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Abstract

Sequence-based neural networks show signifi-
cant sensitivity to syntactic structure, but they
still perform less well on syntactic tasks than
tree-based networks. Such tree-based net-
works can be provided with a constituency
parse, a dependency parse, or both. We
evaluate which of these two representational
schemes more effectively introduces biases for
syntactic structure that increase performance
on the subject-verb agreement prediction task.
We find that a constituency-based network
generalizes more robustly than a dependency-
based one, and that combining the two types of
structure does not yield further improvement.
Finally, we show that the syntactic robustness
of sequential models can be substantially im-
proved by fine-tuning on a small amount of
constructed data, suggesting that data augmen-
tation is a viable alternative to explicit con-
stituency structure for imparting the syntactic
biases that sequential models are lacking.

1 Introduction

Natural language syntax is structured hierarchi-
cally, rather than sequentially (Chomsky, 1957;
Everaert et al., 2015). One phenomenon that il-
lustrates this fact is English subject-verb agree-
ment, the requirement that verbs and their subjects
must match in number. The hierarchical structure
of a sentence determines which noun phrase each
verb must agree with; sequential heuristics such as
agreeing with the most recent noun may succeed
on simple sentences such as (1a) but fail in more
complex cases such as (1b):

(1) a. The boys kick the ball.
b. The boys by the red truck kick the ball.

We investigate whether a neural network must pro-
cess input according to the structure of a syntac-
tic parse in order for it to learn the appropriate

No Constituency  Constituency
No BiLSTM Constituency
Heads LSTM
Heads Dependency Head-Lexicalized
LSTM LSTM

Table 1: Linguistic properties of our four models.

rules governing these dependencies, or whether
there is sufficient signal in natural language corpora
for low-bias networks (such as sequential LSTMs)
to learn these structures. We compare sequential
LSTMs, which process sentences from left to right,
with tree-based LSTMs that process sentences in
accordance with an externally-provided, ground-
truth syntactic structure.

We consider two types of syntactic structure:
constituency structure (Chomsky, 1993; Pollard
and Sag, 1994) and dependency structure (Tes-
niere, 1959; Hudson, 1984). We investigate models
provided with either structure, both structures, or
neither structure (see Table 1), and assess how ro-
bustly these models learn subject-verb agreement
when trained on natural language.'

Even with the syntactic biases present in tree-
based LSTMs, it is possible that natural language
might not impart a strong enough signal to teach
a network how to robustly track subject-verb de-
pendencies. How might the performance of these
tree-based LSTMs change if they were fine-tuned
on a small dataset designed to impart a stronger
syntactic signal? Furthermore, would we still need
these tree structures, or could a sequential LSTM
now learn to track syntactic dependencies?

We find that building in either type of syntactic
structure improves performance over the BiLSTM

!Code, data, and models are at https://github.
com/mleporil/Representations_Of_Syntax
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baseline, thus showing that these structures are
learned imperfectly (at best) by low-bias models
from natural language data. Of the two types of
structure, constituency structure turns out to be
more useful. The dependency-only model performs
well on natural language test sets, but fails to gen-
eralize to an artificially-constructed challenge set.
After fine-tuning on a small dataset that is designed
to impart a strong syntactic signal, the BiLSTM
generalizes more robustly, but still falls short of the
tree-based LSTMs.

We conclude that for a network to robustly show
sensitivity to syntactic structure, stronger biases for
syntactic structure need to be introduced than are
present in a low-bias learner such as a BiLSTM,
and that, at least for the subject-verb agreement
task, constituency structure is more important than
dependency structure. Both tree-based model struc-
ture and data augmentation appear to be viable
approaches for imparting these biases.

