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Abstract

This paper studies how neural network architec-
ture affects the speed of training. We introduce a
simple concept called gradient confusion to help
formally analyze this. When gradient confusion
is high, stochastic gradients produced by different
data samples may be negatively correlated, slow-
ing down convergence. But when gradient confu-
sion is low, data samples interact harmoniously,
and training proceeds quickly. Through theoreti-
cal and experimental results, we demonstrate how
the neural network architecture affects gradient
confusion, and thus the efficiency of training. Our
results show that, for popular initialization tech-
niques, increasing the width of neural networks
leads to lower gradient confusion, and thus faster
model training. On the other hand, increasing
the depth of neural networks has the opposite
effect. Our results indicate that alternate initial-
ization techniques or networks using both batch
normalization and skip connections help reduce
the training burden of very deep networks.

1. Introduction

Stochastic gradient descent (SGD) (Robbins & Monro,
1951) and its variants with momentum have become the
standard optimization routine for neural networks due to
their fast convergence and good generalization properties
(Wilson et al., 2017; Sutskever et al., 2013; Smith et al.,
2020). Yet the convergence behavior of SGD on neural
networks still eludes full theoretical understanding. Fur-
thermore, it is not well understood how design choices on
neural network architecture affect training performance. In
this paper, we make progress on these open questions.
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Classical stochastic optimization theory predicts that the
learning rate of SGD needs to decrease over time for con-
vergence to be guaranteed to the minimizer of a convex
function (Shamir & Zhang, 2013; Bertsekas, 2011). For
strongly convex functions for example, such results show
that a decreasing learning rate schedule of O(1/k) is re-
quired to guarantee convergence to within e-accuracy of the
minimizer in O(1/¢) iterations, where k denotes the itera-
tion number. Such decay schemes, however, typically lead
to poor performance on standard neural network problems.

Neural networks operate in a regime where the number
of parameters is much larger than the number of training
data. In this “over-parameterized” regime, SGD seems to
converge quickly with constant learning rates. Most neu-
ral network practitioners use a constant learning rate for
the majority of training (with exponential decay only to-
wards the end of training) without seeing the method stall
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He
et al., 2016; Zagoruyko & Komodakis, 2016). With constant
learning rates, theoretical guarantees show that SGD con-
verges quickly to a neighborhood of the minimizer, but then
reaches a noise floor beyond which it stops converging; this
noise floor depends on the learning rate and the variance of
the gradients (Moulines & Bach, 2011; Needell et al., 2014).
Recent results show that convergence without a noise floor
is possible without decaying the learning rate, provided the
model is strongly convex and overfitting occurs (Schmidt &
Roux, 2013; Ma et al., 2017; Vaswani et al., 2018).

While these results do give important insights, they do not
fully explain the dynamics of SGD on neural networks,
and how they relate to over-parameterization. Furthermore,
training performance is strongly influenced by network ar-
chitecture. It is common knowledge among practitioners
that, under standard Gaussian initialization techniques (Glo-
rot & Bengio, 2010; He et al., 2015), deeper networks train
slower (Bengio et al., 1994; Saxe et al., 2013). This has
led to several innovations over the years to get deeper nets
to train more easily, such as careful initialization strategies
(Xiao et al., 2018), residual connections (He et al., 2016),
and normalization schemes like batch normalization (Ioffe
& Szegedy, 2015). Furthermore, there is evidence to indi-
cate that wider networks are faster to train (Zagoruyko &
Komodakis, 2016; Nguyen & Hein, 2017), and recent the-
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oretical results suggest that the dynamics of SGD simplify
considerably for very wide networks (Jacot et al., 2018;
Lee et al., 2019). In this paper, we make progress on the-
oretically understanding these empirical observations and
unifying existing theoretical results. To this end, we identify
and analyze a condition that enables us to establish direct
relationships between layer width, network depth, problem
dimensionality, initialization schemes, and trainability and
SGD dynamics for over-parameterized networks.

Our contributions. Typical neural networks are over-
parameterized (i.e., the number of parameters exceed the
number of training points). In this paper, we ask how this
over-parameterization, and more specifically the network ar-
chitecture, affects the trainability of neural networks and the
dynamics of SGD. Through extensive theoretical and exper-
imental studies, we show how layer width, network depth,
initialization schemes, and other architecture choices affect
the dynamics. The following are our main contributions.'

e We identify a condition, termed gradient confusion,
that impacts the convergence properties of SGD on
over-parameterized models. We prove that high gradi-
ent confusion may lead to slower convergence, while
convergence is accelerated (and could be faster than
predicted by existing theory) if confusion is low, in-
dicating a regime where constant learning rates work
well in practice (sections 2 and 3). We use the gradi-
ent confusion condition to study the effect of various
architecture choices on trainability and convergence.

e We study the effect of neural network architecture on
gradient confusion at standard Gaussian initialization
schemes (section 4), and prove (a) gradient confusion
increases as the network depth increases, and (b) wider
networks have lower gradient confusion. These indi-
cate that deeper networks are more difficult to train and
wider networks can improve trainability of networks.
Directly analyzing the gradient confusion bound en-
ables us to derive results on the effect of depth and
width, without requiring restrictive assumptions like
large layer widths (Du et al., 2018; Allen-Zhu et al.,
2018). Our results hold for a large class of neural
networks with different non-linear activations and loss-
functions. In section 5, we present a more general
result on the effect of depth on the trainability of net-
works without assuming the network is at initialization.

e We prove that for linear neural networks, gradient con-
fusion is independent of depth when using orthogonal
initialization schemes (section 6) (Saxe et al., 2013;
Schoenholz et al., 2016). This indicates a way forward
in developing techniques for training deeper models.

!To keep the main text of the paper concise, all proofs and sev-
eral additional experimental results are delegated to the appendix.

e We test our theoretical predictions using extensive
experiments on wide residual networks (WRNs)
(Zagoruyko & Komodakis, 2016), convolutional net-
works (CNNs) and multi-layer perceptrons (MLPs) for
image classification tasks on CIFAR-10, CIFAR-100
and MNIST (section 7 and appendix A). We find that
our theoretical results consistently hold across all our
experiments. We further show that the combination of
batch normalization and skip connections in residual
networks help lower gradient confusion, thus indicat-
ing why SGD can efficiently train deep neural networks
that employ such techniques.

2. Gradient confusion

Notations. We denote vectors in bold lower-case and ma-
trices in bold upper-case. We use (W), ; to indicate the
(i,7) cell in matrix W and (W); for the i row of matrix
W. ||[W]|| denotes the operator norm of W. [N] denotes
{1,2,...,N} and [N]o denotes {0,1,...,N}.

Preliminaries. Given [V training points (specified by the
corresponding loss functions { f;};c[n]), we use SGD to
solve empirical risk minimization problems of the form,

Milyepe F(W) = mingege & S8 fi(w), (1)

using the following iterative update rule for 7" rounds:
Wi+l = Wg — Oéka(Wk) (2)

Here « is the learning rate and fk is a function chosen
uniformly at random from {f;};c[n at iteration k € [T].
w* = arg min,, F'(w) denotes the optimal solution.

Gradient confusion. SGD works by iteratively selecting a
random function fj, and modifying the parameters to move
in the direction of the negative gradient of fk It may happen
that the selected gradient V fris negatively correlated with
the gradient of another term V f;. When the gradients of dif-
ferent mini-batches are negatively correlated, the objective
terms disagree on which direction the parameters should
move, and we say that there is gradient confusion.”

Definition 2.1. A set of objective functions { fi}ic|n) has
gradient confusion bound n > 0 if the pair-wise inner prod-
ucts between gradients satisfy, for a fixed w € R,

(Vfi(w),Vfj(w))>-n, Yi#£je[N. (3

Observations in simplified settings. SGD converges fast
when gradient confusion is low along its path. To see why,

2Gradient confusion is related to both gradient variance and
gradient diversity (Yin et al., 2017), but with important differences,
which we discuss in section 9. We also discuss alternate definitions
of the gradient confusion condition in section 8.
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Figure 1. Linear regression on an over-parameterized (d = 120)
and under-parameterized (d = 80) model with N = 100 samples
generated randomly from a Gaussian, trained using SGD with mini-
batch size 1. Plots are averaged over 3 independent runs. Gradient
cosine similarities were calculated over all pairs of gradients.

consider the case of training a logistic regression model
on a dataset with orthogonal vectors. We have f;(w) =
L(yix; w), where £ : R — R is the logistic loss, {x; };e[n]
is a set of orthogonal training vectors, and y; € {—1,1}
is the label for x;. We then have V f;(w) = (;x;, where
G =vl (yi- x;r w). Note that the gradient confusion is 0
since (V £i(w), V.f;(w)) = Gi¢;{xinx;) = 0. Vi, j € [N]
and 7 # j. Thus, an update in the gradient direction f;
has no effect on the loss value of f; for ¢ # j. In this
case, SGD decouples into (deterministic) gradient descent
on each objective term separately, and we can expect to see
the fast convergence rates attained by gradient descent.

Can we expect a problem to have low gradient confusion
in practice? From the logistic regression problem, we have:
[V fi(w), Vfi(w))| = |(xi,%;)| - |{:¢;]. This inner prod-
uct is expected to be small for all w; the logistic loss satisfies
|Gi¢;j] < 1, and for fixed N the quantity max;; [(X;,X;)]|
is O(1/+/d) whenever {x;} are randomly sampled from a
sphere (see lemma B.1 for the formal statement).> Thus, we
would expect a random linear model to have nearly orthog-
onal gradients, when the number of parameters is "large"
and the number of training data is "small", i.e., when the
model is over-parameterized. This is further evidenced by
a toy example in figure 1, where we show a slightly over-
parameterized linear regression model can have much faster
convergence rates, as well as lower gradient confusion. One
can prove a similar result for problems that have random and
low-rank Hessians, which suggests that one might expect
gradient to be small near the minimizer for many standard
neural nets (see appendix C for more discussion).

