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Abstract

Sequence-based neural networks show signifi-

cant sensitivity to syntactic structure, but they

still perform less well on syntactic tasks than

tree-based networks. Such tree-based net-

works can be provided with a constituency

parse, a dependency parse, or both. We

evaluate which of these two representational

schemes more effectively introduces biases for

syntactic structure that increase performance

on the subject-verb agreement prediction task.

We find that a constituency-based network

generalizes more robustly than a dependency-

based one, and that combining the two types of

structure does not yield further improvement.

Finally, we show that the syntactic robustness

of sequential models can be substantially im-

proved by fine-tuning on a small amount of

constructed data, suggesting that data augmen-

tation is a viable alternative to explicit con-

stituency structure for imparting the syntactic

biases that sequential models are lacking.

1 Introduction

Natural language syntax is structured hierarchi-

cally, rather than sequentially (Chomsky, 1957;

Everaert et al., 2015). One phenomenon that il-

lustrates this fact is English subject-verb agree-

ment, the requirement that verbs and their subjects

must match in number. The hierarchical structure

of a sentence determines which noun phrase each

verb must agree with; sequential heuristics such as

agreeing with the most recent noun may succeed

on simple sentences such as (1a) but fail in more

complex cases such as (1b):

(1) a. The boys kick the ball.

b. The boys by the red truck kick the ball.

We investigate whether a neural network must pro-

cess input according to the structure of a syntac-

tic parse in order for it to learn the appropriate

No Constituency Constituency

No

Heads

BiLSTM Constituency

LSTM

Heads Dependency

LSTM

Head-Lexicalized

LSTM

Table 1: Linguistic properties of our four models.

rules governing these dependencies, or whether

there is sufficient signal in natural language corpora

for low-bias networks (such as sequential LSTMs)

to learn these structures. We compare sequential

LSTMs, which process sentences from left to right,

with tree-based LSTMs that process sentences in

accordance with an externally-provided, ground-

truth syntactic structure.

We consider two types of syntactic structure:

constituency structure (Chomsky, 1993; Pollard

and Sag, 1994) and dependency structure (Tes-

niere, 1959; Hudson, 1984). We investigate models

provided with either structure, both structures, or

neither structure (see Table 1), and assess how ro-

bustly these models learn subject-verb agreement

when trained on natural language.1

Even with the syntactic biases present in tree-

based LSTMs, it is possible that natural language

might not impart a strong enough signal to teach

a network how to robustly track subject-verb de-

pendencies. How might the performance of these

tree-based LSTMs change if they were fine-tuned

on a small dataset designed to impart a stronger

syntactic signal? Furthermore, would we still need

these tree structures, or could a sequential LSTM

now learn to track syntactic dependencies?

We find that building in either type of syntactic

structure improves performance over the BiLSTM

1Code, data, and models are at https://github.
com/mlepori1/Representations_Of_Syntax
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baseline, thus showing that these structures are

learned imperfectly (at best) by low-bias models

from natural language data. Of the two types of

structure, constituency structure turns out to be

more useful. The dependency-only model performs

well on natural language test sets, but fails to gen-

eralize to an artificially-constructed challenge set.

After fine-tuning on a small dataset that is designed

to impart a strong syntactic signal, the BiLSTM

generalizes more robustly, but still falls short of the

tree-based LSTMs.

We conclude that for a network to robustly show

sensitivity to syntactic structure, stronger biases for

syntactic structure need to be introduced than are

present in a low-bias learner such as a BiLSTM,

and that, at least for the subject-verb agreement

task, constituency structure is more important than

dependency structure. Both tree-based model struc-

ture and data augmentation appear to be viable

approaches for imparting these biases.