2 Related Work

Prior work has shown that neural networks with-
out explicit mechanisms for representing syntac-
tic structure can show considerable sensitivity to
syntactic dependencies (Goldberg, 2019; Gulor-
dava et al., 2018; Linzen et al., 2016), and that
certain aspects of the structure of the sentence can
be reconstructed from their internal representations
(Lin et al., 2019; Giulianelli et al., 2018; Hewitt
and Manning, 2019). Marvin and Linzen (2018)
showed that sequential models still have substan-
tial room for improvement in capturing syntax, and
other work has shown that models with a greater
degree of syntactic structure outperform sequen-
tial models on syntax-sensitive tasks (Yogatama
et al., 2018; Kuncoro et al., 2018, 2017), including
some of the tree-based models used here (Bowman
etal., 2015; Lietal., 2015). One contribution of the
present work is to tease apart the two major types of
syntactic structure to see which one imparts more
effective syntactic biases.

3 Models
3.1 BiLSTM

As our baseline model, we used a simple extension
to the LSTM architecture (Hochreiter and Schmid-
huber, 1997), the bidirectional LSTM (BiLSTM;
Schuster and Paliwal, 1997). This model runs one
LSTM from left to right over a sequence, and an-
other from right to left, without appealing to tree

structure. Bidirectional LSTMs outperform unidi-
rectional LSTMsS on a variety of tasks (Huang et al.,
2015; Chiu and Nichols, 2016), including syntax-
sensitive tasks (Kiperwasser and Goldberg, 2016).
Ravfogel et al. (2019) also employs BiLSTM:s for
a similar agreement task.

3.2 Tree LSTMs

To study the effects of explicitly building tree struc-
ture into the model architecture, we used the Con-
stituency LSTM and the Dependency LSTM
(Tai et al., 2015), which are types of recursive
neural networks (Goller and Kuchler, 1996). The
Constituency LSTM operates in accordance with a
binary constituency parse, composing together vec-
tors representing a left child and a right child into
a vector representing their parent. Models similar
to the Constituency LSTM have been proposed by
Le and Zuidema (2015) and Zhu et al. (2015).

In a Dependency LSTM, the representations of
a head’s children are summed, and then composed
with the representation of the head itself to yield a
representation of the phrase that has that head. See
Appendix A for more details on both models.

3.3 Head-Lexicalized Tree LSTMs

To create a model where composition is simulta-
neously guided by both a dependency parse and a
constituency parse, we modified the constituency
model described in Section 3.2, turning it into a
head-lexicalized tree LSTM. In a standard Con-
stituency LSTM, the input for all non-leaf nodes is
a vector of all 0’s. To add head lexicalization, we
instead feed in the word embedding of the correct
headword of that constituent as the input, where the
choice of headword is determined using the Stan-
ford Dependency Parser (Manning et al., 2014).
See Appendix B for more details, as well as an ex-
ample of a head-lexicalized constituency tree. This
model is similar to the head-lexicalized tree LSTM
of Teng and Zhang (2017). However, their model
learns how to select the heads of constituents in an
unsupervised manner; these heads may not corre-
spond to the syntactic notion of heads. Because
we seek to understand the effect of using the heads
derived from the dependency parse, we provide our
models with explicit head information.

4 Task

We adapted a syntax-sensitive task that previous
work has used to assess the syntactic capabilities
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of LSTMs—the number prediction task (Linzen
et al., 2016). The most standard version of this
task is based on a left-to-right language modeling
objective; however, tree-based models are not com-
patible with left-to-right language modeling. There-
fore, we made two modifications to this objective,
both of which have precedents in the literature:
First, we gave the model an entire present-tense
sentence with main verb masked out, following
Goldberg (2019). Second, the model’s target out-
put was the number of the masked verb: SINGULAR
or PLURAL; we follow Linzen et al. (2016) and Rav-
fogel et al. (2019) in framing number prediction as
a classification task. To solve the task, the model
must identify the subject whose head is the main
verb (in the dependency formalism), and use that
information to determine the syntactic number of
the verb; e.g., for (2), the answer is SINGULAR.

(2) The girl *MASK* the ball.

