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ABSTRACT

We empirically evaluate common assumptions about neural networks that are
widely held by practitioners and theorists alike. In this work, we: (1) prove the
widespread existence of suboptimal local minima in the loss landscape of neu-
ral networks, and we use our theory to find examples; (2) show that small-norm
parameters are not optimal for generalization; (3) demonstrate that ResNets do
not conform to wide-network theories, such as the neural tangent kernel, and that
the interaction between skip connections and batch normalization plays a role; (4)
find that rank does not correlate with generalization or robustness in a practical
setting.

1 INTRODUCTION

Modern deep learning methods are descendent from such long-studied fields as statistical learning,
optimization, and signal processing, all of which were built on mathematically rigorous foundations.
In statistical learning, principled kernel methods have vastly improved the performance of SVMs and
PCA (Suykens & Vandewalle, 1999; Scholkopf et al., 1997), and boosting theory has enabled weak
learners to generate strong classifiers (Schapire, 1990). Optimizers in deep learning are borrowed
from the field of convex optimization , where momentum optimizers (Nesterov, 1983) and conjugate
gradient methods provably solve ill-conditioned problems with high efficiency (Hestenes & Stiefel,
1952). Deep learning harnesses foundational tools from these mature parent fields.

Despite its rigorous roots, deep learning has driven a wedge between theory and practice. Recent
theoretical work has certainly made impressive strides towards understanding optimization and gen-
eralization in neural networks. But doing so has required researchers to make strong assumptions
and study restricted model classes.

In this paper, we seek to understand whether deep learning theories accurately capture the behaviors
and network properties that make realistic deep networks work. Following a line of previous work,
such as Swirszcz et al. (2016), Zhang et al. (2016), Balduzzi et al. (2017) and Santurkar et al. (2018),
we put the assumptions and conclusions of deep learning theory to the test using experiments with
both toy networks and realistic ones. We focus on the following important theoretical issues:
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e [ocal minima: Numerous theoretical works argue that all local minima of neural loss func-
tions are globally optimal or that all local minima are nearly optimal. In practice, we find
highly suboptimal local minima in realistic neural loss functions, and we discuss reasons
why suboptimal local minima exist in the loss surfaces of deep neural networks in general.

e Weight decay and parameter norms: Research inspired by Tikhonov regularization suggests
that low-norm minima generalize better, and for many, this is an intuitive justification for
simple regularizers like weight decay. Yet for neural networks, it is not at all clear which
form of ¢5-regularization is optimal. We show this by constructing a simple alternative:
biasing solutions toward a non-zero norm still works and can even measurably improve
performance for modern architectures.

e Neural tangent kernels and the wide-network limit: We investigate theoretical results con-
cerning neural tangent kernels of realistic architectures. While stochastic sampling of the
tangent kernels suggests that theoretical results on tangent kernels of multi-layer networks
may apply to some multi-layer networks and basic convolutional architectures, the predic-
tions from theory do not hold for practical networks, and the trend even reverses for ResNet
architectures. We show that the combination of skip connections and batch normalization
is critical for this trend in ResNets.

e Rank: Generalization theory has provided guarantees for the performance of low-rank net-
works. However, we find that regularization which encourages high-rank weight matrices
often outperforms that which promotes low-rank matrices. This indicates that low-rank
structure is not a significant force behind generalization in practical networks. We further
investigate the adversarial robustness of low-rank networks, which are thought to be more
resilient to attack, and we find empirically that their robustness is often lower than the
baseline or even a purposefully constructed high-rank network.

2 LOCAL MINIMA IN LOSS LANDSCAPES: DO SUBOPTIMAL MINIMA EXIST?

It is generally accepted that “in practice, poor local minima are rarely a problem with large net-
works.” (LeCun et al., 2015). However, exact theoretical guarantees for this statement are elusive.
Various theoretical studies of local minima have investigated spin-glass models (Choromanska et al.,
2014), deep linear models (Laurent & Brecht, 2018; Kawaguchi, 2016), parallel subnetworks (Ha-
effele & Vidal, 2017), and dense fully connected models (Nguyen et al., 2018) and have shown that
either all local minima are global or all have a small optimality gap. The apparent scarcity of poor
local minima has lead practitioners to develop the intuition that bad local minima (“bad” meaning
high loss value and suboptimal training performance) are practically non-existent.

To further muddy the waters, some theoretical works prove the existence of local minima. Such
results exist for simple fully connected architectures (Swirszcz et al., 2016), single-layer networks
(Liang et al., 2018; Yun et al., 2018), and two-layer ReLU networks (Safran & Shamir, 2017). For
example, (Yun et al., 2019) show that local minima exist in single-layer networks with univariate
output and unique datapoints. The crucial idea here is that all neurons are activated for all datapoints
at the suboptimal local minima. Unfortunately, these existing analyses of neural loss landscapes
require strong assumptions (e.g. random training data, linear activation functions, fully connected
layers, or extremely wide network widths) — so strong, in fact, that it is reasonable to question
whether these results have any bearing on practical neural networks or describe the underlying cause
of good optimization performance in real-world settings.

In this section, we investigate the existence of suboptimal local minima from a theoretical perspec-
tive and an empirical one. If suboptimal local minima exist, they are certainly hard to find by
standard methods (otherwise training would not work). Thus, we present simple theoretical results
that inform us on how to construct non-trivial suboptimal local minima, concretely generalizing pre-
vious constructions, such as those by (Yun et al., 2019). Using experimental methods inspired by
theory, we easily find suboptimal local minima in the loss landscapes of a range of classifiers.

Trivial local minima are easy to find in ReLU networks — consider the case where bias values are
sufficiently low so that the ReLUs are “dead” (i.e. inputs to ReLUs are strictly negative). Such
a point is trivially a local minimum. Below, we make a more subtle observation that multilayer
perceptrons (MLPs) must have non-trivial local minima, provided there exists a linear classifer that



Published as a conference paper at ICLR 2020

performs worse than the neural network (an assumption that holds for virtually any standard bench-
mark problem). Specifically, we show that MLP loss functions contain local minima where they
behave identically to a linear classifier on the same data.

