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Abstract

We present an interval-based approach for parameter identification in
structural static problems. Our inverse formulation models uncertainties
in measurement data as interval and exploits the Interval Finite Element
Method (IFEM) combined with adjoint-based optimization. The inversion
consists of a two-step algorithm: first, an estimate of the parameters is
obtained by a deterministic iterative solver. Then, the algorithm switches
to the interval extension of the previous solver, using the deterministic es-
timate of the parameters as an initial guess. The formulation is illustrated
in solutions of various numerical examples showing how the guaranteed
interval enclosures always contain Monte Carlo predictions.

Keywords: Parameter identification, Inverse problem, Interval, Uncertainty, Finite
element method
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1 Introduction

Parameter identification estimates model parameters of a physical system from avail-
able measurements of the system response. It belongs to the class of inverse problems
(e.g., [17, 30, 33]). For example, wave tomography is used in geophysics for seis-
mic waveform inversion [12]; in biomedical engineering, optical tomography is used
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to detect breast cancer tissue via fluorescence [8, 10]; in civil engineering, inversion
techniques are used for structural health monitoring or damage detection in safety
evaluation [5, 14]. In such problems, the system response is predicted based on initial
guessed model parameters, and it is then compared with the actual measurement data.
Then, iterative corrections of the model parameters lead to a solution, which mini-
mizes the difference between the predicted system response and measurement data in
a least-square or maximum-likelihood sense.

Inevitably, data contain errors caused by measurement devices or unfriendly envi-
ronmental conditions during data acquisition. Such uncertainties can be modeled using
probability theory (e.g., [1, 36, 37]). For example, Kalman filtering (see [4, 20, 35])
provides error estimates on the model parameters based on noisy measurements of the
response of a time-evolving system (e.g., [38]). Clearly, probability approaches have
their limitations, since they require a prior assumption on the nature of the uncer-
tainty, which is usually modeled as a random Gaussian variable. However, such an
assumption is too optimistic or not realistic. In practice, there are often not enough
measurements to reliably assess the statistical nature of the associated uncertainties.
Instead, we only know bounds on the uncertain variable and some partial information
about its probabilities. In this setting, non-probability theories such as fuzzy sets
[9, 15], evidence theory [19], and intervals [7, 21] are useful for modeling uncertainties.

In this work, we exploit the Interval Finite Element Method (IFEM) [25, 31] com-
bined with adjoint-based optimization [8, 10] to provide a new algorithm that guaran-
tees interval enclosure of the model parameters from inversion of noisy measurements
modeled as intervals. The paper is organized as follows. First, IFEM is reviewed, and
new decomposition strategies are presented to limit overestimation due to multiple oc-
currences of the same variable in the IFEM matrix equations. Then, the deterministic
inverse algorithm is formulated using adjoint-based methods, and an extension of the
algorithm to intervals is presented. Finally, several numerical examples are discussed
to validate the performance of our method.

2 Interval Finite Element Method

Interval Finite Element Method (IFEM) uses intervals to describe uncertain variables
and follows the general procedure of conventional Finite Element Method (FEM).
Intervals are extension of real numbers. Instead of representing one single point in
the real axis, an interval denotes a set of real numbers, which are described by its
endpoints,

x = [x, x] = {x |x ≤ x ≤ x, x ∈ R}, (1)

where x denotes the interval, x and x denote its lower and upper bounds, respectively,
and bold symbols denote interval quantities. Alternatively, an interval can be repre-
sented by its midpoint xmid = (x+ x) /2 and radius xrad = (x− x) /2. The width of
an interval is defined as xwid = (x− x) = 2xrad. Intervals with non-zero midpoint
values can be brought into the form of x = xmid (1 + δx), where δx has a zero mid-
point. The width of δx in percentage is usually referred to as the uncertainty level of
x. For a detailed discussion of interval arithmetic and extensions to interval matrices
and functions, we refer to [2, 22, 23].

Overestimation due to dependency is the curse in any application of interval arith-
metic (see [24, 25]). To reduce it, we propose a new decomposition strategy for the



Reliable Computing 23, 2016 49

stiffness matrix K and the nodal equivalent load f of a structural system governed by
the equilibrium condition Ku = f . Here, K and f are decomposed as

K = A diag(Λα)AT , f = Mδ , (2)

where A, Λ, and M are scalar matrices; α and δ are interval vectors containing all
the uncertainties in the system; and diag(v) maps a vector v into a diagonal matrix,
whose diagonal is v. In this way, we separate deterministic and uncertain terms, and
multiple occurrences of the same variable are avoided. In practice, the decomposition
in Eq. (2) is done in two steps. In the first step, the element stiffness matrix Ke and
the element nodal equivalent load fe are decomposed into Ae, Λe, Me, αe, and δe
using Eq. (2) in the local reference system. In the second step, Ae, Λe, and Me are
assembled into A, Λ, and M in the global reference system.

In particular, for an element with uncertain material properties

Ke =

∫
Ω

BTe EeBe dΩ , (3)

where the integration domain Ω is the entire element, Be is the scalar strain-displace-
ment matrix at arbitrary locations inside the element, and Ee is the interval consti-
tutive matrix, which is a function of material uncertainties. To reduce overestimation
due to dependency, Ke is decomposed as

Ke = Ae diag(Λeαe)A
T
e , (4)

where Ae and Λe are scalar matrices, and the interval vector αe contains all the
uncertainties of the element.

