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Abstract:We study 6d superconformal field theories (SCFTs) compactified on a circle
with arbitrary twists. The theories obtained after compactification, often referred to
as 5d Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to
5d SCFTs. According to a conjecture, all 5d SCFTs can be obtained in this fashion.
We compute the Coulomb branch prepotential for all 5d KK theories obtainable in this
manner and associate to these theories a smooth local genus one fibered Calabi-Yau
threefold in which is encoded information about all possible RG flows to 5d SCFTs.
These Calabi-Yau threefolds provide hitherto unknown M-theory duals of F-theory
configurations compactified on a circle with twists. For certain exceptional KK theories
that do not admit a standard geometric description we propose an algebraic description
that appears to retain the properties of the local Calabi-Yau threefolds necessary to
determine RG flows to 5d SCFTs, along with other relevant physical data.ar
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1 Introduction

Recently, there has been a resurgence of interest in the problem of classifying 5d super-
conformal field theories (SCFTs), with a particular emphasis on exploring the relation-
ship between 5d UV fixed points and 6d UV fixed points [1–11]. The motivation for
studying this relationship is the observation that all known 5d SCFTs can be organized
into families of theories (connected to one another by RG flows) whose “progenitors”
are 6d SCFTs compactified on a circle [1, 2], and hence every 6d SCFT compactified
on a circle provides a natural starting point for the systematic identification of a large
family of 5d SCFTs.

While it has been appreciated in the literature for some time that circle com-
pactifications of 6d SCFTs can flow to 5d SCFTs, only recently has the existence of
a 6d UV fixed point been understood in an intrinsically 5d setting. To understand
this point, let us recall that the most widely used method for identifying 5d SCFTs
is to construct a candidate e�ective field theory assumed to be a relevant deformation
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of a 5d UV fixed point, and to verify the e�ective theory passes a number of consis-
tency checks which are believed to be su�cient to guarantee the existence of a such a
non-trivial UV fixed point. This method, which has been used to construct numerous
examples of UV complete minimally supersymmetric 5d QFTs—both by means of stan-
dard gauge theoretic methods [1, 12, 13], as well as string theory constructions such as
(p, q) 5-brane configurations in type IIB string theory [14–20] and M-theory compact-
ifications on local Calabi-Yau threefolds [2, 21–23]—has also led to the identification
of numerous examples of theories that despite not satisfying the criteria necessary for
the existence of a non-trivial 5d UV completion, nonetheless exhibit certain features
that suggest they can be UV completed in 6d. All known examples of such theories
are characterized by the emergence of an intrinsic length scale that is interpreted as
the size of a compactification circle, and it has been argued that each of these theories
is a circle compactification of a 6d SCFT possibly twisted by the action of a discrete
global symmetry1; see for example [2–4, 18, 24–28]. These observations have led to the
identification of a set of criteria believed su�cient to imply the existence of a 6d UV
completion for certain 5d theories, and this introduces the possibility of also classifying
circle compactifications of 6d SCFTs using 5d physics.

It was recently conjectured [2] that all 5d SCFTs can be obtained via RG flows
starting from 5d Kaluza-Klein (KK) theories. The latter are defined as 6d SCFTs com-
pactified on a circle (of finite radius) possibly with discrete twists around the circle.
Given a 5d KK theory, the RG flows of interest correspond to integrating out BPS par-
ticles from the 5d KK theory—thus, if the full BPS spectrum is known then according
to the conjecture of [2] it is possible to classify all 5d SCFTs by systematically studying
all possible RG flows from the 5d KK theory.

In this paper, we focus on the geometric approach in which one realizes a 5d KK
theory via a compactification of M-theory on a genus one fibered Calabi-Yau threefold.
The set of holomorphic curves in the threefold completely encode the information about
the spectrum of BPS particles required to track all RG flows down to 5d SCFTs.
Therefore, a precursor to classifying RG flows from 5d KK theories to 5d SCFTs is to
geometrically classify all 5d KK theories themselves in terms of Calabi-Yau threefolds.
See [10] (also [2]) for explicit application of this geometric procedure to the classification
of 5d SCFTs upto rank three.

It is believed that all 6d SCFTs can be constructed by compactifying F-theory
on singular elliptically fibered Calabi-Yau threefolds admitting certain singular limits
characterized by the contraction of holomorphic curves in the base of the fibration.

1Twisting the theory around the circle means that we introduce a holonomy for the background
gauge fields associated to discrete global symmetries of the theory.
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Here we should distinguish between two di�erent kinds of compactifications of F-theory
depending on whether or not they contain O7+ plane from the point of view of type
IIB string theory. If there is no O7+, then the compactification is said to lie in the
unfrozen phase of F-theory; otherwise it is said to lie in the frozen phase [29–31] of
F-theory. These two phases are qualitatively di�erent in the following sense: The rules
for converting geometry in the unfrozen phase to the corresponding 6d physics are far
more straightforward than the rules for converting geometry in the frozen phase to the
corresponding 6d physics [32]. See [33, 34] (see also [35]) for the classification of 6d
SCFTs arising from the unfrozen phase of F-theory, and [36] for the classification of 6d
SCFTs arising from the frozen phase of F-theory.

A 5d KK theory corresponding to the untwisted compactification of a 6d SCFT
arising in the unfrozen phase can be constructed by compactifying M-theory on a
Calabi-Yau threefold which is a resolution of the Calabi-Yau threefold arising in the
F-theory construction. This fact is a special case of the duality between M-theory and
(unfrozen phase of) F-theory compactified on a circle (without any twist). Explicit
resolution of all Calabi-Yau threefolds associated to 6d SCFTs was performed by [3, 4],
and hence the Calabi-Yau threefolds associated to corresponding 5d KK theories was
determined. These threefolds are elliptically fibered since the threefolds associated to
6d SCFTs are elliptically fibered to begin with.

In this paper, we extend the work of [3, 4] and determine a resolved local Calabi-
Yau threefold describing every 5d KK theory, with the exception of certain examples
which do not appear to admit a conventional geometric description2. Not only do we
include twisted compactifications of 6d SCFTs arising in the unfrozen phase, but also
the untwisted and twisted compactifications of 6d SCFTs arising in the frozen phase.
We find that these Calabi-Yau threefolds are in general only genus one fibered and may
not be elliptically fibered, which means that the fibration may not admit a zero section.