2 Related Work

Prior work has shown that neural networks with-

out explicit mechanisms for representing syntac-

tic structure can show considerable sensitivity to

syntactic dependencies (Goldberg, 2019; Gulor-

dava et al., 2018; Linzen et al., 2016), and that

certain aspects of the structure of the sentence can

be reconstructed from their internal representations

(Lin et al., 2019; Giulianelli et al., 2018; Hewitt

and Manning, 2019). Marvin and Linzen (2018)

showed that sequential models still have substan-

tial room for improvement in capturing syntax, and

other work has shown that models with a greater

degree of syntactic structure outperform sequen-

tial models on syntax-sensitive tasks (Yogatama

et al., 2018; Kuncoro et al., 2018, 2017), including

some of the tree-based models used here (Bowman

et al., 2015; Li et al., 2015). One contribution of the

present work is to tease apart the two major types of

syntactic structure to see which one imparts more

effective syntactic biases.

3 Models

3.1 BiLSTM

As our baseline model, we used a simple extension

to the LSTM architecture (Hochreiter and Schmid-

huber, 1997), the bidirectional LSTM (BiLSTM;

Schuster and Paliwal, 1997). This model runs one

LSTM from left to right over a sequence, and an-

other from right to left, without appealing to tree

structure. Bidirectional LSTMs outperform unidi-

rectional LSTMs on a variety of tasks (Huang et al.,

2015; Chiu and Nichols, 2016), including syntax-

sensitive tasks (Kiperwasser and Goldberg, 2016).

Ravfogel et al. (2019) also employs BiLSTMs for

a similar agreement task.

3.2 Tree LSTMs

To study the effects of explicitly building tree struc-

ture into the model architecture, we used the Con-

stituency LSTM and the Dependency LSTM

(Tai et al., 2015), which are types of recursive

neural networks (Goller and Kuchler, 1996). The

Constituency LSTM operates in accordance with a

binary constituency parse, composing together vec-

tors representing a left child and a right child into

a vector representing their parent. Models similar

to the Constituency LSTM have been proposed by

Le and Zuidema (2015) and Zhu et al. (2015).

In a Dependency LSTM, the representations of

a head’s children are summed, and then composed

with the representation of the head itself to yield a

representation of the phrase that has that head. See

Appendix A for more details on both models.

3.3 Head-Lexicalized Tree LSTMs

To create a model where composition is simulta-

neously guided by both a dependency parse and a

constituency parse, we modified the constituency

model described in Section 3.2, turning it into a

head-lexicalized tree LSTM. In a standard Con-

stituency LSTM, the input for all non-leaf nodes is

a vector of all 0’s. To add head lexicalization, we

instead feed in the word embedding of the correct

headword of that constituent as the input, where the

choice of headword is determined using the Stan-

ford Dependency Parser (Manning et al., 2014).

See Appendix B for more details, as well as an ex-

ample of a head-lexicalized constituency tree. This

model is similar to the head-lexicalized tree LSTM

of Teng and Zhang (2017). However, their model

learns how to select the heads of constituents in an

unsupervised manner; these heads may not corre-

spond to the syntactic notion of heads. Because

we seek to understand the effect of using the heads

derived from the dependency parse, we provide our

models with explicit head information.

4 Task

We adapted a syntax-sensitive task that previous

work has used to assess the syntactic capabilities
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of LSTMs—the number prediction task (Linzen

et al., 2016). The most standard version of this

task is based on a left-to-right language modeling

objective; however, tree-based models are not com-

patible with left-to-right language modeling. There-

fore, we made two modifications to this objective,

both of which have precedents in the literature:

First, we gave the model an entire present-tense

sentence with main verb masked out, following

Goldberg (2019). Second, the model’s target out-

put was the number of the masked verb: SINGULAR

or PLURAL; we follow Linzen et al. (2016) and Rav-

fogel et al. (2019) in framing number prediction as

a classification task. To solve the task, the model

must identify the subject whose head is the main

verb (in the dependency formalism), and use that

information to determine the syntactic number of

the verb; e.g., for (2), the answer is SINGULAR.

(2) The girl *MASK* the ball.

