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Abstract: Rapid advancements in computing have enabled automatic analyses of written texts 
created in educational settings. The purpose of this symposium is to survey several applications 
of computerized text analyses used in the research and development of productive learning 
environments. Four featured research projects have developed or been working on (1) equitable 
automated scoring models for scientific argumentation for English Language Learners, (2) a 
real-time, adjustable formative assessment system to promote student revision of uncertainty-
infused scientific arguments, (3) a web-based annotation tool to support student revision of 
scientific essays, and (4) a new research methodology that analyzes teacher-produced text in 
online professional development courses. These projects will provide unique insights towards 
assessment and research opportunities associated with a variety of computerized text analysis 
approaches. 

Purpose, structure, and significance 
Written texts play an important role in the process of learning as they are used for learners to read inscribed 
knowledge as well as to express their ideas and understanding. Many discipline-specific practices are carried out 
by means of texts, e.g., explanation, argumentation, and communication. Written texts are used for the purpose of 
assessing learners or for the purpose of generating theories of learning. For the last few decades, the analysis of 
written texts relied on a relatively stable, circumscribed, post hoc set of qualitative data analysis methods, e.g., 
Miles and Huberman (1994). But we are now entering a new era, one in which our toolkits have been expanded 
by a quite different set of computational techniques, rooted largely in methods drawn from machine learning. For 
researchers in the CSCL community, computational text analysis can play a number of roles, which fall into two 
main categories. First, forms of computational text analysis can be embedded within computer-based learning 
environments that we design. In this context, computational text analysis can allow these environments to better 
guide learners, as well as to provide better feedback, both to learners and their teachers. Second, computational 
text analysis can be employed more directly as a tool for researchers, as a means of analyzing data in support of 
research goals. In the context of CSCL research, the text for this latter category can come from multiple sources. 
It might be generated by learners as they interact with a computer-based learning environment, or it might be 
developed in alternative ways, such as when learners are interviewed at the end of a computer-based intervention 
and the interviews are transcribed.  

The purpose of this symposium is to shed light on these two different ways to use computerized text 
analyses in the current work of four research projects as shown in Table 1. The first and fourth presentations 
address the research aspect of computerized text analyses while the second and third presentations address 
practical applications to support student learning in the classroom. The first two presentations address texts written 
by middle school students while the third presentation addresses those written by high school students. Texts in 
the fourth presentation were created by K-2 school teachers who were taking online professional development 
courses. Computerized text analyses were conducted by different software packages including c-rater MLTM 
developed by Educational Testing Service and Tactic Text. The first presentation concerns an important issue of 
whether automated scoring models provide equal opportunities for students with different language backgrounds. 
The second presentation shows a seamlessly integrated formative assessment system that can help students’ 
revision of written arguments in real time. The third presentation tests a formative assessment system in two task 
conditions to optimize design features. The fourth presentation uses computerized text analysis to find emergent 
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patterns without the researcher’s implicit bias.    
 The session moderator, Dr. Hee-Sun Lee, will briefly describe the purpose and organization of the 
symposium, followed by the introduction of the speakers (~5 minutes). All presenters will introduce their 
computerized text analysis methods and applications in their learning contexts (a total of ~60 minutes, ~15 minutes 
per presentation). Dr. Danielle McNamara at Arizona State University will lead a discussion focusing on the 
challenges and complexities involved in research and development efforts for collaborative learning settings (~10 
minutes). Then, the audience will have opportunities to interact with presenters as well as the discussant for 
synthesis of ideas presented in the symposium (~15 minutes). The topic of this symposium is critical for setting 
the next research agenda in designing and testing productive language-intensive learning environments where 
computerized text analyses can add unique instructional values. 
 
Table 1: Summary of computational text analysis method, learning context, and research focus for each 
presentation 
 

Presentation Computational Text Analysis  Research/Learning Context Research Focus 
1 Automated scoring model 

development 
Assessment of middle 
school students’ scientific 
argumentation 

Examination of potential linguistic bias 
in the automated scoring models as 
compared to human scoring 

2 Automated content scoring 
using c-rater ML; machine 
learning-based natural 
language processing  

Scientific argumentation 
tasks embedded in an 
online Earth science 
curriculum module 

Formative assessment function: student 
performance diagnosis using automated 
scoring and real-time, targeted feedback 
provided to students 

3 c-rater ML to provide content 
guidance and Annotator to 
provide revision strategy 
guidance  

Short essays embedded in 
web-based unit on plate 
tectonics 

Design of automated guidance to 
strengthen student agency and ability to 
make constructive revisions to short 
essays  