Our analysis can be divided into two parts. In the first part of the analysis, which is
purely field theoretic, we determine the prepotential for each 5d KK theory by using the
following observations: Each 6d SCFT admits a 6d gauge theory description which can
be reduced on a circle with an appropriate twist to obtain a canonical 5d gauge theory
description of the associated 5d KK theory. The Green-Schwarz term in 6d reduces to
a Chern-Simons term in the 5d gauge theory, which induces a tree-level contribution to

2For these examples, we propose an algebraic description which mimics certain properties of the
Calabi-Yau threefolds associated to other KK theories. This algebraic description can be used to
compute RG flows starting from these KK theories to 5d SCFTs. In the paper we sometimes abuse
terminology and use the word ‘geometry’ to refer to both theories that admit a conventional geometric
description along with those (i.e. “non-geometric” theories) for which only an algebraic description is
available.
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the prepotential. Combining this contribution with the one-loop contribution coming
from the 5d gauge theory produces the full prepotential for the 5d KK theory. In
the second part of the analysis, we interpret the prepotential as describing the triple
intersection numbers of 4-cycles inside a yet to be determined Calabi-Yau threefold.
Using the data of these triple intersection numbers, along with some other consistency
conditions, we are able to determine a description of the Calabi-Yau threefold as a
neighborhood of intersecting Kähler surfaces along the lines of the discussion in [2–4],
and we verify that each threefold admits the structure of genus one fibration3. By
construction, compactifying M-theory on this Calabi-Yau threefold leads to the 5d KK
theory whose prepotential we computed in the first part of the analysis.

One can view these Calabi-Yau threefolds as providing hitherto unknown M-theory
duals of general unfrozen and frozen F-theory configurations compactified on a circle
possibly with a discrete twist. Even though we have provided explicit results only for
F-theory configurations realizing 6d SCFTs, our methods should in principle apply to
any general F-theory configuration.

Notice that at no step in our analysis do we distinguish between 6d SCFTs arising
from the unfrozen phase and 6d SCFTs arising from the frozen phase. Thus, according
to our analysis, the rules for converting geometry into the corresponding 5d physics are
uniform irrespective of whether the 5d KK theory arises from the compactification of
a 6d SCFT lying in the frozen or the unfrozen phase. In other words, the frozen and
unfrozen six-dimensional compactifications of F-theory are given a unified geometric
description4 in M-theory.

We close the introduction with a brief overview of the structure of Calabi-Yau
threefolds that we associate to 5d KK theories. By construction, the structure of
these threefolds descends from the structure of 6d SCFTs. Recall that an important
object characterizing a 6d SCFT is the matrix of Dirac pairings of “fundamental” BPS
strings visible on the tensor branch of the 6d SCFT. The matrix of Dirac pairings is a
symmetric, positive definite, integer matrix with positive entries on the diagonal and
non-positive o�-diagonal entries. Thus, the Dirac pairing matrix is analogous to the
Cartan matrix of a simply laced Lie algebra, and we can associate to this matrix a
graph analogous to a Dynkin graph for a simply laced Lie algebra.

As discussed in more detail later in the paper, the matrix of Dirac pairings descends
to a matrix of Chern-Simons terms in the canonical gauge theory associated to the 5d
KK theory, where the precise map between the two matrices depends on the choice

3See for example [37] for a discussion of F-theory compactifications on genus one fibered, in contrast
to elliptically fibered, Calabi-Yau varieties.

4Some of the frozen theories belong to the class of exceptional KK theories which do not admit a
conventional geometric description, and thus to which we only associate an algebraic description.
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of twist. We find that 5d KK theories end up organizing themselves according to this
matrix of Chern-Simons terms. Like the matrix of Dirac pairings, the matrix of Chern-
Simons terms is in general a positive definite, integer matrix with positive entries on
the diagonal and non-positive o�-diagonal entries, where o�-diagonal entries can only
be zero if their transposes are also zero. But, unlike the matrix of Dirac pairings, the
matrix of Chern-Simons terms is not necessarily a symmetric matrix. Thus, the matrix
of Chern-Simons couplings is analogous to the Cartan matrix of a general (simply or
non-simply laced) Lie algebra, and we associate to it a graph analogous to a Dynkin
graph for a general Lie algebra.

In this way, 5d KK theories are characterized by graphs that generalize Dynkin
graphs. The associated Calabi-Yau geometry is assembled according to the structure
of this graph:

• To each node in the graph, we associate a collection of Hirzebruch surfaces in-
tersecting with each other. In fact, we associate a family of such collections
parametrized by an integer ‹, where the collections labeled by di�erent values of
‹ are related to one another by flop transitions. A key point is that a certain
linear combination of the P1 fibers of these Hirzebruch surfaces has genus one,
and an appropriate multiple of the genus one fiber is identified physically with
the KK mode of momentum one around the circle.

• To a pair of nodes connected to each other by some edges, we associate certain
gluing5 rules. These gluing rules describe how to glue the collection of surfaces
associated to a node to the collection of surfaces associated to another node.
These gluing rules capture the data of intersections between the two collections
of surfaces. In general, the gluing rules provided in this paper work only for a
subset of the values of ‹ parametrizing the two collections of surfaces being glued
together. Our claim is that given a 5d KK theory, we can always find at least
one value of ‹ for each node in the associated graph such that the gluing rules
for each edge work.

By applying these gluing rules, it can be checked that a multiple of the genus
one fiber in one collection of surfaces is glued to a multiple of the genus fiber
in the other collection of surfaces. These multiples are such that the KK mode
associated to one collection is identified with the KK mode associated to the other

5When two Kähler surfaces intersect transversely along a common holomorphic curve inside of a
Calabi-Yau threefold, the intersection implies that a holomorphic curve inside one of the two surfaces
is identified with a holomorphic curve inside of the other surface. We refer to this identification as a
gluing together of the two surfaces.
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collection. This must be so since there is only a single KK mode associated to the
full KK theory and the genus one fibers inside each collection are merely di�erent
geometric manifestations of the same mode.

• Once we are done gluing all the collections of surfaces according to the gluing rules
associated to each edge, we obtain a larger collection of surfaces intersecting with
each other. The Calabi-Yau threefold associated to the KK theory is by definition
a local neighborhood of this larger collection of surfaces. As we have described
above, this Calabi-Yau threefold is canonically genus one fibered.

The rest of the paper is organized as follows. In Section 2, we review how all 6d
SCFTs can be neatly encapsulated in terms of graphs that capture the data of the
tensor branch of the corresponding 6d SCFTs. We list all the possible vertices and
edges appearing in such graphs. Our presentation treats unfrozen and frozen cases
on an equal footing. Another distinguishing feature of our presentation is that we
carefully distinguish di�erent theories having the same gauge algebra content and same
Dirac pairing. This includes the theta angle for sp(n), di�erent distributions of hypers
between the spinor and cospinor representations of so(12), as well as some frozen cases.

