multi-stage attack recognition system, in: 2010 24th IEEE International
Conference on Advanced Information Networking and Applications, 2010,
pp. 753–759, http://dx.doi.org/10.1109/AINA.2010.57,

[9] F. Alserhani, A framework for multi-stage attack detection, in: 2013 Saudi
International Electronics, Communications and Photonics Conference, 2013,
pp. 1–6, http://dx.doi.org/10.1109/SIECPC.2013.6550973.

[10] S. Saad, I. Traore, Extracting attack scenarios using intrusion semantics,
in: Proceedings of the 5th International Conference on Foundations and
Practice of Security, in: FPS’12, Springer-Verlag, Berlin, Heidelberg, 2013,
pp. 278–292, http://dx.doi.org/10.1007/978-3-642-37119-6_18.

[11] E. Vasilomanolakis, S. Srinivasa, C.G. Cordero, M. Mühlhäuser, Multi-stage
attack detection and signature generation with ics honeypots, in: NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management Symposium,
2016, pp. 1227–1232, http://dx.doi.org/10.1109/NOMS.2016.7502992.

[12] S. Luo, J. Wu, J. Li, L. Guo, A multi-stage attack mitigation mechanism
for software-defined home networks, IEEE Trans. Consum. Electron. 62 (2)
(2016) 200–207, http://dx.doi.org/10.1109/TCE.2016.7514720.

[13] W.T. Strayer, C.E. Jones, B.I. Schwartz, J. Mikkelson, C. Livadas, Architecture
for multi-stage network attack traceback, in: The IEEE Conference on Local
Computer Networks 30th Anniversary (LCN’05)L, 2005, pp. 8 pp.–785,
http://dx.doi.org/10.1109/LCN.2005.33.

[14] A. Almutairi, D. Parish, J. Flint, Predicting multi-stage attacks based
on ip information, in: 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST), 2015, pp. 384–390, http:
//dx.doi.org/10.1109/ICITST.2015.7412127.

[15] A.P. Plageras, K.E. Psannis, C. Stergiou, H. Wang, B.B. Gupta, Efficient
iot-based sensor big data collection–processing and analysis in smart
buildings, Future Gener. Comput. Syst. 82 (2018) 349–357.

[16] M.S. Hossain, G. Muhammad, W. Abdul, B. Song, B. Gupta, Cloud-assisted
secure video transmission and sharing framework for smart cities, Future
Gener. Comput. Syst. 83 (2018) 596–606.

[17] B. Gupta, D.P. Agrawal, S. Yamaguchi, Handbook of Research on Modern
Cryptographic Solutions for Computer and Cyber Security, first ed., IGI
Global, Hershey, PA, USA, 2016.

[18] C. Stergiou, K.E. Psannis, B.-G. Kim, B. Gupta, Secure integration of
iot and cloud computing, Future Gener. Comput. Syst. 78 (2018)
964–975, http://dx.doi.org/10.1016/j.future.2016.11.031, URL http://www.
sciencedirect.com/science/article/pii/S0167739X1630694X.

[19] S. Gupta, B.B. Gupta, Detection, avoidance, and attack pattern mechanisms
in modern web application vulnerabilities: present and future challenges,
Int. J. Cloud Appl. Comput. (IJCAC) 7 (3) (2017) 1–43.

[20] P. Negi, A. Mishra, B. Gupta, Enhanced cbf packet filtering method to detect
ddos attack in cloud computing environment, IJCSI Int. J. Comput. Sci.
Issues (2013).

[21] I. Kuwatly, M. Sraj, Z.A. Masri, H. Artail, A dynamic honeypot design for
intrusion detection, in: The IEEE/ACS International Conference OnPervasive
Services, 2004. ICPS 2004. Proceedings., 2004, pp. 95–104, http://dx.doi.org/
10.1109/PERSER.2004.1356776.

[22] J. Nazario, Phoneyc: A virtual client honeypot, in: Proceedings of the 2Nd
USENIX Conference on Large-Scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and more, in: LEET’09, USENIX Association, Berkeley, CA,
USA, 2009, p. 6, URL http://dl.acm.org/citation.cfm?id=1855676.1855682.

[23] L. Spitzner, Honeytokens: The other honeypot (2003). URL https://www.
symantec.com/connect/articles/honeytokens-other-honeypot.

[24] J. Yuill, M. Zappe, D. Denning, F. Feer, Honeyfiles: deceptive files for
intrusion detection, in: Proceedings from the Fifth Annual IEEE SMC
Information Assurance Workshop, 2004., 2004, pp. 116–122.

