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Abstract

Randomized smoothing, using just a simple
isotropic Gaussian distribution, has been shown
to produce good robustness guarantees against /o-
norm bounded adversaries. In this work, we show
that extending the smoothing technique to defend
against other attack models can be challenging,
especially in the high-dimensional regime. In
particular, for a vast class of i.i.d. smoothing dis-
tributions, we prove that the largest £,,-radius that
can be certified decreases as O(1/ défi) with di-
mension d for p > 2. Notably, for p > 2, this
dependence on d is no better than that of the /-
radius that can be certified using isotropic Gaus-
sian smoothing, essentially putting a matching
lower bound on the robustness radius. When re-
stricted to generalized Gaussian smoothing, these
two bounds can be shown to be within a constant
factor of each other in an asymptotic sense, es-
tablishing that Gaussian smoothing provides the
best possible results, up to a constant factor, when
p > 2. We present experimental results on CIFAR
to validate our theory. For other smoothing dis-
tributions, such as, a uniform distribution within
an ¢, or an {,,-norm ball, we show upper bounds
of the form O(1/d) and O(1/ dl_%) respectively,
which have an even worse dependence on d.

1. Introduction

Deep neural networks, especially in image classification
tasks, have been shown to be vulnerable to adversarial per-
turbations of the input that are unnoticeable to a human
observer but can alter the prediction of the model (Szegedy
et al., 2014). These examples are generated by optimizing a
loss function for a trained network over the input features
within a small neighborhood of an example input. Gradient
based methods such as FGSM (Goodfellow et al., 2015) and
projected gradient descent (Madry et al., 2018) have been
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shown to be very effective for this purpose. In the last cou-
ple of years, several heuristic methods have been proposed
to detect and/or defend against attacks from specific types of
adversaries (Buckman et al., 2018; Guo et al., 2018; Dhillon
etal., 2018; Li & Li, 2017; Grosse et al., 2017; Gong et al.,
2017). Such defenses, however, have been shown to break
down against more powerful attacks (Carlini & Wagner,
2017; Athalye et al., 2018; Uesato et al., 2018).

This necessitates developing classifiers with robustness guar-
antees. Several convex relaxation-based techniques have
been proposed to design certifiably robust classifiers (Wong
& Kolter, 2018; Raghunathan et al., 2018; Singla & Feizi,
2019; Chiang et al., 2020) whose predictions are guaran-
teed to remain constant within a certified neighborhood
around the input point, thereby eliminating the presence
of any adversarial example in that region. However, the
ever-increasing complexity of deep neural networks has
made it difficult to scale these methods meaningfully to
high-dimensional datasets like ImageNet.

To deal with the scalability issue in certifiable robustness,
a line of work has been introduced based on randomized
robustness (Lécuyer et al., 2019; Li et al., 2019; Cohen et al.,
2019; Salman et al., 2019) wherein an arbitrary base clas-
sifier is made more robust by averaging its prediction over
random perturbations of the input point within its neighbor-
hood. Cohen et al. (2019) proved the first tight robustness
guarantee for Gaussian smoothing for an ¢5-norm bounded
adversary.

In this work, however, we show that extending the smooth-
ing technique to defend against higher-norm attacks, espe-
cially in the high-dimensional regime, can be challenging.
In particular, for a general class of i.i.d. smoothing distri-
butions, we show that, for p > 2, the largest /,,-radius that
can be certified (denoted by 7, ) decreases with the number

of dimensions d as O(1/ R ). Note that the special case
of p = 2 does not suffer from such dependency on d. This
makes smoothing-based robustness bounds weak against £,
adversarial attacks for large p, especially, for /., because as
p — oo the dependence on d becomes O(1/+/d). Moreover,
we show that the dependence of the robustness certificate
on d using a general i.i.d. smoothing distribution is similar
to that of the standard Gaussian smoothing, even for p > 2.
This implies that Gaussian smoothing essentially provides
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the best possible robustness certificate result in terms of the
dependence on d even for p > 2.

To be more precise, suppose we smooth a classifier by ran-
domly sampling points surrounding an image x, and ob-
serving the labels assigned to these points. Let p;(x) and
p2(x) be the probabilities of the first and second most prob-
able labels under the smoothing distribution. We prove the
following bounds on the robustness certificate:

1. When points are sampled by adding i.i.d. noise to
each dimension in = with o2 variance and continuous
support, we prove the certified £, radius bound

*
<
Tp—

o 1 " 1
02477 \V1-m(x)  /p2(z))’
whenever p1(z) > 1/2. See Theorem 1.