In Section 3, we study all the possible twists of 6d SCFTs once they are compactified
on a circle. Each twist leads to a di�erent 5d KK theory. The di�erent twists of a
6d SCFT T are characterized by equivalence classes in the group of discrete global
symmetries of T. We show that these equivalence classes can be described by foldings
of the graphs �T associated to T along with choice of an outer automorphism for
each gauge algebra appearing in the low energy theory on the tensor branch of T.
Thus, di�erent 5d KK theories are also classified by graphs that generalize the graphs
classifying 6d SCFTs. We provide a list of all the possible vertices and edges that can
appear in the graphs associated to 5d KK theories.

In Section 4, we provide a prescription to obtain the prepotential of any 5d KK
theory. This is done by compactifying the low energy gauge theory appearing on the
tensor branch of the corresponding 6d SCFT on a circle with the corresponding twist.
This leads to a 5d gauge theory whose prepotential, along with a shift, is identified as
the prepotential for the 5d KK theory.

In Section 5, we associate a genus-one fibered Calabi-Yau threefold to each 5d KK
theory, except for a few exceptional cases, for which we provide an algebraic description
mimicking the essential properties of genus one fibered Calabi-Yau threefolds. The
chief ingredient in the determination of the threefold is the prepotential determined
in Section 4. The prepotential captures the data of the triple intersection numbers of
surfaces inside the threefold. Once a description of the threefold as a local neighborhood
of a collection of surfaces glued to each other is presented, these triple intersections

– 6 –



can be computed in a multitude of di�erent ways. Demanding all of these di�erent
computations to give the same result leads to strong consistency constraints on such
a description and often uniquely fixes the description (up to isomorphisms). Other
consistency conditions playing a crucial role are also discussed in Section 5.1.
The description of the geometry is provided in two di�erent steps according to the
structure of the graph associated to the 5d KK theory under study. First, a part of
the geometry is assigned to each vertex in the graph according to results presented in
Section 5.2. Then, depending on the configuration of edges in the graph, di�erent parts
of the geometry corresponding to di�erent vertices in the graph are glued to each other
via the gluing rules presented in Sections 5.3 and 5.4.

In Section 6, we present our conclusions. In Appendix A, we review some geometric
background relevant for this paper. In Appendix B, we address certain exceptional
examples of geometries and gluing rules that do not admit a straightforward analysis
following the main methods described in this paper. In Appendix C, we provide a
concrete and non-trivial check of our proposal for computing the prepotential and
geometries associated to 5d KK theories. We demonstrate that a 5d KK theory arising
from a non-trivial twist (involving a permutation of tensor multiplets) of a 6d SCFT
has a 5d gauge theory description found in earlier studies by using brane constructions.
In Appendix D, we provide some more checks of our proposal. Finally, in Appendix E
we provide instructions for using the Mathematica notebook submitted as an ancillary
file along with this paper. The Mathematica notebook allows one to compute the
prepotential for 5d KK theories involving one or two nodes. Combining these results,
one can obtain the prepotential for any 5d KK theory. The notebook also converts the
prepotential into triple intersection numbers for the associated geometry and displays
these intersection numbers in a graphical form.

2 Structure of 6d SCFTs

In this section, we review the fact that 6d SCFTs are characterized by graphs that
are analogous to Dynkin graphs associated to simply laced Lie algebras. In the next
section, we will show that 5d KK theories are also characterized by similar graphs that
are instead analogous to Dynkin graphs associated to general (i.e. both simply laced
and non-simply laced) Lie algebras.

The low-energy theory on the tensor branch of a 6d SCFT T can be organized in
terms of tensor multiplets Bi. There is a gauge algebra gi associated to each i where gi
can either be a simple or a trivial algebra. Each tensor multiplet Bi is also associated
to a “fundamental” BPS string excitation Si such that the charge of Si under Bj is the
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�ii
gi Comments Hypermultiplet content

1
sp(n)◊ ◊ = 0, fi (2n+ 8)F

1
su(n) n Ø 3 (n+ 8)F+ �2

1
su(‚n) n Ø 8; frozen; non-geometric (n ≠ 8)F+ S2

1
su(6̃) 15F+ 1

2�3

2
su(n) 2nF

3
su(3)

4
so(n) n Ø 8 (n ≠ 8)F

k
so(8) 1 Æ k Æ 3 (4 ≠ k)F+ (4 ≠ k)S+ (4 ≠ k)C

k
so(n) 1 Æ k Æ 3; 7 Æ n Æ 12, n ”= 8 (n ≠ 4 ≠ k)F+ 2Á 9≠n

2 Ë(4 ≠ k)S

k
so(„12) k = 1, 2 (8 ≠ k)F+ 1

2(3 ≠ k)S+ 1
2C

2
so(13) 7F+ 1

2S

k
g2 1 Æ k Æ 3 (10 ≠ 3k)F

k
f4 1 Æ k Æ 5 (5 ≠ k)F

k
e6 1 Æ k Æ 6 (6 ≠ k)F

k
e7 1 Æ k Æ 8 1

2(8 ≠ k)F

12
e8

Table 1. List of all the possible nodes with non-trivial gi appearing in graphs associated to
6d SCFTs. A hat or a tilde distinguishes di�erent nodes having same values of �ii and gi.
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�ii
gi Comments Flavor symmetry algebra, f

1
sp(0)◊ ◊ = 0, fi e8

2
su(1) su(2)

Table 2. List of all the possible nodes with trivial gi that can appear in graphs associated
to 6d SCFTs. If �ii = 2, we refer to the trivial gauge algebra as su(1) and if �ii = 1, we refer
to the trivial gauge algebra as sp(0). In the latter case, sometimes a Z2 valued theta angle
is physically relevant. We also list the flavor symmetry algebra f for each case. The sum of
gauge algebras neighboring each such node must be contained inside the corresponding f.

Kronecker delta ”ij. The Dirac pairing �ij between Si and Sj appears in the Green-
Schwarz term in the Lagrangian

�ijBi · tr(F 2
j ) (2.1)

where Fj is the field strength for gj if gj is simple and Fj = 0 if gj is trivial.
[�ij] is a symmetric, positive definite matrix with all of its entries valued in integers.

