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Abstract

Sparse coding is a crucial subroutine in algorithms for various signal processing, deep learn-
ing, and other machine learning applications. The central goal is to learn an overcomplete
dictionary that can sparsely represent a given input dataset. However, a key challenge is
that storage, transmission, and processing of the learned dictionary can be untenably high
if the data dimension is high. In this paper, we consider the double-sparsity model intro-
duced by Rubinstein et al. (2010b) where the dictionary itself is the product of a fixed,
known basis and a data-adaptive sparse component. First, we introduce a simple algo-
rithm for double-sparse coding that can be amenable to efficient implementation via neural
architectures. Second, we theoretically analyze its performance and demonstrate asymp-
totic sample complexity and running time benefits over existing (provable) approaches for
sparse coding. To our knowledge, our work introduces the first computationally efficient
algorithm for double-sparse coding that enjoys rigorous statistical guarantees. Finally, we
corroborate our theory with several numerical experiments on simulated data, suggesting
that our method may be useful for problem sizes encountered in practice.

Keywords: Sparse coding, provable algorithms, unsupervised learning

1. Introduction

1.1 Motivation

Representing signals as sparse linear combinations of atoms from a dictionary is a popular
approach in many domains. In this paper, we study the problem of dictionary learning
(also known as sparse coding), where the goal is to learn an efficient basis (dictionary)
that represents the underlying class of signals well. In the typical sparse coding setup, the
dictionary is overcomplete (i.e., the cardinality of the dictionary exceeds the ambient signal
dimension) while the representation is sparse (i.e., each signal is encoded by a combination
of only a few dictionary atoms.)
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Sparse coding has a rich history in diverse fields such as signal processing, machine
learning, and computational neuroscience. Discovering optimal basis representations of data
is a central focus of image analysis (Krim et al., 1999; Elad and Aharon, 2006; Rubinstein
et al., 2010a), and dictionary learning has proven widely successful in imaging problems
such as denoising, deconvolution, inpainting, and compressive sensing (Elad and Aharon,
2006; Candes and Tao, 2005; Rubinstein et al., 2010a). Sparse coding approaches have
also been used as a core building block of deep learning systems for prediction (Gregor
and LeCun, 2010; Boureau et al., 2010) and associative memory (Mazumdar and Rawat,
2017). Interestingly, the seminal work by Olshausen and Field (1997) has shown intimate
connections between sparse coding and neuroscience: the dictionaries learned from image
patches of natural scenes bear remarkable resemblance to spatial receptive fields observed
in the mammalian primary visual cortex.

From a mathematical standpoint, the sparse coding problem is formulated as follows.
Given p data samples Y = [y(1), y(2), . . . , y(p)] ∈ Rn×p, the goal is to find a dictionary
D ∈ Rn×m (m > n) and corresponding sparse code vectors X = [x(1), x(2), . . . , x(p)] ∈ Rm×p

such that the representation DX fits the data samples as well as possible. Typically, one
obtains the dictionary and the code vectors as the solution to the following optimization
problem:

min
D,X
L(D,X) =

1

2

p∑︂
j=1

∥y(j) −Dx(j)∥22,

s.t.

p∑︂
j=1

S(x(j)) ≤ S

(1)

where S(·) is some sparsity-inducing penalty function on the code vectors, such as the
ℓ1-norm. The objective function L controls the reconstruction error while the constraint
enforces the sparsity of the representation. However, even a cursory attempt at solving the
optimization problem (1) reveals the following obstacles:

The constrained optimization problem (1) involves a non-convex (in fact, bilinear) ob-
jective function, as well as potentially non-convex constraints depending on the choice of
the sparsity-promoting function S (for example, the ℓ0 function.) Hence, obtaining prov-
ably correct algorithms for this problem can be challenging. Indeed, the vast majority of
practical approaches for sparse coding have been heuristics (Engan et al., 1999; Aharon
et al., 2006; Mairal et al., 2009). Recent works in the theoretical machine learning commu-
nity have bucked this trend, providing provably accurate algorithms if certain assumptions
are satisfied (Spielman et al., 2012; Agarwal et al., 2014; Arora et al., 2014a, 2015; Sun
et al., 2015; Blasiok and Nelson, 2016; law Adamczak, 2016; Chatterji and Bartlett, 2017).
However, relatively few of these newer methods have been shown to provide good empirical
performance in actual sparse coding problems.

Even if theoretical correctness issues were to be set aside, and we are somehow able to
efficiently learn sparse codes of the input data, we often find that applications using such
learned sparse codes encounter memory and running-time issues. Indeed, in the overcom-
plete case, the storage of the learned dictionary D incurs mn = Ω(n2) memory cost, which
is prohibitive when n is large. Therefore, in practical applications (such as image analysis)
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one typically resorts to chop the data into smaller blocks (e.g., partitioning image data into
patches) to make the problem manageable.

A related line of research has been devoted to learning dictionaries that obey some type
of structure. Such structural information can be leveraged to incorporate prior knowledge of
underlying signals as well as to resolve computational challenges due to the data dimension.
For instance, the dictionary is assumed to be separable, or obey a convolutional structure.
One such variant is the double-sparse coding problem (Rubinstein et al., 2010b; Sulam
et al., 2016) where the dictionary D itself exhibits a sparse structure. To be specific, the
dictionary is expressed as:

D = ΦA,

i.e., it is composed of a known “base dictionary” Φ ∈ Rn×n, and a learned “synthesis”
matrix A ∈ Rn×m whose columns are sparse. The base dictionary Φ is typically any fixed
basis chosen according to domain knowledge, while the synthesis matrix A is column-wise
sparse and is to be learned from the data. The basis Φ is typically orthonormal (such as
the canonical or wavelet basis); however, there are cases where the base dictionary Φ is
overcomplete (Rubinstein et al., 2010b; Sulam et al., 2016).

There are several reasons why such the double-sparsity model can be useful. First,
the double-sparsity assumption is rather appealing from a conceptual standpoint, since it
lets us combine the knowledge of decades of modeling efforts in harmonic analysis with
the flexibility of learning new representations tailored to specific data families. Moreover,
such a double-sparsity model has computational benefits. If the columns of A are (say)
r-sparse (i.e., each column contains no more than r ≪ n non-zeroes) then the overall
burden of storing, transmitting, and computing with A is much lower than that for general
unstructured dictionaries. Finally, such a model lends itself well to interpretable learned
features if the atoms of the base dictionary are semantically meaningful.

All the above reasons have spurred researchers to develop a series of algorithms to learn
doubly-sparse codes (Rubinstein et al., 2010b; Sulam et al., 2016). However, despite their
empirical promise, no theoretical analysis of their performance have been reported in the
literature and to date, we are unaware of a provably accurate, polynomial-time algorithm
for the double-sparse coding problem. Our goal in this paper is precisely to fill this gap.

1.2 Our Contributions

In this paper, we provide a new framework for double-sparse coding. To the best of our
knowledge, our approach is the first method that enjoys provable statistical and algorithmic
guarantees for this problem. In addition, our approach enjoys two benefits: we demonstrate
that the method is neurally plausible (i.e., its execution can plausibly be achieved using a
neural network architecture) and robust to noise.

Inspired by the aforementioned recent theoretical advances in sparse coding, we assume
a learning-theoretic setup where the data samples arise from a ground-truth generative
model. Informally, suppose there exists a true (but unknown) synthesis matrix A∗ that is
column-wise r-sparse, and the ith data sample is generated as:

y(i) = ΦA∗x∗(i) + noise, i = 1, 2, . . . , p
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where the code vector x∗(i) is independently drawn from a distribution supported on the set
of k-sparse vectors. We desire to learn the underlying matrix A∗. Informally, suppose that
the synthesis matrix A∗ is incoherent (the columns of A∗ are sufficiently close to orthogonal)
and has bounded spectral norm. Finally, suppose that the number of dictionary elements,
m, is at most a constant multiple of n. All of these assumptions are standard1.

We will demonstrate that the true synthesis matrix A∗ can be recovered (with small
error) in a tractable manner as sufficiently many samples are provided. Specifically, we
make the following novel contributions:

1. We propose a new algorithm that produces a coarse estimate of the synthesis matrix
that is sufficiently close to the ground truth A∗. Our algorithm builds upon spectral
initialization-based ideas that have recently gained popularity in non-convex machine
learning (Zhang et al., 2016; Wang et al., 2016).

2. Given the above coarse estimate of the synthesis matrix A∗, we propose a descent-
style algorithm to refine the above estimate of A∗. This algorithm is simpler than
previously studied double-sparse coding algorithms (such as the Trainlets approach
of Sulam et al. (2016)), while still giving good statistical performance. Moreover, this
algorithm can be realized in a manner amenable to neural implementations.

3. We provide a rigorous analysis of both algorithms. Put together, our analysis produces
the first provably polynomial-time algorithm for double-sparse coding. We show that
the algorithm provably returns a good estimate of the ground-truth; in particular, in
the absence of noise we prove that Ω(mr polylog n) samples are sufficient for a good
enough initialization in the first algorithm, as well as guaranteed linear convergence
of the descent phase up to a precise error parameter that can be interpreted as the
radius of convergence.

Indeed, our analysis shows that employing the double-sparsity model helps in this
context, and leads to a strict improvement in sample complexity, as well as running
time over previous rigorous methods for (regular) sparse coding such as Arora et al.
(2015).

4. We also analyze our approach in a more realistic setting with the presence of additive
noise and demonstrate its stability. We prove that Ω(mr polylog n) samples are
sufficient to obtain a good enough estimate in the initialization, and also to obtain
guaranteed linear convergence during descent to provably recover A∗.

5. We underline the benefit of the double-sparse structure over the regular model by
analyzing the algorithms in Arora et al. (2015) under the noisy setting. As a result,

we obtain the sample complexity O
(︁
(mk + σ2

ε
mn2

k )polylog n
)︁
, which demonstrates a

negative effect of noise on this approach.

6. We rigorously develop a hard thresholding intialization that extends the spectral
scheme in Arora et al. (2015). Additionally, we provide more results for the case
where A is orthonormal, sparse dictionary to relax the condition on r, which may be
of independent interest.

1. We clarify both the data and the noise model more concretely in Section 2 below.
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Setting Reference
Sample

(w/o noise)
Sample

(w/ noise)
Time Expt

Regular

MOD (Engan et al., 1999) ✗ ✗ ✗ ✓

K-SVD (Aharon et al., 2006) ✗ ✗ ✗ ✓

Spielman et al. (2012) O(n2 logn) ✗ ˜︁Ω(n4) ✓

Arora et al. (2014b) ˜︁O(m2/k2) ✗ ˜︁O(np2) ✗

Gribonval et al. (2015a) O(nm3) O(nm3) ✗ ✗

Arora et al. (2015) ˜︁O(mk) ✗ ˜︁O(mn2p) ✗

Double
Sparse

Double Sparsity (Rubinstein et al., 2010b) ✗ ✗ ✗ ✓

Gribonval et al. (2015b) ˜︁O(mr) ˜︁O(mr) ✗ ✗

Trainlets (Sulam et al., 2016) ✗ ✗ ✗ ✓

This paper ˜︁O(mr) ˜︁O(mr + σ2
ε
mnr
k

) ˜︁O(mnp) ✓

Table 1: Comparison of various sparse coding techniques. Expt: whether numerical experiments
have been conducted. ✗ in all other columns indicates no provable guarantees. Here, n is
the signal dimension, and m is the number of atoms. The sparsity levels for A and x are
r and k respectively, and p is the sample size.

7. While our analysis mainly consists of sufficiency results and involves unknown con-
stants hidden in big-O notation, we demonstrate our findings by reporting a suite of
numerical experiments on synthetic test datasets.

Overall, our approach results in strict improvement in sample complexity, as well as
running time, over previous rigorously analyzed methods for (regular) sparse coding, such
as Arora et al. (2015). See Table 1 for a detailed comparison.

1.3 Techniques

At a high level, our method is an adaptation of the seminal approach of Arora et al.
(2015). As is common in the statistical learning literature, we assume a “ground-truth”
generative model for the observed data samples, and attempt to estimate the parameters
of the generative model given a sufficient number of samples. In our case, the parameters
correspond to the synthesis matrix A∗, which is column-wise r-sparse. The natural approach
is to formulate a loss function in terms of A such as Equation (1), and perform gradient
descent with respect to the surface of the loss function to learn A∗.

The key challenge in sparse coding is that the gradient is inherently coupled with the
codes of the training samples (i.e., the columns of X∗), which are unknown a priori. How-
ever, the main insight of Arora et al. (2015) is that within a small enough neighborhood
of A∗, a noisy version of X∗ can be estimated, and therefore the overall method is similar
to performing approximate gradient descent. Formulating the actual algorithm as a noisy
variant of approximate gradient descent allows us to overcome the finite-sample variability
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of the loss, and obtain a descent property directly related to (the population parameter)
A∗.

The second stage of our approach (i.e., our descent-style algorithm) leverages this in-
tuition. However, instead of standard gradient descent, we perform approximate projected
gradient descent, such that the column-wise r-sparsity property is enforced in each new
estimate of A∗. Indeed, such an extra projection step is critical in showing a sample com-
plexity improvement over the existing approach of Arora et al. (2015).The key novelty is in
figuring out how to perform the projection in each gradient iteration. For this purpose, we
develop a novel initialization algorithm that identifies the locations of the non-zeroes in A∗

even before commencing the descent phase. This is nontrivially different from initialization
schemes used in previous rigorous methods for sparse coding, and the analysis is somewhat
more involved.

In Arora et al. (2015), (the principal eigenvector of) a weighted covariance matrix of y
(estimated by the weighted average of outer products yiy

T
i ) is shown to provide a coarse

estimate of a dictionary atom. We extend this idea and rigoriously show that the diagonal
of the weighted covariance matrix serves as a good indicator of the support of a column
in A∗. The success relies on the concentration of the diagonal vector with dimension n,
instead of the covariance matrix with dimensions n × n. With the support selected, our
scheme only utilizes a reduced weighted covariance matrix with dimensions at most r × r.
This initialization scheme enables us to effectively reduce the dimension of the problem,
and therefore leads to significant improvement in sample complexity and running time over
previous (provable) sparse coding methods when the data representation sparsity k is much
smaller than m.

Further, we rigorously analyze the proposed algorithms in the presence of noise with a
bounded expected norm. Our analysis shows that our method is stable, and in the case of
i.i.d. Gaussian noise with bounded expected ℓ2-norms, is at least a polynomial factor better
than previous polynomial time algorithms for sparse coding.

The empirical performance of our proposed method is demonstrated by a suite of numer-
ical experiments on synthetic datasets. In particular, we show that our proposed methods
are simple and practical, and improve upon previous provable algorithms for sparse coding.

1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 introduces notation, key model
assumptions, and informal statements of our main theoretical results. Section 3 outlines our
initialization algorithm (along with supporting theoretical results) while Section 4 presents
our descent algorithm (along with supporting theoretical results). Section 5 provides a
numerical study of the efficiency of our proposed algorithms, and compares it with previously
proposed methods. Finally, Section 6 concludes with a short discussion. All technical proofs
are relegated to the appendix.
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2. Setup and Main Results

2.1 Notation

We define [m] ≜ {1, . . . ,m} for any integer m > 1. For any vector x = [x1, x2, . . . , xm]T ∈
Rm, we write supp(x) ≜ {i ∈ [m] : xi ̸= 0} as the support set of x. Given any subset
S ⊆ [m], xS corresponds to the sub-vector of x indexed by the elements of S. For any matrix
A ∈ Rn×m, we use A•i and AT

j• to represent the i-th column and the j-th row respectively.
For some appropriate sets R and S, let AR• (respectively, A•S) be the submatrix of A with
rows (respectively columns) indexed by the elements in R (respectively S). In addition,
for the i-th column A•i, we use AR,i to denote the sub-vector indexed by the elements of
R. For notational simplicity, we use AT

R• to indicate (AR•)
T , the tranpose of A after a row

selection. Besides, we use ◦ and sgn(·) to represent the element-wise Hadamard operator
and the element-wise sign function respectively. Further, thresholdK(x) is a thresholding
operator that replaces any elements of x with magnitude less than K by zero.