Linzen et al. (2016) pointed out that there are sev-

eral incorrect heuristics which models might adopt

for this task because these heuristics still produce

decent classification accuracy. One salient example

is picking the syntactic number of the most recent

noun to the left of the verb. We hypothesize that

tree-based models will be less susceptible to these

non-robust heuristics than sequential models.

5 Experiment 1: Natural Language

Data: We train our models on a subset of the

dataset from Linzen et al. (2016) that is chosen to

have a uniform label distribution (50% SINGULAR

and 50% PLURAL). We made this choice because

our task format differs from that used in some past

work (see Section 4), so performance on the task

as we have framed it cannot be directly compared

to prior work. In the absence of baselines from the

literature, we use chance performance of 50% as a

baseline; to ensure that this baseline is reasonable,

we balance the label distribution during training to

discourage models from becoming biased toward

one label.

We use two types of test sets: those that contain

adversarial attractors, and those that do not. An

adversarial attractor is a noun that is between

the subject and the main verb of a sentence and that

has the opposite syntactic number from the subject

noun. Adversarial attractors have been found to

produce agreement errors in humans (Bock and

Miller, 1991) and neural models (Goldberg, 2019;
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(a) Results for models trained on natural language.
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(b) Results for models trained on natural language and then
exposed to a 500-sentence augmentation set.

Figure 1: Results on binary classification of masked

verbs as SINGULAR or PLURAL. All results are aver-

ages across 3 runs. Chance performance is 50%.

Gulordava et al., 2018; Linzen et al., 2016). We use

code from Goldberg (2019)2 to extract adversarial

datasets containing varying numbers of attractors,

from 0 to 4 attractors. Sentence (3) provides an

example of a sentence with 4 attractors.

(3) Algorithmic problems such as [type] [check-

ing] and [type] [inference] are more difficult

for equirecursive types as well.

See Appendix D for details on our corpus and on

preprocessing, and Appendix C.1 for training.

Natural language evaluation: All of the tree-

based models outperformed the BiLSTM in the

presence of attractors (Figure 1a). Compared to

prior work with the number prediction task, our

BiLSTM performed very poorly on the 4 Attrac-

tors dataset. However, our results cannot be di-

rectly compared to previous work because of the

modifications we have made to the task, data, and

training procedure in order to accommodate tree-

2https://github.com/yoavg/bert-syntax
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based models. In light of these modifications, there

are several reasons why the BiLSTM’s low accu-

racy is unsurprising. First, we used a balanced label

distribution during training. In the standard dataset

from Linzen et al. (2016), the class labels are not

balanced, so models evaluated on that dataset might

outperform our BiLSTM by exploiting the biased

label distribution—a heuristic that our balanced

training set discourages. Another potential cause

for the BiLSTM’s poor performance is that, in or-

der to balance the label frequencies, we used a

smaller training set than was used in past work

(81,000 sentences instead of 121,000 sentences).

Finally, it is possible that allowing models to see

the entire sentence may allow them to acquire non-

robust heuristics related to the words following the

main verb. For example, a model might learn spu-

rious correlation between the syntactic number of

subjects and their direct objects. See Appendix E,

Table 2 for results on all test sets.

Constructed sentence evaluation: With natu-

rally occurring sentences, it is possible that models

perform well not because they have mastered syn-

tax, but rather because of statistical regularities in

the data. For example, given The players *MASK*

the ball, the model may be able to exploit the fact

that animate nouns tend to be subjects while inani-

mate nouns do not. As pointed out by Gulordava

et al. (2018), this would allow the model to cor-

rectly predict syntactic number, but for the wrong

reasons. To test whether our models were lever-

aging this statistical heuristic, we constructed a

400-sentence test set where this heuristic cannot

succeed. We did so using a probabilistic context-

free grammar (PCFG) under which all words of a

given part of speech are equally likely in all posi-

tions; each sentence from this grammar is of the

form Subject-Verb-Object, and all noun phrases

can optionally be modified by adjectives and/or

prepositional phrases (see Appendix F), as in (4):

(4) The fern near the sad teachers hates the

singer.