Thus, it is analogous to the Cartan matrix for a simply laced Lie algebra. The only
possible values for o�-diagonal entries are �ij = 0,≠1,≠2. We note that �ij = ≠2 is
only possible for 6d SCFTs arising from the frozen phase of F-theory [32, 36].

We can thus display the data of a 6d SCFT in terms of an associated graph �T

that is constructed as follows:

• Nodes: For each tensor multiplet Bi, we place a node i with value �ii

gi
. All

such possibilities are listed in Table 1 when gi is non-trivial, and in Table 2 when
gi is trivial. In the former case, each node contributes hypers charged under a
representation Ri of gi where Ri is shown in Table 1. In the latter case, for the
node with gi = sp(0), an important role is played by the adjoint representation
of e8, which is formed by the BPS string excitations associated to this node.

We note that the node 1
su(‚n)

only arises in the frozen phase of F-theory.

In the case of �ii = 1 and gi = sp(n), there is a possibility of a Z2 valued 6d
theta angle which is physically relevant (in the context of 6d SCFTs) only when
the 2n+ 8 hypers in fundamental are gauged by a neighboring su(2n+ 8) gauge
algebra. For gi = sp(0), the theta angle is physically relevant (in the context of
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�ii
gi

�jj

gj Comments Mixed hyper content

1
sp(ni)

2
su(nj) ni Æ nj; nj Æ 2ni + 7 F ¢ F

1
sp(ni)◊

2
su(nj) nj = 2ni + 8; ◊ = 0, fi F ¢ F

1
sp(ni)

k
so(nj) ni Æ nj ≠ 4 ≠ k; nj Æ 4ni + 16; 2 Æ k Æ 4 1

2(F ¢ F)

1
sp(ni)

2
so(„12) ni Æ 6 1

2(F ¢ F)

1
sp(ni)

k
so(8) ni Æ 4 ≠ k; k Æ 3 1

2(F ¢ S)

1
sp(ni)

k
so(7) ni Æ 8 ≠ 2k; k = 2, 3 1

2(F ¢ S)

1
sp(ni)

k
g2 ni Æ 10 ≠ 3k; k = 2, 3 1

2(F ¢ F)

1
su(ni)

2
su(nj) ni Æ 2nj; nj Æ ni + 8 F ¢ F

1
su(‚ni)

2
su(nj) ni Æ 2nj; nj Æ ni ≠ 8 F ¢ F

1
su(6̃)

2
su(nj) 3 Æ nj Æ 15 F ¢ F

2
su(ni)

2
su(nj) ni Æ 2nj; nj Æ 2ni F ¢ F

2
su(ni)

4
so(nj)

2
ni Æ nj ≠ 8; nj Æ 2ni; frozen F ¢ F

2
su(2)

k
so(7) 1 Æ k Æ 3 1

2(F ¢ S)

2
su(2)

k
g2 1 Æ k Æ 3 1

2(F ¢ F)

Table 3. List of all the possible edges between two gauge-theoretic nodes that can appear in
graphs characterizing 6d SCFTs. An edge with 2 in the middle of it denotes the fact that there
are two edges between the two asocciated nodes. Solid edges denote matter in bifundamental
and dashed edges denote matter in F ¢ S. The theta angle of sp(n) is only displayed when it
is physically relevant.

6d SCFTs) only if there is a neighboring su(8) gauge algebra [38]. This can be
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�ii
gi

�jj

gj
Comments Mixed hyper content

1
sp(0)

2
su(n)

n Æ 9, n ”= 8

1
sp(0)◊

2
su(n)

n = 8; ◊ = 0, fi

1
sp(0)

3
su(3)

1
sp(0)

k
so(n)

n Æ 16; 2 Æ k Æ 4

1
sp(0)

2
so(„12)

1
sp(0)

k
g2

k = 2, 3

1
sp(0)

k
f4

2 Æ k Æ 5

1
sp(0)

k
e6

2 Æ k Æ 6

1
sp(0)

k
e7

2 Æ k Æ 8

1
sp(0)

12
e8

2
su(1)

1
sp(1)

1
2F in gj = sp(1)

2
su(1)

2
su(2)

1
2F in gj = su(2)

Table 4. List of all the possible edges between a gauge-theoretic and a non-gauge-theoretic
node that can appear in graphs characterizing 6d SCFTs. The theta angle of sp(0) is only
displayed when it is physically relevant.

understood in terms of two di�erent embeddings of su(8) into e8 (both having
embedding index one), so that the adjoint of e8 decomposes di�erently in the two
cases, leading to di�erent spectrum of string excitations.

In the case of �ii = 1 and gi = su(6), there are two possible choices of matter
content. We distinguish the non-standard choice of matter content by denoting
the corresponding gi as su(6̃).
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�ii
gi

�jj

gj

1
sp(0)

2
su(1)

2
su(1)

2
su(1)

Table 5. List of all the possible edges between two non-gauge-theoretic nodes that can appear
in graphs characterizing 6d SCFTs. The theta angle of sp(0) is not displayed since it is not
physically relevant.

�ii
gi

1
sp(0)

�kk
gk

Comments

2
su(2)

1
sp(0)

k
g

k Ø 3; g = e7, e6, f4, g2, so(n Æ 12)

k
su(3)

1
sp(0)

l
g

k, l Ø 2; k + l Ø 5; g = e6, f4, g2, so(n Æ 10), su(n Æ 6)

2
su(4)

1
sp(0)

k
g

k = 3, 4; g = g2, so(n Æ 10)

k
so(7)

1
sp(0)

l
g

k, l Ø 2; k + l Ø 5; g = g2, so(n Æ 9)

k
so(8)

1
sp(0)

l
g

k, l Ø 2; k + l Ø 5; g = g2, so(8)

k
so(9)

1
sp(0)

l
g

k, l Ø 2; k + l Ø 5; g = g2

k
g2

1
sp(0)

l
g

k, l Ø 2; k + l Ø 5; g = f4, g2

Table 6. List of all the possibilities for multiple neighbors of sp(0).

In the case of gi = so(12), the two spinor representations S and C are not conju-
gate to each other but have same contributions to the anomaly polynomial. The
total number of hypers in the two spinor representations is fixed by the value
of �ii. But since the two spinor representations are not conjugate, the relative
distribution of hypers between the two makes a di�erence. For �ii = 1, 2, we
can obtain two inequivalent theories in this way (note that the existence of two
inequivalent theories with so(12) gauge symmetry was pointed out in [11].) The
version containing both S and C is distinguished from the one contataining only
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S by denoting its gi as so(„12).

• Edges: Consider two nodes i and j whose values are �ii

gi
and �jj

gj
respectively.