[25] J. Voris, Y. Song, M.B. Salem, S. Hershkop, S. Stolfo, Active authenti-
cation using file system decoys and user behavior modeling: results
of a large scale study, Comput. Secur. (2018) http://dx.doi.org/10.1016/
j.cose.2018.07.021, URL http://www.sciencedirect.com/science/article/pii/
S0167404818311258.

[26] S. Innes, C. Valli, Honeypots: How do you know when you are inside one?
in: Australian Digital Forensics Conference, 2006, p. 28.

[27] R. Katipally, W. Gasior, X. Cui, L. Yang, Multistage attack detection system
for network administrators using data mining, in: Proceedings of the
Sixth Annual Workshop on Cyber Security and Information Intelligence
Research, in: CSIIRW ’10, ACM, New York, NY, USA, 2010, pp. 51:1–
51:4, http://dx.doi.org/10.1145/1852666.1852722, URL http://doi.acm.org/
10.1145/1852666.1852722.

[28] S. Lagzian, F. Amiri, A. Enayati, H. Gharaee, Frequent item set mining-
based alert correlation for extracting multi-stage attack scenarios, in:
6th International Symposium on Telecommunications (IST), 2012, pp.
1010–1014, http://dx.doi.org/10.1109/ISTEL.2012.6483134.

[29] Solar sunrise. URL http://malware.wikia.com/Solar_Sunrise.
[30] Nimda. URL http://malware.wikia.com/Nimda.
[31] K. Daley, R. Larson, J. Dawkins, A structural framework for modeling

multi-stage network attacks, in: Proceedings. International Conference on
Parallel Processing Workshop, 2002, pp. 5–10, http://dx.doi.org/10.1109/
ICPPW.2002.1039705.

[32] B. Schneier, Secrets & Lies: Digital Security in a Networked World, first
ed., John Wiley & Sons, Inc., New York, NY, USA, 2000.

[33] J. Dawkins, J. Hale, A systematic approach to multi-stage network attack
analysis, in: Second IEEE International Information Assurance Workshop,
2004. Proceedings., 2004, pp. 48–56, http://dx.doi.org/10.1109/IWIA.2004.
1288037.

[34] Y.-M. Wang, Z.-L. Liu, X.-Y. Cheng, K.-J. Zhang, An analysis approach for
multi-stage network attacks, in: 2005 International Conference on Machine
Learning and Cybernetics, Vol. 7, 2005, pp. 3949–3954, http://dx.doi.org/
10.1109/ICMLC.2005.1527628.

[35] S.A. Camtepe, B. Yener, Modeling and detection of complex attacks, in:
2007 Third International Conference on Security and Privacy in Commu-
nications Networks and the Workshops - SecureComm 2007, 2007, pp.
234–243, http://dx.doi.org/10.1109/SECCOM.2007.4550338.

[36] S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit, A. Stotz, Understanding
multistage attacks by attack-track based visualization of heterogeneous
event streams, in: Proceedings of the 3rd International Workshop on
Visualization for Computer Security, in: VizSEC ’06, ACM, New York, NY,
USA, 2006, pp. 1–6, http://dx.doi.org/10.1145/1179576.1179578, URL http:
//doi.acm.org/10.1145/1179576.1179578.

[37] S. Xiao, Y. Zhang, X. Liu, J. Gao, Alert fusion based on cluster and
correlation analysis, in: 2008 International Conference on Convergence and
Hybrid Information Technology, 2008, pp. 163–168, http://dx.doi.org/10.
1109/ICHIT.2008.197.

[38] V. Paxson, Bro: a system for detecting network intruders in real-time,
Comput. Netw. 31 (23–24) (1999) 2435–2463, URL http://www.icir.org/
vern/papers/bro-CN99.pdf.

[39] N. Moustafa, J. Slay, Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set), in: 2015
Military Communications and Information Systems Conference (MilCIS),
2015, pp. 1–6, http://dx.doi.org/10.1109/MilCIS.2015.7348942.

[40] G.F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning, Insecure, USA, 2009.

[41] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters
in large spatial databases with noise, in: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, in:
KDD’96, AAAI Press, 1996, pp. 226–231, URL http://dl.acm.org/citation.cfm?
id=3001460.3001507.

[42] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases, in: Proceedings of the 20th International Conference on Very
Large Data Bases, in: VLDB ’94, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1994, pp. 487–499, URL http://dl.acm.org/citation.cfm?
id=645920.672836.

[43] N.S. Altman, An introduction to kernel and nearest-neighbor
nonparametric regression, Amer. Statist. 46 (3) (1992) 175–185,
http://dx.doi.org/10.1080/00031305.1992.10475879, arXiv:https:
//www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879. URL
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879.

[44] Y.-H. Choi, W. Park, S.-H. Choi, S.-W. Seo, Deep packet inspection time-
aware load balancer on many-core processors for fast intrusion detection,
IEIE Trans. Smart Process. Comput. 5 (2016) 169–177, URL http://www.
dbpia.co.kr/Article/NODE06717038.