2. When smoothing with a generalized Gaussian distri-
butions with variance o2 (which includes Laplacian,
Gaussian, and uniform distributions), we prove that

v < 20 1 1 . 1
r - og ———~ o ;
r= g VBT () & pa(2)

where c is a constant less than two for a sufficiently
large d and e~ %% < py(z) < pi(z) < 1 — e~ ¥4,
When d is large, these bounds do not impact the range
of values that p; (z) and po(x) can take in a significant
way. See Theorem 2.

3. We also study smoothing techniques where the distri-
bution is uniform over a region around the input point.
When smoothed over an ¢, ball of radius b, i.e. uni-
form i.i.d between —b and b in each dimension, we
show that

*

2b
Ty < — :2\f30/d17%,
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where 02 = b%/3 is the variance in each dimension.
See Theorem 4. Note that this bound is independent of

p1(x) and po(z).

4. For smoothing uniformly over an ¢; ball of the same
radius b, we achieve an even stronger bound:

« _2b
p < d
See Theorem 5 for details. Along with being indepen-
dent of p;(z) and py(x), it is also independent of p.
Thus, it holds for any p-norm bounded adversary. Note
that, unlike the other smoothing distributions we have

considered, the uniform ¢; smoothing is not i.i.d. in
every dimension.

r

These bounds hold for any p > 0, but are too weak to offer
meaningful insights when p < 2 in the first two cases and
for p < 1 in the third one. Moreover, it is straightforward to
show that, for p > 2, the following £,-radius can be certified
using Cohen et al.’s (2019) Gaussian smoothing:

a

YT (@' (p(2) =2 (pa(2), (1)

Tp

which has the same dependence on d as the upper bound
obtained using i.i.d. smoothing. This radius is asymptot-
ically only a constant factor away from the upper bound
for the generalized Gaussian distribution, showing that this
family of distributions fails to outperform standard Gaussian
smoothing in high dimensions. To the best of our knowl-
edge, these bounds form the first results on the limitations
of randomized smoothing in the high dimensional regime
that cover an extensive range of natural and commonly used
smoothing distributions. We provide empirical evidence to
support our claims on the CIFAR-10 dataset.

2. Preliminaries and Notation

Let h be a classifier that maps inputs from R¢ to classes in
C. Let P be a (smoothing) probability distribution in R,
We define a smoothed classifier h as below:

h(z) £ argmax P (h(z + A) =¢).
cec A~P
We refer to the process of smoothing using distribution P
as P-smoothing. Let p.(x) be the output probability of the
base classifier for the class c. That is,

pe(z) == ]P’P(h(x +A) =c¢).

Without loss of generality, we assume that p; (z) and po(x)
are the probabilities of the first and second most likely
classes, respectively.

For p > 0, we say a smoothing distribution P achieves a
certified {,-norm radius of r, if, for a base classifier h and
an input z,

hz+06) = h(z), V6 eR%|I5], < r,.

For instance, as derived in (Cohen et al., 2019), the Gaussian
smoothing distribution A/(0, c2I) achieves a certified 2-
norm radius of $(®~!(py(x)) — D~ *(p2(x))) where !
is the inverse of the standard Gaussian CDF.

For p1,p2 € (0,1), such that, p; > pa, let 75 denote the
largest 1, that can be certified using P-smoothing for all
classifiers satisfying p1(x) = p;1 and p2(x) = po. If we can
show a classifier A in this class and two points z, 2’ € R?,
such that, h(z) # h(z'), then s < ||z’ — x|, We use this
fact to show upper bounds on the largest p-norm radius that
can be certified using a given class of distributions.
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3. General i.i.d. Smoothing

We set the P to be a smoothing distribution Z where each
coordinate of A is sampled independently and identically
from a symmetric distribution with zero mean, o2 variance
with a continuous support. We prove the following theorem:

Theorem 1. For distribution T and for p1,pa € (0,1), such
that, p1 > 1/2 and p1+pa < 1, the largest Ly,-radius r; that
can be certified for all classifiers satisfying p1(x) = p1 and
p2(x) = po under T-smoothing at input point x is bounded

as.:

Proof. Let Z; be the random variable modelling the i*"
coordinate of A. Define a random variable S = Zle Z;.
It is straightforward to show that this random variable is
distributed symmetrically with zero mean, do? variance
and a continuous support. The key intuition behind this
proof is that the random variable S, which is the sum of
d identical and independent random variables, will tend
towards a Gaussian distribution for large values of d, making
the distribution Z suffer from some of the same limitations
as the Gaussian distribution.