We now define a family of low-rank linear functions which represent an MLP. Let “rank-s affine
function” denote an operator of the form G(x) = Ax + b with rank(A) = s.

Definition 2.1. Consider a family of functions, {F : R"™ — R"},cgr parameterized by ¢. We say
this family has rank-s affine expression if for all rank-s affine functions G : R™ — R™ and finite
subsets 2 C R™, there exists ¢ with Fiy(x) = G(x), ¥x € Q. If s = min(n, m) we say that this
family has full affine expression.

We investigate a family of L-layer MLPs with ReLU activation functions, {Fy : R™ —
R"}4ce, and parameter vectors ¢, ie., ¢ = (Ai,b1,As,ba,..., AL, by), Fy(x) =
Hp(f(Hp—1...f(H1(x)))), where f denotes the ReLU activation function and H;(z) = A,z + b;.
Let A; € R**™i-1 b, € R™ with ng = mand ny;, = n.

Lemma 1. Consider a family of L-layer multilayer perceptrons with ReLU activations {Fy : R™ —
R"}ycw, and let s = min; n; be the minimum layer width. Such a family has rank-s affine expres-
sion.

Proof. The idea of the proof is to use the singular value decomposition of any rank-s affine function
to construct the MLP layers and pick a bias large enough for all activations to remain positive. See
Appendix A.1. O

The ability of MLPs to represent linear networks allows us to derive a theorem which implies that
arbitrarily deep MLPs have local minima at which the performance of the underlying model on the
training data is equal to that of a (potentially low-rank) linear model. In other words, neural networks
inherit the local minima of elementary linear models.

Theorem 1. Consider a training set, {(x;,y:;)}},, a family {Fy}s of MLPs with s = min; n;
being the smallest width. Consider a parameterized affine function G 4 p, solving

I;xlilgl L(Gap; {(x, yi)}f\il)7 subject to rank(A) < s, (D

for a continuous loss function L. Then, for each local minimum, (A',b’), of the above training
problem, there exists a local minimum, ¢', of the MLP loss L(Fy; {(xi,y:)}X.,) with the property
that Fy (x;) = Garp (x;) fori =1,2,...,N.

Proof. See appendix A.2. O

The proof of the above theorem constructs a network in which all activations of all training examples
are positive, generalizing previous constructions of this type such as Yun et al. (2019) to more
realistic architectures and settings. Another paper has employed a similar construction concurrently
to our own work (He et al., 2020). We do expect that the general problem in expressivity occurs
every time the support of the activations coincides for all training examples, as the latter reduces
the deep network to an affine linear function (on the training set), which relates to the discussion in
Balduzzi et al. (2017). We test this hypothesis below by initializing deep networks with biases of
high variance.

Remark 2.1 (CNN and more expressive local minima). Note that the above constructions of Lemma
1 and Theorem 1 are not limited to MLPs and could be extended to convolutional neural networks
with suitably restricted linear mappings G'¢ by using the convolution filters to represent identities
and using the bias to avoid any negative activations on the training examples. Moreover, shallower
MLPs can similarly be embedded into deeper MLPs recursively by replicating the behavior of each
linear layer of the shallow MLP with several layers of the deep MLP. Linear classifiers, or even
shallow MLPs, often have higher training loss than more expressive networks. Thus, we can use the
idea of Theorem 1 to find various suboptimal local minima in the loss landscapes of neural networks.
We confirm this with subsequent experiments.

We find that initializing a network at a point that approximately conforms to Theorem 1 is enough to
get trapped in a bad local minimum. We verify this by training a linear classifier on CIFAR-10 with
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Table 1: Local minima for MLPs generated via various initializations. We show loss, euclidean
norm of the gradient vector, and minimum eigenvalue of the Hessian before and after training. We
use 500 iterations of the power method on a shifted Hessian matrix computed on the full dataset to
find the minimum eigenvalue. The experiment in the last row is trained with no momentum (NM).

At Initialization After training
Init. Type Loss  Grad. Min. EV Loss  Grad. Min. EV
Default 4.5963 0.5752  -1.5549 0.0061 0.0074 0.0007
Lemma 1 1.5702  0.0992  0.03125 1.5699 0.0414 0.0156
Bias+20 31.204 34399 -1.7421 2.3301 0.0090 0.0005

Bias € U(—50, 50) 51.445 37836  -430.49 2.3153  0.0048 0.0000
Bias € U(—10,10) NM  12.209 42.454  -47.733 0.2198 0.0564 0.0013

weight decay, (which has a test accuracy of 40.53%, loss of 1.57, and gradient norm of 0.00375 w.r.t
to the logistic regression objective). We then initialize a multilayer network as described in Lemma
1 to approximate this linear classifier and recompute these statistics on the full network (see Table
1). When training with this initialization, the gradient norm drops futher, moving parameters even
closer to the linear minimizer. The final training result still yields positive activations for the entire
training dataset.

Moreover, any isolated local minimum of a linear network results in many local minima of an MLP
Fy, as the weights ¢’ constructed in the proof of Theorem 1 can undergo transformations such
as scaling, permutation, or even rotation without changing Fy as a function during inference, i.e.
Fy (x) = Fy(x) for all x for an infinite set of parameters ¢, as soon as F' has at least one hidden
layer.

While our first experiment initializes a deep MLP at a local minimum it inherited from a linear one
to empirically illustrate our findings of Theorem 1, Table 1 also illustrates that similarly bad local
minima are obtained when choosing large biases (third row) and choosing biases with large variance
(fourth row) as conjectured above. To significantly reduce the bias, however, and still obtain a sub-
par optimum, we need to rerun the experiment with SGD without momentum, as shown in the last
row, reflecting common intuition that momentum is helpful to move away from bad local optima.