[45] Y. Choi, W. Park, S. Choi, S. Seo, Steal: Service time-aware load balancer on
many-core processors for fast intrusion detection, in: 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2016, pp.
65–70, http://dx.doi.org/10.1109/INFCOMW.2016.7562047.

[46] 2000 darpa intrusion detection scenario specific data sets. URL
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-
scenario-specific-data-sets.

[47] S. Garca, M. Grill, J. Stiborek, A. Zunino, An empirical comparison of
botnet detection methods, Comput. Secur. 45 (2014) 100–123, http://
dx.doi.org/10.1016/j.cose.2014.05.011, URL http://www.sciencedirect.com/
science/article/pii/S0167404814000923.

http://dx.doi.org/10.1109/HICSS.2003.1174909
http://dx.doi.org/10.1109/JSAC.2011.110809
http://dx.doi.org/10.1109/AINA.2010.57
http://dx.doi.org/10.1109/SIECPC.2013.6550973
http://dx.doi.org/10.1007/978-3-642-37119-6_18
http://dx.doi.org/10.1109/NOMS.2016.7502992
http://dx.doi.org/10.1109/TCE.2016.7514720
http://dx.doi.org/10.1109/LCN.2005.33
http://dx.doi.org/10.1109/ICITST.2015.7412127
http://dx.doi.org/10.1109/ICITST.2015.7412127
http://dx.doi.org/10.1109/ICITST.2015.7412127
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb15
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb15
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb15
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb15
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb15
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb16
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb16
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb16
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb16
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb16
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb17
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb17
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb17
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb17
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb17
http://dx.doi.org/10.1016/j.future.2016.11.031
http://www.sciencedirect.com/science/article/pii/S0167739X1630694X
http://www.sciencedirect.com/science/article/pii/S0167739X1630694X
http://www.sciencedirect.com/science/article/pii/S0167739X1630694X
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb19
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb19
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb19
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb19
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb19
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb20
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb20
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb20
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb20
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb20
http://dx.doi.org/10.1109/PERSER.2004.1356776
http://dx.doi.org/10.1109/PERSER.2004.1356776
http://dx.doi.org/10.1109/PERSER.2004.1356776
http://dl.acm.org/citation.cfm?id=1855676.1855682
https://www.symantec.com/connect/articles/honeytokens-other-honeypot
https://www.symantec.com/connect/articles/honeytokens-other-honeypot
https://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb24
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb24
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb24
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb24
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb24
http://dx.doi.org/10.1016/j.cose.2018.07.021
http://dx.doi.org/10.1016/j.cose.2018.07.021
http://dx.doi.org/10.1016/j.cose.2018.07.021
http://www.sciencedirect.com/science/article/pii/S0167404818311258
http://www.sciencedirect.com/science/article/pii/S0167404818311258
http://www.sciencedirect.com/science/article/pii/S0167404818311258
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb26
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb26
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb26
http://dx.doi.org/10.1145/1852666.1852722
http://doi.acm.org/10.1145/1852666.1852722
http://doi.acm.org/10.1145/1852666.1852722
http://doi.acm.org/10.1145/1852666.1852722
http://dx.doi.org/10.1109/ISTEL.2012.6483134
http://malware.wikia.com/Solar_Sunrise
http://malware.wikia.com/Nimda
http://dx.doi.org/10.1109/ICPPW.2002.1039705
http://dx.doi.org/10.1109/ICPPW.2002.1039705
http://dx.doi.org/10.1109/ICPPW.2002.1039705
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb32
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb32
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb32
http://dx.doi.org/10.1109/IWIA.2004.1288037
http://dx.doi.org/10.1109/IWIA.2004.1288037
http://dx.doi.org/10.1109/IWIA.2004.1288037
http://dx.doi.org/10.1109/ICMLC.2005.1527628
http://dx.doi.org/10.1109/ICMLC.2005.1527628
http://dx.doi.org/10.1109/ICMLC.2005.1527628
http://dx.doi.org/10.1109/SECCOM.2007.4550338
http://dx.doi.org/10.1145/1179576.1179578
http://doi.acm.org/10.1145/1179576.1179578
http://doi.acm.org/10.1145/1179576.1179578
http://doi.acm.org/10.1145/1179576.1179578
http://dx.doi.org/10.1109/ICHIT.2008.197
http://dx.doi.org/10.1109/ICHIT.2008.197
http://dx.doi.org/10.1109/ICHIT.2008.197
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
http://dx.doi.org/10.1109/MilCIS.2015.7348942
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb40
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb40
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb40
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
http://dx.doi.org/10.1080/00031305.1992.10475879
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://www.dbpia.co.kr/Article/NODE06717038
http://www.dbpia.co.kr/Article/NODE06717038
http://www.dbpia.co.kr/Article/NODE06717038
http://dx.doi.org/10.1109/INFCOMW.2016.7562047
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-data-sets
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://www.sciencedirect.com/science/article/pii/S0167404814000923
http://www.sciencedirect.com/science/article/pii/S0167404814000923
http://www.sciencedirect.com/science/article/pii/S0167404814000923