The ℓ2-norm ∥x∥ for a vector x and the spectral norm ∥A∥ for a matrix A appear
several times. In some cases, we also utilize the Frobenius norm ∥A∥F and the operator
norm ∥A∥1,2 ≜ max∥x∥1≤1∥Ax∥. The norm ∥A∥1,2 is essentially the maximal Euclidean
norm of any column of A.

For clarity, we adopt asymptotic notations extensively. We write f(n) = O(g(n))
(or f(n) = Ω(g(n))) if f(n) is upper bounded (respectively, lower bounded) by g(n) up
to some positive constant. Next, f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and
f(n) = Ω(g(n)). Also ˜︁Ω and ˜︁O represent Ω and O up to a multiplicative poly-logarithmic
factor respectively. Finally f(n) = o(g(n)) (or f(n) = ω(g(n))) if limn→∞ |f(n)/g(n)| = 0
(limn→∞ |f(n)/g(n)| =∞).

Throughout the paper, we use the phrase “with high probability” (abbreviated to w.h.p.)
to describe an event with failure probability of order at most n−ω(1). In addition, g(n) =
O∗(f(n)) means g(n) ≤ Kf(n) for some small enough constant K.

2.2 Generative Model of Data

Suppose that the observed samples are given by

y(i) = Dx∗(i) + ε, i = 1, . . . , p,

i.e., we are given p samples of y generated from a fixed (but unknown) dictionary D where
the sparse code x∗ and the error ε are drawn from a joint distribution D specified below. In
the double-sparse setting, the dictionary is assumed to follow a decomposition D = ΦA∗,
where Φ ∈ Rn×n is a known orthonormal basis matrix and A∗ is an unknown, ground
truth synthesis matrix. An alternative (and interesting) setting is an overcomplete Φ with
a square A∗, which our analysis below does not cover; we defer this to future work. Our
approach relies upon the following assumptions on the synthesis dictionary A∗:

A1 A∗ is overcomplete (i.e., m ≥ n) with m = O(n).

A2 A∗ is µ-incoherent, i.e., for all i ̸= j, |⟨A∗
•i, A

∗
•j⟩| ≤ µ/

√
n.

A3 A∗
•i has at most r non-zero elements, and is normalized such that ∥A∗

•i∥ = 1 for all i.
Moreover, |A∗

ij | ≥ τ for A∗
ij ̸= 0 and τ = Ω(1/

√
r).

7



Nguyen, Wong, and Hegde

A4 A∗ has bounded spectral norm such that ∥A∗∥ ≤ O(
√︁

m/n).

All these assumptions are standard. In Assumption A2, the incoherence µ is typically of
order O(log n) with high probability for a normal random matrix (Arora et al., 2014b).
Assumption A3 is a common assumption in sparse signal recovery. The bounded spectral
norm assumption is also standard (Arora et al., 2015). In addition to Assumptions A1-A4,
we make the following distributional assumptions on D:

B1 Support S = supp(x∗) is of size at most k and uniformly drawn without replacement
from [m] such that P[i ∈ S] = Θ(k/m) and P[i, j ∈ S] = Θ(k2/m2) for some i, j ∈ [m]
and i ̸= j.

B2 The nonzero entries x∗S are pairwise independent and sub-Gaussian given the support
S with E[x∗i |i ∈ S] = 0 and E[x∗2i |i ∈ S] = 1.

B3 For i ∈ S, |x∗i | ≥ C where 0 < C ≤ 1.

B4 The additive noise ε has i.i.d. Gaussian entries with variance σ2
ε with σε = O(1/

√
n).

For the rest of the paper, we set Φ = In, the identity matrix of size n. This only simplifies
the arguments but does not change the problem because one can study an equivalent model:

y′ = Ax∗ + ε′,

where y′ = ΦT y and ε′ = ΦT ε, as ΦTΦ = In. Due to the Gaussianity of ε, ε′ also has
independent entries. Although this property is specific to Gaussian noise, all the analysis
carried out below can be extended to sub-Gaussian noise with minor (but rather tedious)
changes in concentration arguments.

Our goal is to devise an algorithm that produces a provably “good” estimate of A∗. For
this, we need to define a suitable measure of “goodness”. We use the following notion of
distance that measures the maximal column-wise difference in ℓ2-norm under some suitable
transformation.

Definition 1 ((δ, κ)-nearness) A is said to be δ-close to A∗ if there is a permutation
π : [m]→ [m] and a sign flip σ : [m] : {±1} such that ∥σ(i)A•π(i)−A∗

•i∥ ≤ δ for every i. In
addition, A is said to be (δ, κ)-near to A∗ if ∥A•π −A∗∥ ≤ κ∥A∗∥ also holds.

For notational simplicity, in our theorems we simply replace π and σ in Definition 1 with
the identity permutation π(i) = i and the positive sign σ(·) = +1 while keeping in mind
that in reality we are referring to one element of the equivalence class of all permutations
and sign flip transforms of A∗.

We will also need some technical tools from Arora et al. (2015) to analyze our gradient
descent-style method. Consider any iterative algorithm that looks for a desired solution
z∗ ∈ Rn to optimize some function f(z). Suppose that the algorithm produces a sequence
of estimates z1, . . . , zs via the update rule:

zs+1 = zs − ηgs,

for some vector gs and scalar step size η. The goal is to characterize “good” directions gs

such that the sequence converges to z∗ under the Euclidean distance. The following gives
one such sufficient condition for gs.
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Definition 2 A vector gs at the sth iteration is (α, β, γs)-correlated with a desired solution
z∗ if

⟨gs, zs − z∗⟩ ≥ α∥zs − z∗∥2 + β∥gs∥2 − γs.

We know from convex optimization that if f is 2α-strongly convex and 1/2β-smooth, and
gs is chosen as the gradient ∇zf(z), then gs is (α, β, 0)-correlated with z∗. In our setting,
the desired solution corresponds to A∗, the ground-truth synthesis matrix. In Arora et al.
(2015), it is shown that gs = Ey[(Asx−y)sgn(x)T ], where x = thresholdC/2((A

s)T y) indeed
satisfies Definition 2. This gs is a population quantity and not explicitly available, but
one can estimate such gs using an empirical average. The corresponding estimator ˆ︁gs is a
random variable, so we also need a related correlated-with-high-probability condition:

Definition 3 A direction ˆ︁gs at the sth iteration is (α, β, γs)-correlated-w.h.p. with a desired
solution z∗ if, w.h.p.,

⟨ˆ︁gs, zs − z∗⟩ ≥ α∥zs − z∗∥2 + β∥ˆ︁gs∥2 − γs.

From Definition 2, one can establish a form of descent property in each update step, as
shown in Theorem 1.

Theorem 1 Suppose that gs satisfies the condition described in Definition 2 for s = 1, 2, . . . , T .
Moreover, 0 < η ≤ 2β and γ = maxT

s=1 γs. Then, the following holds for all s:

∥zs+1 − z∗∥2 ≤ (1− 2αη)∥zs − z∗∥2 + 2ηγs.

In particular, the above update converges geometrically to z∗ with an error γ/α. That is,

∥zs+1 − z∗∥2 ≤ (1− 2αη)s∥z0 − z∗∥2 + 2γ/α.

We can obtain a similar result for Definition 3 except that ∥zs+1− z∗∥2 is replaced with its
expectation.

Armed with the above tools, we now state some informal versions of our main results:

Theorem 2 (Provably correct initialization, informal) There exists a neurally plau-
sible algorithm to produce an initial estimate A0 that has the correct support and is (δ, 2)-
near to A∗ with high probability. Its running time and sample complexity are ˜︁O(mnp) and˜︁O(mr) respectively. This algorithm works when the sparsity level satisfies r = O∗(log n).

Our algorithm can be regarded as an extension of Arora et al. (2015) to the double-sparse
setting. It reconstructs the support of one single column and then estimates its direction
in the subspace defined by the support. Our proposed algorithm enjoys neural plausibility
by implementing a thresholding non-linearity and Oja’s update rule. We provide a neural
implementation of our algorithm in Appendix G. The adaption to the sparse structure
results in a strict improvement upon the original algorithm both in running time and sample
complexity. However, our algorithm is limited to the sparsity level r = O∗(log n), which
is rather small but plausible from the modeling standpoint. For comparison, we analyze a
natural extension of the algorithm of Arora et al. (2015) with an extra hard-thresholding
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step for every learned atom. We obtain the same order restriction on r, but somewhat worse
bounds on sample complexity and running time. The details are found in Appendix F.

We hypothesize that a stronger incoherence assumption can lead to provably correct
initialization for a much wider range of r. For purposes of theoretical analysis, we consider
the special case of a perfectly incoherent synthesis matrix A∗ such that µ = 0 and m = n.

In this case, we can indeed improve the sparsity parameter to r = O∗(︁min(
√
n

log2 n
, n
k2 log2 n

)
)︁
,

which is an exponential improvement. This analysis is given in Appendix E.

The next theorem summarizes our result for the descent algorithm:

Theorem 3 (Provably correct descent, informal) There exists a neurally plausible al-
gorithm for double-sparse coding that converges to A∗ with geometric rate when the initial
estimate A0 has the correct support and (δ, 2)-near to A∗. The running time per iteration
is O(mkp + mrp) and the sample complexity is ˜︁O(m + σ2

ε
mnr
k ).

Similar to Arora et al. (2015), our proposed algorithm enjoys neural plausibility. More-
over, we can achieve a better running time and sample complexity per iteration than previ-
ous methods, particularly in the noisy case. We show in Appendix F that in this regime the
sample complexity of Arora et al. (2015) is ˜︁O(m+ σ2

ε
mn2

k ). For instance, when σε ≍ n−1/2,

the sample complexity bound is significantly worse than ˜︁O(m) in the noiseless case. In
contrast, our proposed method leverages the sparse structure to overcome this problem and
obtain improved results.

We are now ready to introduce our methods in detail. As discussed above, our approach
consists of two stages: an initialization algorithm that produces a coarse estimate of A∗,
and a descent-style algorithm that refines this estimate to accurately recover A∗.

3. Stage 1: Initialization

In this section, we present a neurally plausible algorithm that can produce a coarse initial
estimate of the ground truth A∗. We give a neural implementation of the algorithm in
Appendix G.

Our algorithm is an adaptation from the algorithm in Arora et al. (2015). The idea is to
estimate dictionary atoms in a greedy fashion by iteratively re-weighting the given samples.
The samples are re-scaled in a way that the weighted (sample) covariance matrix has the
dominant first singular value, and its corresponding eigenvector is close to one particular
atom with high probability. However, while this algorithm is conceptually very appealing,
it incurs severe computational costs in practice. More precisely, the overall running time is˜︁O(mn2p) in expectation, which is unrealistic for large-scale problems.

To overcome this burden, we leverage the double-sparsity assumption in our generative
model to obtain a more efficient approach. The high-level idea is to first estimate the
support of each column in the synthesis matrix A∗, and then obtain a coarse estimate of the
nonzero coefficients of each column based on knowledge of its support. The key ingredient of
our method is a novel spectral procedure that gives us an estimate of the column supports
purely from the observed samples. The full algorithm, that we call Truncated Pairwise
Reweighting, is listed in pseudocode form as Algorithm 1.

10
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Algorithm 1 Truncated Pairwise Reweighting

Initialize L = ∅
Randomly divide p samples into two disjoint sets P1 and P2 of sizes p1 and p2 respectively
While |L| < m. Pick u and v from P1 at random

For every l = 1, 2, . . . , n; compute

ˆ︁el =
1

p2

p2∑︂
i=1

⟨y(i), u⟩⟨y(i), v⟩(y(i)l )2

Sort (ˆ︁e1, ˆ︁e2, . . . , ˆ︁en) in descending order
If r′ ≤ r s.t ˆ︁e(r′) ≥ O(k/mr) and ˆ︁e(r′+1)/ˆ︁e(r′) < O∗(r/ log2 n)

Let ˆ︁R be set of the r′ largest entries of ˆ︁eˆ︂Mu,v = 1
p2

∑︁p2
i=1⟨y(i), u⟩⟨y(i), v⟩y

(i)ˆ︁R (y
(i)ˆ︁R )T

δ1, δ2 ← top singular values of ˆ︂Mu,v

z ˆ︁R ← top singular vector of ˆ︂Mu,v

If δ1 ≥ Ω(k/m) and δ2 < O∗(k/m log n)

If dist(±z, l) > 1/ log n for any l ∈ L

Update L = L ∪ {z}
Return A0 = (L1, . . . , Lm)

Let us provide some intuition of our algorithm. Fix a sample y = A∗x∗ + ε from the
available training set, and consider samples

u = A∗α + εu, v = A∗α′ + εv.

Now, consider the (very coarse) estimate for the sparse code of u with respect to A∗:

β = A∗Tu = A∗TA∗α + A∗T εu.

As long as A∗ is incoherent enough and εu is small, the estimate β behaves just like α, in
the sense that for each sample y:

⟨y, u⟩ ≈ ⟨x∗, β⟩ ≈ ⟨x∗, α⟩.

Moreover, the above inner products are large only if α and x∗ share some elements in their
supports; else, they are likely to be small. Likewise, the weight ⟨y, u⟩⟨y, v⟩ depends on
whether or not x∗ shares the support with both α and α′.

Now, suppose that we have a mechanism to isolate pairs u and v who share exactly one
atom among their sparse representations. Then by scaling each sample y with an increasing
function of ⟨y, u⟩⟨y, v⟩ and linearly adding the samples, we magnify the importance of the
samples that are aligned with that atom, and diminish the rest. The final direction can
be obtained via the top principal component of the reweighted samples and hence can be
used as a coarse estimate of the atom. This is exactly the approach adopted in Arora et al.
(2015). However, in our double-sparse coding setting, we know that the estimated atom

11
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should be sparse as well. Therefore, we can naturally perform an extra “sparsification”
step of the output. An extended algorithm and its correctness are provided in Appendix F.
However, as we discussed above, the computational complexity of the re-weighting step still
remains.

We overcome this obstacle by first identifying the locations of the nonzero entries in
each atom. Specifically, define the matrix:

Mu,v =
1

p2

p2∑︂
i=1

⟨y(i), u⟩⟨y(i), v⟩y(i)y(i)T .

Then, the diagonal entries of Mu,v reveals the support of the atom of A∗ shared among
u and v: the r-largest entries of Mu,v will correspond to the support we seek. Since the
desired direction remains unchanged in the r-dimensional subspace of its nonzero elements,
we can restrict our attention to this subspace, construct a reduced covariance matrix ˆ︂Mu,v,
and proceed as before. This truncation step alleviates the computational burden by a
significant amount; the running time is now ˜︁O(mnp), which improves the original by a
factor of n.

The success of the above procedure relies upon whether or not we can isolate pairs u and
v that share one dictionary atom. Fortunately, this can be done via checking the decay of
the singular values of the (reduced) covariance matrix. Here too, we show via our analysis
that the truncation step plays an important role. Overall, our proposed algorithm not
only accelerates the initialization in terms of running time, but also improves the sample
complexity over Arora et al. (2015). The performance of Algorithm 1 is described in the
following theorem, whose formal proof is deferred to Appendix B.