Remark 2.2 (Sharpness of sub-optimal local optima). An interesting additional property of minima
found using the previously discussed initializations is that they are “sharp”. Proponents of the sharp-
flat hypothesis for generalization have found that minimizers with poor generalization live in sharp
attracting basins with low volume and thus low probability in parameter space (Keskar et al., 2016;
Huang et al., 2019), although care has to be taken to correctly measure sharpness (Dinh et al., 2017).
Accordingly, we find that the maximum eigenvalue of the Hessian at each suboptimal local minimum
is significantly higher than those at near-global minima. For example, the maximum eigenvalue of
the initialization by Lemma 1 in Table 1 is estimated as 113,598.85 after training, whereas that
of the default initialization is only around 24.01. While our analysis has focused on sub-par local
optima in training instead of global minima with sub-par generalization, both the scarcity of local
optima during normal training and the favorable generalization properties of neural networks seem
to correlate with their sharpness.

In light of our finding that neural networks trained with unconventional initialization reach subopti-
mal local minima, we conclude that poor local minima can readily be found with a poor choice of
hyperparameters. Suboptimal minima are less scarce than previously believed, and neural networks
avoid these because good initializations and stochastic optimizers have been fine-tuned over time.
Fortunately, promising theoretical directions may explain good optimization performance while re-
maining compatible with empirical observations. The approach followed by Du et al. (2019) an-
alyzes the loss trajectory of SGD, showing that it avoids bad minima. While this work assumes
(unrealistically) large network widths, this theoretical direction is compatible with empirical stud-
ies, such as Goodfellow et al. (2014), showing that the training trajectory of realistic deep networks
does not encounter significant local minima.
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3  WEIGHT DECAY: ARE SMALL ¢5-NORM SOLUTIONS BETTER?

Classical learning theory advocates regularization for linear models, such as SVM and linear regres-
sion. For SVM, {5 regularization endows linear classifiers with a wide-margin property (Cortes &
Vapnik, 1995), and recent work on neural networks has shown that minimum norm neural network
interpolators benefit from over-parametrization (Hastie et al., 2019) . Following the long history of
explicit parameter norm regularization for linear models, weight decay is used for training nearly
all high performance neural networks (He et al., 2015a; Chollet, 2016; Huang et al., 2017; Sandler
etal., 2018).

In combination with weight decay, all of these cutting-edge architectures also employ batch nor-
malization after convolutional layers (Ioffe & Szegedy, 2015). With that in mind, van Laarhoven
(2017) shows that the regularizing effect of weight decay is counteracted by batch normalization,
which removes the effect of shrinking weight matrices. Zhang et al. (2018) argue that the synergistic
interaction between weight decay and batch norm arises because weight decay plays a large role in
regulating the effective learning rate of networks, since scaling down the weights of convolutional
layers amplifies the effect of each optimization step, effectively increasing the learning rate. Thus,
weight decay increases the effective learning rate as the regularizer drags the parameters closer and
closer towards the origin. The authors also suggest that data augmentation and carefully chosen
learning rate schedules are more powerful than explicit regularizers like weight decay.

Other work echos this sentiment and claims that weight decay and dropout have little effect on
performance, especially when using data augmentation (Hernandez-Garcia & Konig, 2018). Hoffer
et al. (2018) further study the relationship between weight decay and batch normalization, and they
develop normalization with respect to other norms. Shah et al. (2018) instead suggest that minimum
norm solutions may not generalize well in the over-parametrized setting.

We find that the difference between performance of standard network architectures with and without
weight decay is often statistically significant, even with a high level of data augmentation, for exam-
ple, horizontal flips and random crops on CIFAR-10 (see Tables 2 and 3). But is weight decay the
most effective form of ¢ regularization? Furthermore, is the positive effect of weight decay because
the regularizer promotes small norm solutions? We generalize weight decay by biasing the ¢ norm
of the weight vector towards other values using the following regularizer, which we call norm-bias:

(i ¢>?> -

Ry is equivalent to weight decay, but we find that we can further improve performance by biasing
the weights towards higher norms (see Tables 2 and 3). In our experiments on CIFAR-10 and
CIFAR-100, networks are trained using weight decay coefficients from their respective original
papers. ResNet-18 and DenseNet are trained with 2 = 2500 and norm-bias coefficient 0.005, and
MobileNetV?2 is trained with 2 = 5000 and norm-bias coefficient 0.001. y is chosen heuristically
by first training a model with weight decay, recording the norm of the resulting parameter vector,
and setting p to be slightly higher than that norm in order to avoid norm-bias leading to a lower
parameter norm than weight decay. While we find that weight decay improves results over a non-
regularized baseline for all three models, we also find that models trained with large norm bias (i.e.,
large 1) outperform models trained with weight decay.

R.(¢) = : 2

These results lend weight to the argument that explicit parameter norm regularization is in fact useful
for training networks, even deep CNNs with batch normalization and data augmentation. However,
the fact that norm-biased networks can outperform networks trained with weight decay suggests that
any benefits of weight decay are unlikely to originate from the superiority of small-norm solutions.

To further investigate the effect of weight decay and parameter norm on generalization, we also
consider models without batch norm. In this case, weight decay directly penalizes the norm of the
linear operators inside a network, since there are no batch norm coefficients to compensate for the
effect of shrinking weights. Our goal is to determine whether small-norm solutions are superior in
this setting where the norm of the parameter vector is more meaningful.

In our first experiment without batch norm, we experience improved performance training an MLP
with norm-bias (see Table 3). In a state-of-the-art setting, we consider ResNet-20 with Fixup ini-
tialization, a ResNet variant that removes batch norm and instead uses a sophisticated initialization
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that solves the exploding gradient problem (Zhang et al., 2019). We observe that weight decay sub-
stantially improves training over SGD with no explicit regularization — in fact, ResNets with this
initialization scheme train quite poorly without explicit regularization and data normalization. Still,
we find that norm-bias with > = 1000 and norm-bias coefficient 0.0005 achieves better results
than weight decay (see Table 3). This once again refutes the theory that small-norm parameters
generalize better and brings into doubt any relationship between classical Tikhonov regularization
and weight decay in neural networks. See Appendix A.5 for a discussion concerning the final pa-
rameter norms of Fixup networks as well as additional experiments on CIFAR-100, a harder image
classification dataset.