4 Topic modeling, simple 
counts of word usage 

Online professional 
development environment 
for K-2 math and science 

Demonstration of a computational 
environment designed to support the 
work of qualitative data analysis 

 
Presentation 1: Using automated scoring to assess argumentation while 
minimizing linguistic bias 
Zoë Buck Bracey, Christopher Wilson, Jonathan Osborne, and Kevin C. Haudek 
 
The automated scoring project in this study is carried out by an interdisciplinary team of science educators, 
cognitive scientists, and computational linguists. The goal of the project is to develop automated scoring models 
and corresponding multidimensional science assessment items aligned with the scientific argumentation practice 
identified in the Next Generation Science Standards (NGSS Lead States, 2013) for grades 6-8. The project builds 
upon the learning progression-based scientific argumentation assessment work by Osborne et al. (2016). This 
project’s automated scoring model development addresses two concerns: (1) whether we can develop automated 
text scoring models for students’ explanation and argumentation responses that are comparable to expert human 
scoring and (2) whether or not the degree to which the computer-based algorithmic text scoring is more or less 
biased against English Language Learners (ELLs) than human scoring of the same data (relative linguistic bias). 
As machine scoring of open-ended responses is expected to permeate into the classrooms internationally, 
combined with the current trend of classrooms having more and more culturally diverse students as they bring 
new languages into the classroom makeup, it is imperative to ask these questions in order to monitor the potential 
impact of the use of automated text scoring on the assessment of students from non-dominant cultural and 
linguistic backgrounds who are often underserved by educational reforms.  

Written assessments have the capacity to expand the ways in which participants can express their 
competences (Warren, Ballenger, Ogonowski, Rosebery, & Hudicourt-Barnes, 2001), but only when our 
interpretation “listen[s] past English fluency” to evaluate students’ science ideas (Moschkovich, 2007). In other 
words, teachers and other educators scoring assessments can learn to consciously counteract their biases 
associated with the linguistic patterns of students who are learning English. Computers may not have that ability. 
However, computer-based models have been shown to take on the biases of the humans who scored the data that 
were in turn used to train them. This suggests that there may be steps we can take to reduce the bias associated 
with the computerized text scoring models. This study addresses the research question: Can we develop automated 
computer scoring models of students’ explanations that are unbiased to variations in English fluency? 
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We are currently collecting data in school districts across Northern California. After a short lesson on 
argumentation in science, students answer a set of argumentation-related science items on an online platform (i.e., 
Qualtrics) designed by the project’s interdisciplinary team. The assessment is written in English. ELL students 
within our sample are asked to produce textual responses in English. ELL status from our sample will be 
determined by the state’s English language proficiency scores. The sample size of this study is approximately 
1,000 students, of whom about 15% are ELLs. The data are scored by three human scorers with expertise in the 
science content and the scientific argumentation practice. Human-scored responses are used to develop automated 
text scoring models. In addition, these human-scored responses are analyzed using Facets software to determine 
relative bias between the biased human scorers, the less-biased human scorers, and the two computer models 
based on level of English proficiency. The Facets software extends the objective measurement principles of Rasch 
modeling (Rasch, 1966) using generalizability theory to apply to more complex areas such as judged performances 
(Solano-Flores, 2006). This analysis is used to determine the relative bias of the human versus the computers, as 
well as the relative bias of the human scorers on the overlapped data sets, and to train the machine learning 
algorithm on selected sets of less and more biased scorers. 

This research contributes to the field by establishing not only the feasibility of creating high-quality 
automated scoring-based assessments for scientific argumentation, but also examining the degree to which the 
automated scoring models for such assessments are more or less biased against responses written by students who 
are learning a new language than human scoring. Researchers, both within science education and in the education 
community at large who are considering automated scoring technologies, need to have productive conversations 
about how to diagnose, monitor, and counteract bias. This study provides evidence to inform the nature and the 
direction of those conversations. Science teachers and curriculum designers should be aware of the potential risks 
associated with bringing automated text scoring into the classroom as formative or summative assessment 
methods. For researchers, it is important to critically examine the ways in which the risks and potentials can 
manifest while automated text scoring tools are in place so that these automated text scoring technologies can be 
leveraged to provide opportunities for multilingual students to express competence while learning science. 
  