Theorem 4 Suppose that Assumptions B1-B4 hold and Assumptions A1-A3 satify with

µ = O∗(︁ √
n

k log3 n

)︁
and r = O∗(log n). When p1 = ˜︁Ω(m) and p2 = ˜︁Ω(mr), then with high

probability Algorithm 1 returns an initial estimate A0 whose columns share the same support
as A∗ and with (δ, 2)-nearness to A∗ with δ = O∗(1/ log n).

The limit on r arises from the minimum non-zero coefficient τ of A∗. Since the columns
of A∗ are standardized, τ should degenerate as r grows. In other words, it is getting harder
to distinguish the “signal” coefficients from zero as r grows with n. However, this limitation
can be relaxed when a better incoherence available, for example the orthonormal case. We
study this in Appendix E.

To provide some intuition about the working of the algorithm (and its proof), let us
analyze it in the case where we have access to infinite number of samples. This setting, of
course, is unrealistic. However, the analysis is much simpler and more transparent since we
can focus on expected values rather than empirical averages. Moreover, the analysis reveals
several key lemmas, which we will reuse extensively for proving Theorem 4. First, we give
some intuition behind the definition of the “scores”, ˆ︁el.
Lemma 1 Fix samples u and v and suppose that y = A∗x∗ + ε is a random sample inde-
pendent of u, v. The expected value of the score for the ℓth component of y is given by:

el ≜ E[⟨y, u⟩⟨y, v⟩y2l ] =
∑︂

i∈U∩V
qiciβiβ

′
iA

∗2
li + perturbation terms

12
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where qi = P[i ∈ S], qij = P[i, j ∈ S] and ci = E[x4i |i ∈ S]. Moreover, the perturbation
terms have absolute value at most O∗(k/m log n).

From Assumption B1, we know that qi = Θ(k/m), qij = Θ(k2/m2) and ci = Θ(1).
Besides, we will show later that |βi| ≈ |αi| = Ω(1) for i ∈ U , and |βi| = o(1) for i /∈ U .
Consider the first term E0 =

∑︁
i∈U∩V qiciβiβ

′
iA

∗2
li . Clearly, E0 = 0 if U ∩ V = ∅ or that

l does not belong to support of any atom in U ∩ V . On the contrary, as E0 ̸= 0 and
U ∩ V = {i} , then E0 = |qiciβiβ′

iA
∗2
li | ≥ Ω(τ2k/m) = Ω(k/mr) since |qiciβiβ′

i| ≥ Ω(k/m)
and |A∗

li| ≥ τ .

Therefore, Lemma 1 suggests that if u and v share a unique atom among their sparse
representations, and r is not too large, then we can indeed recover the correct support of
the shared atom. When this is the case, the expected scores corresponding to the nonzero
elements of the shared atom will dominate the remaining of the scores.

Now, given that we can isolate the support R of the corresponding atom, the remaining
questions are how best we can estimate its non-zero coefficients, and when u and v share a
unique elements in their supports. These issues are handled in the following lemmas.

Lemma 2 Suppose that u = A∗α + εu and v = A∗α′ + εv are two random samples. Let
U and V denote the supports of α and α′ respectively. R is the support of some atom of
interest. The truncated re-weighting matrix is formulated as

Mu,v ≜ E[⟨y, u⟩⟨y, v⟩yRyTR] =
∑︂

i∈U∩V
qiciβiβ

′
iA

∗
R,iA

∗T
R,i + perturbation terms

where the perturbation terms have norms at most O∗(k/m log n).

Using the same argument for bounding E0 in Lemma 1, we can see that M0 ≜ qiciβiβ
′
iA

∗
R,iA

∗T
R,i

has norm at least Ω(k/m) when u and v share a unique element i (∥A∗
R,i∥ = 1). According

to this lemma, the spectral norm of M0 dominates those of the other perturbation terms.
Thus, given R we can use the first singular vector of Mu,v as an estimate of A∗

•i.

Lemma 3 Under the setup of Theorem 4, suppose u = A∗α + εu and v = A∗α′ + εv are
two random samples with supports U and V respectively. R = supp(A∗

i ). If u and v share
the unique atom i, the first r largest entries of el is at least Ω(k/mr) and belong to R.
Moreover, the top singular vector of Mu,v is δ-close to A∗

R,i for O∗(1/ log n).

Proof The recovery of A∗
•i’s support directly follows Lemma 1. For the latter part, recall

from Lemma 2 that

Mu,v = qiciβiβ
′
iA

∗
R,iA

∗T
R,i + perturbation terms

The perturbation terms have norms bounded by O∗(k/m log n). On the other hand, the
first term is has norm at least Ω(k/m) since ∥A∗

R,i∥ = 1 for the correct support R and
|qiciβiβ′

i| ≥ Ω(k/m). Then using Wedin’s Theorem to Mu,v, we can conclude that the top
singular vector must be O∗(k/m log n)/Ω(k/m) = O∗(1/ log n) -close to A∗

R,i. ■
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Lemma 4 Under the setup of Theorem 4, suppose u = A∗α + εu and v = A∗α′ + εv are
two random samples with supports U and V respectively. If the top singular value of Mu,v

is at least Ω(k/m) and the second largest one is at most O∗(k/m log n), then u and v share
a unique dictionary element with high probability.

Proof The proof follows from that of Lemma 37 in Arora et al. (2015). The main idea is
to separate the possible cases of how u and v share support and to use Lemma 2 with the
bounded perturbation terms to conclude when u and v share exactly one. We note that due
to the condition where ˆ︁e(s) ≥ Ω(k/mr) and ˆ︁e(s+1)/ˆ︁e(s) ≤ O∗(r/ log n), it must be the case
that u and v share only one atom or share more than one atoms with the same support.
When their supports overlap more than one, then the first singular value cannot dominate
the second one, and hence it must not be the case. ■

Similar to (Arora et al., 2015), our initialization algorithm requires ˜︁O(m) iterations in
expectation to estimate all the atoms, hence the expected running time is ˜︁O(mnp). All the
proofs of Lemma 1 and 2 are deferred to Appendix B.

4. Stage 2: Descent

We now adapt the neural sparse coding approach of Arora et al. (2015) to obtain an improved
estimate of A∗. As mentioned earlier, at a high level the algorithm is akin to performing
approximate gradient descent. The insight is that within a small enough neighborhood (in
the sense of δ-closeness) of the true A∗, an estimate of the ground-truth code vectors, X∗,
can be constructed using a neurally plausible algorithm.

The innovation, in our case, is the double-sparsity model since we know a priori that
A∗ is itself sparse. Under sufficiently many samples, the support of A∗ can be deduced
from the initialization stage; therefore we perform an extra projection step in each iteration
of gradient descent. In this sense, our method is non-trivially different from Arora et al.
(2015). The full algorithm is presented as Algorithm 2.

As discussed in Section 2, convergence of noisy approximate gradient descent can be
achieved as long as ˆ︁gs is correlated-w.h.p. with the true solution. However, an analogous
convergence result for projected gradient descent does not exist in the literature. We fill
this gap via a careful analysis. Due to the projection, we only require the correlated-
w.h.p. property for part of ˆ︁gs (i.e., when it is restricted to some support set) with A∗. The
descent property is still achieved via Theorem 5. Due to various perturbation terms, ˆ︁g
is only a biased estimate of ∇AL(A,X); therefore, we can only refine the estimate of A∗

until the column-wise error is of order O(
√︁
k/n). The performance of Algorithm 2 can be

characterized via the following theorem.

Theorem 5 Suppose that the initial estimate A0 has the correct column supports and is
(δ, 2)-near to A∗ with δ = O∗(1/ log n). If Algorithm 2 is provided with p = ˜︁Ω(mr) fresh
samples at each step and η = Θ(m/k), then

E[∥As
•i −A∗

•i∥2] ≤ (1− ρ)s∥A0
•i −A∗

•i∥2 + O(
√︁
k/n)

for some 0 < ρ < 1/2 and for s = 1, 2, . . . , T . Consequently, As converges to A∗ geometri-
cally until column-wise error O(

√︁
k/n).
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Algorithm 2 Double-Sparse Coding Descent Algorithm

Initialize A0 is (δ, 2)-near to A∗. H = (hij)n×m where hij = 1 if i ∈ supp(A0
•j) and 0

otherwise.
Repeat for s = 0, 1, . . . , T

Decode: x(i) = thresholdC/2((A
s)T y(i)) for i = 1, 2, . . . , p

Update: As+1 = PH(As − ηˆ︁gs) = As − ηPH(ˆ︁gs)
where ˆ︁gs = 1

p

∑︁p
i=1(A

sx(i) − y(i))sgn(x(i))T and PH(G) = H ◦G

We defer the full proof of Theorem 5 to Section D. In this section, we take a step towards
understanding the algorithm by analyzing ˆ︁gs in the infinite sample case, which is equivalent
to its expectation gs ≜ E[(Asx − y)sgn(x)T ]. We establish the (α, β, γs)-correlation of a
truncated version of gs•i with A∗

•i to obtain the descent in Theorem 6 for the infinite sample
case.

Theorem 6 Suppose that the initial estimate A0 has the correct column supports and is
(δ, 2)-near to A∗. If Algorithm 2 is provided with infinite number of samples at each step
and η = Θ(m/k), then

∥As+1
•i −A∗

•i∥2 ≤ (1− ρ)∥As
•i −A∗

•i∥2 + O
(︁
k2/n2

)︁
for some 0 < ρ < 1/2 and for s = 1, 2, . . . , T . Consequently, it converges to A∗ geometrically
until column-wise error is O(k/n).

Note that the better error O(k2/n2) is due to the fact that infinitely many samples are
given. The term O(

√︁
k/n) in Theorem 5 is a trade-off between the accuracy and the sample

complexity of the algorithm. The proof of this theorem composes of two steps with two
main results: 1) an explicit form of gs (Lemma 5); 2) (α, β, γs)-correlation of column-wise
gs with A∗ (Lemma 6). The proof of those lemmas are deferred to Appendix C. Since the
correlation primarily relies on the (δ, 2)-nearness of As to A∗ that is provided initially and
maintained at each step, then we need to argue that the nearness is preserved after each
step.

Lemma 5 Suppose that the initial estimate A0 has the correct column supports and is
(δ, 2)-near to A∗. The column-wise update has the form gsR,i = piqi(λ

s
iA

s
R,i −A∗

R,i + ξsi ± ζ)
where R = supp(As

•i), λ
s
i = ⟨As

•i, A
∗
•i⟩ and

ξsi = As
R,−idiag(qij)(A

s
•−i)

TA∗
•i/qi.

Moreover, ξi has norm bounded by O(k/n) for δ = O∗(1/ log n) and ζ is negligible.

We underline that the correct support of As allows us to obtain the closed-form expression
of gsRi,i

in terms of As
•i and A∗

•i. Likewise, the gradient form suggests that gs•i is almost equal
to piqi(A

s
•i−A∗

•i) (since λs
i ≈ 1), which directs to the desired solution A∗

•i. With Lemma 5,
we will prove the (α, β, γs)-correlation of the approximate gradient to each column A∗

•i and
the nearness of each new update to the true solution A∗.
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4.1 (α, β, γs)-Correlation

Lemma 6 Suppose that As to be (δ, 2)-near to A∗ and R = supp(A∗
•i), then 2gsR,i is

(α, 1/2α, ϵ2/α)-correlated with A∗
R,i; that is

⟨2gsR,i, A
s
R,i −A∗

R,i⟩ ≥ α∥As
R,i −A∗

R,i∥2 + 1/(2α)∥gsR,i∥2 − ϵ2/α.

where δ = O∗(1/ log n) and ϵ = O
(︁

k2

mn

)︁
. Futhermore, the descent is achieved by

∥As+1
•i −A∗

•i∥2 ≤ (1− 2αη)s∥A0
•i −A∗

•i∥2 + ηϵ2/α.

Proof Throughout the proof, we omit the superscript s for simplicity and denote 2α = piqi.
First, we rewrite gs•i as a combination of the true direction As

•i−A∗
•i and a term with small

norm:

gR,i = 2α(AR,i −A∗
R,i) + v, (2)

where v = 2α[(λi − 1)A•i + ϵi] with norm bounded. In fact, since A•i is δ-close to A∗
•i,

and both have unit norm, then ∥2α(λi − 1)A•i∥ = α∥A•i − A∗
•i∥2 ≤ α∥A•i − A∗

•i∥ and
∥ξi∥ ≤ O(k/n) from the inequality (9). Therefore,

∥v∥ = ∥2α(λi − 1)AR,i + 2αξi∥ ≤ α∥AR,i −A∗
R,i∥+ ϵ

where ϵ = O(k2/mn). Now, we make use of (2) to show the first part of Lemma 6:

⟨2gR,i, AR,i −A∗
R,i⟩ = 4α∥AR,i −A∗

R,i∥2 + ⟨2v,AR,i −A∗
R,i⟩. (3)

We want to lower bound the inner product term with respect to ∥gRi,i∥2 and ∥AR,i−A∗
R,i∥2.

Effectively, from (2)

4α⟨v,A•i −A∗
•i⟩ = ∥gR,i∥2 − 4α2∥AR,i −A∗

R,i∥2 − ∥v∥2

≥ ∥gR,i∥2 − 6α2∥AR,i −A∗
R,i∥2 − 2ϵ2, (4)

where the last step is due to Cauchy-Schwarz inequality: ∥v∥2 ≤ 2(α2∥AR,i −A∗
R,i∥2 + ϵ2).

Substitute 2⟨v,A•i −A∗
•i⟩ in (3) for the right hand side of (4), we get the first result:

⟨2gR,i, AR,i −A∗
R,i⟩ ≥ α∥AR,i −A∗

R,i∥2 +
1

2α
∥gR,i∥2 −

ϵ2

α
.

The second part is directly followed from Theorem 1. Moreover, we have pi = Θ(k/m)
and qi = Θ(1), then α = Θ(k/m), β = Θ(m/k) and γs = O(k3/mn2). Then gsR,i is

(Ω(k/m),Ω(m/k), O(k3/mn2))-correlated with the true solution A∗
R,i. □

Proof [Proof of Theorem 6] The descent in Theorem 6 directly follows from the above
lemma. Next, we will establish the nearness for the update at step s:

4.2 Nearness

Lemma 7 Suppose that As is (δ, 2)-near to A∗, then ∥As+1 −A∗∥ ≤ 2∥A∗∥
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Figure 1: (top) The performance of four methods on three metrics (recovery rate, reconstruction
error and running time (in seconds)) in sample size in the noiseless case. (bottom) The
same metrics are measured for the noisy case.
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Figure 2: The performance of our method in the noiseless case as the sparsity k varies.

Proof [Proof] From Lemma 5 we have gs•i = piqi(λiA
s
•i −A∗

•i) + A•−idiag(qij)A
T
•−iA

∗
•i ± ζ.

Denote R̄ = [n]\R, then it is obvious that gs
R̄,i

= AR̄,−idiag(qij)A
T
•−iA

∗
•i ± ζ is bounded by

O(k2/m2). Then we follows the proof of Lemma 24 in (Arora et al., 2015) for the nearness
with full gs = gsR,i + gs

R̄,i
to finish the proof for this lemma. ■

In sum, we have shown the descent property of Algorithm 2 in the infinite sample case.
The study of the concentration of ˆ︁gs around its mean to the sample complexity is provided
in Section D. In the next section, we corroborate our theory by some numerical results on
synthetic data.
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Figure 3: The performance of our method in the noiseless case as the thresholding parameter C
varies.