Linzen et al. (2016) pointed out that there are sev-
eral incorrect heuristics which models might adopt
for this task because these heuristics still produce
decent classification accuracy. One salient example
is picking the syntactic number of the most recent
noun to the left of the verb. We hypothesize that
tree-based models will be less susceptible to these
non-robust heuristics than sequential models.

S Experiment 1: Natural Language

Data: We train our models on a subset of the
dataset from Linzen et al. (2016) that is chosen to
have a uniform label distribution (50% SINGULAR
and 50% PLURAL). We made this choice because
our task format differs from that used in some past
work (see Section 4), so performance on the task
as we have framed it cannot be directly compared
to prior work. In the absence of baselines from the
literature, we use chance performance of 50% as a
baseline; to ensure that this baseline is reasonable,
we balance the label distribution during training to
discourage models from becoming biased toward
one label.

We use two types of test sets: those that contain
adversarial attractors, and those that do not. An
adversarial attractor is a noun that is between
the subject and the main verb of a sentence and that
has the opposite syntactic number from the subject
noun. Adversarial attractors have been found to
produce agreement errors in humans (Bock and
Miller, 1991) and neural models (Goldberg, 2019;
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(a) Results for models trained on natural language.
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(b) Results for models trained on natural language and then
exposed to a 500-sentence augmentation set.

Figure 1: Results on binary classification of masked
verbs as SINGULAR or PLURAL. All results are aver-
ages across 3 runs. Chance performance is 50%.

Gulordava et al., 2018; Linzen et al., 2016). We use
code from Goldberg (2019)? to extract adversarial
datasets containing varying numbers of attractors,
from O to 4 attractors. Sentence (3) provides an
example of a sentence with 4 attractors.

(3) Algorithmic problems such as [type] [check-
ing] and [type] [inference] are more difficult
for equirecursive types as well.

See Appendix D for details on our corpus and on
preprocessing, and Appendix C.1 for training.

Natural language evaluation: All of the tree-
based models outperformed the BiLSTM in the
presence of attractors (Figure 1a). Compared to
prior work with the number prediction task, our
BiLSTM performed very poorly on the 4 Attrac-
tors dataset. However, our results cannot be di-
rectly compared to previous work because of the
modifications we have made to the task, data, and
training procedure in order to accommodate tree-

https://github.com/yoavg/bert-syntax
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based models. In light of these modifications, there
are several reasons why the BiLSTM’s low accu-
racy is unsurprising. First, we used a balanced label
distribution during training. In the standard dataset
from Linzen et al. (2016), the class labels are not
balanced, so models evaluated on that dataset might
outperform our BiLSTM by exploiting the biased
label distribution—a heuristic that our balanced
training set discourages. Another potential cause
for the BiLSTM’s poor performance is that, in or-
der to balance the label frequencies, we used a
smaller training set than was used in past work
(81,000 sentences instead of 121,000 sentences).
Finally, it is possible that allowing models to see
the entire sentence may allow them to acquire non-
robust heuristics related to the words following the
main verb. For example, a model might learn spu-
rious correlation between the syntactic number of
subjects and their direct objects. See Appendix E,
Table 2 for results on all test sets.

Constructed sentence evaluation: With natu-
rally occurring sentences, it is possible that models
perform well not because they have mastered syn-
tax, but rather because of statistical regularities in
the data. For example, given The players *MASK*
the ball, the model may be able to exploit the fact
that animate nouns tend to be subjects while inani-
mate nouns do not. As pointed out by Gulordava
et al. (2018), this would allow the model to cor-
rectly predict syntactic number, but for the wrong
reasons. To test whether our models were lever-
aging this statistical heuristic, we constructed a
400-sentence test set where this heuristic cannot
succeed. We did so using a probabilistic context-
free grammar (PCFG) under which all words of a
given part of speech are equally likely in all posi-
tions; each sentence from this grammar is of the
form Subject-Verb-Object, and all noun phrases
can optionally be modified by adjectives and/or
prepositional phrases (see Appendix F), as in (4):

(4) The fern near the sad teachers hates the
singer.