From Eq. (3), numerical integration yields

Ke =

m∑
j=1

wjJ(ξj)B
T
e (ξj)Ee(ξj)Be(ξj), (5)

where m is the number of integration points used, ξj and wj are respectively the
coordinates and weights of the integration points, and J is the determinant of the
Jacobian between local and global reference systems. The scalar matrices Ae and Λe
and the interval vector αe in Eq. (4) are given by

Ae =
{
BTe (ξ1)Φe · · · BTe (ξm)Φe

}
,

Λe =


w1J(ξ1)ϕe

. . .

wmJ(ξm)ϕe

 , αe =


E(ξ1)

...
E(ξm)

 ,

(6)

where E(ξj) denote interval Young’s modulus at the j -th integration point. Further,
Φe and ϕe are obtained from the interval constitutive matrix, which is decomposed as

Ee(ξj) = Φe diag
{
ϕeE(ξj)

}
ΦTe . (7)

The decomposition of the element nodal equivalent load fe is done exploiting the
M -δ method [26], viz. fe = Meδe. Here,

fe =

n∑
j=1

NT (ξj)fc(ξj) +

∫
Ω

NT (ξ)fd(ξ) dΩ , (8)
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where n is the number of concentrated loads acting on the element, N(ξ) is the dis-
placement interpolation matrix for the element, fc(ξj) are the concentrated loads under
consideration, Ω is the integration domain in which the distributed load fd(ξ) is non-
zero.

A further simplification can be obtained by rewriting fc(ξ) = Lc(ξ)δe and fd(ξ) =
Ld(ξ)δe as function of the load uncertainty vector δe, where Lc(ξ) and Ld(ξ) are scalar
matrices. Then from Eq. (8)

fe =

n∑
j=1

NT (ξj)Lc(ξj)δe +

∫
Ω

NT (ξ)Ld(ξ)δe dΩ (9)

=

{
n∑
j=1

NT (ξj)Lc(ξj) +

∫
Ω

NT (ξ)Ld(ξ) dΩ

}
δe = Meδe .

Here, Me is the matrix within braces, which depends on the displacement interpolation
matrix N(ξ) and load distribution functions Lc(ξ) and Ld(ξ).

The global K and f follow from the conventional assembly strategy [6], i.e.,

K =
∑
e

TTe KeTe , f =
∑
e

TTe fe , (10)

where Te is the transformation matrix between the global and local nodal displacement
vector u and ue. Note that Ke, fe, and Te are not necessarily the same for each element.
By inserting Ke = Ae diag(Λeαe)A

T
e of Eq. (4) into Eq. (10), the decomposition rule

for K is

K =
∑
e

TTe Ae diag(Λeαe)A
T
e Te (11)

=
{
TTe Ae . . . TTe Ae

}
diag


Λeαe

...
Λeαe



ATe Te

...
ATe Te

 .

Here, the vector αe lists the uncertain interpolated Young’s moduli at the element
integration points, and it is related to the system parameter vector α via αe = Lαα.
Comparing terms in Eqs. (2) and (11) yields the assembly rules for A and Λ

A =
{
TTe Ae . . . TTe Ae

}
, Λ =


ΛeLα

...
ΛeLα

 . (12)

Again, note that Ae, Λe, and Lα are not necessarily the same for each element. Simi-
larly, the decomposition rule for f and the assembly rule for M follow by introducing
fe = Meδe into Eq. (10) and setting δe = Lδδ, that is,

f =
∑
e

TTe fe =
∑
e

TTe Meδe =
{
TTe Me · · · TTe Me

}
δe
...
δe

 , (13)

⇒ Me =
{
TTe Me · · · TTe Me

}
Lδ
...
Lδ

 =
∑
e

TTe MeLδ .
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The resulting stiffness matrix K in Eq. (10) is still singular, as essential boundary
conditions have not been applied yet. To eliminate the singularity, u must satisfy the
additional constraint Cu = 0, with C denoting a constraint matrix [31]. Each row of
C states one constraint, and the corresponding entry is set equal to 1, leaving the rest
of the row null. Then the equilibrium equation follows from setting to zero the first
variation of the energy functional Π of the structure

Π =
1

2
uTKu− uT f + λTCu . (14)

That is, {
K CT

C 0

}{
u
λ

}
=

{
f
0

}
. (15)

where the Lagrangian multiplier λ enforces Cu = 0. If K is composed of degenerated
intervals (intervals with zero width), we can establish a direct relationship between u
and f by inverting the generalized stiffness matrix in Eq. (15),{

K CT

C 0

}−1

=

{
G11 GT

12

G11 G22

}
, ⇒ u = G11f . (16)

In other words, we find the flexibility matrix (inverse of the stiffness matrix K) under
the constraint Cu = 0.

3 Deterministic Inverse Solver

Given an interval load uncertainty vector δ and an interval measurement vector ũ, a
deterministic solution of the model parameters α is sought using midpoint values of
δ and ũ, and all interval quantities are replaced with their midpoint values. Drawing
from Fedele, et al. [11], the algorithm is derived using adjoint based optimization, and
it exploits conjugate gradient type methods to find optimal estimates of the unknown
parameters, as shown in the following discussions.

Assume measurements ũ are collected at sampling points on the structure. Our
inverse solver aims at minimizing the difference between the predicted response Hu
given in terms of the nodal displacement vector u and the actual measurements vector
ũ, under the equilibrium constraint Ku = f . To do so, define the objective functional

Γ =
1

2
(Hu− ũ)TS(Hu− ũ) + wT (Ku− f) +

1

2
γ(αTRα) , (17)

where S is a diagonal matrix defining the weight for each measurement, w is the
Lagrangian multiplier to enforce equilibrium [11], and the last term provides regular-
ization for the problem if necessary. Here, γ is the regularizer weight, and R is the
finite-difference matrix associated with second-order differentiation (e.g., [17, 33]).

From the decomposition in Eqs. (2) and (17), the first variation of Γ

δΓ = δuTHTS(Hu− ũ) + δwT (Ku− f) + δuTKTw (18)

+ wTA diag(Λδα)ATu+ δαT (γR)α
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is null if 
Ku− f = 0 ;

Kw + (HTSH)u− (HTS)ũ = 0 ;

ΛT (ATu ◦ATw) + (γR)α = 0 ,

(19)

where a ◦ b denotes the element-by-element (Hadamard) product of two vectors a and
b. To obtain Eq. (19) from Eq. (18), we have exploited the matrix symmetry [see Eq.
(2)]

K = KT = A diag(Λα)AT (20)

and the chain of identities

wTA diag(Λδα)ATu = wTA(Λδα ◦ATu) = δαTΛT (ATu ◦ATw) . (21)

The three equations in Eq. (19) can be interpreted as: i) equilibrium condition of the
original system with equivalent load f, ii) equilibrium condition for the adjoint system
with equivalent load HTS(ũ−Hu), and iii) optimal condition that the gradient g of
Γ with respect to α is zero at the solution point.