The above arguments are a bit simplistic, considering toy
scenarios and ignoring issues like the effect of network
structure. In the following sections, we rigorously analyze
the effect of gradient confusion on the speed of convergence
on non-convex problems, and the effect of width and depth
of the neural network architecture on the gradient confusion.

3Generally, this is true whenever x; = ﬁyi, where y; is an
isotropic random vector (Vershynin, 2018).

3. SGD is fast when gradient confusion is low

Several prior papers have analyzed the convergence rates
of constant learning rate SGD (Nedi¢ & Bertsekas, 2001;
Moulines & Bach, 2011; Needell et al., 2014). These re-
sults show that for strongly convex and Lipschitz smooth
functions, SGD with a constant learning rate o converges
linearly to a neighborhood of the minimizer. The noise floor
it converges to depends on the learning rate o and the vari-
ance of the gradients at the minimizer, i.e., E; ||V f; (w*)||%.
To guarantee convergence to e-accuracy in such a setting,
the learning rate needs to be small, i.e., « = O(e), and
the method requires 7' = O(1/¢) iterations. Some more
recent results show convergence of constant learning rate
SGD without a noise floor and without small step sizes for
models that can completely fit the data (Schmidt & Roux,
2013; Ma et al., 2017; Vaswani et al., 2018).

Gradient confusion is related to these results. Cauchy-
Schwarz inequality implies that if E;||V f;(w*)||> = O(e),
then E; ;|(V fi(w*), Vf;(w*))| = O(e), Vi, j. Thus the
gradient confusion at the minimizer is small when the vari-
ance of the gradients at the minimizer is small. Further
note that when the variance of the gradients at the mini-
mizer is O(e), a direct application of the results in Moulines
& Bach (2011) and Needell et al. (2014) shows that con-
stant learning rate SGD has fast convergence to e-accuracy
in T = O(log(1/e)) iterations, without the learning rate
needing to be small. Generally however, bounded gradient
confusion does not provide a bound on the variance of the
gradients (see section 9). Thus, it is instructive to derive con-
vergence bounds of SGD explicitly in terms of the gradient
confusion to properly understand its effect.

We first consider functions satisfying the Polyak-
Lojasiewicz (PL) inequality (Lojasiewicz, 1965), a condi-
tion related to, but weaker than, strong convexity, and used
in recent work (Karimi et al., 2016; De et al., 2017). We
provide bounds on the rate of convergence in terms of the
optimality gap. We start with two standard assumptions.

(A1) {fi}ie[n) are Lipschitz smooth:
fiw') < fi(w) +V fi(w) T (W' —w) + §[|w' —w]]?.

(A2) {fi}ie[n satisty the PL inequality:
sIVEWI? = u(fi(w) = £7), fi = minw fi(w).

We now state a convergence result of constant learning rate
SGD in terms of the gradient confusion.

Theorem 3.1. If the objective function satisfies (Al) and
(A2), and has gradient confusion 1, SGD converges linearly
to a neighborhood of the minima of problem (1) as:

E[F(wr) — F*] < p"(F(wo) — F*) + 1L,

2 2 N Lo? :
wherea<m,p:1—w“(a— 5> ),F*:mmwF(w)
and wy is the initialized weights.
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This result shows that SGD converges linearly to a neigh-
borhood of a minimizer, and the size of this neighborhood
depends on the level of gradient confusion. When the gra-
dient confusion is small, i.e., n = O(e), SGD has fast con-
vergence to O(e)-accuracy in T = O(log(1/¢)) iterations,
without requiring the learning rate to be vanishingly small.
We now extend this to general smooth functions.

Theorem 3.2. [fthe objective satisfies (Al) and has gradi-
ent confusion n, then SGD converges to a neighborhood of
a stationary point of problem (1) as:

ming—r,...7 B[ VF(wy)||? < 2ECD=E 4 o

fora < 325, p= 52—, and F* = miny, F(w).

Thus, as long as n = O(1/T), SGD has fast O(1/T") con-
vergence on smooth non-convex functions. Theorems 3.1
and 3.2 predict an initial phase of optimization with fast con-
vergence to the neighborhood of a minimizer or a stationary
point. This behavior is often observed when optimizing
neural nets (Darken & Moody, 1992; Sutskever et al., 2013),
where a constant learning rate reaches a high level of ac-
curacy on the model. As we show in subsequent sections,
this is expected since for neural networks typically used, the
gradient confusion is expected to be low. See section 9 for
more discussion on the above results and how they relate
to previous work. We stress that our goal is not to study
convergence rates per se, nor is it to prove state-of-the-art
rate bounds for this class of problems. Rather, we show the
direct effect that the gradient confusion bound has on the
convergence rate and the noise floor for constant learning
rate SGD. As we show in the following sections, this new
perspective in terms of the gradient confusion helps us more
directly understand how neural network architecture design
affects SGD dynamics and why.

4. Effect of neural network architecture at
Gaussian initializations

To draw a connection between neural network architecture
and training performance, we analyze gradient confusion for
generic (i.e., random) model problems using methods from
high-dimensional probability. In this section, we analyze
the effect of neural network architecture at the beginning of
training, when using standard Gaussian initialization tech-
niques. Analyzing these models at initialization is important
to understand which architectures are more easily trainable
than others. Our results cover a wide range of scenarios
compared to prior work, require minimal additional assump-
tions, and hold for a large family of neural networks with
different non-linear activation functions and loss-functions.
In particular, our results hold for fully connected networks
(and can be extended to convolutional networks) with the
square-loss and logistic-loss functions, and commonly used

non-linear activations such as sigmoid, tanh and ReLU. We
consider both the case where the input data is arbitrary but
bounded (theorem 4.1, part 1), as well as where the input
data is randomly drawn from the surface of a unit sphere
(theorem 4.1, part 2).

Setting. We consider training data D = {(x;,C(x;)) }ie[n],
with labeling function C : R? — [—1,1]. For some of our
results, we consider that the data points {x;} are drawn
uniformly at random from the surface of a d-dimensional
unit sphere. The labeling function satisfies |C(x)| < 1 and
[[V«C(x)||2 < 1 for ||x|| < 1. Note that this automatically
holds for every model considered in this paper where the
labeling function is realizable (i.e., where the model can
express the labeling function using its parameters). More
generally, this assumes a Lipschitz condition on the labels
(i.e., the labels don’t change too quickly with the inputs).

We consider two loss-functions: square-loss for regres-
sion and logistic loss for classification. The square-loss
function is defined as f;(w) = 3(C(x;) — gw(xi))?
and the logistic function is defined as f;(w) = log(1 +
exp(—C(X;)gw(x;))). Here, gw : R? — R denotes the
parameterized function we fit to the training data and f;(w)
denotes the loss-function of hypothesis gy, on data point x;.

Let Wy € R“*% and {W,} (5 where W, € R >
are weight matrices. Let W denote the tuple (W ,),¢[s],-
Define £ := max,¢ (g ¢, to be the width and 3 to be the
depth of the network. Then, the model gy is defined as

gw (x) ;= 0c(Wgo(Wga_1...0(Wi0(Wix))...)),

where o denotes the non-linear activation function applied
point-wise to its arguments. We assume that the activation
is given by a function o (z) with the following properties.

e (P1) Boundedness: |o(z)| < 1forx € [—1,1].

¢ (P2) Bounded differentials: Let o’(z) and o’ () de-
note the first and second sub-differentials respectively.
Then, |0/(z)| < 1and |[0”(z)| < 1forallx € [-1,1].

When ||x|| < 1, activation functions such as sigmoid, tanh,
softmax and ReLU satisfy these requirements.

Furthermore, in this section, we consider the following
Gaussian weight initialization strategy.

Strategy 4.1. W, € R**? has independent N'(0, %) en-
tries. For every p € [3], the weights W ,, € R‘%*% -1 have

independent N (0 ¥)

- entries for some constant k > 0.
KEp—1

This initialization strategy with different settings of « are
used almost universally for neural networks (Glorot & Ben-
gio, 2010; LeCun et al., 2012; He et al., 2015). For instance,
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typically k = % when ReLLU activations are used, and k = 1
when tanh activations are used.

Main result. The following theorem shows how the width
¢ := max,¢g) £, and the depth f3 affect the gradient confu-
sion condition at standard initializations. We show that
as width increases (for fixed depth) or depth decreases
(for fixed width) the probability that the gradient confusion
bound (equation 3) holds increases. Thus, as the depth in-
creases (with fixed width), training a model becomes harder,
while as the width increases (with fixed depth), training a
model becomes easier. Furthermore, note that this result
also implies that training very deep linear neural networks
(with identity activation functions) with standard Gaussian
initializations is hard. Throughout the paper, we define the
parameter (o := 21/f. See the appendix (Lemma D.1) for a
more careful definition of this quantity.

Theorem 4.1. Let Wy, W, ..., Wy be weight matrices
chosen according to strategy 4.1. There exists fixed con-
stants c1, co > 0 such that we have the following.

1. Consider a fixed but arbitrary dataset X1,Xs, ..., XN
with ||x;]| < 1 for every i € [N]. Forn > 4, the
gradient confusion bound in equation 3 holds with
probability at least

2 2
1 — Bexp (—c15%0?) — N?exp (;ﬁﬁ%) .