The Dependency LSTM is especially likely to fall

prey to word cooccurrence heuristics, as it lacks

the ability for a parent to account for the sequen-

tial position of its children. This can be an issue

when determining whether a verb is supposed to be

singular or plural, because the model has no robust

way to distinguish a verb’s subject from its direct

object. The dependency model did indeed perform

at chance (See the bar graph in Figure 1a).3 This

suggests that the dependency model’s high accu-

racy is partially due to lexical heuristics rather than

syntactic processing. In contrast, the other mod-

els performed well, suggesting that they are less

susceptible to relying on word cooccurrence.

6 Experiment 2: Fine-tuning

In Experiment 1, tree-based models dramatically

outperformed the BiLSTM in the presence of attrac-

tors. This difference may have arisen because most

natural language sentences are simple, and thus

they do not generate enough signal to illustrate the

importance of tree structure to a low-bias learner,

such as a BiLSTM. Recent work has shown the

effectiveness of syntactically-motivated fine-tuning

at increasing the robustness of neural models (Min

et al., 2020). Would our models generalize more

robustly if we added a few training examples that

do not lend themselves to non-syntactic heuristics?

To provide the model with a stronger signal

about the importance of syntactic structure, we

fine-tuned our models on a dataset designed to im-

part this signal. We used a variant of the PCFG

(see Appendix F) from Section 5 to generate a 500-

sentence augmentation set. This augmentation set

cannot be solved using word cooccurrence statis-

tics, and contains some sentences with attractors.

The models were then fine-tuned on the augmenta-

tion set for just one epoch over the 500 examples.

See Appendix C.2 for training details.

Results: The head-lexicalized model and the

BiLSTM benefited most from fine-tuning, with the

head-lexicalized model now matching the perfor-

mance of the Constituency LSTM, and the BiL-

STM showing dramatic improvement on sentences

with multiple attractors (Figure 1b; see Appendix E,

Table 3 for detailed results). While the BiLSTM’s

accuracy increased on sentences with attractors, it

decreased on the No Attractors test set. We sus-

pect that this is because augmentation discouraged

the model from using heuristics: while this makes

performance more robust overall, it may hurt accu-

racy on simple examples where the heuristics give

the correct answer (Min et al., 2020). As expected

from its architectural limitations, the Dependency

LSTM did not noticeably benefit from fine-tuning

3Most sentences in the test set have only two nouns. 50%
of the time, they will agree in number, and the syntactic num-
ber is unambiguous. Random guessing on the other 50% of
cases would yield about 75% accuracy.
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because it cannot extract the relevant information

from the augmentation set. There was no clear ef-

fect of augmentation on the Constituency LSTM.4

7 Discussion

Overall, we found that neural models trained on

natural language achieve much more robust perfor-

mance on syntactic tasks when syntax is explicitly

built into the model. This suggests that the infor-

mation we provided to our tree-based models is

unlikely to be learned from natural language by

models with only general inductive biases.

In Experiment 1, the network provided with a de-

pendency parse did the best on most of the natural

language test sets. This is unsurprising, as the task

is largely about a particular dependency (i.e., the

dependency between a verb and its subject). At the

same time, as demonstrated by the constructed sen-

tence test, the syntactic capabilities of the Depen-

dency LSTM are inherently limited. Thus, it must

default to non-robust heuristics in cases where the

unlabeled dependency information is ambiguous.

In future work, these syntactic limitations may be

overcome by giving the model typed dependencies

(which would distinguish between a subject-verb

dependency and a verb-object dependency).