Presentation 2: Formative assessment of scientific argumentation practice 
enabled by automated scoring 
Ou Lydia Liu, Hee-Sun Lee, and Amy Pallant 

 
This presentation addresses supporting secondary school students’ revision of scientific arguments when students’ 
claims and explanations about scientific phenomena are based on imperfect data. Students need adequate support 
so that they formulate strong written scientific arguments, particularly when uncertainty arises due to theoretical, 
methodological, measurement-related, analytical, and interpretative limitations associated with investigations. We 
developed HASbot, a formative feedback system that (1) diagnoses students’ written arguments through 
automated-scoring technologies, (2) provides instant feedback on student performance, and (3) offers a teacher 
dashboard for teachers to monitor class-level performance in real time.   

HASbot is integrated in an online curriculum module that explores freshwater availability and 
sustainability. There are eight scientific argumentation tasks in this water module. In writing scientific arguments, 
students submit open-ended responses that explain how their data support claims and how limitations of their data 
affect the uncertainty of their explanations. Students are expected to develop scientific reasoning that explains 
their claims based on evidence (McNeill, Lizotte, Krajcik, & Marx, 2006), and articulate critical thinking that 
examines limitations of the investigations (Allchin, 2012; Lee et al., 2014). Figure 1 shows a set of four prompts 
that elicited a student’s scientific argumentation responses. In this study, HASbot evaluated these responses in 
real time using c-rater-MLTM, a natural language processing scoring engine that uses machine learning methods 
to extract and weight textual features relevant for scoring developed by Educational Testing Service. Table 2 lists 
Human-Human and Human-Machine agreements measured in Quadratic Weighted Kappa values for all 
automated scoring models associated with the eight tasks. HASbot returns scores with feedback to guide student 
revisions. See Figure 1 for how formative feedback was provided to a student after submission (note the colored 
bar and text below the bar in the figure).  

Data were collected from 343 middle and high school students taught by nine teachers across seven states 
in the United States. Students took the uncertainty-infused scientific argumentation test developed by Lee et al. 
(2014) before and after the water module. Students’ initial formulation and revision of eight scientific 
argumentation tasks in the module were logged. We analyzed these data to investigate how students’ utilization 
of HASbot feedback impacted their ability to formulate scientific arguments related to freshwater systems. We 
also collected video data that captured how students worked together with HASbot. We analyzed videos of 14 
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groups of students working on the first scientific argumentation task to identify affordances and limitations of the 
current design of HASbot. 

Paired t-tests indicate that students made statistically significant gains from pre-test to post-test, effect 
size = 1.52 SD, p < 0.001. Our linear regression analysis of student posttest scientific argumentation score 
indicates that students’ interaction with the HASbot system significantly contributed to the post-test score after 
controlling for gender, English language learner status, and prior computer experience. HASbot helped students 
(1) determine what information to include and how to revise argument responses, (2) motivated to revise with 
feedback from a friendly, non-judgmental robot, (3) frame how to talk about uncertainty as part of argumentation, 
and (4) engage more deeply with the content and the data. HASbot constrained students because (1) false positive 
machine scores hindered students’ revision efforts, (2) some students had difficulty interpreting the feedback 
statements, and (3) repetitive feedback statements irritated some students when their revisions did not yield 
improved scores. We discuss implications for supporting scientific argumentation involving uncertainty and 
developing a feedback system based on automated text scoring. 

 

 
Figure 1. HASbot feedback example. 

 
Table 2: Quadratic Weighted Kappa (QWK) values for human-human and human-machine agreements 
 
Task Students Explanation  Uncertainty Attribution 
 (n) Human-Human Human-Machine  Human-Human Human-Machine 
1. Trap 935 0.90 0.78  0.90 0.86 
2. Bedrock 522 0.94 0.92  0.94 0.89 
3. Pumice 890 0.96 0.85  0.93 0.91 
4. Aquifer 717 0.95 0.90  0.95 0.88 
5. Vernal 709 0.94 0.84  0.92 0.85 
6. Impact 704 0.86 0.70  0.93 0.86 
7. Runoff 638 0.94 0.83  0.87 0.85 
8. Supply 457 0.93 0.85  0.96 0.87 
Average  0.93 0.84  0.93 0.87 

 
Presentation 3: Critique essay by peer or self to learn to revise in science   
Libby Gerard and Marcia C. Linn 
 
In prior research, we used c-rater ML™ to develop automated scoring models for students’ short essays on a 0-5 
knowledge integration rubric that assesses the connections among normative ideas about science (Liu, Rios, et al., 
2016). To work with autoscores, knowledge integration (KI) guidance was developed to help students move up 
one score level in the KI rubric. Even though this autoscore-based, adaptive KI guidance was more effective in 
improving students’ knowledge integration abilities than other types of guidance typically used in middle school 
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classrooms (Gerard, Ryoo, et al., 2015), many students still struggled to use the KI guidance to revise their essays. 
Some students tacked ideas on to the end of responses rather than thoroughly integrating the new information, 
leading to superficial edits while others did not revise their essays at all (Gerard, Linn, Madhok 2016). These 
findings were not unexpected as research shows that students tend to add disconnected ideas, fix mechanical 
errors, or make superfluous edits rather than modifying connections among all ideas (Fitzgerald, 1987). When 
confronted with contrasting evidence, students tend to ignore the evidence and restate their own perspective 
(Mercier & Sperber, 2011), consistent with confirmation bias (Clark & Chase, 1972).  