The Dependency LSTM is especially likely to fall
prey to word cooccurrence heuristics, as it lacks
the ability for a parent to account for the sequen-
tial position of its children. This can be an issue
when determining whether a verb is supposed to be
singular or plural, because the model has no robust
way to distinguish a verb’s subject from its direct
object. The dependency model did indeed perform

at chance (See the bar graph in Figure 1a).> This
suggests that the dependency model’s high accu-
racy is partially due to lexical heuristics rather than
syntactic processing. In contrast, the other mod-
els performed well, suggesting that they are less
susceptible to relying on word cooccurrence.

6 Experiment 2: Fine-tuning

In Experiment 1, tree-based models dramatically
outperformed the BiLSTM in the presence of attrac-
tors. This difference may have arisen because most
natural language sentences are simple, and thus
they do not generate enough signal to illustrate the
importance of tree structure to a low-bias learner,
such as a BiILSTM. Recent work has shown the
effectiveness of syntactically-motivated fine-tuning
at increasing the robustness of neural models (Min
et al., 2020). Would our models generalize more
robustly if we added a few training examples that
do not lend themselves to non-syntactic heuristics?

To provide the model with a stronger signal
about the importance of syntactic structure, we
fine-tuned our models on a dataset designed to im-
part this signal. We used a variant of the PCFG
(see Appendix F) from Section 5 to generate a 500-
sentence augmentation set. This augmentation set
cannot be solved using word cooccurrence statis-
tics, and contains some sentences with attractors.
The models were then fine-tuned on the augmenta-
tion set for just one epoch over the 500 examples.
See Appendix C.2 for training details.

Results: The head-lexicalized model and the
BiLSTM benefited most from fine-tuning, with the
head-lexicalized model now matching the perfor-
mance of the Constituency LSTM, and the BiL-
STM showing dramatic improvement on sentences
with multiple attractors (Figure 1b; see Appendix E,
Table 3 for detailed results). While the BILSTM’s
accuracy increased on sentences with attractors, it
decreased on the No Attractors test set. We sus-
pect that this is because augmentation discouraged
the model from using heuristics: while this makes
performance more robust overall, it may hurt accu-
racy on simple examples where the heuristics give
the correct answer (Min et al., 2020). As expected
from its architectural limitations, the Dependency
LSTM did not noticeably benefit from fine-tuning

*Most sentences in the test set have only two nouns. 50%
of the time, they will agree in number, and the syntactic num-
ber is unambiguous. Random guessing on the other 50% of
cases would yield about 75% accuracy.
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because it cannot extract the relevant information
from the augmentation set. There was no clear ef-
fect of augmentation on the Constituency LSTM.*

7 Discussion

Overall, we found that neural models trained on
natural language achieve much more robust perfor-
mance on syntactic tasks when syntax is explicitly
built into the model. This suggests that the infor-
mation we provided to our tree-based models is
unlikely to be learned from natural language by
models with only general inductive biases.

In Experiment 1, the network provided with a de-
pendency parse did the best on most of the natural
language test sets. This is unsurprising, as the task
is largely about a particular dependency (i.e., the
dependency between a verb and its subject). At the
same time, as demonstrated by the constructed sen-
tence test, the syntactic capabilities of the Depen-
dency LSTM are inherently limited. Thus, it must
default to non-robust heuristics in cases where the
unlabeled dependency information is ambiguous.
In future work, these syntactic limitations may be
overcome by giving the model typed dependencies
(which would distinguish between a subject-verb
dependency and a verb-object dependency).