One might expect the head-lexicalized model

to perform the best, since it can leverage both

syntactic formalisms. However, it performs no

better than the constituency model when trained

on natural language, suggesting that there is little

benefit to incorporating dependency structure into

a Constituency LSTM. In some cases, the head-

lexicalized model without fine-tuning even per-

forms worse than the Constituency LSTM. When

fine-tuned on more challenging constructed exam-

ples, the head-lexicalized model performed simi-

larly to the Constituency LSTM, suggesting that

there is not enough signal in the natural language

training set to teach this model what to do with the

heads it has been given.

Our results point to two possible approaches for

improving how models handle syntax. The first

approach is to use models that have explicit mecha-

nisms for representing syntactic structure. In partic-

ular, our results suggest that the most important as-

pect of syntactic structure to include is constituency

4Note that the constructed test set used here is controlled
to have no overlap with the augmentation set. Thus, it is not
exactly the same as the set used in Section 5, but both corpora
are generated from the same CFG.

structure, as constituency models appear to implic-

itly learn dependency structure as well. Though the

models we used require parse trees to be provided,

it is possible that models can learn to induce tree

structure in an unsupervised or weakly-supervised

manner (Bowman et al., 2016; Choi et al., 2018;

Shen et al., 2019). Another effective approach for

improving the syntactic robustness of neural mod-

els is data augmentation, as demonstrated in Ex-

periment 2. With this approach, it is possible to

bring the syntactic performance of less-structured

models closer to that of models with explicit tree

structure, even with an augmentation set generated

simply and easily using a PCFG.

Future work should further explore both of these

approaches. Our conclusions about the importance

of explicit mechanisms for representing syntactic

structure can be strengthened by developing dif-

ferent formulations of the tree LSTMs. It seems

particularly promising to explore alternative formu-

lations of the Dependency LSTM (as mentioned

above) and the effect of learning embeddings of

non-terminal symbols for the Constituency LSTM.

Finally, future work should investigate whether

data augmentation can fully bridge the gap between

low-bias learners and structured tree LSTMs, and

whether our conclusions apply to other syntactic

phenomena besides agreement.
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A Appendix: Tree LSTM Details

The constituency-based model that we use is the

N -ary Tree-LSTM from Tai et al. (2015), with N

fixed at 2 such that the tree is strictly binary; the

equations for this model are shown below. Each

W is an input weight matrix, each U is a hidden

state update weight matrix, each b is a bias term,

each x is an input word embedding, and each h is

a hidden state. These equations are adaptations of

the typical LSTM equations that allow the LSTM

to be structured according to a constituency parse.

The xj is the input embedding for a particular node

in the constituency tree. In a Constituency LSTM,

all leaf nodes receive the embedding for the word

at that leaf, while all other nodes receive a vector

of 0’s. Every non-leaf node is thus a composition

of the hidden states of its two children. In these

equations, k = 1 or 2, which allows “the left hidden

state in a binary tree to have either an excitatory

or inhibitory effect on the forget gate of the right

child” (Tai et al., 2015). Importantly, this model

distinguishes between a node’s left and right chil-

dren.

ij = σ(W (i)xj +
2∑

l=1

U
(i)
l hjl + b(i)) (1)

fjk = σ(W (f)xj +

2∑

l=1

U
(f)
kl hjl + b(f)) (2)

oj = σ(W (o)xj +

2∑

l=1

U
(o)
l hjl + b(o)) (3)

uj = tanh(W (u)xj +
2∑

l=1

U
(u)
l hjl + b(u))

(4)

cj = ij ⊙ uj +
2∑

l=1

fjl ⊙ cjl (5)

hj = oj ⊙ tanh(cj) (6)

The following equations, also from Tai et al.