2. If the dataset {X;}ic[n) is such that each X; is an i.i.d.
sample from the surface of d-dimensional unit sphere,
then for every n > 0 the gradient confusion bound in
equation 3 holds with probability at least

1 — Bexp (—c1620%) — N%exp (%ﬁfgyz) .
Theorem 4.1 shows that under popular Gaussian initializa-
tions used, training becomes harder as networks get deeper.
The result however also shows a way forward: layer width
improves the trainability of deep networks. Other related
work supports this showing that when the layers are in-
finitely wide, the learning dynamics of gradient descent
simplifies considerably (Jacot et al., 2018; Lee et al., 2019).
Hanin & Rolnick (2018) also suggest that the width should
increase linearly with depth in a neural network to help
dynamics at the beginning of training. In section 7 and
appendix A, we show substantial empirical evidence that,
given a sufficiently deep network, increasing the layer width
often helps in lowering gradient confusion and speeding up
convergence for a range of models.

5. A more general result on the effect of depth

‘While our results in section 4 hold at standard initialization
schemes, in this section we derive a more general version

of the result. In particular, we assume the setting where the
data is drawn uniformly at random from a unit sphere and
the weights lie in a ball around a local minimizer. Our results
hold for both fully connected networks and convolutional
networks with the square-loss and logistic-loss functions,
and commonly-used non-linear activations such as sigmoid,
tanh, softmax and ReL.U.

We consider the same setup as in the previous section, and
assume additionally that the data points {x;} are drawn
uniformly from the surface of a d-dimensional unit sphere.
Additionally, instead of studying the network at initializa-
tion, we make the following assumption on the weights.

Assumption 1 (Small Weights). We assume that the oper-
ator norm of the weight matrices {W;};c(s), are bounded
above by 1, i.e., for every i € [5]o we have ||[W,]|| < 1.

The operator norm of the weight matrices ||W || being close
to 1 is important for the trainability of neural networks, as
it ensures that the input signal is passed through the net-
work without exploding or shrinking across layers (Glorot
& Bengio, 2010). Proving non-vacuous bounds in case of
such blow-ups in magnitude of the signal or the gradient is
not possible in general, and thus, we consider this restricted
class of weights. Most standard neural networks are trained
using weight decay regularizers of the form > . ||[W;||%.
This biases the weights to be small when training neural
networks in practice. See appendix F for further discussion
on the small weights assumption.

We now present a more general version of theorem 4.1.

Theorem 5.1. Let W, W1, ..., Wy satisfy assumption 1.
For some fixed constant c > 0, the gradient confusion bound
(equation 3) holds with probability at least

_ N2 —cdn®
1-N eXp(16C3(6+2)4>'

Theorem 5.1 shows that (for fixed dimension d and number
of samples V) when the depth 3 decreases, the probabil-
ity that the gradient confusion bound in equation 3 holds
increases, and vice versa. Thus, our results indicate that in
the general case when the weights are small, increasing the
network depth will typically lead to slower model training.

Note that on assuming ||W]| < 1 for each weight matrix
‘W, the dependence of gradient confusion on the width
goes away. To see why this, consider an example where
each weight matrix in the neural network has exactly one
non-zero element, which is set to 1. The operator norm of
each such weight matrix is 1, but the forward or backward
propagated signals would not depend on the width.

Note that the convergence rate results of SGD in section
3 assume that the gradient confusion bound holds at every
point along the path of SGD. On the other hand, theorem
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5.1 shows concentration bounds for the gradient confusion
at a fixed weight W. Thus, to make the above result more
relevant for the convergence of SGD on neural networks, we
now make the concentration bound in theorem 5.1 uniform
over all weights inside a ball B, of radius r.

Corollary 5.1. Select a point W = (Wo, W1,..., Wg),
satisfying assumption 1. Consider a ball B, centered at
W of radius v > 0. If the data {X;};c|n) are sampled
uniformly from a unit sphere, then the gradient confusion
bound in equation 3 holds uniformly at all points W' € B,
with probability at least

1—N2exp( %), if r < n/4¢g,

64¢3(B+2)*
dn? 8d(¢2 .
1 — NZ%exp (— 64<§(g+2)4 + f,‘)r) , otherwise.

Corollary 5.1 shows that the probability that the gradient
confusion bound holds decreases with increasing depth, for
all weights in a ball around the minimizer.* This explains
why, in the general case, training very deep models might
always be hard. This raises the question why most deep
neural networks used in practice are so efficiently trained
using SGD. While careful Gaussian initialization strategies
prevent vanishing or exploding gradients, these strategies
still suffer from high gradient confusion for very deep net-
works unless the width is also increased with the depth, as
we show in section 4. Practitioners over the years, however,
have achieved state-of-the-art results by making networks
deeper, without necessarily making networks wider. Thus,
in section 7, we empirically study how popular techniques
used in these models like skip connections and batch nor-
malization affect gradient confusion. We find that these
techniques drastically lower gradient confusion, making
deep networks significantly easier to train. Furthermore, in
the next section, we show how deep linear nets are train-
able when used with orthogonal initialization techniques,
indicating a way forward for training deeper models.

6. Gradient confusion is independent of depth
for orthogonal initializations

In this section, we show that for deep linear neural networks,
gradient confusion is independent of depth when the weight
matrices are initialized as orthogonal matrices.’> Consider
the following linear neural network:

gw(x) =7Wg-Wg_1-...- Wy -x, )

where the rescaling parameter v = ﬁ,

use the squared loss function. Then we have the following.

and assume we

“The above results automatically hold for convolutional net-
works, since a convolution operation on x can be represented as a
matrix multiplication Ux for an appropriate Toeplitz matrix U.

> An orthogonal matrix A satisfies AT - A = A- AT =1

Theorem 6.1. Let {W};c(g) be arbitrary orthogonal ma-
trices that satisfy assumption 1. Let the dataset {X; };c[n
be such that each x; is an i.i.d. sample from the surface
of d-dimensional unit sphere. Consider the linear neural
network in equation 4 that minimizes the empirical square
loss function. For some fixed constant c > 0, the gradient
confusion bound (equation 3) holds with probability at least

1 — N2%exp (fcdnz) .

From Theorem 6.1, we see that the probability does not
depend on the depth S or maximum width ¢. Thus, trainabil-
ity does not get worse with depth when using orthogonal
initializations. This result matches previous theoretical and
empirical results showing the efficiency of orthogonal ini-
tialization techniques for training very deep linear or tanh
networks (Saxe et al., 2013; Schoenholz et al., 2016; Xiao
et al., 2018). However, orthogonal initializations are not
compatable with non-linear activation functions like sig-
moids or ReLUs, which limit their use in practice. Nonethe-
less, this result suggests a promising direction in developing
techniques for training deeper models.

7. Experimental results

To test our theoretical results and to probe why standard
neural networks are efficiently trained with SGD, we now
present experimental results showing the effect of the neu-
ral network architecture on the convergence of SGD and
gradient confusion. It is worth noting that theorems 3.1
and 3.2 indicate that we would expect the effect of gradient
confusion to be most prominent closer to the end of training.

We performed experiments on wide residual networks
(WRNSs) (Zagoruyko & Komodakis, 2016), convolutional
networks (CNNs) and multi-layer perceptrons (MLPs) for
image classification tasks on CIFAR-10, CIFAR-100 and
MNIST. We present results for CNNs on CIFAR-10 in this
section, and present all other results in appendix A. We use
CNN-j3-¢ to denote WRNSs that have no skip connections
or batch normalization, with a depth $ and width factor
0.5 We turned off dropout and weight decay for all our
experiments. We used SGD as the optimizer without any
momentum. Following Zagoruyko & Komodakis (2016),
we ran all experiments for 200 epochs with minibatches of
size 128, and reduced the initial learning rate by a factor of
10 at epochs 80 and 160. We used the MSRA initializer (He
et al., 2015) for the weights as is standard for this model,
and used the same preprocessing steps for the CIFAR-10 im-
ages as described in Zagoruyko & Komodakis (2016). We
ran each experiment 5 times, and we show the standard de-
viation across runs in our plots. We tuned the optimal initial

The width factor denotes the number of filters relative to the
original ResNet model (Zagoruyko & Komodakis, 2016).
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Figure 2. The effect of network depth with CNN-3-2 on CIFAR-10 for depths 3 = 16, 22, 28, 34 and 40. Plots show the (a) convergence
curves for SGD, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training (over all independent runs).

learning rate for each model over a logarithmically-spaced
grid and selected the run that achieved the lowest training
loss value. To measure gradient confusion, at the end of
every training epoch, we sampled 100 pairs of mini-batches
each of size 128 (the same size as the training batch). We
calculated gradients on each mini-batch, and then computed
pairwise cosine similarities. See appendix A.2 for more
details on the experimental setup and architectures used.

Effect of depth. To test our theoretical results, we consider
CNNs with a fixed width factor of 2 and varying network
depth. From figure 2, we see that our theoretical results are
backed by the experiments: increasing depth slows down
convergence, and increases gradient confusion. We also
notice that with increasing depth, the density of pairwise
gradient cosine similarities concentrates less sharply around
0, which makes the network harder to train.

Effect of width. We now consider CNNs with a fixed
depth of 16 and varying width factors. From figure 3, we
see that increasing width results in faster convergence and
lower gradient confusion. We further see that gradient co-
sine similarities concentrate around 0 with growing width,
indicating that SGD decouples across the training samples
with growing width. Note that the smallest network consid-
ered (CNN-16-2) is still over-parameterized and achieves a
high level of performance (see appendix A.3).

Effect of batch normalization and skip connections. Al-
most all state-of-the-art neural networks currently contain
both skip connections and normalization layers. To help un-
derstand why such neural networks are so efficiently trained
using SGD with constant learning rates, we test the effect of
adding skip connections and batch normalization to CNNs
of fixed width and varying depth. Figure 4 shows that adding
skip connections or batch normalization individually help
in training deeper models, but these models still suffer from
worsening results and increasing gradient confusion as the

network gets deeper. When these techniques are used to-
gether, the model has relatively low gradient confusion even
for very deep networks, significantly improving trainability
of deep models. Note that our observations are consistent
with prior work (De & Smith, 2020; Yang et al., 2019).