One might expect the head-lexicalized model
to perform the best, since it can leverage both
syntactic formalisms. However, it performs no
better than the constituency model when trained
on natural language, suggesting that there is little
benefit to incorporating dependency structure into
a Constituency LSTM. In some cases, the head-
lexicalized model without fine-tuning even per-
forms worse than the Constituency LSTM. When
fine-tuned on more challenging constructed exam-
ples, the head-lexicalized model performed simi-
larly to the Constituency LSTM, suggesting that
there is not enough signal in the natural language
training set to teach this model what to do with the
heads it has been given.

Our results point to two possible approaches for
improving how models handle syntax. The first
approach is to use models that have explicit mecha-
nisms for representing syntactic structure. In partic-
ular, our results suggest that the most important as-
pect of syntactic structure to include is constituency

*Note that the constructed test set used here is controlled
to have no overlap with the augmentation set. Thus, it is not
exactly the same as the set used in Section 5, but both corpora
are generated from the same CFG.

structure, as constituency models appear to implic-
itly learn dependency structure as well. Though the
models we used require parse trees to be provided,
it is possible that models can learn to induce tree
structure in an unsupervised or weakly-supervised
manner (Bowman et al., 2016; Choi et al., 2018;
Shen et al., 2019). Another effective approach for
improving the syntactic robustness of neural mod-
els is data augmentation, as demonstrated in Ex-
periment 2. With this approach, it is possible to
bring the syntactic performance of less-structured
models closer to that of models with explicit tree
structure, even with an augmentation set generated
simply and easily using a PCFG.

Future work should further explore both of these
approaches. Our conclusions about the importance
of explicit mechanisms for representing syntactic
structure can be strengthened by developing dif-
ferent formulations of the tree LSTMs. It seems
particularly promising to explore alternative formu-
lations of the Dependency LSTM (as mentioned
above) and the effect of learning embeddings of
non-terminal symbols for the Constituency LSTM.
Finally, future work should investigate whether
data augmentation can fully bridge the gap between
low-bias learners and structured tree LSTMs, and
whether our conclusions apply to other syntactic
phenomena besides agreement.
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A Appendix: Tree LSTM Details

The constituency-based model that we use is the
N-ary Tree-LSTM from Tai et al. (2015), with N
fixed at 2 such that the tree is strictly binary; the
equations for this model are shown below. Each
W is an input weight matrix, each U is a hidden
state update weight matrix, each b is a bias term,
each x is an input word embedding, and each h is
a hidden state. These equations are adaptations of
the typical LSTM equations that allow the LSTM
to be structured according to a constituency parse.
The x; is the input embedding for a particular node
in the constituency tree. In a Constituency LSTM,
all leaf nodes receive the embedding for the word
at that leaf, while all other nodes receive a vector
of 0’s. Every non-leaf node is thus a composition
of the hidden states of its two children. In these
equations, k =1 or 2, which allows “the left hidden
state in a binary tree to have either an excitatory
or inhibitory effect on the forget gate of the right
child” (Tai et al., 2015). Importantly, this model
distinguishes between a node’s left and right chil-
dren.

2
ij= oWz + 3 U hy +69) ()
=1

2
fjk = U(W(f)$j + Z Ué{)hﬂ + b(f)) 2)
=1

2
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=1

2
uj = tanh(W®Wa; + 3" UMy + 6)
=1

4)
2
cj:ijQuj—i-ijz@le &)
=1
hj = 0j ® tanh(c;) (6)

The following equations, also from Tai et al.
(2015), define a child-sum Tree LSTM, which we
structure according to a dependency parse. Here,
the input z; is the embedding of the headword of
that node in the DAG that defines a dependency
parse. Note that in this model, the hidden represen-
tations of the children of a node are summed. Thus,
this model cannot distinguish the linear order of its
children.

hi= Y hy (7)

keC(j)
ij =o(WDz; + UDh; 4 b)) (8)
fir =Wz, + UDhy 4-00) 9)

0j = o(Wz; + Uh; + ) (10)
uj = tanh(W®z; + UWh; + 5™ (11)

cj = ij ©uj; + Z fjk ® ¢k (12)
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hj = 05 © tanh(cj) (13)