To simplify our analysis, we move our frame of reference
so that  is at the origin. Therefore, r; < ||2’|| ,. Consider a
classifier h that maps points in {w € R? | 2?21 w; < 81}
to class one and those in {w € R? | Zle w; > $o}toclass
two. We pick s1, 52 € RT such that, P(S < s1) = p1(z)
(this requires py(z) > 1/2) and P(S > s3) = pa(x). Let
2’ be the point with every coordinate equal to € and so,
Z?:l x} = ed. Since S is symmetric and has a continuous
support, g(z') = g(z) only if Z?Zl x} < #3152 which

implies e < #1552 Therefore,

S1 + 8o

ry < |l2|], = ed"/? < Py 3)

4

Figure 1 illustrates how the probabilities of the top two
classes change as we move from x to z’.

Applying Chebyshev’s inequality on S, we have:

P(S|>5) _ do®

PSzs)=———"553

The value of s for which % = po(x) must be an upper-
bound on s5.
Vdo

S -
v/ 2p2(x)
Similarly, since P(S > s1) =1 — p1(x),

Vdo
2(1 = pi(x))

52

81<

ST 82 S

Figure 1. As the distribution of S moves from the origin to 21352

the probability for class one decreases and that of class two in-
creases. They become equal at % beyond which class two
becomes more likely.

Substituting the above bounds for s; and ss in (3), proves
Theorem (1):

*
rp§

o 1 1
Worer (w = ¢p2<x>> |

4. Generalized Gaussian Smoothing

‘We now restrict ourselves to the class of generalized Gaus-
sian distributions that subsumes some commonly used and
natural smoothing distributions such as Gaussian, Laplacian
and uniform distributions. Using a similar approach as in
the previous section, we obtain tighter upper bounds on
r,, by restricting the smoothing distribution to generalized
Gaussian. In this class of distributions, each coordinate is
sampled independently from the following distribution:

1
p(z) = ZemHI"

where b > 0 is the scale parameter, q > 0 is the shape
parameter and C' is the normalizing constant

C- / (I g 4

o [ g, - W)
0 q

)

where I'(.) is the gamma function. The mean of this dis-
tribution is at zero and the variance o can be calculated
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as
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(%) 3
_ E/ ZQe_Zq/quz _ 2b F(S/q)
C Jo Cq

Substituting C' from (4) leads to

2 _ b2r(3/Q)

I(1/q)

Note that the class of generalised Gaussian distributions
is a subset of the class of i.i.d. smoothing distributions
considered in the previous section. The joint probability
distribution over all the d dimensions can be expressed as:

I SN (CHYK
ol ’

which for ¢ = 1, 2 represents Laplace and Gaussian distri-
butions, respectively. As ¢ — oo, this distribution approxi-
mates the uniform distribution over [—b, b]¢. For a finite g,
the level sets of the above p.d.f. define sets with constant
£4-norm. Let G be a generalised Gaussian distribution with
q > 1. The following theorem holds:

p(217227 .. wzd)

Theorem 2. For distribution G and for e=%* < py < p; <

1 —e Y% and p1 + ps < 1, the largest {y-radius r,, that
can be certified for all classifiers satisfying p1(x) = p1 and
pa2(x) = po under G-smoothing at input point x, is bounded
as:

20

1

di-

"
rpg

(v/108(1/(1 = p1(@))) + v/log(1/p2(2)))
4)

=

We provide a brief proof sketch for this theorem here. As
before, define random variables Z; and S and assume x to
be at the origin. Since the above distribution satisfies all the
assumptions made in the previous section, we can directly
conclude that the bound in (3) holds:

S1 + 89

%
r, <
S A

From here, we strengthen our analysis by replacing Cheby-
shev’s inequality with Chernoff bound.

E[ets]

P(S>s)< s

for any ¢ > 0. Since .S is a sum of independent random vari-
ables 21, Zs, ..., Z4 sampled from identical distributions,

d
P(S > S) < eftsHE[etZi] < 67tsE[€tZ]d
i=1

where Z is sampled from p(z).