The first two equations in Eq. (19), viz. the equilibrium conditions for the original
and adjoint systems, can be recast in block form{

HTSH K
K 0

}{
u
w

}
=

{
0 HTS
M 0

}{
δ
ũ

}
, (22)

using the decomposition f = Mδ . The unknown vectors u and w follow as{
u
w

}
=

{
0 K−1

K−1 −K−1HTSHK−1

}{
0 HTS
M 0

}{
δ
ũ

}
, (23)

The corresponding objective functional Γ and its gradient g with respect to α, viz.
third equation in Eq. (19), can be expressed in terms of u, w, and α as

Γ =
1

2
(Hu− ũ)TS(Hu− ũ) +

1

2
αT (γR)α ; (24)

g =
∂Γ

∂α
= ΛT (ATu ◦ATw) + (γR)α .

The conjugate gradient method [3, 39, 40] is exploited to solve iteratively for Eq. (19).
We start from a random initial guess α1 and a descending direction d1 along which Γ
decreases. A natural choice for d1 is the opposite gradient direction, d1 = −g1. At the
i-th step, the model parameter α is updated as

αi+1 = αi + sidi , (25)

where si is the step size. We use the inexact line search method to find an acceptable
si along the descending direction di. This should be large enough to yield a significant
decrease in Γ, while not too large to deviate too far from the optimal point. We adopt
the weak Wolfe criterion [16, 34]

τl ≤
Γi+1 − Γi
sigTi di

,
gTi+1di

gTi di
≤ τu , (26)
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where 0 < τl < τu < 1. In the next iteration step, the descending direction di+1 is
determined by

di+1 = −gi+1 + θidi , (27)

where the parameter θi can be chosen in various ways. Popular choices for θi include

θi =
gTi+1gi+1

gTi gi
, Fletcher-Reeves [13] ;

θi =
gTi+1(gi+1 − gi)

gTi gi
, Polak-Ribière-Polyak [28, 29] ; (28)

θi =
gTi+1(gi+1 − gi)
dTi (gi+1 − gi)

, Hestenses-Stiefel [18] .

The algorithm stops when the gradient g and the update on α are both small enough,

‖gi+1‖
‖g1‖

≤ τ , ‖αi+1 − αi‖
‖αi‖

≤ τ , (29)

where τ is the error tolerance. In our implementation, all three choices in Eq. (28)
perform comparably. For simplicity, we adopt the Polak-Ribière-Polyak rule in later
numerical simulations.

4 Interval Inverse Solver

The interval algorithm consists of two steps. In the first step, deterministic solutions
u0, w0, and α0 are obtained using the deterministic inverse solver described in the
previous section. In the second step, these solutions are used as initial guesses for an
interval-based inverse solver, a generalization to interval of the deterministic solver.
This is formulated drawing from Fedele et al. [11]. In particular, given an interval
load uncertainty vector δ and interval measurements ũ, the unknown interval u, w,
and α satisfy the interval extension of Eq. (19), that is

K(α)u−Mδ = 0 ;

K(α)w + (HTSH)u− (HTS)ũ = 0 ;

ΛT (ATu ◦ATw) + (γR)α = 0 ,

(30)

where K(α) emphasizes the dependence on the unknown parameter α. To solve for
Eq. (30), define δ0 and ũ0 as the midpoint values of δ and ũ, respectively. Then δ0,
ũ0, u0, w0, and α0 satisfy the optimality conditions in Eq. (19). Now, introduce the
auxiliary variables

∆δ = δ − δ0 , ∆ũ = ũ− ũ0 ;
∆u = u− u0 , ∆w = w − w0 , ∆α = α− α0

(31)

to represent deviations of the interval solutions from the corresponding reference vec-
tors. Then, the following equalities hold

Ku = K0u0 +K0∆u + ∆Ku0 + ∆K∆u ;

Kw = K0w0 +K0∆w + ∆Kw0 + ∆K∆w ;

ATu ◦ATw = ATu0 ◦ATw0 +ATu0 ◦AT∆w

+AT∆u ◦ATw0 +AT∆u ◦AT∆w .

(32)
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These together with

∆Ku = A diag(Λ∆α)ATu = A diag(ATu)Λ∆α (33)

are used repeatedly to rewrite Eq. (30) as
HTSH K0 CTw0

K0 0 CTu0

Cw0 Cu0 γR




∆u
∆w
∆α

 =


0 HTS
M 0
0 0


{

∆δ
∆ũ

}
(34)

−


A 0 0
0 A 0
0 0 ΛT



AT∆w ◦ Λ∆α
AT∆u ◦ Λ∆α
AT∆u ◦AT∆w

 ,

where subscripts 0 denote matrices related to u0, w0, and α0. In particular,

Cu0 = ΛT diag(ATu0)AT , Cw0 = ΛT diag(ATw0)AT . (35)

Eq. (34) can be written in the compact form

Kh∆uh = Mh∆δh −AhΘ(ATh∆uh) , (36)

which emphasizes the direct relationship between uncertainties of the given data ∆δ
and ∆ũ and those of the unknown vectors ∆u, ∆w, and ∆α. Here, Kh, Mh, and Ah
are known scalar matrices, and ∆uh contains the unknown interval vectors ∆u, ∆w,
and ∆α. Further, ∆δh contains the known interval vectors ∆δ and ∆ũ. ATh∆uh is
composed of the secondary unknown vectors AT∆u, AT∆w, and Λ∆α. The functional
Θ( ) in Eq. (36) maps ATh∆uh into the following interval vector

Θ(ATh∆uh) = Θ


AT∆u
AT∆w
Λ∆α


 =


AT∆w ◦ Λ∆α
AT∆u ◦ Λ∆α
AT∆u ◦AT∆w

 . (37)

If the square matrix Kh is invertible, Eq. (36) can be recast into the fixed-point form