We place ≠�ij number of edges between i and j. For instance, if �ij = ≠1, then
we display this as

�ii

gi
�jj

gj

(2.2)

and, if �ij = ≠2, then we display this as

�ii

gi
�jj

gj
2 (2.3)

There are no edges between nodes i and j if �ij = 0. All the possible edges are
listed in Table 3 when both gi and gj are non-trivial, in Table 4 when only one
of gi and gj is non-trivial, and in Table 5 when both gi and gj are trivial.
Each edge corresponds to a hyper transforming in a mixed representation Rij =
Rij,i ¢Rij,j of gi ü gj where Rij,i is a representation of gi and Rij,j is a represen-
tation of gj. The possible Rij are shown in the third column of Table 3. Note
that we must have üjR

üdim(Rij,j)
ij,i ™ Ri as representations of gi for each node i.

In the case of �ii = 1, gi = sp(ni), �jj = k, gj = so(7, 8) and �ij = ≠1, there
are two possible mixed representations 1

2(F ¢ F) or 1
2(F ¢ S). We distinguish the

case 1
2(F ¢ S) by denoting the corresponding edge as a dashed line. Notice that

when gj = so(8), the dashed edge is only physically relevant when it is a part of
a configuration of form

1
sp(ni)

k
so(8)

1
sp(nk)

(2.4)

Otherwise, the dashed edge can be converted to the non-dashed edge by applying
an outer-automorphism of so(8).

• Multiple neighbors of sp(0): Consider a node i with value 1
sp(0)

. Related to
the fact that the flavor symmetry algebra associated to this node is e8, it can be
shown that its neighbors must satisfy üjgj ™ e8 where only those j are included
in the sum for which �ij = ≠1. In fact all such subalgebras are realized except6
for so(13) ü su(2).

6It can be shown that the embedding index of each neighboring gj inside e8 must be one. The only
possible embedding of so(13)üsu(2) into e8 follows from first embedding so(13)üsu(2) into so(16) as a
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In the context of 6d SCFTs, it is not possible for sp(0) to have more than two
neighbors. We collect all the possibilities for multiple neighbors of sp(0) in Table
6.

Notice that the relationship between �T and [�ij] is analogous to the relationship
between Dynkin graph and Cartan matrix of a simply laced Lie algebra.

3 Structure of 5d KK theories

3.1 Twists

Consider a QFT T that admits a discrete global symmetry group �. When we com-
pactify T on a circle, we have the option of “twisting” T around the circle. This means
that we introduce a holonomy “ œ � for the background gauge field corresponding to
�. Note that the number of distinct twists is not given by the number of elements in
�, but rather by the number of conjugacy classes in �. This is because two holonomies
that are conjugate in � are physically equivalent and thus lead to the same twist.

In this section, we will explore all the possible twists for 6d SCFTs. Each twist
leads to a di�erent 5d KK theory.

3.2 Discrete symmetries from outer automorphisms

A general discrete symmetry of a 6d SCFT T is generated by combining two kinds
of basic discrete symmetries. We start by discussing the first kind of basic discrete
symmetries. These arise from outer automorphisms of gauge algebras gi.

su(n) for n Ø 3, so(2m) for m Ø 4 and e6 admit an order two outer automorphism
that we call O(2). It exchanges the roots in the following fashion

· · · · · ·su(2n), O(2):

· · · · · ·su(2n+ 1), O(2):

special maximal subalgebra and then embedding so(16) into e8 as a regular maximal subalgebra. The
embedding index of the su(2) factor under this embedding is two rather than one, thus so(13)ü su(2)
cannot be realized as a neighbor of sp(0). The absence of so(13) ü su(2) neighbor was first noticed in
[39].
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· · ·so(2n), O(2):

e6, O(2):

so(8) also admits an order three outer automorphism which we call O(3). It cyclically
permutes the roots as shown below

so(8), O(3):

The full group of outer automorphisms of so(8) is the symmetric group S3 which can
be generated by combining O

(2) and O
(3). Note that O(2) and O

(3) are not conjugate
to each other (since they have di�erent orders) and hence we need to consider both of
them.

The above action of an outer automorphism O
(q) (for q = 2, 3) on the roots of g

translates to an action on the Dynkin coe�cients of the weights for representations of
g. In other words, the action of O(q) can be viewed as an action on representations of
g—see Table 7.

An outer automorphism O
(qi) of a gauge algebra gi œ T is a symmetry of T if

O
(qi) · Ri = Ri (3.1)

O
(qi) · Rij,i = Rij,i ’j (3.2)

where O(qi) · R denotes the action of O(qi) on R. We should keep in mind that a hyper
in a representation R is the same as a hyper in representation R̄. So, Ri and Rij,i are
only defined up to complex conjugation on constituent irreps. Thus, whenever R ¡ R̄

in Table 7, it means that two distinct hypers in R are interchanged with each other
under the action of the outer automorphism.
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g O
(q)

O
(q)

· Rg

su(m) O
(2) F Ωæ F̄, �n

Ωæ �̄n, S2
Ωæ S̄2

so(2m) O
(2) F ≠æ F, S Ωæ C

e6 O
(2) F Ωæ F̄

so(8) O
(3) F ≠æ S, S ≠æ C, C ≠æ F

Table 7. List of non-trivial outer automorphisms O
(q) of g and their actions O

(q)
· Rg on

various irreducible representations Rg of g. F denotes fundamental representation, �n denotes
the irreducible n-index antisymmetric representation, S2 denotes the irreducible 2-index sym-
metric representation, and S and C denote irreducible spinor and cospinor representations.
Bar on top of a representation denotes the complex conjugate of that representation. F of
so(2m) is left invariant by the action of O(2).

As an example consider the 6d theory given by

2
su(n)

(3.3)

The theory includes 2n hypers in F. The outer automorphism O
(2) of su(n) descends

to a discrete symmetry of the theory whose action on the hypermultiplets can be
manifested as follows. We divide the 2n hypers into two ordered sets such that each
set contains n hypers. Then we exchange these two sets with each other.