8. Alternate definitions of gradient confusion

Note that the gradient confusion bound 7 in equation 3 is
defined for the worst-case gradient inner product. However,
all the results in this paper can be trivially extended to using
a bound on the average gradient inner product of the form:

SN V(W) V fi(w)) N2 > .

In this case, all theoretical results would remain the same
up to constants. We can also define a normalized variant of
the gradient confusion condition:

(Vfiw), V(W) UV fi (W)Y 5 (w)]) = =

This condition inherently makes an additional assumption
that the norm of the stochastic gradients, ||V f;(w)]|, is
bounded, and thus the gradient variance is also bounded
(see discussion in section 9). Thus, while all our theoretical
results would qualitatively remain the same under this con-
dition, we can prove tighter versions of our current results.

Finally, note that gradient confusion condition in equation
3 is applicable even when the stochastic gradients are av-
eraged over minibatches of size B. The variance of the
gradient inner product scales down as 1/B? in this case,
and thus 7 is expected to decrease as B grows.

9. Related work

The gradient confusion bound and our theoretical results
have interesting connections to prior work. In this section,
we briefly discuss some of these connections.
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Connections to the gradient variance: If we assume
bounded gradient variance E; ||V f;(w) — VF(w)|* < o2,
we can bound the gradient confusion parameter 7 in terms
of other quantities. For example, suppose the true gradient
VF(w) = Vfi(w)/2 + V fa(w)/2. Then we can write:
(Vfi(w),Vf2(w))| < 02 + ||[VF(w)||?. However, in
general one cannot bound the gradient variance in terms of
the gradient confusion parameter. As a counter-example,
consider a problem with the following distribution on the
gradients: ﬁ samples with gradient % and £ samples with
gradient €, where p = € — 0. In this case, the gradients
are positive, so gradient confusion 7 = 0. The mean of the
gradients is given by 1+ €(1—¢), which remains bounded as
€ — 0. On the other hand, the variance (and thus the squared
norm of the stochastic gradients) is unbounded (O(1/¢) as
e — 0). A consequence of this is that in theorems 3.1 and
3.2, the "noise term" (i.e., the second term in the RHS of the
convergence bounds) does not depend on the learning rate
in the general case. If gradients have unbounded variance,
lowering the learning rate does not reduce the variance of
the SGD updates, and thus does not reduce the noise term.

Connections to gradient diversity: Gradient diversity
(Yin et al., 2017) also measures the degree to which in-
dividual gradients at different data samples are different
from each other. However, the gradient diversity measure
gets larger as the individual gradients become orthogonal
to each other, and further increases as the gradients start
pointing in opposite directions. On the other hand, gradient
confusion between two individual gradients is zero unless
the inner product between them is negative. As we show in
this paper, this has important implications when we study
the convergence of SGD in the over-parameterized setting:
increased width makes gradients more orthogonal to each
other improving trainability, while increased depth result in
gradients pointing in opposite directions making networks
harder to train. Thus, we view our papers to be complemen-
tary, providing insights about different issues (large batch
distributed training vs. small batch convergence).

Related work on the impact of network architecture:
Balduzzi et al. (2017) studied neural networks with ReLU
activations at Gaussian initializations, and showed that gra-
dients become increasingly negatively correlated with depth.
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Hanin (2018) showed that the variance of gradients in fully
connected networks with ReLU activations is exponential
in the sum of the reciprocals of the hidden layer widths at
Gaussian initializations. In a follow-up work, Hanin & Rol-
nick (2018) showed that this sum of the reciprocals of the
hidden layer widths determines the variance of the sizes of
the activations at each layer. When this sum of reciprocals is
too large, early training dynamics are very slow, suggesting
the difficulties of starting training on deeper networks, as
well as the benefits of increased width.

Other work on SGD convergence: There has recently
been a lot of interest in analyzing conditions under which
SGD converges to global minimizers of over-parameterized
linear and non-linear neural networks. Arora et al. (2018)
shows SGD converges linearly to global minimizers for
linear neural networks under certain conditions. Du et al.
(2018); Allen-Zhu et al. (2018); Zou et al. (2018); Brutzkus
et al. (2017) also show convergence to global minimizers
of SGD for non-linear networks. This paper complements
these recent results by studying how low gradient confusion
contributes to SGD’s success on over-parameterized neural
networks used in practice.

10. Discussion

In this paper, we study how neural network architecture af-
fects the trainability of networks and the dynamics of SGD.
To rigorously analyze this, we introduce a concept called gra-
dient confusion, and show that when gradient confusion is
low, SGD has fast convergence. We show at standard Gaus-
sian initializations, increasing layer width leads to lower
gradient confusion, making the model easier to train. In con-
trast, increasing depth results in higher gradient confusion,
making models harder to train. These results indicate that
increasing the layer width with the network depth is impor-
tant to maintain trainability of the neural network. This is
supported by other recent work that suggest that the width
should increase linearly with depth in a Gaussian-initialized
neural network to help dynamics early in training (Hanin,
2018; Hanin & Rolnick, 2018).

Many previous results have shown how deeper models
are more efficient at modeling higher complexity function
classes than wider models, and thus depth is essential for
the success of neural networks (Eldan & Shamir, 2016; Tel-
garsky, 2016). Indeed, practitioners over the years have
achieved state-of-the-art results on various tasks by mak-
ing networks deeper, without necessarily making networks
wider. We thus study techniques that enable us to train deep
models without requiring us to increase the width with depth.
Most state-of-the-art neural networks currently contain both
skip connections and normalization layers. We thus, empir-
ically study the effect of introducing batch normalization
and skip connections to a neural network. We show that the

combination of batch normalization and skip connections
lower gradient confusion and help train very deep models,
explaining why many neural networks used in practice are
so efficiently trained. Furthermore, we show how orthogo-
nal initialization techniques provide a promising direction
for improving the trainability of very deep networks.

Our results provide a number of important insights that can
be used for neural network model design. We demonstrate
that the gradient confusion condition could be useful as
a measure of trainability of networks, and thus could po-
tentially be used to develop algorithms for more efficient
training. Additionally, the correlation between gradient
confusion and the test set accuracies shown in appendix A
suggest that an interesting topic for future work would be to
investigate the connection between gradient confusion and
generalization (Fort et al., 2019). Our results also suggest
the importance of further work on orthogonal initialization
schemes for neural networks with non-linear activations that
make training very deep models possible.
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Appendix

We first briefly outline the different sections in the appendix.

e In appendix A, we provide details of our experimental setup, and provide additional empirical results on fully connected
networks, convolutional networks and residual networks with the MNIST, CIFAR-10 and CIFAR-100 datasets.

e In appendix B, we state and prove a lemma on the near orthogonality of random vectors, which we refer to in the main
text. This result is often attributed to Milman & Schechtman (1986).

e In appendix C, we provide some intuition on why many standard over-parameterized neural networks with low-rank
Hessians might have low gradient confusion for a large set of weights near the minimizer.

e In appendix D, we provide the proofs of the theorems presented in the main section. In appendix D.1, we provide
proofs of theorems 3.1 and 3.2. In appendix D.2, we provide the proof of lemma D.1, which we refer to in the main
text. In appendix D.3, we provide proofs of theorem 5.1 and corollary 5.1. In appendix D.4, we provide the proof of
theorem 4.1. In appendix D.5, we provide the proof of theorem 6.1.

e In appendix E, we briefly describe a few lemmas that we require in our analysis.

e In appendix F, we discuss the small weights assumption (assumption 1), which is required for theorem 5.1, corollary
5.1 and theorem 6.1 in the main text.

A. Additional experimental results

In this section, we present more details about our experimental setup, as well as, additional experimental results on a range
of models (MLPs, CNNs and Wide ResNets) and a range of datasets (MNIST, CIFAR-10, CIFAR-100).

A.1. MLPs on MNIST

To further test the main claims in the paper, we performed additional experiments on an image classification problem on
the MNIST dataset using fully connected neural networks. We iterated over neural networks of varying depth and width,
and considered both the identity activation function (i.e., linear neural networks) and the tanh activation function. We also
considered two different weight initializations that are popularly used and appropriate for these activation functions:

e The Glorot normal initializer (Glorot & Bengio, 2010) with weights initialized by sampling from the distribution
N (O, 2/(fan-in + fan-out)) , where fan-in denotes the number of input units in the weight matrix, and fan-out denotes
the number of output units in the weight matrix.

o The LeCun normal initializer (LeCun et al., 2012) with weights initialized by sampling from the distribution

N(0,1/fan-in).

We considered the simplified case where all hidden layers have the same width £. Thus, the first weight matrix W, € R*¥9,
where d = 784 for the 28 x 28-sized images of MNIST; all intermediate weight matrices {W},c(3-1] € R***; and the
final layer Wg € R10%* for the 10 image classes in MNIST. We added biases to each layer, which we initialized to 0. We
used softmax cross entropy as the loss function. We use MLP-3-£ to denote this fully connected network of depth /5 and
width /. We used the standard train-valid-test splits of 40000-10000-10000 for MNIST.

This relatively simple model gave us the ability to iterate over a large number of combinations of network architectures
of varying width and depth, and different activation functions and weight initializations. Linear neural networks are an
efficient way to directly understand the effect of changing depth and width without increasing model complexity over linear
regression. Thus, we considered both linear and non-linear neural networks in our experiments.

We used SGD with constant learning rates for training with a mini-batch size of 128 and trained each model for 40000
iterations (more than 100 epochs). The constant learning rate o was tuned over a logarithmically-spaced grid:

ac{10°,107,1072,1073,107%,1075,107%}.
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We ran each experiment 10 times (making sure at least 8 of them ran till completion), and picked the learning rate that
achieved the lowest training loss value on average at the end of training. Our grid search was such that the optimal learning
rate never occurred at one of the extreme values tested.