Lemma 3. For some constant ¢ < 1.85,

E[etZ] < Z (CQtQUQ)m

m=0

Proof is presented in the appendix.

Setting t = 7'0'1\/3 for some 7 > 0 satisfying TCTZ)d <1, we
have:
oo d
P(8 > 5) < ems/ToVd (Z (c? /TQd)’”>
m=0
—s/ToVd
— € frovd < 675/70\/364/7'2
(1-— ﬁ)d -
T2d

for 72d > 16. The value of s for which this expression is
equal to po(x) gives us the following upper-bound on s3:

s2 < oVd(rlog(1/p2(x)) + 4/7)

which for 7 = 2/4/log(1/p2(x)) gives:

s9 < 4o+/dlog(1/pa(x))

and similarly, repeating the above analysis and setting 7 =
2/\/log(1/(1 — pi(a))), we get:

s1 < 4o+/dlog(1/(1 — pi(x)))

Both the above values for 7 satisfy 72d > 16 due to the
restrictions on p; and po. Substituting the above bounds for
s1 and so in inequality (3), proves Theorem (2):

20

sy (V10g(1/(1 = p1(2))) + /Iog(1/p2()) )

When p; (z) is close to one and po(x) is close to zero, this
bound is within a constant factor of the Gaussian certificate
in equation (1) because ®~!(p) can be lower bounded by
ay/log(1/(1 — p)) + B for some constants « and 3. Fig-
ure (2) compares the behaviour of the two upper bounds,
the one from i.i.d. smoothing u7 and the one from general-
ized Gaussian smoothing ug, with respect to the Gaussian
certificate r,, obtained in equation (1). Assuming the binary
classification case, for which po(z) = 1 — p1(z), we plot
the ratios

o o () V201 = pi(a))

1
Uug 4 V log 1-pi(z)

o 07 (i)

which only depend on p; (x) and show that the generalized
Gaussian bound is much tighter than the i.i.d. bound as
pi(x) = 1.

ur 1

)
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Figure 2. Comparison of the upper bounds from i.i.d. smoothing (2)
and generalized Gaussian smoothing (5) w.r.t. the lower bound
obtained from Gaussian smoothing (1). The x-axis represents
#ﬂr) for + < p1(x) < 1 and the y-axis represents the ratio of
each upper bound to the Gaussian lower bound. At around p; (z) =~
0.99, the generalized Gaussian bound becomes tighter than the
i.i.d. bound and gets within a constant factor of the Gaussian lower
bound as p1(z) — oco.

S. Uniform Smoothing

In this section, we analyse smoothing distributions that are
uniform within a finite region around the input point z.
We show stronger upper bounds for r; when smoothed
uniformly over ¢; and /,.-norm balls. We first consider the
¢~ smoothing distribution which is a limiting case for the
generalized Gaussian distribution for ¢ = co. We set P to
be U ([—b, +b]?) which denotes a uniform distribution over

the points in [—b, +b].
Theorem 4. For distribution U([—b, +b]?), the largest (-

radius r}, that can be certified for all classifiers, is bounded
as

2b
rf < —— =2/30/d" v
d=%

*
p
where o® = b2 /3 is the variance in each dimension.

Proof. Assume z is at origin and let 2’ be a point with
every coordinate equal to €. Let V7 and V5 denote the sets
[—b, +b]? and [~b + €, b + €]¢. Consider a classifier h that
maps every point in V; — V5 to class one and every point
in Vo — Vj to class two. See figure 3. Let p denote the
probability that h(z) samples from V; — V5, which is equal
to the probability that h(z’) samples from V, — V7, or

~(20)% — (2b — )¢
P T )

_(1(122)d>.

X2

Class 2

Class 1 X1

Figure 3. 2-D illustration of the /o, smoothing case. The £, ball
is shifted by € along x1 and x>. The points in the blue region
(V1 — V3) are mapped to class one and the points in the red region
(Vo — V1) to class two.