Table 2: ResNet-18, DenseNet-40, and MobileNetV2 models trained on non-normalized CIFAR-
10 data with various regularizers. Numerical entries are given by 7 (+s), where T is the average
accuracy over 10 runs, and s represents standard error.

Model | No weight decay (%) | Weight decay (%) | Norm-bias (%)

ResNet 93.46 (£0.05) 94.06 (£0.07) 94.86 (£0.05)
DenseNet 89.26 (£0.08) 92.27 (£0.06) 92.49 (£0.06)
MobileNetV2 92.88 (£0.06) 92.88 (£0.09) 93.50 (£0.09)

Table 3: ResNet-18, DenseNet-40, MobileNetV2, ResNet-20 with Fixup initialization, and a 4-layer
multi-layer perceptron (MLP) trained on normalized CIFAR-10 data with various regularizers. Nu-
merical entries are given by m(=+s), where 7 is the average accuracy over 10 runs, and s represents
standard error.

Model | No weight decay (%) | Weight decay (%) | Norm-bias (%)

ResNet 93.40 (£0.04) 94.76 (£0.03) 94.99 (£0.05)
DenseNet 90.78 (£0.08) 92.26 (£0.06) 92.46 (£0.04)
MobileNetV2 92.84 (£0.05) 93.64 (£0.05) 93.64 (£0.03)
ResNet Fixup 10.00 (£0.00) 91.42 (£0.04) 91.55 (£0.07)
MLP 58.88 (£0.10) 58.95 (£0.07) 59.13 (£0.09)

4 KERNEL THEORY AND THE INFINITE-WIDTH LIMIT

In light of the recent surge of works discussing the properties of neural networks in the infinite-
width limit, in particular, connections between infinite-width deep neural networks and Gaussian
processes, see Lee et al. (2017), several interesting theoretical works have appeared. The wide net-
work limit and Gaussian process interpretations have inspired work on the neural tangent kernel
(Jacot et al., 2018), while Lee et al. (2019) and Bietti et al. (2018) have used wide network assump-
tions to analyze the training dynamics of deep networks. The connection of deep neural networks to
kernel-based learning theory seems promising, but how closely do current architectures match the
predictions made for simple networks in the large-width limit?

We focus on the Neural Tangent Kernel (NTK), developed in Jacot et al. (2018). Theory dictates
that, in the wide-network limit, the neural tangent kernel remains nearly constant as a network
trains. Furthermore, neural network training dynamics can be described as gradient descent on a
convex functional, provided the NTK remains nearly constant during training (Lee et al., 2019). In
this section, we experimentally test the validity of these theoretical assumptions.

Fixing a network architecture, we use F to denote the function space parametrized by ¢ € RP. For
the mapping F' : R” — F, the NTK is defined by

-
O(¢) = 0y, F(¢) ® 0y, F(9), 3)

where the derivatives dy, F'(¢) are evaluated at a particular choice of ¢ describing a neural network.
The NTK can be thought of as a similarity measure between images; given any two images as input,
the NTK returns an n X n matrix, where n is the dimensionality of the feature embedding of the
neural network. We sample entries from the NTK by drawing a set of N images {z;} from a dataset,
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and computing the entries in the NTK corresponding to all pairs of images in our image set. We do
this for a random neural network f : R™ — R" and computing the tensor ®(¢) € RN*Nxnxn of
all pairwise realizations, restricted to the given data:

P
(@)ijir = Y _ O, f (Xir @) - O, f (%5, O)1 )
p=1

By evaluating Equation 4 using automatic differentiation, we compute slices from the NTK before
and after training for a large range of architectures and network widths. We consider image classi-
fication on CIFAR-10 and compare a two-layer MLP, a four-layer MLP, a simple 5-layer ConvNet,
and a ResNet. We draw 25 random images from CIFAR-10 to sample the NTK before and after
training. We measure the change in the NTK by computing the correlation coefficient of the (vec-
torized) NTK before and after training. We do this for many network widths, and see what happens
in the wide network limit. For MLPs we increase the width of the hidden layers, for the ConvNet
(6-Layer, Convolutions, ReLU, MaxPooling), we increase the number of convolutional filters, for
the ResNet we consider the WideResnet (Zagoruyko & Komodakis, 2016) architecture, where we
increase its width parameter. We initialize all models with uniform He initialization as discussed in
He et al. (2015b), departing from specific Gaussian initializations in theoretical works to analyze the
effects for modern architectures and methodologies.

==4-Layer MLP
==2-Layer MLP
==\WideResNet 16-x
==ConvNet

Correlation coefficient

ST emsaessona s 1252 L IALLMLNI L LA baans =

Relative Norm of change in NTK

Number of Parameters Number of Parameters

(a) (b)

==4-Layer MLP
==2-Layer MLP
==\WideResNet 16-x
==ConvNet

Relative Norm of change in NTK
Average Norm of parameter change

Number of Parameters Number of Parameters

©) (d)

Figure 1: (a) The relative norm of the neural tangent kernel as a function of the number of parameters
is shown for several networks. This figure highlights the difference between the behavior of ResNets
and other architectures. Figure 1c visualizes the same data in a logarithmic scale. (b) The correlation
of the neural tangent kernel before and after training. We expect this coefficient to converge toward
1 in the infinite-width limit for multi-layer networks as in Jacot et al. (2018). We do not observe this
trend for ResNets as is clear from the curve corresponding to the WideResNet. (d) The average norm
of parameter change decreases for simple architectures but stays nearly constant for the WideResNet.