To measure gradient confusion at the end training, we sampled 1000 pairs of mini-batches each of size 128 (the same size
as the training batch size). We calculated gradients on each of these pairs of mini-batches, and then calculated the cosine
similarity between them. To measure the worse-case gradient confusion, we computed the lowest gradient cosine similarity
among all pairs. We explored the effect of changing depth and changing width on the different activation functions and
weight initializations. We plot the final training loss achieved for each model and the minimum gradient cosine similarities
calculated over the 1000 pairs of gradients at the end of training. For each point, we plot both the mean and the standard
deviation over the 10 independent runs.

The effect of depth. We first present results showing the effect of network depth. We considered a fixed width of ¢ = 100,
and varied the depth of the neural network, on the log scale, as:

B € {3,10, 30,100, 300, 1000}

Figure 5 shows results on neural networks with identity and tanh activation functions for the two weight initializations
considered (Glorot normal and LeCun normal). Similar to the experimental results in section 7, and matching our theoretical
results in sections 4 and 5, we notice the consistent trend of gradient confusion increasing with increasing depth. This
makes the networks harder to train with increasing depth, and this is evidenced by an increase in the final training loss
value. By depth 5 = 1000, the increased gradient confusion effectively makes the network untrainable when using tanh
non-linearities.

The effect of width. We explored the effect of width by varying the width of the neural network while keeping the depth
fixed at 5 = 300. We chose a very deep model, which is essentially untrainable for small widths (with standard initialization
techniques) and helps better illustrate the effects of increasing width. We varied the width of the network, again on the log
scale, as:
¢ € {10, 30, 100, 300, 1000}.

Crucially, note that the smallest network considered here, MLP-300-10, still has more than 50000 parameters (i.e., more
than the number of training samples), and the network with width £ = 30 has almost three times the number of parameters
as the high-performing MLP-3-100 network considered in the previous section. Figure 6 show results on linear neural
networks and neural networks with tanh activations for both the Glorot normal and LeCun normal initializations. As in the
experimental results of section 7, we see the consistent trend of gradient confusion decreasing with increasing width. Thus,
wider networks become easier to train and improve the final training loss value. We further see that when the width is too
small (¢ = 30), the gradient confusion becomes drastically high and the network becomes completely untrainable.

A.2. Additional experimental details for CNNs and WRNs

In this section, we review the details of our setup for the image classification experiments on CNNs and WRNs on the
CIFAR-10 and CIFAR-100 datasets.

WIDE RESIDUAL NETWORKS

The Wide ResNet (WRN) architecture (Zagoruyko & Komodakis, 2016) for CIFAR datasets is a stack of three groups of
residual blocks. There is a downsampling layer between two blocks, and the number of channels (width of a convolutional
layer) is doubled after downsampling. In the three groups, the width of convolutional layers is {164, 32¢, 64¢}, respectively.
Each group contains (3, residual blocks, and each residual block contains two 3 x 3 convolutional layers equipped with
ReLU activation, batch normalization and dropout. There is a 3 X 3 convolutional layer with 16 channels before the three
groups of residual blocks. And there is a global average pooling, a fully-connected layer and a softmax layer after the three
groups. The depth of WRN is § = 64, + 4.

For our experiments, we turned off dropout. Unless otherwise specified, we also turned off batch normalization. We added
biases to the convolutional layers when not using batch normalization to maintain model expressivity. We used the MSRA
initializer (He et al., 2015) for the weights as is standard for this model, and used the same preprocessing steps for the
CIFAR images as described in Zagoruyko & Komodakis (2016). This preprocessing step involves normalizing the images
and doing data augmentation (Zagoruyko & Komodakis, 2016). We denote this network as WRN-/-/, where [ represents
the depth and ¢ represents the width factor of the network.
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To study the effect of depth, we considered WRNs with width factor £ = 2 and depth varying as:

B € {16,22,28, 34,40, 52, 76,100}.

For cleaner figures, we sometimes plot a subset of these results: 8 € {16, 28,40, 52,76, 100}. To study the effect of width,
we considered WRNs with depth 8 = 16 and width factor varying as:

(€ {2,3,4,5,6}.
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CONVOLUTIONAL NEURAL NETWORKS

The WRN architecture contains skip connections that, as we show, help in training deep networks. To consider VGG-like
convolutional networks, we consider a family of networks where we remove the skip connections from WRNs. Following
the WRN convention, we denote these networks as CNN-/3-¢, where 3 denotes the depth and ¢ denotes the width factor.

To study the effect of depth, we considered CNNs with width factor £ = 2 and depth varying as:
B € {16,22,28,34,40}.
To study the effect of width, we considered CNNs with depth 8 = 16 and width factor varying as:

€ {2,3,4,5,6}.

HYPERPARAMETER TUNING AND OTHER DETAILS

We used SGD as the optimizer without any momentum. Following Zagoruyko & Komodakis (2016), we ran all experiments
for 200 epochs with minibatches of size 128, and reduced the initial learning rate by a factor of 10 at epochs 80 and 160. We
turned off weight decay for all our experiments.

We ran each individual experiment 5 times. We ignored any runs that were unable to decrease the loss from its initial
value. We also made sure at least 4 out of the 5 independent runs ran till completion. When the learning rate is close to the
threshold at which training is still possible, some runs may converge, while others may fail to converge. Thus, these checks
ensure that we pick a learning rate that converges reliably in most cases on each problem. We show the standard deviation
across runs in our plots.

We tuned the optimal initial learning rate for each model over a logarithmically-spaced grid:
ae{10',3x10°10°3x1071,1071,3 x 1072,1072,3 x 1073,1073,3 x 107*,107%,3 x 1075},

and selected the run that achieved the lowest final training loss value (averaged over the independent runs). Our grid
search was such that the optimal learning rate never occurred at one of the extreme values tested. We used the standard
train-valid-test splits of 40000-10000-10000 for CIFAR-10 and CIFAR-100.

To measure gradient confusion, at the end of every training epoch, we sampled 100 pairs of mini-batches each of size 128
(the same size as the training batch size). We calculated gradients on each mini-batch, and then computed pairwise cosine
similarities. To measure the worse-case gradient confusion, we computed the lowest gradient cosine similarity among all
pairs. We also show the kernel density estimation of the pairwise gradient cosine similarities of the 100 minibatches sampled
at the end of training (after 200 epochs), to see the concentration of the distribution. To do this, we combine together the 100
samples for each independent run and then perform kernel density estimation with a gaussian kernel on this data.

A.3. Additional plots for CIFAR-10 on CNNs

In section 7, we showed results for image classification using CNNs on CIFAR-10. In this section, we show some additional
plots for this experiment. Figure 7 shows the effect of changing the depth, while figure 8 shows the effect of changing the
width factor of the CNN. We see that the final training loss and test set accuracy values show the same trends as in section 7:
deeper networks are harder to train, while wider networks are easier to train. As mentioned previously, theorems 3.1 and 3.2
indicate that we would expect the effect of gradient confusion to be more prominent near the end of training. From the plots
we see that deeper networks have higher gradient confusion close to minimum, while wider networks have lower gradient
confusion close to the minimum.

A.4. CIFAR-100 on CNNs

We now consider image classifications tasks with CNNs on the CIFAR-100 dataset. Figure 9 shows the effect of varying
depth, while figure 10 shows the effect of varying width. We notice the same trends as in our results with CNNs on
CIFAR-10. Interestingly, from the width results in figure 10, we see that while there is no perceptible change to the minimum
pairwise gradient cosine similarity, the distribution still sharply concentrates around O with increasing width. Thus more
gradients become orthogonal to each other with increasing width, implying that SGD on very wide networks becomes closer
to decoupling over the data samples.
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A.5. Image classification with WRNs on CIFAR-10 and CIFAR-100

We now show results for image classification problems using wide residual networks (WRNs) on CIFAR-10 and CIFAR-
100. The WRNs we consider do not have any batch normalization. Later we show results on the effect of adding batch
normalization to these networks.

Figures 11 and 12 show results on the effect of depth using WRNs on CIFAR-10 and CIFAR-100 respectively. We again see
the consistent trend of deeper networks having higher gradient confusion, making them harder to train. We further see that
increasing depth results in the pairwise gradient cosine similarities concentrating less around 0.

Figures 13 and 14 show results on the effect of width using WRNs on CIFAR-10 and CIFAR-100 respectively. We see that
increasing width typically lowers gradient confusion and helps the network achieve lower loss values. The pairwise gradient
cosine similarities also typically concentrate around 0 with higher width. We also notice from these figures that in some
cases, increasing width might lead to diminishing returns, i.e., the benefits of increased width diminish after a certain point,
as one would expect.

A.6. Effect of batch normalization and skip connections

In section 7 we showed results on the effect of adding batch normalization and skip connections to CNNs and WRNs on an
image classification task on CIFAR-10. In this section, we present similar results for image classification on CIFAR-100.
Similar to section 7, figure 15 shows that adding skip connections or batch normalization individually help in training
deeper models, but these models still suffer from worsening results and increasing gradient confusion as the network gets
deeper. Both these techniques together keep the gradient confusion relatively low even for very deep networks, significantly
improving trainability of deep models.
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minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the pairwise gradient cosine
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B. Near orthogonality of random vectors

For completeness, we state and prove below a lemma on the near orthogonality of random vectors. This result is often
attributed to Milman & Schechtman (1986).

Lemma B.1 (Near orthogonality of random vectors). For vectors {X;};c[n] drawn uniformly from a unit sphere in d
dimensions, and v > 0,

Pr[3i,j [x/x;| >v] < N2 /Texp (- GFv?).
Proof. Given a fixed vector x, a uniform random vector y satisfies |x "y| > v only if y lies in one of two spherical caps:

one centered at x and the other at —x, and both with angular radius cos™!(v) < 5 — v. A simple result often attributed to
Milman & Schechtman (1986) bounds the probability of lying in either of these caps as

Prjx"y| > v] < \/g exp (d; 1u2) : 5)

Because of rotational symmetry, the bound (5) holds if both x and y are chosen uniformly at random.