B Appendix: Details of the
Head-Lexicalized Tree LSTM Variant

Our head-lexicalized tree LSTM architecture is
structured exactly the same as the Constituency
LSTM. Thus, Equations 1 through 6 characterize
the parameters and operations performed by the
head-lexicalized tree LSTM. The difference be-
tween the two architectures lies in the input, z;.
In the Constituency LSTM, a node j was provided
an input vector x; only if j was a leaf node. In the
head-lexicalized tree LSTM model, we use a depen-
dency parse to generate a tag for each node in the
constituency tree, which identifies which word in
the corresponding constituent is the most dominant
word in the dependency tree. The word embedding
corresponding to the most dominant word in con-
stituent j is then provided as input ;. Thus, every
node in the tree receives an input vector, and the
root node is guaranteed to have the headword of
the whole sentence provided as input.

More formally, a dependency parse forms a tree,
Tp. For each word, w, in a given sentence, de-
note its score, s(w), as the depth of w in Tp. A
constituency parse forms a tree T¢. For every
node j in T¢, let [; denote the set of words cor-
responding to children of j that are leaves of T¢.
The input vector x; is then just the embedding
of w = argmin,¢;, s(w). Ties should not exist
within a constituent, but if they do (due to parsing
errors), then they are broken arbitrarily.

See Figure 2 for an example of a head-
lexicalized constituency tree.

C Appendix: Training Details
C.1 Experiment 1

We use an embedding size and hidden cell size
of 100 for every model. Our word embeddings
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bake

//\
bakers bake
The bakers bake cake
N
bakers near the cake

near table
N
the table

Figure 2: Head-lexicalized constituency tree for the
sentence The bakers near the table bake the cake.

are 100-dimensional pretrained GloVe embeddings
from the Wikipedia 2014 + Gigaword 5 distribu-
tion (glove.6b.zip) (Pennington et al., 2014), and
we do not tune them during training. We also em-
ploy the Adam optimizer (Kingma and Ba, 2015)
with the PyTorch default learning rate of 0.001. Be-
cause this is a binary classification problem, we use
binary cross entropy as our loss function. These
hyperparameter choices are based on Linzen et al.
(2016), but we increase the hidden size from 50
to 100, in order to create slightly more capacity.
Though this may seem small, the models achieved
high overall accuracy, suggesting that model size
was not a bottleneck.

We cap training at 50 epochs, but also employ
early stopping. The early stopping procedure is
as follows: Train for 10,000 sentences, then evalu-
ate on the validation data. Stop when the average
decrease in validation loss over the previous five
evaluations is less than 0.0005. For all models, this
occurs after about 1 or 1.5 epochs. During training,
the parameters that resulted in the best validation
loss are saved, and these weights are used during
testing. We repeat this procedure for three random
initializations of each model. The reported results
are averages over these three models.

In order to turn a tree LSTM into a binary clas-
sifier, we feed the hidden state of the root into a
linear layer that condenses the output into a single
value, and squash the result to the range [0, 1] using
a sigmoid activation function. If the result of that
process is greater than 0.5, then we predict label 1,
else we predict label 0. For the bidirectional LSTM,
we take the representation of the masked verb from
both the left to right and right to left passes and
feed both of these into a linear classifier. Then we
repeat the process described above, using a sigmoid
activation function to constrain the prediction to
the range [0, 1], and classifying based on this value.

C.2 Experiment 2

We take the same models from Experiment 1 and
fine tune them on the augmentation set. We train
for one epoch with the same parameters used in
Experiment 1, and then use the resulting weights
to evaluate the models.