∆uh = (K−1
h Mh)∆δh − (K−1

h Ah)Θ(ATh∆uh) , (38)

which is solvable by a new variant of the method of Neumaier and Pownuk [27]. In
particular, we introduce auxiliary variable vh = ATh∆uh , and the corresponding fixed-
point equation follows from Eq. (38) as

vh = ATh∆uh = (AThK
−1
h Mh)∆δh − (AThK

−1
h Ah)Θ(vh) . (39)

From this, the following iterative scheme is proposed to find a guaranteed enclosure
for vh. The iteration starts from the trivial initial guess v1

h = (AThK
−1
h Mh)∆δh and

proceeds in accord with

vj+1
h = (AThK

−1
h Mh)∆δh − (AThK

−1
h Ah)Θ(vjh) , (40)

where superscripts of vh denote iteration steps. The iteration stops when there is
no change in vh in two consecutive steps, and the converged result is denoted by
v∗h. This is an outer solution for the exact fixed-point vh in Eq. (39), due to the
isotonic inclusion of interval operations [23]. An outer solution for ∆uh is obtained by
substituting AThuh in Eq. (38) with v∗h. Then the final interval enclosures u, w, and α
are obtained by adding ∆u, ∆w, and ∆α (i.e., ∆uh) to u0, w0, and α0, respectively.
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To further reduce overestimation, the deterministic matrices (K−1
h Mh) and (K−1

h Ah)
in Eq. (38) and (AThK

−1
h Mh) and (AThK

−1
h Ah) in Eq. (39) are calculated before

multiplication with the interval vectors ∆δh and Θ(vh).
The similarities between our method and the method of Neumaier and Pownuk

are observed by comparing their Eq. (4.11) in [27]

v = {(ACa) + (ACF )b + (ACB)d} ∩ v, d = {(D0 −D)v} ∩ d

and their Eq. (4.12)

u = {(Ca) + (CF )b + (CB)d}

with our Eqs. (40) and (38) in this paper, respectively. Our method skips introducing
the auxiliary variable d and uses a very simple initial guess v1

h = (AThK
−1
h Mh)∆δh.

5 Interval-Based Parameter Identification

In summary, the flowchart of our two-step interval-based inverse algorithm is given in
Figure 1. Assume that a finite element model for the structure under study is given.
First, we use the deterministic inverse solver introduced in Section 3 to estimate a
degenerate interval solution for the unknown parameters. In the second step, the de-
generate estimate is used as an initial guess for the interval-based inverse solver defined
in Section 4. The numerical experiments discussed later provide strong evidence that
our two-step algorithm gives interval enclosures of the exact parameters.

Note that the scalar matrices A, Λ, and M are assembled from their element
counterparts Ae, Λe, and Me, and the constraint matrix C accounts for essential
boundary conditions. The generation of interval load uncertainty vector δ and the
interval measurement vector ũ are then determined following the steps below. In
particular, to simulate interval measurements with perturbed midpoint (with respect
to the exact values) and perturbed radius, ũ is computed as follows:

1. Use a structural FEM model (not necessarily that used in the inversion) to
generate the exact measurement data ũexact.

2. The interval vector ũexact is set with midpoint value ũexact and radius equal to
the device tolerance δu.

3. An ensemble of perturbed measurements ũi are generated by adding random
noise to ũexact. The random noise is chosen smaller than the tolerance δu so
that ũi ∈ ũexact.

4. Perturbed interval measurement vectors ũi are generated using ũi as midpoint
and device tolerance δu as radius. ũi contains ũexact, i.e., ũexact ∈ ũi.

5. The measurement vector ũ is obtained as the intersection of all the ũi in the
ensemble. As a result, ũ contains a random perturbation, and it still contains
ũexact, i.e., ũexact ∈ ũ.

In the deterministic solver, to illustrate the robustness of our algorithm, the initial
guess is set as E = 60 GPa for a structure made of copper, and E = 160 GPa for steel.
Then the gradient g in Eq. (24) at the current iteration is computed from the solution
vectors u and w of the original and adjoint systems [see Eq. (23)]. Further, we use
the weak Wolfe criterion for the inexact line search, setting τl = 1/4 and τu = 1/2
in Eq. (26). The Polak-Ribière-Polyak rule in Eq. (28) is used for the update of the
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Figure 1: Flowchart for interval-based parameter identification.

descending directions. In the stopping criterion (29), the error tolerance τ = 1×10−10

under all circumstances.

In the interval solver, before starting the iteration, we first compute the matrices
Cu0, Cw0, and K0 in Eq. (34). Then we compute the block matrices Kh, Mh, and Ah
in Eq. (36), and (K−1

h Mh), (K−1
h Ah), (AThK

−1
h Mh), and (AThK

−1
h Ah) are computed in

advance to solve for ∆uh and vh in Eqs. (38) and (39), respectively. As Kh, Mh, and
Ah contain a significant number of null-entries, it is more efficient to perform the matrix
multiplications and matrix inversions block-by-block. Then the modified version in
Eq. (40) of the iterative enclosure method [27] is used to compute an enclosure of the
unknown parameters v∗h from the trivial initial guess v1

h = (AThK
−1
h Mh)∆δh.

6 Numerical Benchmark Problems

Our interval inverse algorithm is coded in INTLAB [32], an interval arithmetic exten-
sion package developed for the MATLAB environment. To test the performance of the
method, we consider parameter identification of the Young’s moduli of i) a fixed-end
bar, ii) a truss, iii) a simply supported beam, and iv) a planar frame. Our numerical
results show that our method is able to provide an interval enclosure of the exact pa-
rameters. In all solved examples, the Exact Solution (ES) represents the deterministic
values for Young’s moduli as given data.
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P 

B C 

L, A 
 

Figure 2: A pin-roller bar subject to concentrated traction at the other end.