(2015), define a child-sum Tree LSTM, which we

structure according to a dependency parse. Here,

the input xj is the embedding of the headword of

that node in the DAG that defines a dependency

parse. Note that in this model, the hidden represen-

tations of the children of a node are summed. Thus,

this model cannot distinguish the linear order of its

children.

h̃j =
∑

k∈C(j)

hk (7)

ij = σ(W (i)xj + U (i)h̃j + b(i)) (8)

fjk = σ(W (f)xj + U (f)hk + b(f)) (9)

oj = σ(W (o)xj + U (o)h̃j + b(o)) (10)

uj = tanh(W (u)xj + U (u)h̃j + b(u)) (11)

cj = ij ⊙ uj +
∑

k∈C(j)

fjk ⊙ ck (12)

hj = oj ⊙ tanh(cj) (13)

B Appendix: Details of the

Head-Lexicalized Tree LSTM Variant

Our head-lexicalized tree LSTM architecture is

structured exactly the same as the Constituency

LSTM. Thus, Equations 1 through 6 characterize

the parameters and operations performed by the

head-lexicalized tree LSTM. The difference be-

tween the two architectures lies in the input, xj .

In the Constituency LSTM, a node j was provided

an input vector xj only if j was a leaf node. In the

head-lexicalized tree LSTM model, we use a depen-

dency parse to generate a tag for each node in the

constituency tree, which identifies which word in

the corresponding constituent is the most dominant

word in the dependency tree. The word embedding

corresponding to the most dominant word in con-

stituent j is then provided as input xj . Thus, every

node in the tree receives an input vector, and the

root node is guaranteed to have the headword of

the whole sentence provided as input.

More formally, a dependency parse forms a tree,

TD. For each word, w, in a given sentence, de-

note its score, s(w), as the depth of w in TD. A

constituency parse forms a tree TC . For every

node j in TC , let lj denote the set of words cor-

responding to children of j that are leaves of TC .

The input vector xj is then just the embedding

of w = argminw∈lj
s(w). Ties should not exist

within a constituent, but if they do (due to parsing

errors), then they are broken arbitrarily.

See Figure 2 for an example of a head-

lexicalized constituency tree.

C Appendix: Training Details

C.1 Experiment 1

We use an embedding size and hidden cell size

of 100 for every model. Our word embeddings
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Figure 2: Head-lexicalized constituency tree for the

sentence The bakers near the table bake the cake.

are 100-dimensional pretrained GloVe embeddings

from the Wikipedia 2014 + Gigaword 5 distribu-

tion (glove.6b.zip) (Pennington et al., 2014), and

we do not tune them during training. We also em-

ploy the Adam optimizer (Kingma and Ba, 2015)

with the PyTorch default learning rate of 0.001. Be-

cause this is a binary classification problem, we use

binary cross entropy as our loss function. These

hyperparameter choices are based on Linzen et al.

(2016), but we increase the hidden size from 50

to 100, in order to create slightly more capacity.

Though this may seem small, the models achieved

high overall accuracy, suggesting that model size

was not a bottleneck.

We cap training at 50 epochs, but also employ

early stopping. The early stopping procedure is

as follows: Train for 10,000 sentences, then evalu-

ate on the validation data. Stop when the average

decrease in validation loss over the previous five

evaluations is less than 0.0005. For all models, this

occurs after about 1 or 1.5 epochs. During training,

the parameters that resulted in the best validation

loss are saved, and these weights are used during

testing. We repeat this procedure for three random

initializations of each model. The reported results

are averages over these three models.

In order to turn a tree LSTM into a binary clas-

sifier, we feed the hidden state of the root into a

linear layer that condenses the output into a single

value, and squash the result to the range [0, 1] using

a sigmoid activation function. If the result of that

process is greater than 0.5, then we predict label 1,

else we predict label 0. For the bidirectional LSTM,

we take the representation of the masked verb from

both the left to right and right to left passes and

feed both of these into a linear classifier. Then we

repeat the process described above, using a sigmoid

activation function to constrain the prediction to

the range [0, 1], and classifying based on this value.

C.2 Experiment 2

We take the same models from Experiment 1 and

fine tune them on the augmentation set. We train

for one epoch with the same parameters used in

Experiment 1, and then use the resulting weights

to evaluate the models.