3.3 Discrete symmetries from permutation of tensor multiplets

Now we turn to a discussion of the second kind of basic discrete symmetries. These
arise from permutation of tensor multiplets i æ S(i) such that

gS(i) = gi (3.4)
�S(i)S(j) = �ij (3.5)

for all i, j. This is a symmetry of T if

RS(i) ƒ Ri (3.6)
RS(i)S(j) ƒ Rij (3.7)

for all i, j.
As an example, consider the 6d theory given by

1
sp(n)

4
so(m)

1
sp(n)

4
so(p)

4
so(p)

(3.8)
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The permutation

1
sp(n)

4
so(m)

1
sp(n)

4
so(p)

4
so(p)

(3.9)

is a symmetry of the theory.
As another example, consider the 6d theory given by

2
su(n)

2
su(n)

2
su(m)

2
su(m)

(3.10)

The permutation

2
su(n)

2
su(n)

2
su(m)

2
su(m)

(3.11)

is a symmetry of the theory.
Now, consider a permutation S that is a symmetry of T. We can use the data of S

to convert [�ij] into another matrix [�–—
S ]. Here –, — etc. parametrize orbits of nodes

i under the iterative action of S. To define a particular entry �–—
S , we pick a node i

lying in the orbit – and let
�–—

S =
ÿ

jœ—

�ij (3.12)

where the sum is over all nodes j lying in the orbit —. Notice that the resulting
matrix [�–—

S ] need not be symmetric but must be positive definite. It turns out for S
associated to 6d SCFTs that whenever �–—

S ”= �—–
S , then the smaller of the two entries

is ≠1. Thus, [�–—
S ] is analogous to the Cartan matrix for a general (i.e. either simply

laced or non-simply laced) Lie algebra.
Let us compute the matrix [�–—

S ] for the above example (3.8). To start with, [�ij]
is Q

ccccccca

4 ≠1 0 0 0
≠1 1 ≠1 0 0
0 ≠1 4 ≠1 0
0 0 ≠1 1 ≠1
0 0 0 ≠1 4

R

dddddddb
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There are three orbits. The third node lies in the first orbit, the second and fourth
nodes lie in the second orbit, and the first and fifth nodes lie in the third orbit. Applying
our prescription (3.12), we find that [�–—

S ] is
Q

cca

4 ≠2 0
≠1 1 ≠1
0 ≠1 4

R

ddb

Similarly, we can compute the matrix [�–—
S ] for the above example (3.10). [�ij] is

Q

cccca

2 ≠1 0 0
≠1 2 ≠1 0
0 ≠1 2 ≠1
0 0 ≠1 2

R

ddddb

and [�–—
S ] is A

1 ≠1
≠1 2

B

.
Now, we define a graph �S

T associated to [�–—
S ]:

• Nodes: The nodes of �S
T are in one-to-one correspondence with the set of orbits

–. The value of node – is �ii

gi
where i is a node of �T lying in the orbit –.

• Edges: Let – ”= — and let �–—
S Ø �—–

S . Then we place ≠�–—
S number of edges

between nodes – and —. If �–—
S = �—–

S , then the edges are undirected. If �–—
S >

�—–
S , then all the edges are directed from – to —.

• Self-edges: Let l– = �ii
≠ �––

S where i is a node of �T lying in the orbit –.
Then, we introduce l– edges such that the source and target of each edge is the
same node –.

�S
T can be understood as a folding7 of �T by the action of S. Observe that the re-

lationship between �S
T and [�–—

S ] is analogous to the relationship between the Dynkin
graph and Cartan matrix for a general (i.e. either simply laced or non-simply laced)
Lie algebra.

7Notice that, unlike the foldings of Dynkin diagrams, the foldings of graphs �T can lead to self-
edges.
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For our example (3.8), the folded graph �S
T is

4
so(m)

1
sp(n)

4
so(p)

2 (3.13)

and for (3.10), the folded graph �S
T is

2
su(n)

2
su(m)

(3.14)

We note that, starting from the data of �S
T, we can only reconstruct S up to

conjugation. But this is enough to keep track of the twist associated to S. Thus,
throughout this paper, we will specify twists via folded graphs �S

T and will not refer to
an explicit S inducing the folding.

3.4 General discrete symmetries

We now discuss twists associated to general discrete symmetries that combine the basic
discrete symmetries discussed in Sections 3.2 and 3.3. That is, we consider actions of
the form A

Ÿ

i

O
(qi)

B

S (3.15)

where S is a permutation of the tensor multiplets and O
(qi) is an outer automorphism

of order qi of gauge algebra gi, where each qi œ {1, 2, 3} and qi = 1 denotes the identity
automorphism. (3.15) is a symmetry of the 6d theory T only if

gS(i) ƒ gi (3.16)
�S(i)S(j) = �ij (3.17)

and

O
(qS(i)) · Ri = RS(i) (3.18)

O
(qS(i)) · RS(i)S(j),S(i) = Rij,i (3.19)

As in Section 3.3, we associate the matrix [�–—
S ] to the twist generated by the action of

(3.15).
As an example, consider the 6d SCFT

2
su(n)

2
su(m)

2
su(m)

(3.20)
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Suppose we want to perform the outer-automorphism O
(2) for the middle su(n) node.

Recall from the discussion around (3.3) that the outer automorphism of su(n) ex-
changes the fundamental hypers in pairs. However, the graph in (3.20) indicates that
the fundamental hypers of the middle su(n) algebra are part of bifundamental repre-
sentations formed by taking the tensor product with the fundamental representations
of the neighboring su(m) algebras. Therefore, if we want O(2) to be a symmetry of the
theory, we must permute the two neighboring su(m) as well. Thus, O(2) by itself is not
a symmetry of the theory, but its combination with the permutation

2
su(n)

2
su(m)

2
su(m)

(3.21)

is a symmetry of the theory. Thus, we see that in general it is not possible to decompose
a general symmetry of the form (3.15) into more basic symmetries discussed earlier.

As another illustrative example, consider

1
sp(n)

4
so(2m)

4
so(2m)

(3.22)

Consider sending the left so(2m) to the right so(2m) with an outer automorphism O
(2),

and sending the right so(2m) to the left so(2m) without any outer automorphism. We
can represent this action as

1
sp(n)

4
so(2m)

4
so(2m)

O
(1)

O
(2) (3.23)

This action is a symmetry of the theory and is represented as

O
(1)
1 O

(2)
3 S (3.24)
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in the notation of (3.15). Here we have labeled the nodes as 1, 2, 3 from left to right
and the subscript of O denotes the node it is acting at. We can also consider the action

1
sp(n)

4
so(2m)

4
so(2m)

O
(2)

O
(2) (3.25)

which is also a symmetry of the theory and is represented as

O
(2)
1 O

(2)
3 S (3.26)

in the notation of (3.15).
Now, let g– = gi and �–– = �ii where i is a node of �T lying in the orbit – of