We next apply a union bound to control the probability that |x,' x;| > v for some pair (7, j). There are fewer than N2 /2
such pairs, and so the probability of this condition is

N2 d—1
Pr(|x, x;| > v, for some i, j] < 2\/§exp <— 5 1/2> . O
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Figure 11. The effect of depth with WRN-/3-2 (no batch normalization) on CIFAR-10. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
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Figure 12. The effect of depth with WRN-/-2 (no batch normalization) on CIFAR-100. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training.

C. Low-rank Hessians lead to low gradient confusion

In this section, we show that low-rank random Hessians result in low gradient confusion. For clarity in presentation, suppose
each f; has a minimizer at the origin (the same argument can be easily extended to the more general case). Suppose also that
there is a Lipschitz constant for the Hessian of each function f; that satisfies |H;(w) — H;(w’)|| < Lg||lw — w’'|| (note
that this is a standard optimization assumption (Nesterov, 2018), with evidence that it is applicable for neural networks
(Martens, 2016)). Then V f;(w) = H;w + e, where e is an error term bounded as: [|e|| < 3 Ly||w||?, and we use the
shorthand H;; to denote H;(0). Then we have:

[(Vfi(w), VI;(w))| = [(Hiw, H;w)| + (e, Hyw + H;w) + e]”
< w1 L[]+ el llwl (1G]] + ([ ) + [le]®

1 1
< WP PTG |+ 5 L [P+ G + 3 23wl

If the Hessians are sufficiently random and low-rank (e.g., of the form H; = a;a, where a; € R™*" are randomly sampled
from a unit sphere), then one would expect the terms in this expression to be small for all w within a neighborhood of the
minimizer.

There is evidence that the Hessian at the minimizer is very low rank for many standard over-parameterized neural network
models (Sagun et al., 2017; Cooper, 2018; Chaudhari et al., 2016; Wu et al., 2017; Ghorbani et al., 2019). While a bit

non-rigorous, the above result nonetheless suggests that for many standard neural network models, the gradient confusion
might be small for a large class of weights near the minimizer.
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Figure 13. The effect of width with WRN-16-¢ (no batch normalization) on CIFAR-10. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training.
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D. Missing proofs
D.1. Proofs of theorems 3.1 and 3.2

This section presents proofs for the convergence theorems of SGD presented in section 3, under the assumption of low
gradient confusion. For clarity of presentation, we re-state each theorem before its proof.

Theorem 3.1. If the objective function satisfies (Al) and (A2), and has gradient confusion 1, SGD converges linearly to a
neighborhood of the minima of problem (1) as:

E[F(wr) — F*] < o (F(wo) — F*) +

1—p’

where o < %, p=1- %" (a — %"2), F* = miny, F(w) and wy is the initialized weights.

Proof. Leti € [N] denote the index of the realized function f}, in the uniform sampling from { fi}ien at step k. From
assumption (A1), we have

L
F(wii1) < F(wi) + (VE(Wr), Wisr = W) + S [[wier = wi)”

= F(wy,) = ao{VF(wg), Vfr(wi)) + LTOﬁHka(Wk)ll2

= Fiw) — (5 = ) IVwl? = 5 3 (Vilwi, Vi)
Vii#s
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2 _

< F(wy) — (% - L%) IV fie(wi) 1> + Wv
2 ~

< Flw) = (5 = 55 IVACwa) | +

where the second-last inequality follows from definition 2.1. Let the learning rate o < 2/N L. Then, using assumption (A2)
and subtracting by F"* = min,, F'(w) on both sides, we get

2 ~ ~
F(wi) ~ F* < F(w) = F* = 25 = 25 ) (elws) = ) +

where f,: = miny fk (w). It is easy to see that by definition we have, E;[f*] < F*. Moreover, from assumption that

.. . 2 . . .
o< %, it implies that (% — L%) > 0. Therefore, taking expectation on both sides we get,

E[F(wg4+1) — F*] < (1 — QMTa + /ALO&Q)E[F(W;.C) — F*] + an.

Writing p =1 — Q“T”‘ + pLo?, and unrolling the iterations, we get

k
E[F(Wi41) = F*] < oM (F(wo) — F*) + Zpiom

<P (F(wo) = F*) 4+ plan
=0

— PP (F(wo) — F*) + 7101”p. O

Theorem 3.2. [f the objective satisfies (Al) and has gradient confusion n, then SGD converges to a neighborhood of a
stationary point of problem (1) as:

mingy B VE(w)[[* < 2EEP=E 4 pn,

fora < 325, p= 52—, and F* = miny, F(w).

Proof. From theorem 3.1, we have:

I} La?

Fwia) < Flwi) = (5 = 55 ) IVA(wi)|* + an. ®)
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Now we know that:

E|Vfi(wi) [ = BV fu(wi) = VE(wWi)|* + E[VE(wy)|[* > E|VF(wy)||.

Thus, taking expectation and assuming the step size a < 2/(INL), we can rewrite equation 6 as:

ON 2N
EIVF 2« Y R[F(wy)—F L
HV (Wk)H =94 — NLo2 [ (Wk) (Wk-l-l)] + 92— NLa

Taking an average over T iterations, and using F* = min,, F'(w), we get:
2N F(wy) — F* 2Nn

o — NLa? T +2—NLO/

.
1
. 2 2
3in EIVFOn)IP < 3 EIVF w0l < 5

D.2. Proof of lemma D.1

Lemma D.1. Consider the set of loss-functions { f;(W)}icn] where all f; are either the square-loss function or the
logistic-loss function. Recall that f;(W) := f(W,x;). Consider a feed-forward neural network as defined in equation 4
whose weights W satisfy assumption 1. Consider the gradient Vy f;(W) of each function f;. From definition we have that
Vw fi(W) = (x, (W)Vwgw (x;), where we define (x,(W) = 0f;(W)/0gw. Then we have the following properties.

1. When ||x|| < 1 for every p € [B] we have ||Vw,gw (x)|| < 1.
2. There exists 0 < o < 2v/3, such that |(x,(W)| < 2, ||Vx, G (W) |l2 < Co,

Vwx;, (W)ll2 < Co-

Proof. The first property is a direct consequence of assumption 1 and property (P2) of the activation function.

Let W denote the tuple (W,,),¢(g),- Consider |(x,(W)| = [0f;(W)/Ogw|. In the case of square-loss function this
evaluates to |gw(x) — C(x)| < 2. In case of logistic regression, this evaluates to |1+exp(c(;1)gw(xv))| < 1. Now we

consider ||V, (x, (W)]|. Consider the squared loss function. We then have the following.
IV, Ges (W = [V, /(W)
= [[Vx,gw (%i) = C(xi) |
<V gw (i) + 1.

Likewise, consider the logistic-loss function. We then have the following.
C(XZ‘>2
w < | S
(1 + exp(C(x;)gw (x;
< [ Vxigw (xi) |-

Hvngxz(

5z (%) ) | 17w )|

Thus, it suffices to bound ||V, gw (x;)]||. Using assumption 1 and the properties (P1), (P2) of o, this can be upper-bounded
by 1.

Consider Vw , (x, (W) for some layer index p € [5]o. We will show that || Vw,(x,(W)|l2 < 2. Then it immediately
follows that | Vw(x, (W)|l2 < 24/B. In the case of a squared loss function. We have the following.

IVw, G, (W) = [[Vw, [ (W)

= [|[Vw, 9w (x:) — C(x;) ||
< IVw, gw (x| + 1.
Likewise, consider the logistic-loss function. We then have the following.
C(xi)?
w < | S
(1 + exp(C(xi) gw (x;
< [Vw, 9w (x:)]-

||pr (xl(

)2 eXp(C(Xi)QW(Xi))H IVw, 9w (x3) |

Since || Vw, gw (x;)|| < 1, we have that ||V, (x, (W)]|| < 2 in both the cases. Thus, (o = 2+//3. O
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D.3. Proofs of theorem 5.1 and corollary 5.1

In this section, we will present the proofs of theorem 5.1 and corollary 5.1.

Theorem 5.1. Let Wo, W1, ..., Wy satisfy assumption 1. For some fixed constant ¢ > 0, the gradient confusion bound
(equation 3) holds with probability at least

2 7cdn2
1— N-exp <716C§(B+2)4) .

Proof. We show two key properties, namely bounded gradient and non negative expectation. We will then use both these
properties to complete the proof.

Bounded gradient. For every i € [n] define (x, (W) := f'(W). For every p € [§] define H,, as follows.
H,(x) :=0(W, - c(Wp_1-0(...-c(Wgy-x)...).
Fix an ¢ € [N]. Then we have the following recurrence

g8(xi) := o’ (Hp(x:))
gp(xi) 1= (Wp1 - 8pr1(xy)) - Diag(o” (Hy(x:))) vpe{0,1,....,6 -1}

Then the gradients can be written in terms of the above quantities as follows.
Vw, [i(W) = g,(x;) - Hp_1(x;) " Vp € [Blo-

We can write, the gradient confusion denote by hw (x;, xj), as follows.

Cx; (W)Cx]' (W) Z Tr[prl(Xi) : gp(xi)T : gp(xj) : prl(xi)-r] . (7
PE[Bo

We will now bound ||V (x, «,)hw (Xi, X;)||l2. Consider V, hw (x;, x;). This can be written as follows.

(inCxi (W))CXJ (W) Z Tr[prl(Xi) 'gp(xi)T 'gp(xj) 'prl(xi)-r] +
PE[Bo

G (WG, (W) D [V, (Hpo1(360) - (i) T g(x) - H, 1 (x)] . ®)

pE[Blo

Observe that each of the entries in the diagonal matrix Diag(o’(Hp(x;))) is at most 1. Thus, we have that
|| Diag(o’ (H, (x:)))|| < 1.