5. Empirical Study

We compare our method with three different methods for both standard sparse and double-
sparse coding. For a baseline, we implement the algorithm proposed in Arora et al. (2015),
which currently is the most theoretically sound approach for provable sparse coding. How-
ever, since their approach is not directly designed for the double-sparsity model, we im-
plement a modified version that performs a hard thresholding (HT)-based post-processing
step in the initialization and learning procedures (which we dub Arora + HT ). The final
comparison is with Trainlets, the proposed approach by Sulam et al. (2016).

We generate a synthetic training dataset according to the model described in Section
2. The base dictionary Φ is the identity matrix of size n = 64, and the square synthesis
matrix A∗ has a special block structure with 32 blocks. Each block is of size 2 × 2 and of
form [1 1; 1 − 1] (i.e., the column sparsity of A∗ is r = 2). The support of x∗ is drawn
uniformly over all 6-dimensional subsets of [m], and the nonzero coefficients are randomly
set to ±1 with equal probability. In our simulations with noise, we add Gaussian noise ε with
entrywise variance σ2

ε = 0.01 to each of those above samples. For all the approaches except
Trainlets, we use T = 2000 iterations for the initialization procedure, and set the number
of steps in the descent stage to 25. Since Trainlets does not have a specified initialization
procedure, we initialize it with a random Gaussian matrix upon which column-wise sparse
thresholding is then performed. The learning step of Trainlets2 is executed for 50 iterations,
which tolerates its initialization deficiency. For each Monte Carlo trial, we uniformly draw
p samples, feed these samples to the four different algorithms, and observe their ability to
reconstruct A∗. Matlab implementation of our algorithms is available online3.

5.1 Comparison with Other Approaches

We evaluate these approaches on three metrics as a function of the number of available
samples: (i) fraction of trials in which each algorithm successfully recovers the ground truth
A∗; (ii) reconstruction error; and (iii) running time (in seconds). The synthesis matrix is

2. We utilize Trainlets’s implementation provided at http://jsulam.cswp.cs.technion.ac.il/home/software/.
3. https://github.com/thanh-isu/double-sparse-coding
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said to be “successfully recovered” if the Frobenius norm of the difference between the
estimate ˆ︁A and the ground truth A∗ is smaller than a threshold which is set to 10−4 in the
noiseless case, and to 0.5 in the other. All three metrics are averaged over 100 Monte Carlo
simulations. As discussed above, the Frobenius norm is only meaningful under a suitable
permutation and sign flip transformation linking ˆ︁A and A∗. We estimate this transformation
using a simple maximum weight matching algorithm. Specifically, we construct a weighted
bipartite graph with nodes representing columns of A∗ and ˆ︁A and adjacency matrix defined
as G = |A∗T ˆ︁A|, where |·| is taken element-wise. We compute the optimal matching using
the Hungarian algorithm, and then estimate the sign flips by looking at the sign of the inner
products between the matched columns.

The results of our experiments are shown in Figure 1 with the top and bottom rows
respectively for the noiseless and noisy cases. The two leftmost figures suggest that all
algorithms exhibit a “phase transition” in sample complexity that occurs in the range of
500-2000 samples. In the noiseless case, our method achieves the phase transition with
the fewest number of samples. In the noisy case, our method nearly matches the best
sample complexity performance (next to Trainlets, which is a heuristic and computationally
expensive). Our method achieves the best performance in terms of (wall-clock) running time
in all cases.

5.2 Robustness to Data Assumptions

In this last experiement, we show that our approach is robust to the data assumptions. We
numerically study how the initialization and descent algorithms behave when the sparsity
k and the thresholding parameter C slightly vary around the groundtruth values. Since our
focus is on the recovery property of our approach, we assume that the dictionary size m
and sparsity r are known a priori and do not experiement on them.

The results are shown in Figures 2 and 3. When the sparsity and the minimum coefficient
are around the true setting, kmodel = 6 and Cmodel = 1.0, our algorithm is still able recover
the dictionary perfectly. When these parameters are set more extreme, the phase transition
is not obvious but is gradually achieved with more and more samples.

6. Conclusion

In this paper, we have addressed an open theoretical question on learning sparse dictionaries
under a special type of generative model. Our proposed algorithm consists of a novel
initialization step followed by a descent-style step, both are able to take advantage of the
sparse structure. We rigorously demonstrate its efficacy in both sample- and computation-
complexity over existing heuristics as well as provable approaches for double-sparse and
regular sparse coding. This results in the first known provable approach for double-sparse
coding problem with statistical and algorithmic guarantees. Besides, we also show three
benefits of our approach: neural plausibility, robustness to noise and practical usefulness
via the numerical experiments.

Nevertheless, several fundamental questions regarding our approach remain. First, our
initialization method (in the overcomplete case) achieves its theoretical guarantees under
fairly stringent limitations on the sparsity level r. This arises due to our reweighted spectral
initialization strategy, and it is an open question whether a better initialization strategy
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exists (or whether these types of initialization are required at all). Second, our analysis
holds for complete (fixed) bases Φ, and it remains open to study the setting where Φ
is over-complete. Finally, understanding the reasons behind the very promising practical
performance of methods based on heuristics, such as Trainlets, on real-world data remains
a very challenging open problem.
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Appendix Organization We organize the appendix as follows: we prove the two key
lemmas for Theorem 4 of the initialization algorithm 1 in Appendix B. In Appendix C, we
prove the result stated in Theorem 5 for the infinite-sample case. The sample complexity
results for both stages are proved in Appendix D.

Additionally, we prove some extended results from Arora et al. (2015) and for some
special cases in Appendices E and F. The final section details the neural implementation of
our approach.

Appendix A. Useful Result

We start our proof with the following claim, which we will use throughout.

Claim 1 (Maximal row ℓ1-norm) Given that ∥A∗∥2F = m and ∥A∗∥ = O(
√︁
m/n), then

∥A∗T ∥1,2 = Θ(
√︁
m/n).

Proof Recall the definition of the operator norm:

∥A∗T ∥1,2 = sup
x ̸=0

∥ATx∥
∥x∥1

≤ sup
x ̸=0

∥ATx∥
∥x∥

= ∥A∗T ∥ = O(
√︁

m/n).

Since ∥A∗∥2F = m, ∥A∗T ∥1,2 ≥ ∥A∗∥F /
√
n =

√︁
m/n. Combining with the above, we have

∥A∗T ∥1,2 = Θ(
√︁

m/n). ■
Along with Assumptions A1 and A3, the above claim implies the number of nonzero

entries in each row is O(r). This Claim is an important ingredient in our analysis of our
initialization algorithm shown in Section 3.

Appendix B. Analysis of Initialization Algorithm

B.1 Proof of Lemma 1

Recall some important notations: y = A∗x∗ + ε and two samples

u = A∗α + εu, v = A∗α′ + εv.

Also, recall the very coarse estimate for the sparse code of u with respect to A∗:

β = A∗Tu = A∗TA∗α + A∗T εu.

We split the proof of Lemma 1 into three steps: 1) we first establish useful properties of β
with respect to α; 2) we then explicitly derive el in terms of the generative model parameters
and β; and 3) we finally bound the error terms in E based on the first result and appropriate
assumptions.

Claim 2 In the generative model, ∥x∗∥ ≤ ˜︁O(
√
k) and ∥ε∥ ≤ ˜︁O(σε

√
n) with high probability.

Proof The claim directly follows from the fact that x∗ is a k-sparse random vector whose
nonzero entries are independent sub-Gaussian with variance 1. Meanwhile, ε has n inde-
pendent Gaussian entries of variance σ2

ε . □
Despite its simplicity, this claim will be used in many proofs throughout the paper. Note

also that in this section we will calculate the expectation over y and often refer probabilistic
bounds (w.h.p.) under the randomness of u and v.
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Claim 3 Suppose that u = A∗α+ εu is a random sample and U = supp(α). Let β = A∗Tu,
then, w.h.p., we have (a) |βi−αi| ≤ µk logn√

n
+σε log n for each i and (b) ∥β∥ ≤ ˜︁O(

√
k+σε

√
n).

Proof The proof mostly follows from Claim 36 of Arora et al. (2015), with an additional
consideration of the error εu. Write W = U\{i} and observe that

|βi − αi| = |A∗T
•i A

∗
•WαW + A∗T

•i εu| ≤ |⟨A∗T
•WA∗

•i, αW ⟩|+ |⟨A∗
•i, εu⟩|

Since A∗ is µ-incoherence, then ∥A∗T
•i A

∗
•W ∥ ≤ µ

√︁
k/n. Moreover, αW has k−1 independent

sub-Gaussian entries of variance 1, therefore |⟨A∗T
•WA∗

•i, αW ⟩| ≤ µk logn√
n

with high probability.

Also recall that εu has independent Gaussian entries of variance σ2
ε , then A∗T

•i εu is Gaus-
sian with the same variance (∥A∗

•i∥ = 1). Hence |A∗T
•i ε| ≤ σε log n with high probability.

Consequently, |βi − αi| ≤ µk logn√
n

+ σε log n, which is the first part of the claim.

Next, in order to bound ∥β∥, we express β as

∥β∥ = ∥A∗TA∗
•UαU + A∗T εu∥ ≤ ∥A∗∥∥A∗

•U∥∥αU∥+ ∥A∗∥∥εu∥

Using Claim 2 to get ∥αU∥ ≤ ˜︁O(
√
k) and ∥εu∥ ≤ ˜︁O(σε

√
n) w.h.p., and further noticing that

∥A∗
•U∥ ≤ ∥A∗∥ ≤ O(1) , we complete the proof for the second part. ■
Claim 3 suggests that the difference between βi and αi is bounded above by O∗(1/ log2 n)

w.h.p. if µ = O∗(
√
n

k log3 n
). Therefore, w.h.p., C − o(1) ≤ |βi| ≤ |αi| + o(1) ≤ O(logm) for

i ∈ U and |βi| ≤ O∗(1/ log2 n) otherwise. On the other hand, under Assumption B4,
∥β∥ ≤ ˜︁O(

√
k) w.h.p. We will use these results multiple times in the next few proofs.

Proof [Proof of Lemma 1] We decompose dl into small parts so that the stochastic model
D is made use.

el = E[⟨y, u⟩⟨y, v⟩y2l ] = E[⟨A∗x∗ + ε, u⟩⟨A∗x∗ + ε, v⟩(⟨A∗
l·, x

∗⟩+ εl)
2]

= E
[︁{︁
⟨x∗, β⟩⟨x∗, β′⟩+ x∗T (βvT + β′uT )ε + uT εεT v

}︁{︁
⟨A∗

l•, x
∗⟩2 + 2⟨A∗

l•, x
∗⟩εl + ε2l

}︁]︁
= E1 + E2 + · · ·+ E9

where the terms are

E1 = E[⟨x∗, β⟩⟨x∗, β′⟩⟨A∗
l•, x

∗⟩2]
E2 = 2E[⟨x∗, β⟩⟨x∗, β′⟩⟨A∗

l•, x
∗⟩εl]

E3 = E[⟨x∗, β⟩⟨x∗, β′⟩ε2l ]
E4 = E

[︁
⟨A∗

l·, x
∗⟩2x∗T (βvT + β′uT )ε

]︁
E5 = E

[︁
⟨A∗

l·, x
∗⟩x∗T (βvT + β′uT )εεl

]︁
E6 = E

[︁
(βvT + β′uT )εε2l

]︁
E7 = E[uT εεT v⟨A∗

l•, x
∗⟩2]

E8 = 2E[uT εεT v⟨A∗
l•, x

∗⟩εl]
E9 = E[uT εεT vε2l ]

(5)

22



Provably Accurate Double-Sparse Coding

Because x∗ and ε are independent and zero-mean, E2 and E4 are clearly zero. Moreover,

E6 = (βvT + β′uT )E[εε2l ] = 0

due to the fact that E[εjε
2
l ] = 0, for j ̸= l, and E[ε3l ] = 0. Also,

E8 = A∗T
l• E[x∗]E

[︁
uT εεT vεl

]︁
= 0.

We bound the remaining terms separately in the following claims.

Claim 4 In the decomposition (5), E1 is of the form

E1 =
∑︂

i∈U∩V
qiciβiβ

′
iA

∗2
li +

∑︂
i/∈U∩V

qiciβiβ
′
iA

∗2
li +

∑︂
j ̸=i

qij(βiβ
′
iA

∗2
lj + 2βiβ

′
jA

∗
liA

∗
lj)

where all those terms except
∑︁

i∈U∩V qiciβiβ
′
iA

∗2
li have magnitude at most O∗(k/m log2 n)

w.h.p.

Proof Using the generative model in Assumptions B1-B4, we have

E1 = E[⟨x∗, β⟩⟨x∗, β′⟩⟨A∗
l•, x

∗⟩2]

= ES

[︁
Ex∗|S [

∑︂
i∈S

βix
∗
i

∑︂
i∈S

β′
ix

∗
i

(︁∑︂
i∈S

A∗
lix

∗
i

)︁2
]
]︁

=
∑︂
i∈[m]

qiciβiβ
′
iA

∗2
li +

∑︂
i,j∈[m],j ̸=i

qij(βiβ
′
iA

∗2
lj + 2βiβ

′
jA

∗
liA

∗
lj)

=
∑︂

i∈U∩V
qiciβiβ

′
iA

∗2
li +

∑︂
i/∈U∩V

qiciβiβ
′
iA

∗2
li +

∑︂
j ̸=i

qij(βiβ
′
iA

∗2
lj + 2βiβ

′
jA

∗
liA

∗
lj),

where we have used the qi = P[i ∈ S], qij = P[i, j ∈ S] and ci = E[x4i |i ∈ S] and Assumptions
B1-B4. We now prove that the last three terms are upper bounded by O∗(k/m log n). The
key observation is that all these terms typically involve a quadratic form of the l-th row
A∗

l• whose norm is bounded by O(1) (by Claim 1 and Assumption A4). Moreover, |βiβ′
i|

is relatively small for i /∈ U ∩ V while qij = Θ(k2/m2). For the second term, we apply the
Claim 3 for i ∈ [m]\(U ∩ V ) to bound |βiβ′

i| . Assume αi = 0 and α′
i ̸= 0, then with high

probability

|βiβ′
i| ≤ |(βi − αi)(β

′
i − α′

i)|+ |βiα′
i| ≤ O∗(1/ log n)

Using the bound qici = Θ(k/m), we have w.h.p.,⃓⃓⃓ ∑︂
i/∈U∩V

qiciβiβ
′
iA

∗2
li

⃓⃓⃓
≤ max

i
|qiciβiβ′

i|
∑︂

i/∈U∩V

A∗2
li ≤ max

i
|qiciβiβ′

i|∥A∗∥21,2 ≤ O∗(k/m log n).