The results are visualized in Figure 1, where we plot parameters of the NTK for these different
architectures, showing how the number of parameters impacts the relative change in the NTK
([|®21 — @o||/]|®o]||, where ®o/P; denotes the sub-sampled NTK before/after training) and cor-
relation coefficient (Cov(®y, ®g)/o(P1)/0(Po)). Jacot et al. (2018) predicts that the NTK should
change very little during training in the infinite-width limit.

At first glance, it might seem that these expectations are hardly met for our (non-infinite) experi-
ments. Figure la and Figure 1c show that the relative change in the NTK during training (and also



Published as a conference paper at ICLR 2020

the magnitude of the NTK) is rapidly increasing with width and remains large in magnitude for a
whole range of widths of convolutional architectures. The MLP architectures do show a trend to-
ward small changes in the NTK, yet convergence to zero is slower in the 4-Layer case than in the
2-Layer case.

However, a closer look shows that almost all of the relative change in the NTK seen in Figure 1c
is explained by a simple linear re-scaling of the NTK. It should be noted that the scaling of the
NTK is strongly effected by the magnitude of parameters at initialization. Within the NTK theory
of Lee et al. (2017), a linear rescaling of the NTK during training corresponds simply to a change in
learning rate, and so it makes more sense to measure similarity using a scale-invariant metric.

Measuring similarity between sub-sampled NTKs using the scale-invariant correlation coefficient,
as in Figure 1b, is more promising. Surprisingly, we find that, as predicted in Jacot et al. (2018),
the NTK changes very little (beyond a linear rescaling) for the wide ConvNet architectures. For the
dense networks, the predicted trend toward small changes in the NTK also holds for most of the
evaluated widths, although there is a dropoff at the end which may be an artifact of the difficulty of
training these wide networks on CIFAR-10. For the Wide Residual Neural Networks, however, the
general trend toward higher correlation in the wide network limit is completely reversed. The corre-
lation coefficient decreases as network width increases, suggesting that the neural tangent kernel at
initialization and after training becomes qualitatively more different as network width increases. The
reversal of the correlation trend seems to be a property which emerges from the interaction of batch
normalization and skip connections. Removing either of these features from the architecture leads to
networks which have an almost constant correlation coefficient for a wide range of network widths,
see Figure 6 in the appendix, calling for the consideration of both properties in new formulations of
the NTK.

In conclusion, we see that although the NTK trends towards stability as the width of simple archi-
tectures increases, the opposite holds for the highly performant Wide ResNet architecture. Even
further, neither the removal of batch normalization or the removal of skip connections fully recover
the positive NTK trend. While we have hope that kernel-based theories of neural networks may yield
guarantees for realistic (albeit wide) models in the future, current results do not sufficiently describe
state-of-the-art architectures. Moreover, the already good behavior of models with unstable NTKs
is an indicator that good optimization and generalization behaviors do not fundamentally hinge on
the stability of the NTK.

5 RANK: DO NETWORKS WITH LOW-RANK LAYERS GENERALIZE BETTER?

State-of-the-art neural networks are highly over-parameterized, and their large number of parameters
is a problem both for learning theory and for practical use. In the theoretical setting, rank has
been used to tighten bounds on the generalization gap of neural networks. Generalization bounds
from Harvey et al. (2017) are improved under conditions of low rank and high sparsity (Neyshabur
et al., 2017) of parameter matrices, and the compressibility of low-rank matrices (and other low-
dimensional structure) can be directly exploited to provide even stronger bounds (Arora et al., 2018).
Further studies show a tendency of stochastic gradient methods to find low-rank solutions (Ji &
Telgarsky, 2018). The tendency of SGD to find low-rank operators, in conjunction with results
showing generalization bounds for low-rank operators, might suggest that the low-rank nature of
these operators is important for generalization.

Langenberg et al. (2019) claim that low-rank networks, in addition to generalizing well to test data,
are more robust to adversarial attacks. Theoretical and empirical results from the aforementioned
paper lead the authors to make two major claims. First, the authors claim that networks which
undergo adversarial training have low-rank and sparse matrices. Second, they claim that networks
with low-rank and sparse parameter matrices are more robust to adversarial attacks. We find in our
experiments that neither claim holds up in practical settings, including ResNet-18 models trained on
CIFAR-10.

We test the generalization and robustness properties of neural networks with low-rank and high-
rank operators by promoting low-rank or high-rank parameter matrices in late epochs. We employ
the regularizer introduced in Sedghi et al. (2018) to create the protocols RankMin, to find low-rank
parameters, and RankMax, to find high-rank parameters. RankMin involves fine-tuning a pre-trained
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Model Training Clean Test Robust (%) Robust (%)
method Accuracy (%) e = 8/255 e=1/255
ResNet-18 Natural 94.66 0.00 31.98
RankMax 93.66 0.00 22.01
RankMin 94.44 0.00 31.53
Adversarial 79.37 35.38 74.27
RankMaxAdv 80.00 35.55 74.92
RankMinAdv 78.34 33.68 73.19
ResNet-18 Natural 92.95 0.01 31.34
w/o skips RankMax 91.71 0.00 18.81
RankMin 92.42 0.00 30.37
Adversarial 79.57 35.95 74.88
RankMaxAdv 79.43 36.45 74.87
RankMinAdv 78.52 33.97 73.64

Table 4: Result presented here are from experiments with CIFAR-10 data and two of the architec-
tures we studied. Robust accuracy is measured with 20-step PGD attacks with the € values specified
at the top of the column.

Untrained . ® Untrained
A Adv A Natural
RankMaxAdv * *  RankMax

+  RankMinAdv +  RankMin

Effective Rank
>
>x e
)
>t L]
.
Effective Rank
»

Filter index Filter index

(a) Effective rank of naturally trained models. (b) Effective rank of adversarially trained models.