We have the following relationship.

llgs(xi)ll <1
gp(xi) | < W1 llgp+1 (i) 1| Diag(o” (H, (x:)))I| < 1 vped{0,L,....5 -1}

Moreover we have,
| Tr[Hp 1 (xi) - gp(xi) " - gp(x5) - Hpma (30) T < IH -1 (xa) |l g () Tl 1o () 11 () T < 1.

Consider ||V, (Hp—1(xi) - gp(xi) " - 8p(x;) - Hy—1(x;)) | for every p € [Blo.
This can be upper-bounded by,

1V, Hp 1 (i) |1 (30) ™ 15 (36 ) 1B —1 (360 | =+ 111 (320 1]V, 5 (36) " 15 (36) L1 (33 -
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Note that Vi, H,—1(x;) = g1(x;) - Diag(c’(Wo - x;)) - W¢ - gp(x;)". x; Hp—1(x;)]] < 1. We will now show
that ||V, g,(x;)|| < 8 — p+ 1. We prove this inductively. Consider the base case when p = .

IV gs (i)l = | Va0 (Hp(x)) | <1 =8 -5+ 1.

Now, the inductive step.

IV, 8 (xi) | < Vs, 8p1 (%) | + [V, Diag (o (Hy(x:))| < B —p<B—p+1.
Thus, using equation 8 and the above arguments, we obtain, ||V, hw (xi,x;)|2 < G(B+ 1)+ GB+1)(B+2) <
2G5 (8 +2)% and thus, ||V (x, ;) hw (%, %) |2 < 4¢G5 (5 + 2)*.

Non-negative expectation.

Eoci s [0 %5)] =Ex, 5, [(V /i (W), V [;(W))]
= (Ex, [Vi(W)], Ex, [V f;(W)])
= |[Ex, [V£:(W)]||* > 0. ©)
We have used the fact that V f;(W) and V f;(W) are identically distributed and independent.

Concentration of Measure. We combine the two properties as follows. From Non-negative Expectation property and
equation 26, we have that

—cdn?
Pr[h i, X;) < —n] < Prlh i X)) < Eix, xR X)) —1n] < — . 10
i (6,%)) < 1] < Pl (63) < B )] =1 < 030 (g5 ) 0)
To obtain the probability that some value of hw (Vw fi, Vi f;) lies below —n, we use a union bound. There are N (N —
1)/2 < N?/2 possible pairs of data points to consider, and so this probability is bounded above by N2 exp (%) .
0
O

D.3.1. PROOF OF COROLLARY 5.1

Before we prove corollary 5.1 we first prove the following helper lemma.

Lemma D.2. Suppose maxw ||Vw fi(W)| < M, and both Vw f;(w) and Vw f;(W) are Lipschitz in W with constant
L. Then hw (x;,%;) is Lipschitz in W with constant 2LM.

Proof. We view W as flattened vector. We now prove the above result for these two vectors. For two vectors w, w’,

how (i, %) = hw (X35 %) |

= [(Vwfi(w), Vw f5(W)) = (Vw fi(W'), Ve f5(W'))]
:‘< wfi(w) — vw’fi( )+V fz( /) WfJ<W)>

<V fz(W)va/fj( )_ ij( )+Vij(W)>|
= [(Vwfi(w) = Va fi(W), Vw f;(W)) = (V' fi(W'), Vi f5(W') = Vi f5(W))]
< [(Vw/fi(w) — vw’fi(wl)avwfj(w»‘ + |<vw’fi(wl)7VW’fj(Wl) — Vwfi(w))]
< NVwfi(w) = Ve fi (W) I Ve £5(W) |+ [ Ve £i (W) Ve f5 (W) = Vi f5 (W]
< Liw = W[V f5 (W)l + IV fi(wW) [ L] W' — w]|
< 2LM|lw —w'||.

Here the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwartz inequality, and the third
and fourth inequalities use the assumptions that Vs, f;(w) and V., f;(w) are Lipschitz in w and have bounded norm. [J

We are now ready to prove the corollary, which we restate here. The proof uses a standard "epsilon-net" argument; we
identify a fine net of points within the ball B,.. If the gradient confusion is small at every point in this discrete set, and the
gradient confusion varies slowly enough with W, when we can guarantee small gradient confusion at every point in B,.
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Corollary 5.1. Select a point W = (Wo, W1, ..., W), satisfying assumption 1. Consider a ball B, centered at W of
radius v > 0. If the data {x; };c[n) are sampled uniformly from a unit sphere, then the gradient confusion bound in equation
3 holds uniformly at all points W' € B,. with probability at least

2 .
1—N26Xp(—64<§?+2)4)7 if r < n/4¢,
2 2

1— N2%exp (f 64{{??,;7—&-2)4 + Sdf](’r) , otherwise.

Proof. Define the function h* (W) = max;; hw (x;,%;). Our goal is to find conditions under which h* (W) > — for
all W in a large set. To derive such conditions, we will need a Lipschitz constant for h™ (W), which is no larger than the
maximal Lipschitz constant of hw (x;,x;) for all ¢, j. We have that || Vw f;|| = ||¢x, (W)x;|| < {o. Now we need to get a
‘W -Lipschitz constants for Vy, f; = (x,(W)x;. By lemma D.1, we have ||Vw ((x; (W)x;)|| = [[(Vwx, (W))x;|| < (.
Using lemma D.2, we see that 2¢Z is a Lipschitz constant for Aw (x;, X;), and thus also ™ (W).

Now, consider a minimizer W of the objective, and a ball BB, around this point of radius r. Define the constant € = and

n
acz»
create an e-net of points AN, = {W,} inside the ball. This net is sufficiently dense that any W' € B, is at most € units away
from some W; € N,. Furthermore, because h™ (W) is Lipschitz in W, |hT(W') — ht(W,)| < 2(%e = n/2.

We now know the following: if we can guarantee that
hT(W;) > —n/2, forall W; € N, (11)

then we also know that A (W') > — for all W’ € B,.. For this reason, we prove the result by bounding the probability
that (11) holds. It is known that V; can be constructed so that [N;| < (2r/e + 1)® = (8¢3r/n + 1)? (see Vershynin (2018),
corollary 4.1.13). Theorem 5.1 provides a bound on the probability that each individual point in the net satisfies condition
(11). Using a union bound, we see that all points in the net satisfy this condition with probability at least

N2 (Sffr + 1>dexp <—Cd§gé?2> (12)
=1 — N%exp(dlog(8¢3r/n+ 1)) exp (gig;) (13)
> 1= N2 exp(8dc2r/n) exp (gjz;) (14)
— 1 N7 enp (-S4 AT s

Finally, note that, if r < ¢, then we can form a net with |A;| = 1. In this case, the probability of satisfying (11) is at least

cd(n/2)?
1 - N? - . O
exp < 64C2
D.4. Proof of theorem 4.1
Theorem 4.1. Let Wy, W1, ..., Wy be weight matrices chosen according to strategy 4.1. There exists fixed constants
c1, ¢ > 0 such that we have the following.

1. Consider a fixed but arbitrary dataset X1,Xa,...,xy with ||x;|| < 1 for every i € [N]. Forn > 4, the gradient

confusion bound in equation 3 holds with probability at least

el B(n—4)2
1 — Bexp (—c1520%) — N%exp ((Jg{ﬁ%) .

2. If the dataset {X;};c[n) is such that each X; is an i.i.d. sample from the surface of d-dimensional unit sphere, then for
every 11 > 0 the gradient confusion bound in equation 3 holds with probability at least

e 2 5y,.2
1— Bexp (—61H2€2) — NZ%exp (7126({%(1(;?%2‘3)‘:] ) .
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Both parts in theorem 4.1 depend on the following argument. From theorem 2.3.8 and Proposition 2.3.10 in Tao (2012) with
appropriate scaling’, we have for every p = 1,..., 3 we have that the matrix norm ||[W,|| < 1 with probability at least
1 — Bexp (—c1620%) and [Wo|| < 1 with probability at least 1 — exp (—c1£?d*) when the weight matrices are initialized
according to strategy 4.1. Thus, conditioning on this event it implies that these matrices satisfy assumption 1. The proof
strategy is similar to that of theorem 5.1. We will first show that the gradient of the function A(.,.) as defined in equation (7)
with respect to the weights is bounded. Note that in part (1) the random variable is the set of weight matrices {W},},¢[3)-
Thus, the dimension used to invoke theorem E.1 is at most £23. In part (2) along with the weights, the data x € R is also
random. Thus, the dimension used to invoke theorem E.1 is at most £d + £24. Combining this with theorem E.1, the bound
on the gradient of A(.,.) and taking a union bound, we get the respective parts of the theorem. Thus, all it remains to prove
is the bound on the gradient of the function A(.,.) as defined in equation (7) with respect to the weights conditioning on the
event that |[W,|| < 1 forevery p € {0,1,...,5}.

We obtain the following analogue of equation (8).

(VWCXi (W))CXJ (W) Z Tr[Hp—l(Xi) ' gp(xi)T ) gp(xj) ) Hp—l(xi)T] +
p€[Blo

(Vw i, (W), (W) | 3 Tr[H, i (xi) - gp(xi) " - () - Hpm ()] | +
pE€Blo

G (WG, (W) S [V (Hpo1(x0) - go(xi) T - go(x) - Hyoa ()] - (16)
p€[Blo

As in the case of the proof for theorem 5.1, we will upper-bound the ¢5-norm of the above expression. In particular, we
show the following.