For the third term, we make use of the bounds on ∥β∥ and ∥β′∥ from the previous claim
where ∥β∥∥β′∥ ≤ ˜︁O(k) w.h.p., and on qij = Θ(k2/m2). More precisely, w.h.p.,⃓⃓⃓∑︂

j ̸=i

qijβiβ
′
iA

∗2
lj

⃓⃓⃓
=

⃓⃓⃓∑︂
i

βiβ
′
i

∑︂
j ̸=i

qijA
∗2
lj

⃓⃓⃓
≤

∑︂
i

|βiβ′
i|
(︁∑︂
j ̸=i

qijA
∗2
lj

)︁
≤ (max

i ̸=j
qij)

∑︂
i

|βiβ′
i|
(︂∑︂

j

A∗2
lj

)︂
≤ (max

i ̸=j
qij)∥β∥∥β′∥∥A∗∥21,2 ≤ ˜︁O(k3/m2),
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where the second last inequality follows from the Cauchy-Schwarz inequality. For the last
term, we write it in a matrix form as

∑︁
j ̸=i qijβiβ

′
jA

∗
liA

∗
lj = A∗T

l• QβA
∗
l• where (Qβ)ij = qijβiβ

′
j

for i ̸= j and (Qβ)ij = 0 for i = j. Then

|A∗T
l• QβA

∗
l•| ≤ ∥Qβ∥∥A∗

l•∥2 ≤ ∥Qβ∥F ∥A∗∥21,2,
where ∥Qβ∥2F =

∑︁
i ̸=j q

2
ijβ

2
i (β′

j)
2 ≤ (maxi ̸=j q

2
ij)

∑︁
i β

2
i

∑︁
j(β

′
j)

2 ≤ (maxi ̸=j q
2
ij)∥β∥2∥β′∥2.

Ultimately, ⃓⃓⃓∑︂
j ̸=i

qijβiβ
′
jA

∗
liA

∗
lj

⃓⃓⃓
≤ (max

i ̸=j
qij)∥β∥∥β′∥∥A∗∥21,2 ≤ ˜︁O(k3/m2).

Under Assumption k = O∗(
√
n

logn), then ˜︁O(k3/m2) ≤ O∗(k/m log2 n). As a result, the two
terms above are bounded by the same amount O∗(k/m log n) w.h.p., so we complete the
proof of the claim. ■

Claim 5 In the decomposition (5), |E3|, |E5|, |E7| and |E9| are at most O∗(k/m log2 n).

Proof Recall that E[x2i |S] = 1 and qi = P[i ∈ S] = Θ(k/m) for S = supp(x∗), then

E3 = E[⟨x∗, β⟩⟨x∗, β′⟩ε2l ] = σ2
εES

[︁
Ex∗|S [

∑︂
i,j∈S

βiβ
′
jx

∗
ix

∗
j ]
]︁

= σ2
εES [

∑︂
i∈S

βiβ
′
i] =

∑︂
i

σ2
εqiβiβ

′
i

Denote Q = diag(q1, q2, . . . , qm), then |E3| = |σ2
ε⟨Qβ, β′⟩| ≤ σ2

ε∥Q∥∥β∥∥β′∥ ≤ ˜︁O(σ2
εk

2/m) =˜︁O(k3/mn) where we have used ∥β∥ ≤ ˜︁O(
√
k) w.h.p. and σε ≤ O(1/

√
n). For convenience,

we handle the seventh term before E5:

E7 = E[uT εεT v⟨A∗
l•, x

∗⟩2] = E[⟨A∗
l•, x

∗⟩2]uTE[εεT ]v =
∑︂
i

σ2
ε⟨u, v⟩qiA2

li = σ2
ε⟨u, v⟩AT

l•QAl•

To bound this term, we use Claim 9 in Appendix D to have ∥u∥ = ∥A∗α + εu∥ ≤ ˜︁O(
√
k)

w.h.p. and ⟨u, v⟩ ≤ ˜︁O(
√
k) w.h.p. Consequently, |E7| ≤ σ2

ε∥Q∥∥Al•∥2|⟨u, v⟩| ≤ ˜︁O(k2/mn)
because ∥Al•∥2 ≤ O(m/n) and σε ≤ O(1/

√
n). Now, the firth term E5 is expressed as

follows

E5 = E
[︁
⟨A∗

l·, x
∗⟩x∗T (βvT + β′uT )εεl

]︁
= A∗T

l• E
[︁
x∗x∗T

]︁
(βvT + β′uT )E[εεl]

= σ2
εA

∗T
l• Q(vlβ + ulβ

′)

Observe that |E5| ≤ σ2
ε∥A∗T

l• ∥∥Q(vlβ + ulβ
′)∥ ≤ σ2

ε∥A∗T
l• ∥∥Q∥∥vlβ + ulβ

′∥ and that ∥vlβ +

ulβ
′∥ ≤ 2∥u∥∥β∥ ≤ ˜︁O(k) w.h.p. using the result ∥u∥ ≤ ˜︁O(k) and ∥β∥ ≤ ˜︁O(k) from Claim

3, then E5 bounded by ˜︁O(k2/mn).
The last term

E9 = E[uT εεT vε2l ] = uTE
[︁
εεT ε2l

]︁
v = 9σ4

ε⟨u, v⟩
because the independent entries of ε and E[ε4l ] = 9σ4

ε . Therefore, |E9| ≤ 9σ4
ε∥u∥∥v∥ ≤˜︁O(k2/n2). Since m = O(n) and k ≤ O∗(

√
n

logn), we obtain the same bound O∗(k/m log2 n)
for |E3|, |E5|, |E7| and |E9|, and conclude the proof of the claim. ■

Combining the bounds from Claim 4, 5 for every single term in (5), we finish the proof
for Lemma 1. □
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B.2 Proof of Lemma 2

We prove this lemma by using the same strategy used to prove Lemma 1.

Mu,v ≜ E[⟨y, u⟩⟨y, v⟩yRyTR]

= E[⟨A∗x∗ + ε, u⟩⟨A∗x∗ + ε, v⟩(A∗
R•x

∗ + εR)(A∗
R•x

∗ + εR)T ]

= E
[︁{︁
⟨x∗, β⟩⟨x∗, β′⟩+ x∗T (βvT + β′uT )ε + uT εεT v

}︁{︁
A∗

R•x
∗x∗TA∗T

R• + A∗
R•x

∗εTR + εRx
∗TA∗T

R• + εRε
T
R

}︁]︁
= M1 + · · ·+ M8,

in which only nontrivial terms are kept in place, including

M1 = E[⟨x∗, β⟩⟨x∗, β′⟩A∗
R•x

∗x∗TA∗T
R•]

M2 = E[⟨x∗, β⟩⟨x∗, β′⟩εRεTR]

M3 = E[x∗T (βvT + β′uT )εA∗
R•x

∗εTR]

M4 = E[x∗T (βvT + β′uT )εεRx
∗TA∗T

R•]

M5 = E[uT εεT vA∗
R•x

∗x∗TA∗T
R•]

M6 = E[uT εεT vA∗
R•x

∗εTR]

M7 = E[uT εεT vεTRx
∗TA∗T

R•]

M8 = E[uT εεT vεRε
T
R]

(6)

By swapping inner product terms and taking advantage of the independence, we can show
that M6 = E[A∗

R•x
∗uT εεT vεTR] = 0 and M7 = E[uT εεT vεTRx

∗TA∗T
R•] = 0. The remaining are

bounded in the next claims.

Claim 6 In the decomposition (6),

M1 =
∑︂

i∈U∩V
qiciβiβ

′
iA

∗
R,iA

∗T
R,i + E′

1 + E′
2 + E′

3

where E′
1 =

∑︁
i/∈U∩V qiciβiβ

′
iA

∗
R,iA

∗T
R,i, E

′
2 =

∑︁
i ̸=j qijβiβ

′
iA

∗
R,jA

∗T
R,j and E′

3 =
∑︁

i ̸=j qij(βiA
∗
R,iβ

′
jA

∗T
R,j+

β′
iA

∗
R,iβjA

∗T
R,j) have norms bounded by O∗(k/m log n).

Proof The expression of M1 is obtained in the same way as E1 is derived in the proof of
Lemma 1. To prove the claim, we bound all the terms with respect to the spectral norm of
A∗

R• and make use of Assumption A4 to find the exact upper bound.
For the first term E′

1, rewrite E′
1 = A∗

R,SD1A
∗T
R,S where S = [m]\(U ∩V ) and D1 is a di-

agonal matrix whose entries are qiciβiβ
′
i. Clearly, ∥D1∥ ≤ maxi∈S |qiciβiβ′

i| ≤ O∗(k/m log n)
as shown in Claim 4, then

∥E′
1∥ ≤ max

i∈S
|qiciβiβ′

i|∥A∗
R,S∥2 ≤ max

i∈S
|qiciβiβ′

i|∥A∗
R•∥2 ≤ O∗(k/m log n)

where ∥A∗
R,S∥ ≤ ∥A∗

R•∥ ≤ O(1). The second term E′
2 is a sum of positive semidefinite

matrices, and ∥β∥ ≤ O(k log n), then

E′
2 =

∑︂
i ̸=j

qijβiβ
′
iA

∗
R,jA

∗T
R,j ⪯ max

i ̸=j
qij

(︂∑︂
i

βiβ
′
i

)︂(︂∑︂
j

A∗
R,jA

∗T
R,j

)︂
⪯ (max

i ̸=j
qij)∥β∥∥β′∥A∗

R•A
∗T
R•
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which implies that ∥E′
2∥ ≤ (maxi ̸=j qij)∥β∥∥β′∥∥A∗

R•∥2 ≤ ˜︁O(k3/m2). Observe that E′
3 has

the same form as the last term in Claim 4, which is E′
3 = A∗T

R•QβA
∗
R•. Then

∥E′
3∥ ≤ ∥Qβ∥∥A∗

R•∥2 ≤ (max
i ̸=j

qij)∥β∥∥β′∥∥A∗
R•∥2 ≤ ˜︁O(k3/m2)

By Claim 3, we have ∥β∥ and ∥β′∥ are bounded by O(
√
k log n), and note that k ≤

O∗(
√
n/ log n), then we complete the proof for Lemma 6. ■

Claim 7 In the decomposition (6), M2, M3, M4, M5 and M8 have norms bounded by
O∗(k/m log n).

Proof Recall the definition of Q in Claim 5 and use the fact that E[x∗x∗T ] = Q, we can
get M2 = E[⟨x∗, β⟩⟨x∗, β′⟩εRεTR] =

∑︁
i σ

2
εqiβiβ

′
iIr. Then, ∥M2∥ ≤ σ2

ε maxi qi∥β∥∥β′∥ ≤
O(σ2

εk
2 log2 n/m).

The next three terms all involve A∗
R• whose norm is bounded according to Assumption

A4. Specifically,

M3 = E[x∗T (βvT + β′uT )εA∗
R•x

∗εTR] = E[A∗
R•x

∗x∗T (βvT + β′uT )εεTR]

= A∗
R•E[x∗x∗T ](βvT + β′uT )E[εεTR]

= A∗
R•Q(βvT + β′uT )E[εεTR],

and

M4 = E[x∗T (βvT + β′uT )εεRx
∗TA∗T

R•] = E[εRε
T (vβT + uβ′T )x∗x∗TA∗T

R•]

= E[εRε
T ](vβT + uβ′T )E[x∗x∗T ]A∗T

R•

= E[εRε
T ](vβT + uβ′T )QA∗T

R•,

and the fifth term M5 = E[uT εεT vA∗
R•x

∗x∗TA∗T
R•] = σ2

εu
T vA∗

R•E[x∗x∗T ]A∗T
R• = σ2

εu
T vA∗

R•QA∗T
R•.

We already have ∥E[εεTR]∥ = σ2
ε , ∥Q∥ ≤ O(k/m) and |uT v| ≤ ˜︁O(k) (proof of Claim 9), then

the remaining work is to bound ∥βvT +β′uT ∥, then the bound of vβT +uβ′T directly follows.
We have ∥βvT ∥ = ∥A∗uvT ∥ ≤ ∥A∗∥∥u∥∥v∥ ≤ ˜︁O(k). Therefore, all three terms M3, M4 and
M5 are bounded in norm by ˜︁O(σ2

εk
2/m) ≤ ˜︁O(k3/mn).

The remaining term is

M8 = E[uT εεT vεRε
T
R] = E[

(︁∑︂
i,j

uivjεiεj
)︁
εRε

T
R]

= E[
(︁∑︂
i∈R

uiviε
2
i εRε

T
R

)︁
] + E[

(︁∑︂
i ̸=j

uivjεiεj
)︁
εRε

T
R]

= σ4
εuRv

T
R

where uR = A∗
R•α + (εu)R and vR = A∗

R•α
′ + (εv)R. We can see that ∥uR∥ ≤ ∥A∗

R•∥∥α∥+

∥(εu)R∥ ≤ ˜︁O(
√
k). Therefore, ∥M8∥ ≤ ˜︁O(σ4

εk) = ˜︁O(k3/n2). Since m = O(n) and k ≤
O∗(

√
n

logn), then we can bound all the above terms by O∗(k/m log n) and finish the proof of
Claim 7. ■

Combine the results of Claim 6 and 7, we complete the proof of Lemma 2.
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Appendix C. Analysis of Main Algorithm

C.1 Simple Encoding

We can see that (Asx−y)sgn(x)T is random over y and x that is obtained from the encoding
step. We follow (Arora et al., 2015) to derive the closed form of gs = E[(Asx− y)sgn(x)T ]
by proving that the encoding recovers the sign of x∗ with high probability as long as As is
close enough to A∗.

Lemma 8 Assume that As is δ-close to A∗ for δ = O(r/n log n) and µ ≤
√
n

2k , and k ≥
Ω(logm) then with high probability over random samples y = A∗x∗ + ε

sgn(thresholdC/2

(︁
(As)T y

)︁
= sgn(x∗) (7)

Proof [Proof of Lemma 8] We follow the same proof strategy from (Arora et al., 2015)
(Lemmas 16 and 17) to prove a more general version in which the noise ε is taken into
account. Write S = supp(x∗) and skip the superscript s on As for the readability. What
we need is to show S = {i ∈ [m] : ⟨A•i, y⟩ ≥ C/2} and then sgn(⟨As

•i, y⟩) = sgn(x∗i ) for
each i ∈ S with high probability. Following the same argument of (Arora et al., 2015), we
prove in below a stronger statement that, even conditioned on the support S, S = {i ∈
[m] : |⟨A•i, y⟩| ≥ C/2} with high probability.

Rewrite

⟨A•i, y⟩ = ⟨A•i, A
∗x∗ + ε⟩ = ⟨A•i, A

∗
•i⟩x∗i +

∑︂
j ̸=i

⟨A•i, A
∗
•j⟩x∗j + ⟨A•i, ε⟩,

and observe that, due to the closeness of A•i and A∗
•i, the first term is either close to x∗i or

equal to 0 depending on whether or not i ∈ S. Meanwhile, the rest are small due to the
incoherence and the concentration in the weighted average of noise. We will show that both
Zi =

∑︁
S\{i}⟨A•i, A

∗
•j⟩x∗j and ⟨A•i, ε⟩ are bounded by C/8 with high probability.

The cross-term Zi =
∑︁

S\{i}⟨A•i, A
∗
•j⟩x∗j is a sum of zero-mean independent sub-Gaussian

random variables, which is another sub-Gaussian random variable with variance σ2
Zi

=∑︁
S\{i}⟨A•i, A

∗
•j⟩2. Note that

⟨A•i, A
∗
•j⟩2 ≤ 2

(︁
⟨A∗

•i, A
∗
•j⟩2 + ⟨A•i −A∗

•i, A
∗
•j⟩2

)︁
≤ 2µ2/n + 2⟨A•i −A∗

•i, A
∗
•j⟩2,

where we use Cauchy-Schwarz inequality and the µ-incoherence of A∗. Therefore,

σ2
Zi
≤ 2µ2k/n + 2∥A∗T

•S (A•i −A∗
•i)∥2F ≤ 2µ2k/n + 2∥A∗

•S∥2∥A•i −A∗
•i∥2 ≤ O(1/ log n),

under µ ≤
√
n

2k , to conclude 2µ2k/n ≤ O(1/ log n) we need 1/k = O(1/ log n), i.e. k =
Ω(log n). Applying Bernstein’s inequality, we get |Zi| ≤ C/8 with high probability. What
remains is to bound the noise term ⟨A•i, ε⟩. In fact, ⟨A•i, ε⟩ is sum of n Gaussian random
variables, which is a sub-Gaussian with variance σ2

ε . It is easy to see that |⟨A•i, ε⟩| ≤ σε log n
with high probability. Notice that σε = O(1/

√
n).