6.1 Pin-roller bar

Consider a straight bar of length L = 5 m, as shown in Figure 2. The pin-roller bar
is subject to a concentrated force P = 100 kN at one end C. The cross section of the
bar is uniform, with an area A = 0.005 m2. Only axial deformations are allowed, and
the bar is modeled by 10 equal-length planar truss elements with uniform material
properties. For each element,

E = 115 + 10 sin

(
7x

L

)
− 5 cos

(
17x

L

)
GPa , (41)

where x is the coordinate of element centroid, and the values of E are given up to four
significant digits. The same 10-element model is used to generate measurement data.

Table 1: Exact and perturbed measurement data for the pin-roller bar of Figure 2.
The device tolerance is the same for all measurements, ±2 × 10−6 m, and 3 sets of
perturbed measurements are sampled to define the perturbed data.

Node 

# 

ũexact 

(10-3 m) 

ũ (10-3 m) Difference (10-3 m) Uncertainty (%) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 0.09091 0.090 0.093 -0.001 0.003 -1.100 3.300 

2 0.17281 0.172 0.176 -0.001 0.004 -0.579 2.315 

3 0.24991 0.247 0.251 -0.003 0.002 -1.200 0.800 

4 0.33208 0.331 0.333 -0.002 0.001 -0.602 0.301 

5 0.41980 0.419 0.421 -0.001 0.002 -0.238 0.476 

6 0.50714 0.505 0.508 -0.003 0.001 -0.592 0.197 

7 0.59813 0.598 0.601 -0.001 0.003 -0.167 0.502 

8 0.69694 0.696 0.700 -0.001 0.004 -0.143 0.574 

9 0.79119 0.790 0.792 -0.002 0.001 -0.253 0.126 

10 0.87466 0.873 0.876 -0.002 0.002 -0.229 0.229 
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Figure 3: Interval-based identification of Young’s moduli of the pin-roller bar of Figure
2: exact values (solid lines with squares) and interval solution (dashed lines with tri-
angles), which is indistinguishable from the Monte Carlo predictions from an ensemble
of 10,000 simulations (measurement uncertainty level 0.4-4%).

Axial displacements at 10 equally distributed nodes along the bar are collected into
the exact measurement vector ũexact. The interval measurement vector ũ is obtained
from 3 sets of perturbed measurements ũj with device tolerance ±2 × 10−6 m. The
results are listed in Table 1. Note that ũ contains ũexact, and uncertainties in ũ range
from 0.4% to 4%.

This problem has 10 measurements and 10 unknown element Young’s moduli Ej ,
and it has an analytical solution. Since the bar is statically determined, axial forces
in each element equal the concentrated traction P at the free end. Then Ej depends
upon the displacements uj , uj−1 of the neighboring nodes, viz.

N = EjA
uj − uj−1

Le
⇒ Ej =

NLe
A (uj − uj−1)

, (42)

where N = P = 100 kN is the axial force, A is the cross section area, Le = L/10 is
the element length, and u0 = 0 denotes the boundary condition at the hinged end.

The problem is well-posed, so no regularization is required. The initial guess
E = 60 GPa for all the elements. To reach convergence, 60 iterations are needed in
the deterministic stage, and 12 iterations in the interval stage. The estimated and
exact solutions are plotted in Figure 3. In the figure, the lower and upper bounds
of the estimated solution are the dashed lines with triangular markers, and the exact
solution is the solid line with rectangular markers. The exact values of the Young’s
moduli are contained by the interval bounds.

Table 2 compares the numerical solution EN from our method against the an-
alytical solution EA from Eq. (42). The upper bounds of the two solutions are
identical, while the lower bounds of EN are always smaller than the lower bounds of
EA. In other words, EN encloses EA. Exact Young’s moduli and relative differences
(EN − EA)/EA × 100% for the lower and upper bounds of the two interval solutions
are also included in the table.
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Table 2: Exact Young’s moduli and predicted values for the pin-roller bar of Figure
2. Relative differences (EN −EA)/EA × 100% for the lower and upper bounds of the
two interval solutions are also listed.

Element 

# 

Exact 

(GPa) 

EN (GPa) EA (GPa) Relative Diff. (%) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 110.0 107.47 111.11 107.53 111.11 -0.055 0.000 

2 122.1 115.84 126.58 116.28 126.58 -0.376 0.000 

3 129.7 125.82 140.85 126.58 140.85 -0.601 0.000 

4 121.7 115.96 125.00 116.28 125.00 -0.271 0.000 

5 114.0 110.99 116.28 111.11 116.28 -0.105 0.000 

6 114.5 112.17 119.05 112.36 119.05 -0.172 0.000 

7 109.9 103.94 111.11 104.17 111.11 -0.215 0.000 

8 101.2 97.78 105.26 98.04 105.26 -0.262 0.000 

9 106.1 103.94 111.11 104.17 111.11 -0.215 0.000 

10 119.8 116.06 123.46 116.28 123.46 -0.185 0.000 

It is worth mentioning that the row of (K−1
h Mh) in Eq. (38) corresponding to

Young’s modulus Ej of the j -th element has all of the entries close to zero, except
those at columns corresponding to the measurements uj and uj−1 at the neighboring
nodes. In addition, the two entries have similar magnitude and opposite sign. This
is in agreement with the analytical solution given in Eq. (42); the modulus Ej of the
j -th element is only a function of uj and uj−1.

6.2 Simply-supported truss

The second example is a simply supported 15-bar truss, subject to concentrated loads,
as shown in Figure 4. Nodes of the truss are labeled from 1 to 9, and the bars are
labeled from 1 to 15. We apply horizontal load 60 kN at node 2, vertical load 100
kN at node 3, and horizontal load 30 kN and vertical load 100 kN at node 6. The
bars have uniform cross sections with area A = 0.005 m2. Each bar is modeled by one
planar truss element with constant material property, and the corresponding Young’s
modulus is denoted by short bars with circular markers in Figure 5. Here we assume
that bar 3 and 13 have been damaged, and their effective Young’s moduli are 80 GPa
and 60 GPa, respectively.