To promote integrated revision, we developed the Annotator. The Annotator provides students with an 
interactive model of the revision process (see Figure 2). Students place pre-written or self-constructed labels on 
sections of an essay to suggest areas for change or improvement. Selecting the relevant labels and placing them 
in the essay encourages distinguishing of key ideas and the integration of new and prior knowledge, rather than 
novice practices of tacking on disconnected information. In the initial Annotator design, students critiqued a 
fictional peer’s essay containing common ideas that required revision (Gerard et al., 2016). We added the 
Annotator guidance to the adaptive KI guidance to strengthen the quality of student essay revisions.  

This study compared peer- and self-annotations to determine optimal design features. We compared the 
initial Annotator design involving peer annotation to a modified version involving self-annotation that was 
intended to strengthen student agency in revision. We hypothesized that instantiating the student’s own essay in 
the Annotator would encourage students to view their essay as a scientific product and attend more carefully to 
each expressed idea and the connections among them. Flower and Hayes (1980) showed that when students 
succeeded in analyzing the structure and argument of their essay they were capable of making valuable revisions 
to their reasoning. When students moved to the next step, they were randomly assigned to one of two conditions: 
(a) annotate their essay or (b) annotate Sara’s (see Figure 2). In the “annotate own” version, the student’s essay 
was imported into the Annotator. In the “annotate Sara’s” version, an essay by a fictitious peer was pre-loaded in 
the Annotator. In both conditions, students used labels to address gaps or inaccuracies in the essay; reviewed their 
essay to revise; and then had one opportunity to receive adaptive KI guidance and revise again. 

The study was conducted in two schools with four teachers and their 513 students who used the WISE 
“Plate Tectonics: Why are there more earthquakes, volcanoes and mountains on the West Coast?” One school 
served primarily white, middle-class students (School A, N = 332 students, 37% non-White, 11% free/reduced 
price lunch); the other school served primarily non-White, low-income students (School B, N = 181 students, 94% 
non-White, 89% free/reduced price lunch). Data included students’ logged initial and revised embedded and 
pre/post-test essays, student annotations, interviews, and classroom observations. Essays were scored using the 
five-point knowledge integration rubrics (Liu, Lee, et al., 2008); annotations from one teacher in each school were 
scored using a 0-3 rubric assessing engagement and accuracy. 

The Annotator plus adaptive KI guidance supported students in both conditions to successfully critique 
and revise their essays during inquiry. Although there were substantial school differences, the rate of revision was 
the same between the two conditions (School A: 88% revised; School B: 89%). Students significantly improved 
their essays in both conditions during revision (School A: t(164) = 7.57, p < 0.001; School B: t(89) = 3.50, p < 
0.001). In School A, there was a marginal effect for condition when controlling for initial essay scores in favor of 
annotating a fictional peer’s response, F (2, 162) = 12.08, p = 0.086.  

Students in both conditions, on a novel item calling for students to write and revise an essay on the 
formation of Mt. Hood, made significant pre- to post-test gains showing that students gained integrated 
understanding of plate tectonics (School A: t(304) = 8.67, p < 0.001; School B: t(116) = 5.90, p < 0.001). Another 
post-test item measured students’ ability to use guidance to revise essays by giving students one round of guidance 
and the opportunity to revise their initial response. Students made significant improvements (School A: t(315) = 
11.04, p < 0.001; School B: t(142) = 3.15, p < 0.001). There was no significant effect of the condition on pre/post 
gains or post-test revisions.  

Annotating a peer’s essay supported deeper engagement in critiquing than annotating one’s own essay. 
Students were more likely to identify weaknesses accurately when annotating a peer’s essay. The difference 
between conditions was significant in School A, F(1,88) = 8.18, p < 0.01, but not in School B, F(1, 99) = 1.87, p 
= 0.175. In School B, this may be because a large percentage of students in both conditions did not place labels. 
In both schools, a greater percentage of students created their own labels when annotating a peer’s essay (20% of 
students), compared to when annotating their own (12%). When annotating a peer’s essay students created new 
labels that called for incorporation of mechanistic evidence such as, “why does the blob rise to the top” or “what 
does heat have to do with it?” When annotating their own essays, student-constructed labels often paraphrased an 
idea already expressed in their initial essay or corrected spelling.  