Finally, we combine these bounds to have |Zi + ⟨A•i, ε⟩| ≤ C/4. Therefore, for i ∈ S,
then |⟨A•i, y⟩| ≥ C/2 and negligible otherwise. Using union bound for every i = 1, 2, . . . ,m,
we finish the proof of the Lemma. □

Lemma 8 enables us to derive the expected update direction gs = E[(Asx− y)sgn(x)T ]
explicitly.
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C.2 Approximate Gradient in Expectation

Proof [Proof of Lemma 5] Having the result from Lemma 8, we are now able to study
the expected update direction gs = E[(Asx − y)sgn(x)T ]. Recall that As is the update at
the s-th iteration and x ≜ thresholdC/2((A

s)T y). Based on the generative model, denote
pi = E[x∗i sgn(x∗i )|i ∈ S], qi = P[i ∈ S] and qij = P[i, j ∈ S]. Throughout this section, we
will use ζ to denote any vector whose norm is negligible although they can be different
across their appearances. A−i denotes the sub-matrix of A whose i-th column is removed.
To avoid overwhelming appearance of the superscript s, we skip it from As for neatness.
Denote Fx∗ is the event under which the support of x is the same as that of x∗, and F̄x∗ is
its complement. In other words, 1Fx∗ = 1[sgn(x) = sgn(x∗)] and 1Fx∗ + 1F̄x∗

= 1.

gs•i = E[(Ax− y)sgn(xi)] = E[(Ax− y)sgn(xi)1Fx∗ ]± ζ

Using the fact that y = A∗x∗ + ε and that under Fx∗ we have Ax = A•SxS = A•SA
T
•Sy =

A•SA
T
•SA

∗x∗ + A•SA
T
•Sε. Using the independence of ε and x∗ to get rid of the noise term,

we get

gs•i = E[(A•SA
T
•S − In)A∗x∗1Fx∗ ] + E[(A•SA

T
•S − In)εsgn(xi)1Fx∗ ]± ζ

= E[(A•SA
T
•S − In)A∗x∗sgn(xi)1Fx∗ ]± ζ (Independence of ε and x’s)

= E[(A•SA
T
•S − In)A∗x∗sgn(x∗i )(1− 1F̄x∗

)]± ζ (Under Fx∗ event)

= E[(A•SA
T
•S − In)A∗x∗sgn(x∗i )]± ζ

Recall from the generative model assumptions that S = supp(x∗) is random and the entries
of x∗ are pairwise independent given the support, so

gs•i = ESEx∗|S [(A•SA
T
•S − In)A∗x∗sgn(x∗i )]± ζ

= piES,i∈S [(A•SA
T
•S − In)A∗

•i]± ζ

= piES,i∈S [(A•iA
T
•i − In)A∗

•i] + piES,i∈S [
∑︂

l∈S,l ̸=i

A•lA
T
•lA

∗
•i]± ζ

= piqi(A•iA
T
•i − In)A∗

•i + pi
∑︂

l∈[m],l ̸=i

qilA•lA
T
•lA

∗
•i ± ζ

= piqi(λiA•i −A∗
•i) + piA•−idiag(qij)A

T
•−iA

∗
•i ± ζ

where λs
i = ⟨As

•i, A
∗
•i⟩. Let ξsi = AR,−idiag(qij)A

T
•−iA

∗
•i/qi for j = 1, . . . ,m, we now have

the full expression of the expected approximate gradient at iteration s:

gsR,i = piqi(λiA
s
R,i −A∗

R,i + ξsi )± ζR. (8)

What remains is to bound norms of ξs and ζ. We have ∥As
R,−i∥ ≤ ∥As

−i∥ ≤ O(
√︁
m/n)

w.h.p. Then, along with the fact that ∥A∗
i ∥ = 1, we can bound ∥ξsi ∥

∥ξsi ∥ ≤ ∥As
Ri,−i∥max

j ̸=i

qij
qi
∥As

−i∥ ≤ O(k/n). (9)

Next, we show that norm of ζ is negligible. In fact, Fx∗ happens with very high probability,
then it suffices to bound norm of (Ax− y)sgn(xi) which will be done using Lemma 12 and
Lemma 11 in Section D. This concludes the proof for Lemma 5. ■
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Appendix D. Sample Complexity

In previous sections, we rigorously analyzed both initialization and learning algorithms as
if the expectations gs, e and Mu,v were given. Here we show that corresponding estimates
based on empirical means are sufficient for the algorithms to succeed, and identify how may
samples are required. Technically, this requires the study of their concentrations around
their expectations. Having had these concentrations, we are ready to prove Theorems 4 and
5.

The entire section involves a variety of concentration bounds. Here we make heavy use
of Bernstein’s inequality for different types of random variables (including scalar, vector
and matrix). The Bernstein’s inequality is stated as follows.

Lemma 9 (Bernstein’s Inequality) Suppose that Z(1), Z(2), . . . , Z(p) are p i.i.d. samples
from some distribution D. If E[Z] = 0, ∥Z(j)∥ ≤ R almost surely and ∥E[Z(j)(Z(j))T ∥ ≤ σ2

for each j, then

1

p

⃦⃦⃦ p∑︂
j=1

Z(j)
⃦⃦⃦
≤ ˜︁O(︃

R
p

+

√︄
σ2

p

)︃
(10)

holds with probability 1− n−ω(1).

Since all random variables (or their norms) are not bounded almost surely in our model
setting, we make use of a technical lemma that is used in Arora et al. (2015) to handle the
issue.

Lemma 10 (Arora et al. (2015)) Suppose a random variable Z satisfies P[∥Z∥ ≥ R(log(1/ρ))C ] ≤
ρ for some constant C > 0, then

(a) If p = nO(1), it holds that ∥Z(j)∥ ≤ ˜︁O(R) for each j with probability 1− n−ω(1).

(b) ∥E[Z1∥Z∥≥˜︁Ω(R)
]∥ = n−ω(1).

This lemma suggests that if 1
p

∑︁p
i=1 Z

(j)(1−1∥Z(j)∥≥˜︁Ω(R)
) concentrates around its mean

with high probability, then so does 1
p

∑︁p
i=1 Z

(j) because the part outside the truncation level
can be ignored. Since all random variables of our interest are sub-Gaussian or a product of
sub-Gaussian that satisfy this lemma, we can apply Lemma 9 to the corresponding truncated
random variables with carefully chosen truncation levels. Then the original random variables
concentrate likewise.

In the next proofs, we define suitable random variables and identify good bounds of R
and σ2 for them. Note that in this section, the expectations are taken over y by conditioning
on u and v. This aligns with the construction that the estimators of e and Mu,v are empirical
averages over i.i.d. samples of y, while u and v are kept fixed. Due to the dependency on
u and v, these (conditional) expectations inherit randomness from u and v, and we will
formulate probabilistic bounds for them.

The application of Bernstein’s inequality requires a bound on ∥E[ZZT (1−1∥Z∥≥˜︁Ω(R))
]∥.

We achieve that by the following technical lemma, where Z̃ is a standardized version of Z.
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Lemma 11 Suppose a random variable Z̃Z̃
T

= aT where a ≥ 0 and T is positive semi-
definite. They are both random. Suppose P[a ≥ A] = n−ω(1) and B > 0 is a constant.
Then,

∥E[Z̃Z̃
T

(1− 1∥Z̃∥≥B)]∥ ≤ A∥E[T ]∥+ O(n−ω(1))

Proof To show this, we make use of the decomposition Z̃Z̃
T

= aT and a truncation for a.
Specifically,

∥E[Z̃Z̃
T

(1− 1∥Z̃∥≥B)]∥ = E[aT (1− 1∥Z̃∥≥B)]

≤ ∥E[a(1− 1a≥A)T (1− 1∥Z̃∥≥B)]∥+ ∥E[a1a≥AT (1− 1∥Z̃∥≥B)]∥

≤ ∥E[a(1− 1a≥A)T ]∥+ E[a1a≥A∥T∥(1− 1∥Z̃∥≥B)]

≤ A∥E[T ]∥+
(︁
E[∥aT∥2(1− 1∥Z̃∥≥B)]E[1a≥A]

)︁1/2
≤ A∥E[T ]∥+

(︁
E[∥Z̃∥4(1− 1∥Z̃∥≥B)]P[a ≥ A]

)︁1/2
≤ A∥E[T ]∥+ B2

(︁
P[a ≥ A]

)︁1/2
≤ A∥E[T ]∥+ O(n−ω(1)),

where at the third step we used T (1−1∥Z̃∥≥B)] ⪯ T because of the fact that T is the positive

semi-definite and 1− 1∥Z̃∥≥B ∈ {0, 1} . Then, we finish the proof of the lemma. ■

D.1 Sample Complexity of Algorithm 1

In Algorithm 1, we empirically compute the “scores” ˆ︁e and the reduced weighted covariance
matrix ˆ︂Mu,v to produce an estimate for each column of A∗. Since the construction of ˆ︂Mu,v

depends upon the support estimate ˆ︁R given by ranking ˆ︁e, we denote it by ˆ︂M ˆ︁R
u,v. We will

show that we only need p = ˜︁O(m) samples to be able to recover the support of one particular
atom and up to some specified level of column-wise error with high probability.

Lemma 12 Consider Algorithm 1 in which p is the given number of samples. For any
pair u and v, then with high probability a) ∥ˆ︁e − e∥ ≤ O∗(k/m log2 n) when p = ˜︁Ω(m) and

b) ∥ˆ︂M ˆ︁R
u,v −MR

u,v∥ ≤ O∗(k/m log n) when p = ˜︁Ω(mr) where ˆ︁R and R are respectively the
estimated and correct support sets of one particular atom.

D.1.1 Proof of Theorem 4

Using Lemma 12, we are ready to prove the Theorem 4. According to Lemma 1 when
U ∩ V = {i}, we can write ˆ︁e as

ˆ︁e = qiciβiβ
′
iA

∗
R,i ◦A∗

R,i + perturbation terms + (ˆ︁e− e),

and consider ˆ︁e− e as an additional perturbation with the same magnitude O∗(k/m log2 n)
in the sense of ∥ · ∥∞ w.h.p. The first part of Lemma 3 suggests that when u and v share
exactly one atom i, then the set ˆ︁R including r largest elements of ˆ︁e is the same as supp(A∗

i )
with high probability.
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Once we have ˆ︁R, we again write ˆ︂M ˆ︁R
u,v using Lemma 2 as

ˆ︂M ˆ︁R
u,v = qiciβiβ

′
iA

∗
R,iA

∗T
R,i + perturbation terms + (ˆ︂M ˆ︁R

u,v −MR
u,v),

and consider ˆ︂M ˆ︁R
u,v−MR

u,v as an additional perturbation with the same magnitude O∗(k/m log n)
in the sense of the spectral norm ∥ · ∥ w.h.p. Using the second part of Lemma 3, we have

the top singular vectors of ˆ︂M ˆ︁R
u,v is O∗(1/ log n) -close to A∗

R,i with high probability.
Since every vector added to the list L in Algorithm 1 is close to one of the dictionary,

then A0 must be δ-close to A∗. In addition, the nearness ofA0 to A∗ is guaranteed via
an appropriate projection onto the convex set B = {A|A close to A0 and ∥A∥ ≤ 2∥A∗∥}.
Finally, we finish the proof of Theorem 4. □

D.1.2 Proof of Lemma 12, Part a

For some fixed l ∈ [n], consider p i.i.d. realizations Z(1), Z(2), . . . , Z(p) of the random variable
Z ≜ ⟨y, u⟩⟨y, v⟩y2l , then ˆ︁el = 1

p

∑︁p
i=1 Z

(i) and el = E[Z]. To show that ∥ˆ︁e − e∥∞ ≤
O∗(k/m log2 n) holds with high probability, we first study the concentration for the l-th
entry of ˆ︁e − e and then take the union bound over all l = 1, 2, . . . , n. We derive upper
bounds for |Z| and its variance E[Z2] in order to apply Bernstein’s inequality in (12) to the
truncated version of Z.

Claim 8 |Z| ≤ ˜︁O(k) and E[Z2] ≤ ˜︁O(k2/m) with high probability.

Again, the expectation is taken over y by conditioning on u and v, and therefore is still
random due to the randomness of u and v. To show Claim 8, we begin with proving the
following auxiliary claim.

Claim 9 ∥y∥ ≤ ˜︁O(
√
k) and |⟨y, u⟩| ≤ ˜︁O(

√
k) with high probability.

Proof From the generative model, we have

∥y∥ = ∥A∗
•Sx

∗
S + ε∥ ≤ ∥A∗

•Sx
∗
S∥+ ∥ε∥ ≤ ∥A∗

•S∥∥x∗S∥+ ∥ε∥,

where S = supp(x∗). From Claim 2, ∥x∗S∥ ≤ ˜︁O(
√
k) and ∥ε∥ ≤ ˜︁O(σε

√
n) w.h.p. In addition,

A∗ is overcomplete and has bounded spectral norm, then ∥A∗
•S∥ ≤ ∥A∗∥ ≤ O(1). Therefore,

∥y∥ ≤ ˜︁O(
√
k) w.h.p., which is the first part of the proof. To bound the second term, we

write it as
|⟨y, u⟩| = |⟨A∗

•Sx
∗
S + ε, u⟩| ≤ |⟨x∗S , A∗T

•Su⟩|+ |⟨ε, u⟩|.

Similar to y, we have ∥u∥ ≤ ˜︁O(
√
k) w.h.p. and hence ∥A∗T

•Su∥ ≤ ∥A∗T
•S∥∥u∥ ≤ O(

√
k) with

high probability. Since u and x∗ are independent sub-Gaussian and ⟨x∗S , A∗T
•Su⟩ are sub-

exponential with variance at most O(
√
k), |⟨x∗S , A∗T

•Su⟩| ≤ ˜︁O(k) w.h.p. Similarly, |⟨ε, u⟩| ≤˜︁O(
√
k) w.h.p. Consequently, |⟨y, u⟩| ≤ ˜︁O(

√
k) w.h.p., and we conclude the proof of the

claim. ■
Proof [Proof of Claim 8] We have Z = ⟨y, u⟩⟨y, v⟩y2l = ⟨y, u⟩⟨y, v⟩(⟨A∗

l•, x
∗⟩ + εl)

2 with

⟨y, u⟩⟨y, v⟩ ≤ ˜︁O(k) w.h.p. according to Claim 9. What remains is to bound y2l = (⟨A∗
l•, x

∗⟩+
εl)

2. Because ⟨A∗
l•, x

∗⟩ is sub-Gaussian with variance ES(
∑︁

i∈S A∗2
li ) ≤ ∥A∗T ∥21,2 = O(1),
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then |⟨A∗
l•, x

∗⟩| ≤ O(log n) w.h.p. Similarly for εl, |εl| ≤ O(σε log n) w.h.p. Ultimately,

|⟨A∗
l•, x

∗⟩+εl| ≤ O(log n), and hence we obtain with high probability the bound |Z| ≤ ˜︁O(k).