(VYW (WG, (W) | D Tr{H, 1 (1) - y0x) T gy0x,) - Hpax) T | <2638 +2% ()
p€(Blo

(Vw o, (WG (W) | 3 TrlHm () - 8 (x:) - () - Hma ()T | || <2688 +2)% (19)
p€(Blo

G (W)l (W) Z [Vw (Hpo1 (%) - gp(xi) T - gp(x;) 'Hp—1(><z'))]T H2 <AGG(B+2)% (19)
PE[Bo

Equations (17) and 18 follow from the the fact that ||(Vw(x,(W))||l2 < (o and the arguments in the proof
for theorem 5.1. We will now show the proof sketch for equation (19). For every p € [B]o, consider
[Vw (Hp—1(x:) - 8p(xi) " - 8p(x;) - Hp—1(x;)) ||. Using the symmetry between x; and x;, the expression can be upper-
bounded by,

2/ VwH -1 (i) |l g (3:) "1 (365) HIHp—1 (i) | + 21— (x0) | Vg (x:) " [l g (36) [ FLp—1 (33 1

As before we can use an inductive argument to find the upper-bound and thus, we obtain the following which implies
equation (19).
IVw (Hp—1 () - gp(xi) " - gp(x7) - Hp1(x0)) || < 4(8 +2)*.

Next, we show that the expected value can be lower-bounded by —4 as in the case of theorem 4.1 above. Combining these
two gives us the desired result. Consider Ew [hw (x;,x;)]. We compute this expectation iteratively as follows.

Ew [hw (xi,%;)]

=Ew,[Ew, | .. Ew, [hw (x;, ;)]

"In particular, each entry has to be scaled by % for matrices { W, },¢[g) and é for the matrix Wy.
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> 4w, |Ew, |- Bw, | Y Tr(Hp 1(x:) - gp(xi)" - gp(x;) - Hpo1(x:)")
PE[Blo

The inequality combines equation 7 with Lemma D.1. We now prove the following inequality.

Ew, |Ew, |- Bw, | > Tr(H, 1(x:) - gp(xi) " - gp(x;) - Hyo1(xi) ") <1 (20)
pE[Bo

Consider the inner-most expectation. Note that the only random variable is W g. Moreover, the term inside the trace is
scalar. Note that the activation function o satisfies |0/ ()| < 1. Using the linearity of expectation, the LHS in equation (20)
can be upper-bounded by the following.

Ew, [Ew, [ Bw,_, [ Tr(Hs 1(xi) - Ho1(x) )] ]] 1)
+ Ew, {]Ewl [ ..Ew, [ S T, () gy (xi) T g (x)) - H,,,l(xi)T)m . 22)
pE[Blo\{B}

The first sum in the above expression can be upper-bounded by 1, since |o(x)| < 1. We will now show that the second sum
is 0. Consider the inner-most expectation. The weights W g appears only in the expression gp(xi)T - 8p(x;). Moreover,
note that every entry in W is an i.i.d. normal random variable with mean 0. Thus, the second summand simplifies to,

Ewo[Ew, | -Bw, | > Tr(H,1(x)g0)T - glx) - Hyo ()] |
pE[Blo\{B,8—1}
Applying the above argument repeatedly we obtain that the second summand (equation (22)) is 0.

Thus, we obtain the inequality in equation (20) which implies that Ew [hw (x;,x;)] > —4.

D.5. Proof of Theorem 6.1

In this section, we prove Theorem 6.1. The proof follows similar to those in previous sub-sections; we prove a bound on the
gradient of the gradient inner-product and show that the expectation is non-negative. Combining these two with an argument
similar to equation 10 we get the theorem.

Note that the dataset is obtained by considering i.i.d. samples from a d-dimensional unit sphere. Thus, the lower-bound on
the expectation (i.e., non-negative expectation of the gradient inner-product) follows from equation 9. Thus, it remains to
prove an upper-bound on the norm of the gradient of the gradient inner-product term.

Throughout this proof, we will use g(x) as a short-hand to denote gw (x). Consider the gradient Vyyg(x). The the i*"
component of this can be written as follows.

[Vwgx)]; = V(W) (WE ... W] - x" - Wi ... W), (23)

Now consider, the gradient inner-product hw (x;, x;). We want to upper-bound the quantity ||V, x;)hw (Xi, ;). From
symmetry, this can be upper-bounded by 2|V, hw (x;,X;)||. Consider the k" coordinate of Vy, hw (x;,x;). Using
equation 23, the assumption that { W };c(3) are orthogonal matrices and taking the gradient, this can be written as,

[V, hw (x5, %)), = V6 (W)xj + 0 (W5 - W - xT - WL W) (Vi G, (W) (24)

Combining assumption 1 with equation 24 we have that ||V, hw (x;, X;)|| is at most 272 3||x;|| < 2v?3. For the definition

of the scaling factor v = ﬁ we have that 2v%3 = 1. Thus, IV (x; ) hwr (%, x5 || < 2.

E. Technical lemmas

We will briefly describe some technical lemmas we require in our analysis. The following Chernoff-style concentration
bound is proved in Chapter 5 of Vershynin (2018).
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Lemma E.1 (Concentration of Lipshitz function over a sphere). Let x € R? be sampled uniformly from the surface of a
d-dimensional sphere. Consider a Lipshitz function { : R? — R which is differentiable everywhere. Let | V|5 denote
Supyepa ||VE(X)||2. Then for any t > 0 and some fixed constant ¢ > 0, we have the following.

Pr Hé(x) - E[ﬁ(x)]’ > t] < 2exp (—if) , (25)

where p > || V{]|2.

We will rely on the following generalization of lemma E.1. We would like to point out that the underlying metric is the
Euclidean metric and thus we use the ||.||2-norm.

Corollary E.1. Let x,y € R? be two mutually independent vectors sampled uniformly from the surface of a d-dimensional
sphere. Consider a Lipshitz function £ : R? x R® — R which is differentiable everywhere. Let |V{|y denote
SUP(x y)erixrd | VE(X,¥)|l2. Then for any t > 0 and some fixed constant ¢ > 0, we have the following.

cdt?
Pr[[exy) ~ Elt(x,y)]| = t] < 2exp <p2> , 26)
where p > ||V{||2.

Proof. This corollary can be derived from lemma E.1 as follows. Note that for every fixed y € R?, equation 25 holds.
Additionally, we have that the vectors x and y are mutually independent. Hence we can write the LHS of equation 26 as the

following.
(¥)1=c0
/ / Pr \exy ~Ell(x, )| 2 ¢
¥)1=—o0 (¥)a=—o0

Here ¢(y) refers to the pdf of the distribution of y. From independence, the inner term in the integral evaluates to

Pr HE(X, y) — E[{(x, y)]‘ > ] We know this is less than or equal to 2 exp (_Hvd%) Therefore, the integral can be
w12

y=y

] (y)d(¥)1 - .- d(¥)a-

upper bounded by the following.

(3)1=00 (5)a=00 2
C - ~ ~
2eXp TSI 2> d(¥)d(¥)1 .- d(¥)a-
(e - IVe]|3
¥)1=—00 (¥)a=—o0

Since ¢(¥) is a valid pdf, we get the required equation 26. O

Additionally, we will use the following facts about a normalized Gaussian random variable.

Lemma E.2. For a normalized Gaussian x (i.e., an x sampled uniformly from the surface of a unit d-dimensional sphere)
the following statements are true.

1. Vp € [d] we have that E[(x),] = 0.
2. Vp € [d] we have that E[(x)2] = 1/d.
Proof. Part (1) can be proved by observing that the normalized Gaussian random variable is spherically symmetric about the

origin. In other words, for every p € [d] the vectors (z1,Z2,...,Zp,...,2q) and (z1,Z2,..., —Tp, ..., 2q) are identically
distributed. Hence E[z,] = E[—x,] which implies that E[z,] = 0.

Part (2) can be proved by observing that for any p, p’ € [d], ), and x, are identically distributed. Fix any p € [d]. We have
that 3 ¢ Elz7,] = d x E[z7]. Note that we have

(x)1=00 (x)qg=00 x2
/ / pd”” x2 H(x)d(x)1 ... d(x)g = 1.
p e[d] )1=—00 (%) q=—00 ”e[d] "

Therefore E[z7] = 1/d. O
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We use the following well-known Gaussian concentration inequality in our proofs (e.g., Chapter 5 in Boucheron et al.
(2013)).

Lemma E.3 (Gaussian Concentration). Let x = (x1, %2, ...,xq) be i.i.d. N'(0,v?) random variables. Consider a Lipshitz
function ¢ : R — R which is differentiable everywhere. Let || V(|2 denote supycpa | VE(x)||2. Then for any t > 0, we
have the following.

|

0(x) ~ E[e(x)]| = t] < 2exp (—25;2) , 27)

where p > ||V{||2.

F. Additional discussion of the small weights assumption (assumption 1)

Without the small-weights assumption, the signal propagated forward or the gradients Vw f; could potentially blow up in
magnitude, making the network untrainable. Proving non-vacuous bounds in case of such blow-ups in magnitude of the
signal or the gradient is not possible in general, and thus, we assume this restricted class of weights.

Note that the small-weights assumption is not just a theoretical concern, but also usually holds in practice. Neural networks
are often trained with weight decay regularizers of the form Y, ||W;||%, which keep the weights small during optimization.
The operator norm of convolutional layers have also recently been used as an effective regularizer for image classification
tasks by Sedghi et al. (2018).

In the proof of theorem 4.1 we showed that assumption 1 holds with high probability at standard Gaussian initializations
used in practice. While, in general, there is no reason to believe that such a small-weights assumption would continue to
hold during optimization without explicit regularizers like weight decay, some recent work has shown evidence that the
weights do not move too far away during training from the random initialization point for overparameterized neural networks
(Neyshabur et al., 2018; Dziugaite & Roy, 2017; Nagarajan & Kolter, 2019; Zou et al., 2018; Allen-Zhu et al., 2018; Du
et al., 2018; Oymak & Soltanolkotabi, 2018). It is worth noting though that all these results have been shown under some
restrictive assumptions, such as the width requiring to be much larger than generally used by practitioners.