In sum, the Annotator plus adaptive KI guidance engaged students in critique and revision of their science 
essays. Annotating a peer’s essay showed advantages in the depth of analysis of an essay, possibly by reducing 
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the effect of confirmation bias. The different school outcomes suggest that automated guidance for annotation 
may benefit some students by helping them to create and place labels. These results suggest the value of further 
study of peer collaboration and confirmation bias.  

 
Figure 2. Comparison between “Annotate own” and “Annotate Sarah’s” versions.  

 
Presentation 4: Tactic Text - A new platform for computational text analysis 
Bruce Sherin 
 
The work reported on here is primarily concerned with the application of computational text analysis to research 
data. The potential benefits here are great. But the work is still very much in its early days, and I believe we still 
do not have a full picture of how the tools of computational text analysis should be woven into our research 
workflows. The purpose of this presentation is to introduce a new platform for computational text analysis, Tactic 
Text, designed for social scientists engaged in the study of learning. It is worth introducing Tactic Text in this 
venue not solely because it exists and is a new tool for researchers, but also because it embodies a proposed model 
for how we can incorporate text analysis into our research workflows. Tactic Text has been mentioned in earlier 
conference presentations and talks. However, to date, no presentation or research paper has laid out the design of 
the technology, and the argument for that design, in any detail. 

The central tenet of the philosophy behind Tactic Text is this: Computational text analysis should not be 
seen as a replacement for, or even separate from, forms of qualitative text analysis. Rather, it should be integrated 
with traditional forms of qualitative text analysis in a manner that amplifies both. The two forms of analysis should 
be interactive. This core philosophy has a number of implications for the design of Tactic Text, and for the 
community of users. If the two forms of analysis are to be integrated, then there must be a population of researchers 
capable in both sorts of work. Furthermore, the tool must support an interactive style of analysis. In contrast, 
existing tools for computational text analysis tend to hide the data once it is loaded into the system. 

Tactic is a fully web-based environment built to embody this philosophy. In some respects, it is akin to 
existing GUI-based tools for computational analysis, including Weka (Hall et al., 2009), RapidMiner (Mierswa, 
Wurst, Klinkenberg, Scholz, & Euler, 2006), and LightSide (Mayfield & Rosé, 2013). However, it is unlike these 
other tools in a number of respects, including the manner in which it is tuned for an interactive style of work. A 
more complete description of Tactic will be given in the talk, along with a contrast to other platforms. Figure 3 
provides an example of a Tactic Text workspace, with an analysis in process. The data are visible on the left, 
filling a large table. All data in Tactic are accomplished with tiles, which can be added to the environment from 
menus. The workspace in Figure 3 has two tiles at the right. Tiles have access to the data, and can communicate 
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with each other. 
Each user’s library begins with a default set of tiles, and more are available from a shared repository. 

However, a core belief underlying the design of Tactic is that the vast majority of research projects require at least 
some programming by users. Thus, the ability to program tiles is fully integrated into Tactic. All programming in 
Tactic is done in the Python language, and Tactic provides an integrated editor, where tiles can be directly 
programmed (refer to Figure 4). Tiles have access both to a Tactic-specific API, as well as a wide range of libraries 
that are useful for computational text analysis. Although Tactic requires users to engage in Python programming, 
it does take steps to make this programming more accessible. For example, because Tactic is entirely web based, 
there is nothing for end users to install. Furthermore, all computational work is performed on the server, so Tactic 
can be used on any machine with a web browser. 

 

 
 

Figure 3. A sample Tactic workspace. 
 

 
Figure 4. The tile creator in Tactic. 

 
In the talk, I will illustrate the use of Tactic with data from the Learning Labs project (Lomax & Kazemi, 

2016; Richards, Thompson, & Shim, 2016). As part of the Learning Labs project, two online courses were 
developed for in-service K-2 teachers, designed to guide teachers in introducing modeling-based activities into 
their mathematics and science lessons. The courses each span multiple weeks, and include a wide range of online 
activities. Many of these activities required them to enter text. Each participating teacher had to upload, watch, 
and comment on videos, and they could respond to the comments of other teachers, as well as answer questions 
presented to them as part of the course. In the presentation, I will illustrate how Tactic can be used to capture the 
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changing way in which teachers understood the nature of modeling as the courses unfolded. 
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