To bound the variance term, we write Z2 = ⟨y, v⟩2y2l ⟨y, u⟩2y2l . Note that, from the first

part, we get ⟨y, v⟩2y2l ≤ ˜︁O(k) and |Z| ≤ ˜︁O(k) w.h.p.. We apply Lemma 11 with some
appropriate scaling to both terms, then

E[Z2(1− 1|Z|≥˜︁Ω(k)
)] ≤ ˜︁O(k)E[⟨y, u⟩2y2l ] + O(n−ω(1)),

where E[⟨y, u⟩2y2l ] is equal to el for pair u, v with v = u. From Lemma 1 and its proof in
Appendix Section “Analysis of Initialization Algorithm”,

E[⟨y, u⟩2y2l ] =
m∑︂
i=1

qiciβ
2
i A

∗2
li + perturbation terms,

in which the perturbation terms are bounded by O∗(k/m log2 n) w.h.p. (following Claims 4
and 5). The dominant term

∑︁
i qiciβ

2
i A

∗2
li ≤ (max qiciβ

2
i )∥A∗

l•∥2 ≤ ˜︁O(k/m) w.h.p. because
|βi| ≤ O(logm) (Claim 3). Then we complete the proof of the second part. ■
Proof [Proof of Lemma 12, Part a] We are now ready to prove Part a of Lemma 12.
We apply Bernstein’s inequality in Lemma 9 for the truncated random variable Z(i)(1 −
1|Z(i)|≥˜︁Ω(R)

) with R = ˜︁O(k) and variance σ2 = ˜︁O(k2/m) from Claim 8, then

⃦⃦⃦⃦
1

p

p∑︂
i=1

Z(i)(1−1|Z(i)|≥˜︁Ω(R)
)−E[Z(1−1|Z|≥˜︁Ω(R)

)]

⃦⃦⃦⃦
≤

˜︁O(k)

p
+

√︄ ˜︁O(k2/m)

p
≤ O∗(k/m log n),

(11)
w.h.p. for p = ˜︁Ω(m). Then ˆ︁el = 1

p

∑︁p
i=1 Z

(i) also concentrates with high probability. Take
the union bound over l = 1, 2, . . . , n, we get ∥ˆ︁e−e∥∞ ≤ O∗(k/m log n) with high probability
and complete the proof of 12, Part a. □

D.1.3 Proof of Lemma 12, Part b

Next, we will prove that ∥ˆ︂M ˆ︁R
u,v −MR

u,v∥ ≤ O∗(k/m log n) with high probability. We only
need to prove the concentration inequalities for the case when conditioned on the event thatˆ︁R is equivalent to R w.h.p. Again, what we need to derive are an upper norm bound R of
the matrix random variable Z ≜ ⟨y, u⟩⟨y, v⟩yRyTR and its variance.

Claim 10 ∥Z∥ ≤ ˜︁O(kr) and ∥E[ZZT ]∥ ≤ ˜︁O(k2r/m) hold with high probability.

Proof We have ∥Z∥ ≤ |⟨y, u⟩⟨y, v⟩|∥yR∥2 with |⟨y, u⟩⟨y, v⟩| ≤ ˜︁O(k) w.h.p. (according to
Claim 9) whereas ∥yR∥2 =

∑︁
i∈R y2l ≤ O(r log2 n) w.h.p. because yl ≤ O(log n) w.h.p. (proof

of Claim 8). This implies ∥Z∥ ≤ ˜︁O(kr) w.h.p. The second part is handled similarly as in

the proof of Claim 8. We take advantage of the bounds of ˆ︂Mu,v in Lemma 2. Specifically,

using the first part ∥Z∥ ≤ ˜︁O(kr) and ⟨y, v⟩2∥yR∥2 ≤ ˜︁O(kr), and applying Lemma 11, then

∥E[ZZT (1− 1∥Z∥≥˜︁Ω(kr)
)]∥ ≤ ˜︁O(kr)∥E[⟨y, u⟩2yRyTR]∥+ ˜︁O(kr)O(n−ω(1)) ≤ ˜︁O(kr)∥Mu,u∥,
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where Mu,u arises from the application of Lemma 2. Recall that

Mu,u =
∑︂
i

qiciβ
2
i A

∗
R,iA

∗T
R,i + perturbation terms,

where the perturbation terms are all bounded by O∗(k/m log n) w.h.p. by Claims 6 and 7.
In addition,

∥
∑︂
i

qiciβ
2
i A

∗
R,iA

∗T
R,i∥ ≤ (max

i
qiciβ

2
i )∥A∗

R•∥2 ≤ ˜︁O(k/m)∥A∗∥2 ≤ ˜︁O(k/m)

w.h.p. Finally, the variance bound is ˜︁O(k2r/m) w.h.p. ■
Then, applying Bernstein’s inequality in Lemma 9 to the truncated version of Z with

R = ˜︁O(kr) and variance σ2 = ˜︁O(k2r/m) and obtain the concentration for the full Z to get

∥ˆ︂MR
u,v −MR

u,v∥ ≤
˜︁O(kr)

p
+

√︄ ˜︁O(k2r/m)

p
≤ O∗(k/m log n)

w.h.p. when the number of samples is p = ˜︁Ω(mr) under Assumption A4.1.

We have proved that ∥ˆ︂MR
u,v −MR

u,v∥ ≤ O∗(k/m log n) as conditioned on the support

consistency event holds w.h.p. ∥ˆ︂M ˆ︁R
u,v −MR

u,v∥ ≤ O∗(k/m log n) is easily followed by the law
of total probability through the tail bounds on the conditional and marginal probabilities
(i.e. P[∥ˆ︂MR

u,v −MR
u,v∥ ≤ O∗(k/m log n)| ˆ︁R = R]) and P[ ˆ︁R ̸= R]. We finish the proof of

Lemma 12, Part b for both cases of the spectral bounds. ■

D.2 Proof of Theorem 5 and Sample Complexity of Algorithm 2

In this section, we prove Theorem 5 and identify sample complexity per iteration of Al-
gorithm 2. We divide the proof into two steps: 1) show that when As is (δs, 2)-near to
A∗ for δs = O∗(1/ log n), the approximate gradient estimate ˆ︁gs is (α, β, γs)-correlated-whp
with A∗ with γs ≤ O(k2/mn) +αo(δ2s) , and 2) show that the nearness is preserved at each
iteration. These correspond to showing the following lemmas:

Lemma 13 At iteration s of Algorithm 2, suppose that As has each column correctly sup-
ported and is (δs, 2)-near to A∗ and that η = O(m/k). Denote R = supp(As

•i), then the
update ˆ︁gsR,i is (α, β, γs)-correlated-whp with A∗

R,i where α = Ω(k/m), β = Ω(m/k) and

γs ≤ O(k2/mn) + αo(δ2s) for δs = O∗(1/ log n).

Note that this is a finite-sample version of Lemma 6.

Lemma 14 If As is (δs, 2)-near to A∗ and number of samples used in step s is p = ˜︁Ω(m),
then with high probability ∥As+1 −A∗∥ ≤ 2∥A∗∥.

Proof [Proof of Theorem 5] The correlation of ˆ︁gi with A∗
i , described in Lemma 13, implies

the descent of column-wise error according to Theorem 1. Along with Lemma 14, the
theorem follows directly.
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D.2.1 Proof of Lemma 13

We prove Lemma 13 by obtaining a tail bound on the difference between ˆ︁gsR,i and gsR,i using
the Bernstein’s inequality in Lemma 9.

Lemma 15 At iteration s of Algorithm 2, suppose that As has each column correctly sup-
ported and is (δs, 2)-near to A∗. For R = supp(As

i ) = supp(A∗
i ), then ∥ˆ︁gsR,i − gsR,i∥ ≤

O(k/m) ·(o(δs)+O(ϵs)) with high probability for δs = O∗(1/ log n) and ϵs = O(
√︁
k/n) when

p = ˜︁Ω(m + σ2
ε
mnr
k ).

To prove this lemma, we study the concentration of ˆ︁gsR,i, which is a sum of random vector

of the form (y − Ax)Rsgn(xi). We consider random variable Z ≜ (y − Ax)Rsgn(xi)|i ∈ S,
with S = supp(x∗) and x = thresholdC/2(A

T y). Then, using the following technical lemma
to bridge the gap in concentration of the two variables. We adopt this strategy from Arora
et al. (2015) for our purpose.

Claim 11 Suppose that Z(1), Z(2), . . . , Z(N) are i.i.d. samples of the random variable Z =
(y −Ax)Rsgn(xi)|i ∈ S. Then,

⃦⃦⃦ 1

N

N∑︂
j=1

Z(j) − E[Z]
⃦⃦⃦
≤ o(δs) + O(ϵs) (12)

holds with probability when N = ˜︁Ω(k + σ2
εnr), δs = O∗(1/ log n) and ϵs = O(

√︁
k/n).

Proof [Proof of Lemma 15] Once we have done the proof of Claim 11, we can easily prove
Lemma 15. We recycle the proof of Lemma 43 in Arora et al. (2015).

Write W = {j : i ∈ supp(x∗(j))} and N = |W |, then express ˆ︁gR,i as

ˆ︁gR,i =
N

p

1

N

∑︂
j

(y(j) −Ax(j))Rsgn(x
(j)
i ),

where 1
|W |

∑︁
j(y

(j)−Ax(j))Rsgn(x
(j)
i ) is distributed as 1

N

∑︁N
j=1 Z

(j) with N = |W |. Note that

E[(y−Ax)Rsgn(xi)] = E[(y−Ax)Rsgn(xi)1i∈S ] = E[Z]P[i ∈ S] = qiE[Z] with qi = Θ(k/m).
Following Claim 11, we have

∥ˆ︁gsR,i − gsR,i∥ ≤ O(k/m)
⃦⃦⃦ 1

N

N∑︂
j=1

Z(j) − E[Z]
⃦⃦⃦
≤ O(k/m) · (o(δs) + O(ϵs)),

holds with high probability as p = Ω(mN/k). Substituting N in Claim 11, we obtain the
results in Lemma 15. □
Proof [Proof of Claim 11] We are now ready to prove the claim. What we need are good
bounds for ∥Z∥ and its variance, then we can apply Bernstein’s inequality in Lemma 9 for
the truncated version of Z, then Z is also concentrates likewise.

Claim 12 ∥Z∥ ≤ R holds with high probability for R = ˜︁O(δs
√
k + µk/

√
n + σε

√
r) with

δs = O∗(1/ log n).
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Proof From the generative model and the support consistency of the encoding step, we
have y = A∗x∗ + ε = A∗

•Sx
∗
S + ε and xS = AT

•Sy = AT
•SA

∗
•Sx

∗
S + AT

•Sε. Then,

(y −Ax)R = (A∗
R,Sx

∗
S + εR)−AR,SA

T
•SA

∗
•Sx

∗
S −AR,SA

T
•Sε

= (A∗
R,S −AR,S)x∗S + AR,S(Ik −AT

•SA
∗
•S)x∗S + (In −A•SA

T
•S)R•ε.

Using the fact that x∗S and ε are sub-Gaussian and that ∥Mw∥ ≤ ˜︁O(σw∥M∥F ) holds with
high probability for a fixed M and a sub-Gaussian w of variance σ2

w, we have

∥(y−Ax)Rsgn(xi)∥ ≤ ˜︁O(∥A∗
R,S−AR,S∥F +∥AR,S(Ik−AT

•SA
∗
•S)∥F +σε∥(In−A•SA

T
•S)R•∥F ).

Now, we need to bound those Frobenius norms. The first quantity is easily bounded as

∥A∗
R,S −AR,S∥F ≤ ∥A∗

•S −A•S∥F ≤ δs
√
k, (13)

since A is δs-close to A∗. To handle the other two, we use the fact that ∥UV ∥F ≤ ∥U∥∥V ∥F .
Using this fact for the second term, we have

∥AR,S(Ik −AT
•SA

∗
•S)∥F ≤ ∥AR,S∥∥(Ik −AT

•SA
∗
•S)∥F ,

where ∥AR,S∥ ≤ ∥AR•∥ ≤ O(1) due to the nearness. The second part is rearranged to take
advantage of the closeness and incoherence properties:

∥Ik −AT
•SA

∗
•S∥F ≤ ∥Ik −A∗T

•SA
∗
•S − (A•S −A∗

•S)TA∗
•S∥F

≤ ∥Ik −A∗T
•SA

∗
•S∥F + ∥(A•S −A∗

•S)TA∗
•S∥F

≤ ∥Ik −A∗T
•SA

∗
•S∥F + ∥A∗

•S∥∥A•S −A∗
•S∥F

≤ µk/
√
n + O(δs

√
k),

where we have used ∥Ik −A∗T
•SA

∗
•S∥F ≤ µk/

√
n because of the µ-incoherence of A∗, ∥A•S −

A∗
•S∥F ≤ δs

√
k in (13) and ∥A∗

•S∥ ≤ ∥A∗∥ ≤ O(1). Accordingly, the second Frobenius norm
is bounded by

∥AR,S(Ik −AT
•SA

∗
•S)∥F ≤ O

(︁
µk/
√
n + δs

√
k
)︁
. (14)

The noise term is handled using the eigen-decomposition UΛUT of A•SA
T
•S , then with high

probability

∥(In−A•SA
T
•S)R•∥F = ∥(UUT−UΛUT )R•∥F = ∥UR•(In−Λ)∥F ≤ ∥In−Λ∥∥UR•∥F ≤ O(

√
r),

(15)
where the last inequality ∥In − Λ∥ ≤ O(1) follows by ∥A•S∥ ≤ ∥A∥ ≤ ∥A − A∗∥ + ∥A∗∥ ≤
3∥A∗∥ ≤ O(1) due to the nearness. Putting (13), (14) and (15) together, we obtain the
bounds in Claim 12. ■

Next, we determine a bound for the variance of Z.

Claim 13 E[∥Z∥2] = E[∥(y − Ax)Rsgn(xi)∥2|i ∈ S] ≤ σ2 holds with high probability for
σ2 = O(δ2sk + k2/n + σ2

εr) with δs = O∗(1/ log n).
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Proof We explicitly calculate the variance using the fact that x∗S is conditionally indepen-
dent given S, and so is ε. x∗S and ε are also independent and have zero mean. Then we can
decompose the norm into three terms in which the dot product is zero in expectation and
the others can be shortened using the fact that E[x∗Sx

∗T
S ] = Ik, E[εεT ] = σεIn.

E[∥(y −Ax)Rsgn(xi)∥2|i ∈ S] = E[∥(A∗
R,S −AR,SA

T
•SA

∗
•S)x∗S + (In −A•SA

T
•S)R·ε∥2|i ∈ S]]

= E[∥A∗
R,S −AR,SA

T
•SA

∗
•S∥2F |i ∈ S] + σ2

εE[∥In −A•SA
T
•S)R•∥2F |i ∈ S].