Figure 2: This plot shows the effective rank of each filter for the ResNet-18 models. The filters are
indexed on the x-axis, so moving to the right is like moving through the layers of the network. Our
routines designed to manipulate the rank have exactly the desired effect as shown here.

model by replacing linear operators with their low-rank approximations, retraining, and repeating
this process. Similarly, RankMax involves fine-tuning a pre-trained model by clipping singular
values from the SVD of parameter matrices in order to find high-rank approximations. We are able
to manipulate the rank of matrices without strongly affecting the performance of the network. We
use both natural training and 7-step projected gradient descent (PGD) adversarial training routines
(Madry et al., 2017). The goal of the experiment is to observe how the rank of weight matrices
impacts generalization and robustness. We start by attacking naturally trained models with the
standard PGD adversarial attack with ¢ = 8/255. Then, we move to the adversarial training setting
and test the effect of manipulating rank on generalization and on robustness.

In order to compare our results with Langenberg et al. (2019), we borrow the notion of effective
rank, denoted by (1) for some matrix 1. This continuous relaxation of rank is defined as follows.
r(W) = \|||1‘//VV\‘\|; where || + ||, || - |1, and || - || F are the nuclear norm, the 1-norm, and the Frobenius
norm, respectively. Note that the singular values of convolution operators can be found quickly with

a method from Sedghi et al. (2018), and that method is used here.

In our experiments we investigate two architectures, ResNet-18 and ResNet-18 without skip con-
nections. We train on CIFAR-10 and CIFAR-100, both naturally and adversarially. Table 4 shows
that RankMin and RankMax achieve similar generalization on CIFAR-10. More importantly, when
adversarially training, a setting when robustness is undeniably the goal, we see the RankMax out-
performs both RankMin and standard adversarial training in robust accuracy. Figure 2 confirms that



Published as a conference paper at ICLR 2020

these two training routines do, in fact, control effective rank. Experiments with CIFAR-100 yield
similar results and are presented in Appendix A.7. It is clear that increasing rank using an analogue
of rank minimizing algorithms does not harm performance. Moreover, we observe that adversarial
robustness does not imply low-rank operators, nor do low-rank operators imply robustness. The
findings in Ji & Telgarsky (2018) are corroborated here as the black dots in Figures 2 show that ini-
tializations are higher in rank than the trained models. Our investigation into what useful intuition
in practical cases can be gained from the theoretical work on the rank of CNNs and from the claims
about adversarial robustness reveals that rank plays little to no role in the performance of CNNSs in
the practical setting of image classification.

6 CONCLUSION

This work highlights the gap between deep learning theory and observations in the real-world setting.
We underscore the need to carefully examine the assumptions of theory and to move past the study
of toy models, such as deep linear networks or single-layer MLPs, whose traits do not describe those
of the practical realm. First, we show that realistic neural networks on realistic learning problems
contain suboptimal local minima. Second, we show that low-norm parameters may not be optimal
for neural networks, and in fact, biasing parameters to a non-zero norm during training improves
performance on several popular datasets and a wide range of networks. Third, we show that the
wide-network trends in the neural tangent kernel do not hold for ResNets and that the interaction
between skip connections and batch normalization play a large role. Finally, we show that low-rank
linear operators and robustness are not correlated, especially for adversarially trained models.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Lemma 1. Consider a family of L-layer multilayer perceptrons with ReLU activations {Fy : R™ —
R™} and let s = min; n; be the minimum layer width. Then this family has rank-s affine expression.

Proof. Let G be a rank-s affine function, and 0 C R™ be a finite set. Let G(x) = Ax + b with
A = UXV being the singular value decomposition of A with U € R"*¢ and V' € R¥*™,

We define
XV
w3
where 0 is a (possibly void) (n; — s) X m matrix of all zeros, and by = ¢l for ¢ =

MaXy,e0,1<j<n, |(A1%;);| + 1 and 1 € R™ being a vector of all ones. We further choose
A; € R™*™-1 to have an s X s identity matrix in the upper left, and fill all other entries with

zeros. This choice is possible since n; > s for all [. We define b; = [0 ¢ 1]T € R™ where
0 € R'* is a vector of all zeros and 1 € R'*("1—5) i5 a (possibly void) vector of all ones.

Finally, we choose Ay, = [U 0], where now 0 is a (possibly void) n X (ny_; — s) matrix of all
zeros, and by, = —cA;1 4 b for 1 € R™~-1 being a vector of all ones.

Then one readily checks that Fi,(x) = G(x) holds for all x € . Note that all entries of all
activations are greater or equal to ¢ > 0, such that no ReLU ever maps an entry to zero. O

A.2 PROOF OF THEOREM 1

Theorem 1. Consider a training set, {(x;,v;)}\,, a family {Fy} of MLPs with s = min; n; being
the smallest width. Consider the training of a rank-s linear classifier G a v, i.e.,

111411151 L(Gaw; {(xi,y) Y1), subject to rank(A) < s, )
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for any continuous loss function L. Then for each local minimum, (A’,b’), of the above training
problem, there exists a local minimum, ¢', of L(Fy; {(x;,y:)}},) with the property that Fy (x;) =
GA’,b’ (x,;)fori = 1, 2, ceey N.

Proof. Based on the definition of a local minimium, there exists an open ball D around (A’, b’)
such that

L(Garp i {(xiyi) HL1) < L(Gapi{(xi90)}L1) V(A b) € D withrank(4) < 5. (6)

First, we use the same construction as in the proof of Lemma 1 to find a function Fi with Fiy(x;) =
G b (x;) for all training example x;. Because the mapping ¢ — Fy(x;) is continuous (not only
for the entire network F' but also for all subnetworks), and because all activations of [y are greater
or equal to ¢ > 0, there exists an open ball B(¢’, d1) around ¢’ such that the activations of Fy, remain
positive for all x; and all ¢ € B(¢', d1).

Consequently, the restriction of Fy to the training set remains affine linear for ¢ € B(¢’,41). In
other words, for any ¢ € B(¢’, §1) we can write

Fo(xi) = A(@)xi +b(¢)  Vxq,

by defining A(¢) = ALAL ... A, and b(¢) = S A A 1 ... Ay by, Note that due to
s = min; n;, the resulting A(¢) satisfies rank(A(¢)) < s.