For g to classify z into class one, we must have:

pi(a’) > pa(z”)
p1(z) —p > pa(x) +p

p1(z) — pa(z)

<
P 2

(1-(-5)) <3
¢ < 2b (1 - 2—1/d) < 2b/d
(1—27Y4) <1/d

pi(x) —pa(r) <1

Since ||2'||,, = ed"/?, the optimal radius,

1

< 20/d "5 =2v30/d ¥

where o2 is the variance of U(—b, b). O

This shows that for p > 1, o (or b) needs to grow with the
number of dimensions d to certify for a meaningfully large
p-norm radius. For instance, p = 2 and oo, require o to be
O(+V/d) and ©(d) respectively. However, since inputs can be
assumed to come from [0, 1]¢ (possibly after some scaling
and shifting of images), smoothing over distributions with
such large variance may significantly lower the performance
of the smoothed classifier.

We now consider the uniform ¢; smoothing distribution
(denoted by £4(b)) where points are sampled uniformly
from an #1-norm ball of radius b. Note that the noise in each
dimension is no longer independent.

Theorem 5. For distribution L1(b), the largest £,,-radius
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Figure 4. 2-D illustration of the ¢; smoothing case. The ¢; ball is
shifted by € along x1. The points in the blue region (V1 — V>) are
mapped to class one and the points in the red region (V> — V1) to
class two.

1, that can be certified for all classifiers, is bounded as

. 20
Tp < E
The following is a proof sketch of the above theorem. Let
 be at the origin and ' be the point (e, 0,0, . . ., 0), that is,
€ in the first coordinate and zero everywhere else. Similar
to before, let V; and V5 be the sets defined by the ¢; balls
centered at x and x’ respectively.

Lemma 6. The set V1NV is a subset of an £1 ball of radius
b— <.
2

The proof is presented in the appendix.

As before, let g be a classifier that maps every point in
V1 — V5 to class one and every point in V5 — V; to class two
(figure 4). Let p denote the probability that g(x) samples
from V; — V5, which is equal to the probability that g(z')
samples from V5 — V3, or

d d
T -5 €\4
p> r =(1-(1-=)).
20 2b

We us the formula 2¢R?/d! as the volume of a d-
dimensional ¢, ball of radius R. The rest of the analysis is
same as that for the (o case and since [|z'||,, = €, we have,
. _2b
Tp < E,

which proves Theorem 5.

6. Experiments

In order to understand how our results apply to smoothing
in practice, we tested the smoothed classification algorithm

1 — 3232, 0=0.12
""""" o= - —3232,0=025
“ees 32732, 0= 0.50
O e e 1616, 0= 0.12
16°16, 0= 0.25
Z| 05 — 8%, 0=0.12
Q
0.25
0
9=1 g=2 q=3 q=4 Qq=5 q=6

Figure 5. p1(z) for CIFAR-10 images with median certified ro-
bustness for each classifier using Generalized Gaussian smoothing
for different q. For a fixed standard deviation o, the shape of the
distribution, controlled by ¢, has almost no effect on the likelihood
that the base classifier returns the correct class.

proposed by (Cohen et al., 2019), using Generalized Gaus-
sian noise in each dimension, rather than Gaussian noise.
We specifically tested on CIFAR-10 (32 x 32 pixels), as
well as scaled-down versions of this dataset (16 x 16 and
8 x 8 pixels), in order to study how our bounds behave as
the dimension of the input changes. Although we do not
have explicit certificates for these Generalized Gaussian dis-
tributions, we are able to compare the upper bounds derived
in this work for any possible certificates to the actual cer-
tificates for Gaussian smoothing on the same images. Note
that we re-trained the classifier on noisy images for each
noise distribution and standard deviation o.

Note also that our main results apply specifically to smooth-
ing based certificates which are functions of only p; (z) and
p2(x) (in theory, larger certificates could be derived if more
information is available to the certification algorithm). In re-
porting the upper bounds on possible empirical certificates,
we provide the same inputs to the upper bound as we would
provide to the certificate: namely, an empirical lower bound
p1(x) on py(x), estimated from samples, and an empirical

upper bound py(z) on pe(x). We are not making claims
about the “optimal possible” empirical estimation proce-
dures required to derive the largest possible certificates. We
instead regard these bounds, p; (z) and po(x), as inputs to
the empirical certificate: we are only claiming that, given
estimates p;(z) and po(z), no certificate will exceed the
computed bound. In practice, we use the estimation proce-
dure proposed by (Cohen et al., 2019), which first selects a
candidate top class label using a small number of samples,
then uses a large number of samples (100, 000 in our exper-
iments) to compute p; (x) based on a binomial distribution.