D Appendix: Data

The original dataset contains approximately 1.3
million sentences. We use the Stanford con-
stituency parser and Stanford dependency parser
(Manning et al., 2014) to generate the two types
of parse trees for each of these sentences, and then
convert these objects into suitable representations
for our models. In this process, a small percentage
of examples were discarded due to the parser fail-
ing to parse them. We deviate from past work by
ensuring that both classes (SINGULAR and PLU-
RAL) are of equal size. This results in more data
from the majority class (singular verb class) be-
ing thrown away. After these exclusions, we have
approximately 903,000 sentences remaining. We
provide our models 9% of this (81,300 sentences)
to train on, 0.1% (904 sentences) to validate, and
then generate our test sets from the remainder of
the data. All sentences were stripped of quotation
marks, apostrophes, parentheses and hyphens in
order to minimize parsing failures.

The sizes of our test sets are as follows: No At-
tractors (50,000 sentences), Any Attractors (52,815
sentences), One Attractor (41,902 sentences), Two
Attractors (8,473 sentences), Three Attractors
(1,884 sentences), and Four Attractors (556 sen-
tences). Note also that the Any Attractors dataset
is the union of the One, Two, Three, and Four At-
tractors datasets.

E Appendix: Full Results

Table 2 contains the full results after training all
models on natural language. Table 3 contains the
full results after augmentation.

F Appendix: Probabilistic Context Free
Grammars

Figure 3 contains the probabilistic context free
grammar used to generate the constructed corpora.
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S — DetP; VP, | DetP, VP,
DetP, — Det NP
DetP, — Det NP,

NP, — Adj NP, | NP, PP | Noun,
NP, — Adj NP, | NP, PP | Noun,

PP — Prep DetP, | Prep DetP,

VP, — Verb, DetP; | Verb, DetP,
VP, — Verb, DetP, | Verb, DetP,

Det — the

Noung — plane | plant | bear | bird | car | dancer | singer
president | squirrel | cloud | actor | doctor | nurse | chair
student | teacher | fern

Noun,, — planes | plants | bears | birds | cars | dancers
singers | presidents | squirrels | clouds | actors | doctors
nurses | chairs | students | teachers | ferns

Verbs — eats | pleases | loves | likes | hates | destroys | creates
fights | bites | shoots | arrests | takes | leaves | buys
brings | carries | kicks

Verb,, — eat | please | love | like | hate | destroy | create

fight | bite | shoot | arrest | take | leave | buy | bring
carry | kick

Adj — fancy | green | handsome | pretty | large | big | scary
| nice | happy | sad | dangerous | evil | sloppy

Prep — on | by | near | around

Figure 3: Probabilistic Context-free grammar used for creating constructed datasets. For the constructed language
test set, the probabilities for the three potential expansions of NP, and NP,, are .1, .1, .8, respectively. For the
augmentation set, these probabilities are .69, .04, .27. For all other nonterminals, all possible expansions have
uniform probability in both test and augmentation sets. PPs are present in approximately one third of sentences in
both the test and augmentation sets.
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Attractors  BiLSTM Dependency Constituency Head

No 96.4% 95.5% 97.3% 97.2%
Any 70.8% 91.4% 90.2% 87.0%

1 74.6% 91.9% 91.3% 88.7%

2 59.7% 89.7 % 87.1% 82.0%

3 48.4% 87.6% 83.7% 77.0%

4 41.0% 87.0% 80.8% 73.1%
Constructed  96.0% 73.8% 97.6 % 97.3%

Table 2: Natural language results for all datasets. Best performances are bolded. All numbers are averaged over
three models.

Attractors  BiLSTM Dependency Constituency Head

No 88.8% 94.9% 98.1% 97.2%
Any 77.1% 90.1% 91.9% 91.5%

1 76.6% 90.8% 93.2% 92.8%

2 78.5% 87.9% 88.1% 87.6%

3 80.1% 85.2% 83.5% 83.3%

4 81.1% 85.9% 78.4% 79.4%
Constructed  95.3% 75.8% 99.7% 99.8 %

Table 3: Results for all datasets after augmentation. All numbers are averaged over three models.
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