After restricting ¢ to an open ball B(¢', d2), for 2 < 07 sufficiently small, the above (A(¢), b(¢))
satisfy (A(¢),b(¢)) € D forall ¢ € B(¢', d2). On this set, we, however, already know that the loss
can only be greater or equal to £(Fy; {(x;, )} ;) due to equation 6. Thus, ¢’ is a local minimum
of the underlying loss function. O

A.3 ADDITIONAL COMMENTS REGARDING THEOREM 1

Note that our theoretical and experimental results do not contradict theoretical guarantees for deep
linear networks (Kawaguchi, 2016; Laurent & Brecht, 2018) which show that all local minima are
global. A deep linear network with s = min(n,m) is equivalent to a linear classifier, and in this
case, the local minima constructed by Theorem 1 are global. However, this observation shows
that Theorem 1 characterizes the gap between deep linear and deep nonlinear networks; the global
minima predicted by linear network theories are inherited as (usually suboptimal) local minima when
ReLU’s are added. Thus, linear networks do not accurately describe the distribution of minima in
non-linear networks.

A.4 ADDITIONAL RESULTS FOR SUBOPTIMAL LOCAL OPTIMA

Table 5 shows more experiments. As above in the previous experiment, we use gradient descent
to train a full ResNet-18 architecture on CIFAR-10 until convergence from different initializations.
We find that essentially the same results appear for the deeper architecture, initializing with very
high bias leads to highly non-optimal solutions. In this case even solutions that are equally bad as a
zero-norm initialization.

Further results on CIFAR-100 are shown in Tables 6 and 7. These experiments with MLP and
ResNet-18 show the same trends as explained above, thus confirming that the results are not specific
to the CIFAR-10 dataset.

A.5 DETAILS CONCERNING LOW-NORM REGULARIZATION EXPERIMENTS

Our experiments comparing regularizers all run for 300 epochs with an initial learning rate of 0.1
and decreases by a factor of 10 at epochs 100, 175, 225, and 275. We use the SGD optimizer with
momentum 0.9.

We also tried negative weight decay coefficients, which leads to ResNet-18 CIFAR-10 performance
above 90% while blowing up parameter norm, but this performance is still suboptimal and is not
informative concerning the optimality of minimum norm solutions. One might wonder if high
norm-bias coefficients lead to even lower parameter norm than low weight decay coefficients. This
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Table 5: Local minima for ResNet-18 and CIFAR-10 generated via initialization and trained by
vanilla gradient descent, showing loss, euclidean norm of the gradient vector.

At Initialization After training
Init. Type Loss Grad. Loss Grad.
Default 2.30312 0.05000 0.00014 0.01410
Zero 2.30258 0.00025 2.30259 0.00013
Bias+20 12.95754 590.12170 2.30658 0.00004

Bias € /(—10,10) 12.96790  214.68600 2.30260 0.00123
Bias € U(—50,50) 84.67800 1190.23500 2.30260 0.00702

Table 6: Local minima for ResNet-18 and CIFAR-100 generated via initialization and trained by
vanilla gradient descent, showing loss, euclidean norm of the gradient vector

At Initialization After training
Init. Type Loss Grad. Loss Grad.
Default 4.60591 0.02346 0.00030 0.00466
Zero 4.60517 0.00019 4.60517 0.00003
Bias+20 34.37053 655.51569 4.60517 0.00015

Bias € U/(—100,100) 178.74391 2615.72534 4.60517  0.00003

Table 7: Local minima for MLP and CIFAR-100 generated via initialization and trained by vanilla
gradient descent, showing loss, euclidean norm of the gradient vector.

At Initialization After training
Init. Type Loss Grad. Loss Grad.
Default 4.60670 0.16154 0.02579  0.01482
Zero 4.60517 0.00019 4.60517 0.00011
Bias+10 15.77286  359.65710 4.60517  0.00079

Bias € U(—5,5) 8.69149  63.59983 2.15917 0.09718
Bias € U(—10,10) 13.02693 158.78347 2.58368 0.09233
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question may not be meaningful in the case of networks with batch normalization. In the case of
ResNet-20 with Fixup, which does not contain running mean and standard deviation, the average
parameter ¢2 norm after training with weight decay is 24.51 while that of models trained with norm-
bias is 31.62. Below, we perform the same tests on CIFAR-100, a substantially more difficult dataset.
Weight decay coefficients are chosen to be ones used in the original paper for the corresponding ar-
chitecture. Norm-bias coefficient/;? is chosen to be 8100/0.005, 7500,/0.001, and 2000,/0.0005
for ResNet-18, DenseNet-40, and ResNet-20 with Fixup, respectively, using the same heuristic as
described in the main body.

Table 8: ResNet-18, DenseNet-40, and ResNet-20 with Fixup initialization trained on normalized
CIFAR-100 data with various regularizers. Numerical entries are given by T (+s), where 777 is the
average accuracy over 10 runs, and s represents standard error.

Model | No weight decay (%) | Weight decay (%) | Norm-bias (%)

ResNet 71.73 (£0.25) 74.66 (£0.17) | 75.90 (£0.16)
DenseNet 65.61 (+0.33) 68.98 (40.25) | 69.24 (£0.11)
ResNet Fixup 1.000 (£0.00) 65.08 (0.30) | 65.58 (£0.17)

A.6 DETAILS ON THE NEURAL TANGENT KERNEL EXPERIMENT

For further reference, we include details on the NTK sampling during training epochs in Figure 3.
We see that the parameter norm (Right) behaves normally (all of these experiments are trained with
a standard weight decay parameter of 0.0005), yet the NTK norm (Left) rapidly increases. Most of
this increase, however is scaling of the kernel, as the correlation plot (Middle) is much less drastic.
We do see that most change happens in the very first epochs of training, whereas the kernel only
changes slowly later on.