pa2(x) is then taken as 1 — p;(«). Then, for the sake of our
experiments, the only empirical input to our bound is the
estimate of py ().
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Figure 6. Upper bounds for certifying with Generalized Gaussian noise (o = .12) on unaltered (32 x 32) CIFAR-10 images, with ¢ = p,
compared with certificates using Gaussian noise directly. At this noise level, p1 () is high enough for the Generalized Gaussian bound to
be tighter than the i.i.d. distribution bound. Panel (a) shows the certificates and the bounds directly, while (b) shows the ratio between the

tighter Generalized Gaussian bound and the certificate.
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Figure 7. Repeating Figure 6 for o = .25. At this level of noise, p1(x) is low enough so that the i.i.d. distribution bound is tighter than

the Generalized Gaussian bound (in contrast to the setup of Figure 6).

One interesting result is that the distribution of noise added
in each dimension seems to be largely irrelevant to determin-
ing p1(z) (Figure 5). It is the variance of the noise added,
not the specific choice of noise distribution, that determines
p1(x). This paints an even bleaker picture for the possibility
of smoothing for high p-norm robustness than our theoret-
ical results alone can: Theorems 1 and 2 still depend on
p1(x) and po(z) for the particular noise distribution used.
This leaves open the possibility that certain choices of noise
distributions could yield values of p;(x) large enough to
counteract the scaling with p. However, empirically, we find
that this is not the case: for a fixed o, p1 (x) does not depend
on the shape of the smoothing distribution.

For example, one might attempt to use smoothing with
g = p in order to certify for the £, norm, so that the level
sets of the smoothing distribution correspond to £, balls
around x. This is the technique used for ¢; certification by
(Lécuyer et al., 2019), and for ¢, certification by (Cohen

et al., 2019). However, we find (Figures 6, 7) that, as an-
ticipated by Figure 2, for p > 2, this can only achieve at
best a constant factor improvement in certified robustness
compared to simply using Gaussian smoothing with the cer-
tificate from (Cohen et al., 2019) and applying equivalence
of norms (Equation 1). Note that, as shown in Figure 5, it
was only for the lowest level of noise tested (o = .12) and
the highest resolution images tested (32 x 32) that p; (z) was
sufficiently close to 1 for the Generalized Gaussian bound
to be tighter than the i.i.d. distribution bound (Figure 6).
For all other configurations (Figure 7, other plots are given
in supplementary materials) the i.i.d. bound is tighter.

In the case of Gaussian smoothing, (Cohen et al., 2019)
makes an argument that, as image resolution increases, the
base classifier will become more tolerant to noise, because
information will be redundantly encoded in the additional
pixels. This should allow us to increase the magnitude
of the smoothing variance o2 proportionally to d. It is
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Figure 8. Certified Radius at different resolutions of CIFAR-10 using ) ) ) ) )
Gaussian noise (¢ = .12). The increase in accuracy of the base Figure 9. Certified Radius using Gaussian noise (o0 = .25), for

classifier on higher-resolution images overcomes the inverse scaling datgsets of difff:rer.lt image resoluti.ons.‘ We see that‘for p > 2, the
with d in Eq. 1, achieving higher certified radii. Solid lines represent certificates (solid lines) decrease with higher dimensionality almost
as quickly as one would expect from the explicit dependence on d in

actual certificates and dashed lines represent how the certificates
Equation 1 (dashed lines).

would scale if p; (x) remained constant as resolution increased.

because by average-pooling back down a large image to a
low-resolution one, the variance in each pixel of the smaller
image will decrease proportionally with d. Then, if it is
possible to classify noisy images at the lower resolution with
a certain accuracy p;(x), it should be possible to classify
images at the higher resolution with higher levels of noise.
This increase in the amount of noise that can be added to
high resolution images (to obtain roughly the same accuracy
to that of low resolution ones) will cancel out the decrease
in the robustness radius due to the curse of dimensionality
explained in this paper. It is because based on Equation
1, if o is allowed to scale with v/d with p; (z) and po(z)
unchanged, then the certified radius should even remain
constant with d in the ¢, case.