The same finite element model is used to generate the exact measurement data.
To illustrate the performance of the current method under different forms of measure-
ments, nodal displacements of bottom nodes 2 to 5, as well as strains of medium-height



60 Xiao, Fedele, and Muhanna, Interval-Based Parameter Identification

 

1 

6 

1 

5 
9 

13 

2 

7 

2 

6 
10 

14 

3 

8 

3 

7 
11 

15 

4 

9 

5 
4 

8 
12 

100 kN 

30 kN 

60 kN 
100 kN 

5 m 5 m 5 m 5 m 

5 m 

 

Figure 4: A simply supported truss subject to concentrated loads.

bars 5 to 12, are measured. The device tolerance is ±1×10−5 m for nodal displacement
measurements, and ±1 × 10−6 for strain measurements. The measurement vector ũ
is obtained from 3 sets of perturbed ũj , and the results are shown in Table 3. The
uncertainties in ũ range from 0.06% to 2%, approximately.

This problem has 15 measurement and 15 unknowns. It is well-posed, and no
regularizer is needed. The initial guess E = 60 GPa is used. 465 iterations are run
in the deterministic stage and 12 iterations in the interval stage. In Figure 5, the
obtained interval solution (IS) is compared against the exact solution (ES) and Monte

Table 3: Exact and perturbed measurement data for the simply supported truss of
Figure 4. The device tolerance is ±1× 10−5 m for nodal displacements and ±1× 10−6

for strains. Three sets of perturbed measurements are sampled to yield the perturbed
data.

 
Exact 

(10-3 m) 

Perturbed data (10-3 m)  
Exact 

(10-4) 

Perturbed data (10-4) 

Lower 

Bound 

Uncer-

tainty (%) 

Upper 

Bound 

Uncer-

tainty (%) 

 Lower 

Bound 

Uncer-

tainty (%) 

Upper 

Bound 

Uncer-

tainty (%) 

u2 0.7557 0.7532 -0.321 0.7586 0.382 ε5 -2.3246 -2.3306 -0.256 -2.3210 0.155 

v2 -5.1714 -5.1732 -0.036 -5.1591 0.238 ε6 -0.6822 -0.6827 -0.078 -0.6674 2.161 

u3 1.3922 1.3871 -0.369 1.4021 0.711 ε7 0.9664 0.9661 -0.025 0.9777 1.167 

v3 -7.6368 -7.6393 -0.032 -7.6349 0.025 ε8 1.0388 1.0309 -0.769 1.0456 0.648 

u4 2.8297 2.8141 -0.551 2.8310 0.047 ε9 1.1427 1.1387 -0.346 1.1457 0.265 

v4 -4.3003 -4.3045 -0.097 -4.2914 0.208 ε10 1.1028 1.1000 -0.253 1.1043 0.133 

u5 3.2930 3.2924 -0.019 3.3089 0.482 ε11 -1.4241 -1.4354 -0.795 -1.4213 0.199 

      ε12 -1.3736 -1.3748 -0.088 -1.3591 1.058 
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Figure 5: Interval-based identification of Young’s moduli of a simply-supported truss
of Figure 4: short bars with circular markers denote the exact values; the long bars
denote interval prediction from our method; median-length bars with circles denote
Monte Carlo predictions from an ensemble of 10,000 simulations.

Carlo (MC) predictions based on an ensemble of 10,000 simulations. In each simulation
k, a random measurement vector ũk is chosen within the interval bounds of ũ, i.e.,
ũk ∈ ũ. The corresponding solution αk is obtained from the deterministic inverse solver
formulated in section 3, and the Monte Carlo solution αMC is given by the minimum
and maximum values of all αk in the ensemble, that is αMC = [mink αk, maxk αk].

Clearly, both IS and MC predictions enclose the exact values of the Young’s moduli,
and IS contains MC. It is observed that the interval enclosures of IS are very tight for
elements 5 to 12, and very wide for elements 13 to 15. This is caused by the distribution
of measurements. The strains of element 5 to 12 and the displacements of the bottom
nodes are directly measured. Hence, the estimates on Ej (j = 1, . . . , 12), especially
Ej (j = 5, . . . , 12), are more accurate than the estimates on Ej (j = 13, . . . , 15).

Table 4 compares the obtained estimates on the Young’s modulus Ej in detail. In
particular, E3, E4, E8, E9, E13, and E14 are chosen for display. Solutions obtained
from our method (IS) and from Monte Carlo prediction (MC) are compared against
the reference solution obtained from the nonlinear programming approach (NLP).
In NLP, each interval is treated as two inequality constraints, and the lower and
upper bounds of the unknown parameters are obtained by solving the corresponding
nonlinear programming problems. From Table 4, we observe that:

1. Our method encloses the NLP with little overestimation. In addition, the upper
bounds of the estimates are exactly the same as those obtained from NLP.

2. The Monte Carlo prediction obtained from an ensemble of 10,000 simulations is
contained by the NLP, thus underestimates the uncertainties.

3. All these methods contain the exact values.
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Table 4: Exact and predicted Young’s modulus for the simply supported truss of
Figure 4. Relative error of the interval solutions from our method and Monte Carlo
predictions from an ensemble of 10,000 simulations.

 

Young’s modulus E3 (GPa) Young’s modulus E4 (GPa) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Proposed (IS) 80.02  -0.026  81.86  0.000  115.92  -0.253  124.63  0.000  

NL Program. (NLP) 80.04  --- 81.86  --- 116.21  --- 124.63  --- 

Monte Carlo (MC) 80.04  0.001  81.86  -0.001  116.22  0.003  124.62  -0.005  

Exact Solution (ES) 80.40  0.453  80.40  -1.781  124.10  6.788  124.10  -0.424  

 

Young’s modulus E8 (GPa) Young’s modulus E9 (GPa) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Proposed (IS) 109.98  -0.010  111.56  0.000  104.92  -0.002  105.57  0.000  

NL Program. (NLP) 109.99  --- 111.56  --- 104.92  --- 105.57  --- 

Monte Carlo (MC) 109.99  0.000  111.56  0.000  104.92  0.000  105.57  0.000  

Exact Solution (ES) 110.70  0.648  110.70  -0.769  105.20  0.265  105.20  -0.346  

 

Young’s modulus E13 (GPa) Young’s modulus E14 (GPa) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Lower 