Then, by re-writing A∗
R,S−AR,SA

T
•SA

∗
•S as before, we get the form (A∗

R,S−AR,S)+AR,S(Ik−
AT

•SA
∗
•S) in which the first term has norm bounded by δs

√
k. The second is further decom-

posed as

E[∥AR,S(Ik −AT
•SA

∗
•S)∥2F |i ∈ S] ≤ sup

S
∥AR,S∥2E[∥Ik −AT

•SA
∗
•S∥2F |i ∈ S], (16)

where supS∥AR,S∥ ≤ ∥AR•∥ ≤ O(1). We will bound E[∥Ik − AT
•SA

∗
•S∥2F |i ∈ S] ≤ O(kδ2s) +

O(k2/n) using the proof from Arora et al. (2015):

E[∥Ik −AT
•SA

∗
•S∥2F |i ∈ S] = E[

∑︂
j∈S

(1−AT
•jA

∗
•j)

2 +
∑︂
j∈S
∥AT

•jA
∗
•,−j∥2|i ∈ S]

= E[
∑︂
j∈S

1

4
∥A•j −A∗

•j∥2] + qij
∑︂
j ̸=i

∥AT
•jA

∗
•,−j∥2 + qi∥AT

•iA
∗
•,−i∥2 + qi∥AT

•,−iA
∗
•i∥2,

where A•,−i is the matrix A with the i-th column removed, qij ≤ O(k2/m2) and qi ≤
O(k/m). For any j = 1, 2, . . . ,m,

∥AT
•jA

∗
•,−j∥2 = ∥A∗T

•j A
∗
•,−j + (A•j −A∗

•j)
TA∗

•,−j∥2

≤
∑︂
l ̸=j

⟨A∗
•j , A

∗
•l⟩2 + ∥(A•j −A∗

•j)
TA∗

•,−j∥2

≤
∑︂
l ̸=j

⟨A∗
•j , A

∗
•l⟩2 + ∥A•j −A∗

•j∥2∥A∗
•,−j∥2 ≤ µ2 + δ2s .

The last inequality invokes the µ-incoherence, δ-closeness and the spectral norm of A∗.
Similarly, we come up with the same bound for ∥AT

•iA
∗
•,−i∥2 and ∥AT

•,−iA
∗
•i∥2. Consequently,

E[∥Ik −AT
•SA

∗
•S∥2F |i ∈ S] ≤ O(kδ2s) + O(k2/n). (17)

For the last term, we invoke the inequality (15) (Claim 12) to get

E[∥(In −A•SA
T
•S)R•∥2F |i ∈ S] ≤ r (18)

Putting (16), (17) and (18) together and using ∥AR•∥ ≤ 1, we obtain the variance bound
of Z: σ2 = O(δ2sk + k2/n+ σ2

εr) with δs = O∗(1/ log n) . Finally, we complete the proof. □
We now apply truncated Bernstein’s inequality to the random variable Z(j)(1−1∥Z(j)∥≥Ω(R))

with R and σ2 in Claims 12 and 13, which are R = ˜︁O(δs
√
k + µk/

√
n + σε

√
r) and

σ2 = O(δ2sk + k2/n + σ2
εr). Then, (1/N)

∑︁N
j= Z(j) also concentrates:

⃦⃦⃦ 1

N

N∑︂
i=1

Z(j) − E[Z]
⃦⃦⃦
≤ ˜︁O(︂R

N

)︂
+ ˜︁O(︃√︃

σ2

N

)︃
= o(δs) + O(

√︁
k/n)
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holds with high probability when N = ˜︁Ω(k + σ2
εnr). Then, we finally finish the proof of

Claim 11. ■
Proof [Proof of Lemma 13] With Claim 11, we study the concentration of ˆ︁gsR,i around its
mean gsR,i. Now, we consider this difference as an error term of the expectation gsR,i and
using Lemma 6 to show the correlation of ˆ︁gsR,i. Using the expression in Lemma 5 with high
probability, we can write

ˆ︁gsR,i = gsR,i + (gsR,i − ˆ︁gsR,i) = 2α(AR,i −A∗
R,i) + v,

where ∥v∥ ≤ α∥AR,i − A∗
R,i∥ + O(k/m) · (o(δs) + O(ϵs)). By Lemma 6, we have ˆ︁gsR,i is

(α, β, γs)-correlated-whp with A∗
R,i where α = Ω(k/m), β = Ω(m/k) and γs ≤ O(k/m) ·

(o(δs) + O(
√︁
k/n)) , then we have done the proof Lemma 13. □

D.2.2 Proof of Lemma 14

We have shown the correlation of ˆ︁gs with A∗ w.h.p. and established the descent property
of Algorithm 2. The next step is to show that the nearness is preserved at each iteration.
To prove ∥As+1 −A∗∥ ≤ 2∥A∗∥ holds with high probability, we recall the update rule

As+1 = As − ηPH(ˆ︁gs),
where PH(ˆ︁gs) = H ◦ ˆ︁gs. Here H = (hij) where hij = 1 if i ∈ supp(A•j) and hij = 0
otherwise. Also, note that As is (δs, 2)-near to A∗ for δs = O∗(1/ log n). We already proved
that this holds for the exact expectation gs in Lemma 7. To prove for ˆ︁gs, we again apply
matrix Bernstein’s inequality to bound ∥PH(gs)−PH(ˆ︁gs)∥ by O(k/m) because η = Θ(m/k)
and ∥A∗∥ = O(1).

Consider a matrix random variable Z ≜ PH((y−Ax)sgn(x)T ). Our goal is to bound the
spectral norm ∥Z∥ and, both ∥E[ZZT ]∥ and ∥E[ZTZ]∥ since Z is asymmetric. To simplify
our notations, we denote by xR the vector x by zeroing out the elements not in R. Also,
denote Ri = supp(hi) and S = supp(x). Then Z can be written explicitly as

Z = [(y −Ax)R1sgn(x1), . . . , (y −Ax)Rmsgn(xm)],

where many columns are zero since x is k-sparse. The following claims follow from the proof
of Claim 42 in Arora et al. (2015). Here we state and detail some important steps.

Claim 14 ∥Z∥ ≤ ˜︁O(k) holds with high probability.

Proof With high probability

∥Z∥ ≤
√︄∑︂

i∈S
∥(y −Ax)Risgn(xi)∥2 ≤

√
k∥(y −Ax)Ri∥

where we use Claim 12 with ∥(y−Ax)R∥ ≤ ˜︁O(δs
√
k) w.h.p., then ∥Z∥ ≤ ˜︁O(k) holds w.h.p.

■

Claim 15 ∥E[ZZT ]∥ ≤ O(k2/n) and ∥E[ZTZ]∥ ≤ ˜︁O(k2/n) with high probability.
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Proof The first term is easily handled. Specifically, with high probability

∥E[ZZT ]∥ ≤ ∥E[
∑︂
i∈S

(y−Ax)Risgn(xi)
2(y−Ax)TRi

]∥ = ∥E[
∑︂
i∈S

(y−Ax)Ri(y−Ax)TRi
]∥ ≤ O(k2/n),

where the last inequality follows from the proof of Claim 42 in Arora et al. (2015), which is
tedious to be repeated.

To bound ∥E[ZTZ]∥, we use bound of the full matrix (y − Ax)sgn(x)T . Note that
∥y−Ax∥ ≤ ˜︁O(

√
k) w.h.p. is similar to what derived in Claim 12. Then with high probability,

∥E[ZTZ]∥ ≤ ∥E[sgn(x)(y−Ax)T (y−Ax)sgn(x)T ]∥ ≤ ˜︁O(k)∥E[sgn(x)sgn(x)T ]∥ ≤ ˜︁O(k2/m).

where E[sgn(x)sgn(x)T ] = diag(q1, q2, . . . , qm) has norm bounded by O(k/m). We now
can apply Bernstein’s inequality for the truncated version of Z with R = ˜︁O(k) and σ2 =˜︁O(k2/m), then with p = ˜︁O(m),

∥PH(gs)− PH(ˆ︁gs)∥ ≤ ˜︁O(k)

p
+

√︄ ˜︁O(k2/m)

p
≤ O∗(k/m)

holds with high probability. Finally, we invoke the bound η = O(m/k) and complete the
proof. ■

Appendix E. A Special Case: Orthonormal A∗

We extend our results for the special case where the dictionary is orthonormal. As such,
the dictionary is perfectly incoherent and bounded (i.e., µ = 0 and ∥A∗∥ = 1).

Theorem 7 Suppose that A∗ is orthonormal. When p1 = ˜︁Ω(n) and p2 = ˜︁Ω(nr), then with
high probability Algorithm 1 returns an initial estimate A0 whose columns share the same
support as A∗ and with (δ, 2)-nearness to A∗ with δ = O∗(1/ log n). The sparsity of A∗ can

be achieved up to r = O∗(︁min(
√
n

log2 n
, n
k2 log2 n

)
)︁
.

We use the same initialization procedure for this special case and achieve a better order
of r. The proof of Theorem 7 follows the analysis for the general case with following two
results:

Claim 16 (Special case of Claim 3) Suppose that u = A∗α + εu is a random sample
and U = supp(α). Let β = A∗Tu, then w.h.p., we have (a) |βi − αi| ≤ σε log n for each i
and (b) ∥β∥ ≤ O(

√
k log n + σε

√
n log n).

Proof We have β = A∗Tu = α+A∗T ϵu, then βi−αi = ⟨A∗
•i, ϵu⟩ and ∥β−α∥ = ∥ϵu∥. Using

probability bounds of ⟨A∗
•i, ϵu⟩, ∥ϵu∥ and ∥α∥ in Claim 2, we have the claim proved. □

We draw from the claim that for any i /∈ U ∩ V , |βiβ′
i| ≤ O(σε log2 n) and have the

following result:
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Lemma 16 Fix samples u and v and suppose that y = A∗x∗ + ε is a random sample
independent of u, v. The expected value of the score for the lth component of y is given by:

el ≜ E[⟨y, u⟩⟨y, v⟩y2l ] =
∑︂

i∈U∩V
qiciβiβ

′
iA

∗2
li + perturbation terms

where qi = P[i ∈ S], qij = P[i, j ∈ S] and ci = E[x4i |i ∈ S]. Moreover, the perturbation
terms have absolute value at most O∗(︁k/n log2 nmax(1/

√
n, k2/n)

)︁
.

Proof Lemma follows Lemma 1 via Claim 3 except that the second term of E1 is bounded
by O(k log2 n/n3/2).

Appendix F. Extensions of Arora et al. (2015)

F.1 Sample complexity in noisy case

In this section, we study the sample complexity of the algorithms in Arora et al. (2015) in
the presence of noise. While noise with order σε = O(1/

√
n) does not change the sample

complexity of the initialization algorithm, it affects that of the descent stage. The analysis
involves producing a sharp bound for ∥ˆ︁gs•,i − gs•i∥.

Lemma 17 For a regular dictionary A∗, suppose As is (δs, 2)-near to A∗ with δs = O∗(1/ log n),

then with high probability ∥ˆ︁gs•,i−gs•i∥ ≤ O(k/m)·(o(δ)+O(
√︁

k/n)) when p = ˜︁Ω(m+σ2
ε
mn2

k ).

Proof This follows directly from Lemma 15 where r = n. □
We tighten the original analysis to obtain the complexity ˜︁Ω(m) instead of ˜︁Ω(mk) for

the noiseless case. Putting together with p = ˜︁Ω(mk) required by the initialization, we then

have the overall sample complexity ˜︁O(mk+σ2
ε
mn2

k ) for the algorithms in Arora et al. (2015)
in the noise regime.

F.2 Extension of Arora et al. (2015)’s initialization algorithm for sparse case

We study a simple and straightforward extension of the initialization algorithm of Arora
et al. (2015) for the sparse case. This extension is produced by adding an extra projection,
and is described in Figure 3. The recovery of the support of A∗ is guaranteed by the
following Lemma:

Lemma 18 Suppose that z∗ ∈ Rn is r-sparse whose nonzero entries are at least τ in
magnitude. Provided z is δ-close to z∗ and z0 = Hr(z) with δ = O∗(1/ log n) and r =
O∗(log2 n), then z0 and z∗ has the same support.

Proof Since z0 is δ-close to z∗, then ∥z0 − z∗∥ ≤ δ and |zi − z∗i | ≤ δ for every i. For
i ∈ supp(z∗),

|zi| ≥ |z∗i | − |zi − z∗i | ≥ τ − δ

and for i /∈ supp(z∗), |zi| ≤ δ. Since τ > O(1/
√
r) ≫ δ, then the r-largest entries of z are

in the support z∗, and hence z0 and z∗ has the same support. □
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Algorithm 3 Pairwise Reweighting with Hard-Thresholding

Initialize L = ∅
Randomly divide p samples into two disjoint sets P1 and P2 of sizes p1 and p2 respectively
While |L| < m. Pick u and v from P1 at random

Construct the re-weighted covariance matrix ˆ︂Mu,v:

ˆ︂Mu,v =
1

p2

p2∑︂
i=1

⟨y(i), u⟩⟨y(i), v⟩y(i)(y(i))T

Compute the top singular values δ1, δ2 and top singular vector z of ˆ︂Mu,v

If δ1 ≥ Ω(k/m) and δ2 < O∗(k/m log n)
z = Hr(z), where Hr keeps r largest entries of z
If z is not within distance 1/ log n of any vector in L even with sign flip

L = L ∪ {z}
Return A0 = (L1, . . . , Lm)

Theorem 8 Suppose that Assumptions B1-B4 hold and Assumptions A1-A3 satify with

µ = O∗(︁ √
n

k log3 n

)︁
and r = O∗(log2 n). When p1 = ˜︁Ω(m) and p2 = ˜︁Ω(mk), then with high

probability Algorithm 3 returns an initial estimate A0 whose columns share the same support
as A∗ and with (δ, 2)-nearness to A∗ with δ = O∗(1/ log n).

This algorithm requires r = O∗(log2 n), which is somewhat better than ours. However, the
sample complexity and running time is inferior as compared with our novel algorithm.

Appendix G. Neural Implementation of Our Approach

We now briefly describe why our algorithm is “neurally plausible”. Basically, similar to the
argument in Arora et al. (2015), we describe at a very high level how our algorithm can be
implemented via a neural network architecture. One should note that although both our
initialization and descent stages are non-trivial modifications of those in Arora et al. (2015),
both still inherit the nice neural plausiblity property.

G.1 Neural implementation of Stage 1: Initialization

Recall that the initialization stage includes two main steps: (i) estimate the support of each
column of the synthesis matrix, and (ii) compute the top principal component(s) of a certain
truncated weighted covariance matrix. Both steps involve simple vector and matrix-vector
manipulations that can be implemented plausibly using basic neuronal manipulations.

For the support estimation step, we compute the product ⟨y, u⟩⟨y, u⟩y ◦ y, followed by a
thresholding. The inner products, ⟨y, u⟩ and ⟨y, v⟩ can be computed using neurons via an
online manner where the samples arrive in sequence; the thresholding can be implemented
via a ReLU-type non-linearity.

For the second step, it is well known that the top principal components of a matrix can
be computed in a neural (Hebbian) fashion using Oja’s Rule Oja (1992).
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Figure 4: Neural network implementation of Algorithm 2. The network takes the image y
as input and produces the sparse representation x as output. The hidden layer
represents the residual between the image and its reconstruction Ax. The weights
Aij ’s are stored on synapses, but most of them are zero and shown by the dotted
lines.

G.2 Neural implementation of Stage 2: Descent

Our neural implementation of the descent stage (Algorithm 2), shown in Figure 4, mimics
the architecture of Arora et al. (2015), which describes a simple two-layer network archi-
tecture for computing a single gradient update of A. The only difference in our case is that
most of the value in A are set to zero, or in other words, our network is sparse. The network
takes values y from the input layer and produce x as the output; there is an intermediate
layer in between connecting the middle layer with the output via synapses. The synaptic
weights are stored on A. The weights are updated by Hebbian learning. In our case, since A
is sparse (with support given by R, as estimated in the first stage), we enforce the condition
the corresponding synapses are inactive. In the output layer, as in the initialization stage,
the neurons can use a ReLU-type non-linear activation function to enforce the sparsity of
x.
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