For image datasets that are identical except for a scaling fac-
tor, we observe a related phenomenon: for a fixed noise vari-
ance, p1 (z) tends to increase with the resolution of the im-
age (i.e., the dimensionality of the input), and therefore the
certified radii tend to increase with d in the p = 2 case. In
Figure 8, we show that, for p > 2, this increase is enough to
counteract the inverse scaling with d in Equation 1, at least
in the case of low-resolution CIFAR-10 images. In other
words, we still get larger certificates for larger-resolution
images, simply because our base classifier becomes more
accurate on noisy images as resolution increases. We em-
phasize that this is using the standard Gaussian noise: we
have demonstrated that other i.i.d distributions will not give
significantly better certificates.

The above setup, however, is an artificial scenario. In the
real world, higher-resolution datasets are typically used for
classification tasks which could not be accomplished with
high accuracy at a lower resolution. As shown in Figure

9, if we compare, for a fixed o, a real-world low dimen-
sional classification task (CIFAR-10, d = 3072) to a high
dimensional classification task (ImageNet, d = 150528),
we see that the certified radius (and therefore p; (x)), does
not substantially increase with higher resolution. Therefore,
for higher p-norms, the certified radius decreases with di-
mension with a scaling nearly as extreme as the explicit
d(1/2=1/p) factor in Equation 1. Therefore, in practice, the
curse of dimensionality can be observed as explained in this
paper and it cannot be overcome using a novel choice of
i.i.d. smoothing distribution.

7. Conclusion

In this work, we demonstrated some limitations of common
smoothing distributions for £,-norm bounded adversaries
when p > 2. We partially answer the question, raised in
(Cohen et al., 2019), whether smoothing techniques similar
to Gaussian smoothing can be employed to achieve certifi-
able robustness guarantees for a general £,-norm bounded
adversary. Most i.i.d. smoothing distributions fail to yield
good robustness guarantees in the high-dimensional regime
against £,-norm bounded attacks when p > 2. Their perfor-
mance is no better than that of Gaussian smoothing up to a
constant factor. While a constant factor improvement in per-
formance could be critical in certain applications, the focus
of this work is on the effect of dimensionality on certified ro-
bustness. We note that, in our analysis, we focus on i.i.d. and
symmetric smoothing distributions. Our analysis highlights
the importance of developing input-dependent smoothing
techniques rather than the current smoothing methods based
on i.i.d. distributions.
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A. Proof for lemma 3
Proof. Applying the series expansion of e*%

— t"E[Z"]
B Z n!

n=0

1 oo
E[Z"] = 5/ Zme” (12170 gy

, we get,

E[et?]

{ n is odd

o0 — -4 .
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When n is even:
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Therefore, keeping only the terms with even n in the expan-

sion of E[e!?], we get:
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for some positive constant ¢ < 1.85, because,

(1/q)  3qT'(1+41/q) .

T(3/q) ~ aF(1+3/) (using T'(z + 1) = 2I'(2))
31 +1/q)
T T(1+3/q)
< 1.852

(forg > 1,T(1+1/qg) <landI'(1+43/q) > 0.88)
O

B. Proof for lemma 6

Proof. The points in V; satisfy the following 2¢ constraints:

r1t+xpt+F+ag<b
—r1+xa+ -+ xa <D
Ty —To+ - F+xg <Db
—x1—xa+ - +xg<b
—r1— Ty — - —2qg<b
Similarly, points in V5 satisfy,
(x1—€)+x2+ - F+24<Db
—(r1—€)+z2+--+xg<b
(r1—€) —zo+--+xg4<b
—(r1—€) —xa+--+xg<b
—(x1—€)—xg——24<hb

Then, the points in V; N V5 must satisfy the following set of
constraints constructed by picking constraints that have a +
sign for x; in the first set of constraints and a — sign for x
in the second set.

Tit+ae+-+xTg < b
—(r1—€)+x2+--+xg<b
T1—To+ - +xg<b
—(z1—€) —x24+--F+24<Db
—(x1—€)—xg—--—x4<h
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They may be rewritten as,

x1—€/2)+xa+ - +xg<b—¢€/2
x1—€/2)+aot+ - trg<b—e¢/2
1 —€/2) —xo+ -+ xg < b—¢€/2
X1 —€/2) —xo+ - +xg < b—¢€/2

(
—(
(
—(

—(x1—€/2)—xg— - —xg<b—¢€/2

which define an ¢; ball of radius b — ¢/2 centered at
(¢/2,0,...,0), that is, €/2 in the first coordinate and zero
everywhere else. O