Bound 

Uncer- 

tainty (%) 

Upper 

Bound 

Uncer- 

tainty (%) 

Proposed (IS) 59.61  -0.220  63.77  0.000  106.16  -0.495  117.57  0.000  

NL Program. (NLP) 59.74  --- 63.77  --- 106.68  --- 117.57  --- 

Monte Carlo (MC) 59.79  0.090  63.72  -0.082  106.93  0.227  117.18  -0.330  

Exact Solution (ES) 60.80  1.776  60.80  -4.659  113.50  6.389  113.50  -3.458  

6.3 Simply-supported beam

The third example is a simply-supported beam subject to uniformly distributed ver-
tical load q = 100 kN/m, as shown in Figure 6. The beam has a length L = 2 m
and a 5 cm × 3 cm rectangular cross section (cross section area A = 0.015 m2 and
moment of inertia I = 1.125× 10−4 m4). The beam is subject to lateral deformation,
and 20 two-node Euler-Bernoulli beam elements are used in the finite element mesh.
The stiffness matrix is computed using the three-node Gaussian quadrature rule. To
generated a continuous material field, Young’s moduli at the quadrature points are
linearly interpolated from those at the material mesh nodes, given by the following
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Figure 6: A simply supported beam subject to uniformly distributed load.

•

•

•

Figure 7: The L-curve used to find the optimal regularization weight γ: (top) nor-
malized solution vector norm |α| vs. normalized residue vector norm |r|, (bottom)
curvature κ of the curve in the top subplot vs. the regularization weight γ. Each
circular marker corresponds a different weight γ, and the green rectangular marker
denotes the optimal weight γ ≈ 2× 10−3.

function.

E = 220 + 10 sin

(
6x

L

)
− 5 cos

(
13x

L

)
GPa , (43)

where x is the nodal coordinate, and the values are given up to four significant digits.
The stiffness parameter vector α has 21 components, one for each mesh node.

In the first case, a finer 80-element finite element model is used to generate the mea-
surement data. Young’s moduli are linearly interpolated from the above-mentioned
21-node material mesh. Further, 9 lateral deflections at equidistant points along the
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Figure 8: Interval-based identification of the Young’s moduli of the simply supported
beam of Figure 6 under uniformly distributed load: interval solution (IS), exact solu-
tion (ES) and Monte Carlo (MC) prediction from an ensemble of 100,000 simulations
(measurement uncertainty level 0.1-1%).

beam are collected as measurements. The measurement vector ũ, which has 9 compo-
nents, is obtained from 3 sets of perturbed data ũj with device tolerance ±2 × 10−6

m. The resulting ũ has uncertainties ranging from 0.1% to 1% and contains the exact
measurement data.

The problem is ill-posed, since only 9 measurements are available to estimate 21
unknown parameters. This requires regularization. The regularizer weight γ should
be chosen with caution: it has to be large enough to avoid useless estimates or even
divergence with unbounded intervals, but not so large that the solution will be over-
smooth [17]. Here, a second-order regularization matrix R is used. To determine the
optimal γ, the famous L-curve method is used, as shown in Figure 7. According to
Figure 7, γ = 2× 10−3 is chosen as the regularization weight.

Then for our method, the initial guess E = 160 GPa is given for all components in
α. Convergence is attained in 289 and 37 iterations in the deterministic and interval
stages, respectively. The interval estimates are compared against the exact Young’s
moduli from Eq. (43) and Monte Carlo predictions from an ensemble of 100,000 sim-
ulations. Figure 8 shows the exact solution (ES, solid lines with rectangular markers),
the interval solution (IS, dotted lines with triangular markers), and the Monte Carlo
prediction (MC, dashed lines with diamond markers). Observe that IS indicates a high
level of uncertainty near both ends, especially near the right end, which is attributed
to the relatively small bending moment near the ends. In addition, both IS and MC
guarantees to enclose ES everywhere, and IS contains MC.

In the second case, two opposing bending moments M = 50 kN·m are added to the
ends B and C, to create a more uniform bending moment diagram for the beam. In
addition, rotation angles θB and θC at both ends are measured. The device tolerance
is now ±5× 10−6 m for deflections and ±2× 10−5 rad for θB and θC . As a result, the
level of uncertainty in ũ ranges from 0.1% to 1%, roughly the same as in the first case.
IS and MC predictions are compared against the exact values ES in Figure 9. The level
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Figure 9: Interval-based identification of Young’s moduli of the simply supported
beam of Figure 6 under uniformly distributed load and bending moments at both
ends: interval solution (IS), exact solution (ES) and Monte Carlo (MC) prediction
from an ensemble of 100,000 simulations (measurement uncertainty level 0.1-1%).
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Figure 10: Influence of the reference measurement vector ũ0 in the interval-based
parameter identification of Young’s moduli of the simply supported beam of Figure
6: exact solution (solid line with circular marker), Monte Carlo prediction from an
ensemble of 100,000 simulations (dotted lines with square markers), lower and upper
bounds of the interval solution (solid lines with triangular markers). The lightest lines
correspond to the lower bound, viz. ũ0 = inf ũ and the darkest lines the upper bound,
viz. ũ0 = sup ũ.

of uncertainty at the ends is reduced significantly because of the additional bending
moments at the ends and extra measurements θB and θC . Indeed, the maximum level
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Figure 11: Comparison between the interval solution and Monte Carlo prediction
of the Young’s modulus E9 of the simply supported beam of Figure 6 from an en-
semble of 100,000 simulations: (left) observed probability density function (PDF) of
vertical displacement measurement v6 sampled from (a) uniform, (b) truncated ex-
ponential, (c) truncated Rayleigh, and (d) bimodal probability distributions (interval
endpoints denoted by circular markers); (right) corresponding observed PDF of the
Young’s modulus E9, interval solution (endpoints denoted by circular markers), non-
linear programming solution (endpoints denoted by diamond markers), and Monte
Carlo predicted interval [min(E9) max(E9)] (square markers).
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of uncertainty at the ends is approximately 13% on the left and 23% on the right. In
the previous case of Figure 8, the uncertainty levels are much higher, approximately
25% on the left and 56% on the right. Near the mid-span, the level of uncertainty is
slightly reduced from about 8% in Figure 8 to about 5% in Figure 9.