3 ==ConvNet, Width 1

: nvNet, Width 10
vNet, Width 100
=2-Layer MLP, Width 10
2-Layer MLP, Width 100
2-Layer MLP, Width 1000
4-Layer MLP, width 10
4-Layer MLP, width 100

relation with initial NTK
relation with initial NTK
relation with initial NTK

#
ZZ

NTK cort
NTK cor:
NTK cort

Figure 3: Plotting the evolution of NTK parameters during training epochs. Left: Norm of the NTK
Tensor, Middle: Correlation of current NTK iterate versus initial NTK. Right: Reference plot of the
network parameter norms.
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Figure 4: The similarity coefficient of the neural tangent kernel after training with its initialization.
We expect this coefficient to converge toward 1 in the infinite-width limit for multi-layer networks.
Also shown is the direct relative difference of the NTK norms, which behaves similarly to the nor-
malized direct difference from figure 1.
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Figure 5: For reference we record the test accuracy of all models from 1 in the left plot and the
relative change in parameters in the right plot.
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Figure 6: The correlation coefficient of the neural tangent kernel after training with its initializa-
tion for different WideResNet variants - namely WideResNet without batch normalizations and
WideResNet without skip connections. We interestingly find that removing either of both prop-
erties, which are widely regarding as beneficial for neural network training, stabilizes the trend seen
in the default WideResNet. However both variants hardly converge toward 1, even when sampling
very wide ResNets.

A.7 DETAILS ON RANKMIN AND RANKMAX

We employ routines to promote both low-rank and high-rank parameter matrices. We do this by
computing approximations to the linear operators at each layer. Since convolutional layers are linear
operations, we know that there is a matrix whose dimensions are the number of parameters in the
input to the convolution and the number of parameters in the output of the convolution. In order
to compute low-rank approximations of these operators, one could write down the matrix corre-
sponding to the convolution, and then compute a low-rank approximation using a singular value
decomposition (SVD). In order to make this problem computationally tractable we used the method
for computing singular values of convolution operators derived in Sedghi et al. (2018). We were then
able to do low-rank approximation in the classical sense, by setting each singular value below some
threshold to zero. In order to compute high-rank operators, we clipped the singular values so that
when mulitplying the SVD factors, we set each singular value to be equal to the minimum of some
chosen constant and the true singular value. It is important to note here that these approximations
to the convolutional layers, when done naively, can return convolutions with larger filters. To be
precise, an n X n filter will map to a k x k filter through our rank modifications, where k > n. We
follow the method in Sedghi et al. (2018), where these filters are pruned back down by only using
n X n entries in the output.

When naturally training ResNet-18 and Skipless ResNet-18 models, we train with a batch size of
128 for 200 epochs with the learning rate initiated to 0.01 and decreasing by a factor of 10 at epochs
100, 150, 175, and 190 (for both CIFAR-10 and CIFAR-100). When adversarially training these two
models on CIFAR-10 data, we use the same hyperparameters. However, in order to adversarially
train on CIFAR-100, we train ResNet-18 with a batch size of 256 for 300 epochs with an initial
learning rate of 0.1 and a decrease by a factor of 10 at epochs 200 and 250. For adversarially
training Skipless ResNet-18 on CIFAR-100, we use a batch size of 256 for 350 epochs with an
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initial learning rate of 0.1 and a decrease by a factor of 10 at epochs 200, 250, and 300. Adversarial
training is done with an ¢, 7-step PGD attack with a step size of 2/255, and e = 8/255. For all of
the training described above we augment the data with random crops and horizontal flips.

During 15 additional epochs of training we manipulate the rank as follows. RankMin and RankMax
protocols are employed periodically in the last 15 epochs taking care to make sure that the loss
remains small. For these last epochs, the learning rate starts at 0.001 and decreases by a factor of 10
after the third and fifth epochs of the final 15 epochs. As shown in Table 10, we test the accuracy
of each model on clean test data from the corresponding dataset, as well as on adversarial examples
generated with 20-step PGD with ¢ = 8/255 (with step size equal to 2/255) and € = 1/255 (with
step size equal to .25/255).

When training multi-layer perceptrons on CIFAR-10, we train for 100 epochs with learning rate ini-
tialized to 0.01 and decreasing by a factor of 10 at epochs 60, 80 and 90. Then, we train the network
for 8 additional epochs, during which RankMin and RankMax networks undergo rank manipulation.

Table 9: Results from rank experiments with a multi-layer perceptron and CIFAR-10.

MLP and CIFAR-10

Training method Training Clean Robust (%) Robust (%)
Accuracy (%) | Accuracy (%) € = 8/255 e=1/255
Naturally Trained 100.00 58.79 3.76 28.94
RankMax 99.97 58.19 3.72 26.63
RankMin 100.00 58.06 3.76 28.48

Table 10: Results from rank experiments on CIFAR-100. Robust accuracy is measured with 20-step

PGD attacks with the € values specified at the top of the column.

ResNet-18 and CIFAR-100

Training method Training Clean Robust (%) Robust (%)
Accuracy (%) | Accuracy (%) € = 8/255 e =1/255
Naturally Trained 99.97 73.08 0.00 17.5
RankMax 99.90 72.67 0.00 16.95
RankMin 99.92 72.57 0.00 17.63
Adversarially Trained 99.92 50.88 17.81 45.99
RankMaxAdv 99.73 51.04 16.80 45.74
RankMinAdv 99.91 50.22 16.64 45.03
ResNet-18 w/o skip connections and CIFAR-100
Training method Training Clean Robust (%) Robust (%)
Accuracy (%) | Accuracy (%) € = 8/255 e =1/255
Naturally Trained 99.96 72.13 0.01 13.7
RankMax 99.82 71.35 0.04 11.74
RankMin 99.90 71.28 0.00 13.53
Adversarially Trained 99.92 50.47 17.62 45.18
RankMaxAdv 99.90 50.93 17.72 45.78
RankMinAdv 99.91 49.37 16.77 44.41
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