J. Shin, S.-H. Choi, P. Liu et al. / Future Generation Computer Systems 100 (2019) 811–825 825

[48] R. Sommer, A. Feldmann, Netflow: Information loss or win? in: Proceedings
of the 2Nd ACM SIGCOMM Workshop on Internet Measurment, in: IMW
’02, ACM, New York, NY, USA, 2002, pp. 173–174, http://dx.doi.org/10.
1145/637201.637226, URL http://doi.acm.org/10.1145/637201.637226.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[50] Argus-the all seeing. URL http://argus.tcp4me.com/links.html.

Jinmyeong Shin was born in Busan, South Korea, in
1994. He received the B.E. degree in computer science
and engineering from the Pusan National University,
Busan, South Korea, in 2017. In 2017, he joined the
Department of Electrical Engineering, Pusan National
University, as a master’s student.

Seok-Hwan Choi was born in Busan, Korea, in 1992.
He received the B.E. degree from Pusan National Uni-
versity, Busan, Korea, in 2016. He is currently working
on his M.E. in Computer Science and Engineering at
Pusan National University, Busan, Republic of Korea. His
research interests include intrusion detection, network
security and adversarial deep learning

Peng Liu received the B.S. and M.S. degrees from
the University of Science and Technology of China and
the Ph.D. degree from George Mason University, in
1999. He is a professor of information sciences and
technology, founding director of the Center for Cyber-
Security, Information Privacy, and Trust, and founding
director of the Cyber Security Lab, Penn State Univer-
sity. His research interests include all areas of computer
and network security. He has published a monograph
and more than 260 refereed technical papers. His

research has been sponsored by US National Science Foundation, ARO, AFOSR,
DARPA, DHS, DOE, AFRL, NSA, TTC, CISCO, and HP. He has served on more
than 100 program committees and reviewed papers for numerous journals. He
received the DOE Early Career Principle Investigator Award. He has co-led the
effort to make Penn State an NSA-certified National Center of Excellence in
Information Assurance Education and Research. He has advised or co-advised
more than 30 Ph.D. dissertations to completion. He is a member of the IEEE

Yoon-Ho Choi received the M.S. and Ph.D. degrees from
Seoul National University, Seoul, Korea, in 2004 and
2008, respectively. From September 2008 to Decem-
ber 2008, he was a Post-doctoral Scholar with Seoul
National University. From January 2009 to December
2009, he was a Postdoctoral Scholar with Pennsylva-
nia State University, University Park, PA, USA. While
working as a Senior Engineer with Samsung Electronics
from May 2010 to February 2012, he had been deeply
involved in the development of a commercial Long-
Term Evolution cloud communication center system.

Also, he was an assistant professor at Kyonggi University, Suwon, Korea from
May 2012 to August 2014. He is currently an associate professor with the
School of Computer Science and Engineering, Pusan National University, Busan
Republic of Korea. His research interests include deep packet inspection, anomaly
detection algorithms, privacy preserving machine learning, algorithms, vehicular
network security, embedded system security and so on. Dr. Choi has served
as a member of several technical program committees in various international
conferences and journals .

http://dx.doi.org/10.1145/637201.637226
http://dx.doi.org/10.1145/637201.637226
http://dx.doi.org/10.1145/637201.637226
http://doi.acm.org/10.1145/637201.637226
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://refhub.elsevier.com/S0167-739X(18)32921-2/sb49
http://argus.tcp4me.com/links.html

	Unsupervised multi-stage attack detection framework without details on single-stage attacks
	Introduction
	Related work
	Network attack defenses
	Firewall
	Decoy-based authentication
	Intrusion detection system

	Multi-stage attack detection
	Limitations of existing detection methods

	Proposed method
	Overall architecture
	IDS & packet matching
	Flow generation & feature extraction
	Clustering
	Attack rule generation
	Flow chain generation
	Attack rule extraction

	Attack type classification
	Multi-stage attack detection
	Operational example

	Computational complexity analysis
	Evaluation results
	Experimental results from DARPA LLS DDoS 1.0
	Experimental results from CTU-13

	Conclusion
	Acknowledgments
	Conflict of interest statement
	Declaration of competing interest
	Appendix. Flow Features
	References