S. Then O
(qi) can be viewed as an outer automorphism of g–. Let us define an outer

automorphism O
(q–) of g– by

O
(q–) =

Ÿ

iœ–

O
(qi) (3.27)

where each O
(qi) on the right hand side is viewed as an outer automorphism of g– and

the O(qi) for all i lying in the orbit – are then multiplied with each other to produce the
outer automorphism O

(q–) of g–. Notice that we have chosen some ordering of various
i while evaluating the product r

iœ– O
(qi). Di�erent orderings produce di�erent but

conjugate O
(q–). Thus, we leave the ordering unspecified since we are only interested

in the conjugacy class of O(q–).
We can now associate a graph �S,{q–}

T to the action of (3.15). We start from the

graph �S
T defined in Section 3.3 and modify the values of the node – to �––

S

g(q–)
–

where i
is a node of �T lying in the orbit –. The graph obtained after this simple modification
is what we refer to as �S,{q–}

T .
Note that the data of �S,{q–}

T is enough to reconstruct the action (3.15) up to
conjugation. Thus, we will capture the twist associated to the action (3.15) by the
graph �S,{q–}

T and call the resulting 5d KK theory as TKK
S,{q–}.

For the example discussed around (3.20), �S,{q–}
T is

2
su(n)(2)

2
su(m)(1)

2 (3.28)
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�––
g– Comments

1
su(n)(2) n = 3, 4

2
su(n)(2) n Ø 3

3
su(3)(2)

4
so(2n)(2) n Ø 5

k
so(8)(q) 1 Æ k Æ 4; q = 2, 3

2
so(10)(2)

2
so(„12)(2)

k
e(2)6 k = 2, 4, 6

2
su(n)(1)

n Ø 1; non-geometric

Table 8. List of all the new nodes that can appear in graphs associated to 5d KK theories. We
also list all the possibilities where an edge starts and ends on the same node. The comment
“non-geometric” for the last entry refers to the fact that there is no completely geometric
description of this node. See also a node appearing in Table 1. If a KK theory involves either
of these two kinds of nodes, then it does not admit a conventional geometric description.

Similarly, for (3.23), �S,{q–}
T is

1
sp(n)(1)

4
so(2m)(2)

2 (3.29)

However, for (3.25), �S,{q–}
T is

1
sp(n)(1)

4
so(2m)(1)

2 (3.30)
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�––
g(q–)

–

�——

g
(q—)
— Comments

1
sp(n–)(1)

k
so(n—)(2) n– Æ n— ≠ 4 ≠ k; n— Æ 4n– + 14; 2 Æ k Æ 4

1
sp(n–)(1)

2
so(„12)(2) n– Æ 6

2
su(n–)(1)

4
so(n—)(2)

2
n– Æ n— ≠ 8; n— Æ 2n–

2
su(n–)(1)

2
su(n—)(1) n– Æ 2n—; n— Æ n–

1
sp(0)(1)

2
su(n)(2) 3 Æ n Æ 9, n ”= 8

1
sp(0)(1)◊

2
su(8)(2) ◊ = 0, fi

1
sp(0)(1)

3
su(3)(2)

1
sp(0)(1)

k
so(8)(q) 2 Æ k Æ 4; q = 2, 3

1
sp(0)(1)

k
so(10)(2) k = 2, 4

1
sp(0)(1)

4
so(2n)(2) n = 6, 7

1
sp(0)(1)

2
so(„12)(2)

1
sp(0)(1)

k
e(2)6 k = 2, 4, 6

2
su(n)(1)

2
su(1)(1) n = 1, 2

Table 9. List of all the new undirected edges that can appear in graphs characterizing 5d
KK theories.

which is the same as �S,{q–}
T for the symmetry

1
sp(n)

4
so(2m)

4
so(2m)
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�––
g(q–)

–

�——

g
(q—)
—

e
Comments

1
sp(n–)(1)

k
so(n—)(q—)

2
n– Æ n— ≠ 4 ≠ k; n— Æ 2n– + 10 ≠ 2q—; k = 3, 4; q— = 1, 2

1
sp(n–)(1)

3
so(7)(1)

2
n– = 1, 2

1
sp(1)(1)

3
g(1)2

2

1
sp(n–)(1)

4
so(n—)(q—)

3
n– Æ n— ≠ 8; 3n— Æ 4n– + 17 ≠ q—; q— = 1, 2

2
su(n–)(1)

2
su(n—)(1)

e
n– Æ 2n—; en— Æ 2n–; e = 2, 3

2
su(n–)(2)

2
su(n—)(1)

2
n– Æ 2n—; n— Æ n–

2
g(1)2

2
su(2)(1)

e
e = 2, 3

2
so(7)(1)

2
su(2)(1)

e
e = 2, 3

3
so(7)(1)

2
su(2)(1)

2

3
so(7)(1)

1
sp(1)(1)

2

3
so(8)(2)

1
sp(1)(1)

2

k
so(n–)(q–)

1
sp(n—)(1)

2
n– Æ 4n— + 16; 2n— Æ n– ≠ 4 ≠ k; k = 3, 4; q– = 1, 2

4
so(n–)(q–)

1
sp(n—)(1)

3
n– Æ 4n— + 16; 3n— Æ n– ≠ 8; q– = 1, 2

Table 10. List of all the possible directed edges between two gauge-theoretic nodes that can
appear in graphs characterizing 5d KK theories. An arrow with e in the middle of it denotes
e edges directed in the direction of arrow. Solid edges arise from foldings of solid edges and
dashed edges arise from foldings of dashed edges. A partially dashed and partially solid edge
with 2 in the middle of it arises from a folding together of a dashed edge and a solid edge.
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�––
g(q–)

–

�——

g
(q—)
—

e
Comments

1
sp(0)(1)

3
su(3)(q)

2
q = 1, 2

1
sp(0)(1)

3
so(7)(1)

2

1
sp(0)(1)

k
so(8)(1)

2
k = 3, 4

1
sp(0)(1)

3
g(1)2

2

3
su(3)(q)

1
sp(0)(1)

2
q = 1, 2

k
so(n)(q)

1
sp(0)(1)

e
n Æ 16; 2 Æ e Æ k ≠ 1; k = 3, 4; q = 1, 2

3
g(1)2

1
sp(0)(1)

2

k
f(1)4

1
sp(0)(1)

e
2 Æ e Æ k ≠ 1; 3 Æ k Æ 5

k
e(q)6

1
sp(0)(1)

e
2 Æ e Æ k ≠ 1; 3 Æ k Æ 6; q = 1, 2

k
e(1)7

1
sp(0)(1)

e
2 Æ e Æ k ≠ 1; 3 Æ k Æ 8

12
e(1)8

1
sp(0)(1)

e
2 Æ e Æ 11

2
su(n)(1)