In the previous discussions, the deterministic reference vector ũ0 is assumed to be
the midpoint of the interval measurement vector ũ. Figure 10 compares the interval
solutions obtained from our method with different choices of ũ0, from the lower bound
ũ0 = inf ũ to the upper bound ũ0 = sup ũ. It is observed that the midpoint values
ũ0 = mid ũ yields the tightest bounds in general.

Finally, note that interval solutions enclose all possible predictions associated with
different probabilistic distributions of the measurements, either symmetrical or not
(see Figure 11).
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Figure 12: A two-bay two-story frame subject to uniformly distributed loads.

6.4 Two-bay two-story frame

The fourth example is a two-bay two-story planar frame hinged to the ground, subject
to uniformly distributed vertical loads on each floor, as shown in Figure 12. The
frame is composed of six columns and four beams, labeled as Cj (j = 1, . . . , 6) and
Bj (j = 1, . . . , 4), respectively. Connecting joints and supports are labeled from 1
to 9. Uniformly distributed vertical loads qj (j = 1, . . . , 4) are applied on Bj , where
q1 = q2 = 109.45 kN/m and q3 = q4 = 51.08 kN/m.

Each member of the frame has uniform cross section and material property. The
corresponding cross section area A, moment of inertia I and Young’s modulus E are
listed in Table 5. Ten two-node Euler-Bernoulli beam elements are used to model the
frame, one for each member.

Measurement data used in the inverse algorithm is generated from the same 10-
element finite element model. Only nodal displacement uj , vj , and rotation angle θj
at nodes 4 to 9 (i = 4, . . . , 9) are included in the measurement vector ũ. ũ is obtained
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from 3 sets of perturbed measurements ũj , and the corresponding device tolerance is
±2 × 10−5 m for nodal displacements and ±2 × 10−5 rad for rotation angles. The
level of uncertainty in ũ ranges from approximately 0.1% to 1%, with the exception
of θ4 = [−1.2442, −0.9825]× 10−4 rad (22.2% uncertainty).

In this benchmark case, 18 measurements (6 nodes × 3 DOF) are used to predict
the Young’s moduli E of the 10 members. The problem is well-posed, and no regular-
izer is required. Initial guess E = 160 GPa is used. The results are compared with the
exact values and the Monte Carlo prediction with 10,000 runs in Figure 13, following
the same guidelines as in Figure 5 of the simply-supported truss. The interval solution
provides an enclosure of both the exact and Monte Carlo solutions.

In Figure 13, the width of the interval estimate E4 for the Young’s modulus of the
left column C4 on the upper floor is much wider than other estimates. The wide enclo-
sure is mainly caused by the displacements v4 and v7 at nodes 4 and 7, viz. the vertical
displacement of the column C4. They are modeled by two intervals with about 1% un-
certainty, i.e., v4 = [−2.3599, −2.3399]× 10−3 m and v7 = [−3.4548, −3.4186]× 10−3

m. To obtain a narrower interval prediction for E4, the accuracy of the measurements
v4 and v7 is increased, and the level of uncertainty is reduced to about 0.2%, i.e.,
v4 = [−2.3515, −2.3465]×10−3 m and v7 = [−3.4378, −3.4288]×10−3 m. The results
are depicted in Figure 14, showing a significant increase in the accuracy of the predicted
value for E4. In particular, the previous estimate in Figure 13 is E4 = [193.09, 207.39]
GPa (7.1% uncertainty), and that in Figure 14 is E4 = [197.72, 203.34] GPa (2.8%
uncertainty).

7 Conclusion

An interval-based parameter identification is presented for structural static problems.
Uncertainties in the system are modeled by intervals, and IFEM is exploited to handle
uncertainties. Our inverse algorithm stems from an adjoint-based optimization formu-
lation, and it provides an interval estimate of the unknown parameters (e.g., Young’s
moduli). The associated nonlinear interval equations are solved by a new variant of

Table 5: Geometric and material properties for the members of the two-bay two-story
frame shown in Figure 12.

 Shape A (10-4 m2) I (10-8 m4) E (GPa)  Shape A (10-4 m2) I (10-8 m4) E (GPa) 

C1 W12×19 35.940 5411.00 210 B1 W27×84 160.000 118625.96 205 

C2 W14×132 250.320 63683.41 214 B2 W36×135 256.130 324660.51 208 

C3 W14×109 206.450 51612.70 205 B3 W18×40 76.130 25473.36 215 

C4 W10×12 22.835 2239.32 201 B4 W27×94 178.710 136107.68 214 

C5 W14×109 206.450 51612.70 204      

C6 W14×109 206.450 51612.70 206      



Reliable Computing 23, 2016 69

0 1 2 3 4 5 6 7 8 9 10 11

195

200

205

210

215

220

Element #

Y
ou

ng
’s

 M
od

ul
us

 E
, (

G
Pa

)

Figure 13: Interval-based identification of Young’s moduli of the two-bay two-story
frame in Figure 12: short bars with circular markers denote the exact values; long bars
denote interval predictions from our method; median-length bars denote the Monte
Carlo predictions from an ensemble of 10,000 simulations (measurement uncertainty
level 0.1-1%).
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Figure 14: Interval-based identification of the Young’s moduli of the two-bay two-
story frame in Figure 12 using more accurate measurements in v4 and v7 than those
used in Figure 13: short bars with circular markers denote the exact values; long bars
denote interval prediction from our method; median-length bars denote the Monte
Carlo prediction from an ensemble of 10,000 simulations (measurement uncertainty
level 0.1-1%).

the iterative enclosure method. In addition, overestimation is reduced by means of a
new decomposition of the IFEM matrices K and f, which limits multiple occurrences
of the same variable in the IFEM equations by separating deterministic and interval
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terms. The interval solution from our solver guarantees enclosure of the exact param-
eters, as confirmed by several numerical benchmark problems, and it always contains
Monte Carlo predictions.
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