D Appendix: Data

The original dataset contains approximately 1.3

million sentences. We use the Stanford con-

stituency parser and Stanford dependency parser

(Manning et al., 2014) to generate the two types

of parse trees for each of these sentences, and then

convert these objects into suitable representations

for our models. In this process, a small percentage

of examples were discarded due to the parser fail-

ing to parse them. We deviate from past work by

ensuring that both classes (SINGULAR and PLU-

RAL) are of equal size. This results in more data

from the majority class (singular verb class) be-

ing thrown away. After these exclusions, we have

approximately 903,000 sentences remaining. We

provide our models 9% of this (81,300 sentences)

to train on, 0.1% (904 sentences) to validate, and

then generate our test sets from the remainder of

the data. All sentences were stripped of quotation

marks, apostrophes, parentheses and hyphens in

order to minimize parsing failures.

The sizes of our test sets are as follows: No At-

tractors (50,000 sentences), Any Attractors (52,815

sentences), One Attractor (41,902 sentences), Two

Attractors (8,473 sentences), Three Attractors

(1,884 sentences), and Four Attractors (556 sen-

tences). Note also that the Any Attractors dataset

is the union of the One, Two, Three, and Four At-

tractors datasets.

E Appendix: Full Results

Table 2 contains the full results after training all

models on natural language. Table 3 contains the

full results after augmentation.

F Appendix: Probabilistic Context Free

Grammars

Figure 3 contains the probabilistic context free

grammar used to generate the constructed corpora.
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S → DetPs VPs DetPp VPp

DetPs → Det NPs

DetPp → Det NPp

NPs → Adj NPs NPs PP Nouns
NPp → Adj NPp NPp PP Nounp

PP → Prep DetPs Prep DetPp

VPs → Verbs DetPs Verbs DetPp

VPp → Verbp DetPp Verbp DetPp

Det → the

Nouns → plane plant bear bird car dancer singer

president squirrel cloud actor doctor nurse chair

student teacher fern

Nounp → planes plants bears birds cars dancers

singers presidents squirrels clouds actors doctors

nurses chairs students teachers ferns

Verbs → eats pleases loves likes hates destroys creates

fights bites shoots arrests takes leaves buys

brings carries kicks

Verbp → eat please love like hate destroy create

fight bite shoot arrest take leave buy bring

carry kick

Adj → fancy green handsome pretty large big scary

nice happy sad dangerous evil sloppy

Prep → on by near around

Figure 3: Probabilistic Context-free grammar used for creating constructed datasets. For the constructed language

test set, the probabilities for the three potential expansions of NPs and NPp are .1, .1, .8, respectively. For the

augmentation set, these probabilities are .69, .04, .27. For all other nonterminals, all possible expansions have

uniform probability in both test and augmentation sets. PPs are present in approximately one third of sentences in

both the test and augmentation sets.



3316

Attractors BiLSTM Dependency Constituency Head

No 96.4% 95.5% 97.3% 97.2%

Any 70.8% 91.4% 90.2% 87.0%

1 74.6% 91.9% 91.3% 88.7%

2 59.7% 89.7% 87.1% 82.0%

3 48.4% 87.6% 83.7% 77.0%

4 41.0% 87.0% 80.8% 73.1%

Constructed 96.0% 73.8% 97.6% 97.3%

Table 2: Natural language results for all datasets. Best performances are bolded. All numbers are averaged over

three models.

Attractors BiLSTM Dependency Constituency Head

No 88.8% 94.9% 98.1% 97.2%

Any 77.1% 90.1% 91.9% 91.5%

1 76.6% 90.8% 93.2% 92.8%

2 78.5% 87.9% 88.1% 87.6%

3 80.1% 85.2% 83.5% 83.3%

4 81.1% 85.9% 78.4% 79.4%

Constructed 95.3% 75.8% 99.7% 99.8%

Table 3: Results for all datasets after augmentation. All numbers are averaged over three models.