2
su(1)(1)

e
n = 1, 2; e = 2, 3

Table 11. List of all the possible directed edges involving at least one non-gauge-theoretic
node that can appear in graphs characterizing 5d KK theories.

which does not involve any outer automorphisms. Thus, according to our claim, (3.25)
and 3.31) must be in the same conjugacy class. Let us demonstrate it explicitly. Con-
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�ii
g(qi)i

1
sp(0)(1)

�kk
g(qk)k

Comments

2
su(2)(1)

1
sp(0)(1)

k
g(q)

k Ø 3; g(q) = e(2)6 , so(8, 10)(2), so(8)(3)

k
su(3)(1)

1
sp(0)(1)

l
g(q)

k, l Ø 3; k + l Ø 5; g(q) = so(8)(2), so(8)(3), su(n Æ 4)(2)

k
su(3)(2)

1
sp(0)(1)

l
g(1)

k, l Ø 2; k + l Ø 5; g = f4, g2, so(n Æ 9), su(4)

k
su(3)(2)

1
sp(0)(1)

l
g(2)

k, l Ø 2; k + l Ø 5; g = e6, so(8, 10), su(n Æ 6)

2
su(4)(2)

1
sp(0)(1)

k
g(q)

k = 3, 4; g(q) = g(1)2 , so(n Æ 9)(1), so(8, 10)(2)

k
so(8)(2)

1
sp(0)(1)

l
g(q)

k, l Ø 2; k + l Ø 5; g(q) = g(1)2 , su(4)(1), so(7)(1), so(8)(2)

k
so(8)(3)

1
sp(0)(1)

l
g(q)

k, l Ø 2; k + l Ø 5; g(q) = su(3)(2), so(8)(3)

Table 12. List of all the new possibilities for multiple neighbors of sp(0)(1) connected to it
by undirected edges.

jugating (3.26) by O
(2)
1 , we get

O
(2)
1 (O(2)

1 O
(2)
3 S)O(2)

1 (3.32)

=O
(2)
3 SO(2)

1 (3.33)

=O
(2)
3 O

(2)
3 S (3.34)

=S (3.35)

Thus, the KK theories corresponding to (3.25) and (3.31) must be the same, and we
denote it by the folded graph (3.30).

In a similar fashion, by studying various 6d SCFTs and their symmetries, we can
isolate all the possible ingredients that can appear in graphs of the form �S,{q–}

T asso-
ciated to 5d KK theories:

• First of all, the nodes listed in Tables 1 and 2 are all allowed. We simply write
each gauge algebra g appearing in Table 1 as g(1).

• Similarly, the edges appearing in Tables 3, 4 and 5 are all allowed with each gauge
algebra being written as g(1).
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• The new nodes that can appear in graphs associated to 5d KK theories but do
not appear in graphs associated to 6d SCFTs are listed in Table 8.

• The new undirected edges appearing for graphs associated to 5d KK theories are
listed in Table 9.
The configuration

1
sp(n–)(1)

k
so(n—)(2)

(3.36)

for n— = 4n– + 16 and n– Ø 0 is not allowed since the choice of theta angle
for sp(n–) in the associated 6d theory is correlated to the choice of a spinor
representation of the neighboring so(4n– + 16). Thus, the outer automorphism
O

(2) of so(4n– + 16) is not a symmetry of the theory8.

• The directed edges between two nodes both carrying a non-trivial gauge algebra
are listed in Table 10.
The configuration

1
sp(n–)(1)

k
so(n—)(2)

2 (3.37)

with n— = 2n– + 8 is not allowed. This configuration descends from (3.23) with
n = n– and m = n– + 4. Recall that the choice of theta angle of the gauge
algebra sp(n–) is equivalent to the choice of a spinor representation of its flavor
symmetry algebra so(4n– + 16). But so(2n– + 8) ü so(2n– + 8) subalgebra of
so(4n– +16) is gauged. The S of so(4n– +16) decomposes as (S¢C)ü (C¢S) of
so(2n–+8)üso(2n–+8) which is sent to (C¢C)ü(S¢S) of so(2n–+8)üso(2n–+8)
by the action depicted in (3.23). Thus, (3.23) is not a symmetry when n = n–

and m = n– + 4.
For similar reasons, the configuration

1
sp(n–)(1)

k
so(n—)(2)

3 (3.38)

with 3n— = 4n– + 16 is not allowed.
The KK theory

3
so(8)(2)

1
sp(1)(1)

2 (3.39)
8The authors thank Gabi Zafrir for a discussion on this point
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arises from the 6d SCFT

3
so(8)

1
sp(1)

1
sp(1)

(3.40)

by performing the outer automorphism O
(2) of so(8) which permutes F and S,

and hence induces the exchange of the two sp(1).

• Other kinds of directed edges are listed in Table 11.
Due to similar reasons as explained above, the configuration

1
sp(0)(1)

k
so(8)(2)

2 (3.41)

is not allowed.

• There are various kinds of possibilities for multiple neighbors of sp(0)(1). All of
the possibilities listed in Table 6 are allowed with the substitution of g(1) in place
of every trivial or non-trivial algebra g appearing in that table. New possibilities
involving undirected edges are listed in Table 12. These are obtained by perform-
ing outer automorphisms on the possibilities listed in Table 6. However, some of
the outer automorphisms do not yield a symmetry of the the theory.
For example, consider the decomposition of the adjoint 248 of e8 under su(3)ü e6

248 æ (8,1) ü (1,78) ü (3,27) ü (3Õ,27Õ) (3.42)

It can be seen from the above decomposition that neither the outer automorphism
of su(3) nor the outer automorphism of e6 is a symmetry of the decomposition,
implying that neither the configuration

k
su(3)(2)

1
sp(0)(1)

l
e(1)6

(3.43)

nor the configuration

k
su(3)(1)

1
sp(0)(1)

l
e(2)6

(3.44)

is an allowed KK theory. However, the configuration

k
su(3)(2)

1
sp(0)(1)

l
e(2)6

(3.45)
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is an allowed KK theory since the combined outer automorphism of su(3) and
e6 is indeed a symmetry of the decomposition (3.42). Correspondingly, neither
(3.43) nor (3.44) appears in the Table 12, while (3.45) does appear in Table 12.
Similarly, the reader can check that the following configurations do not give rise
to allowed KK theories:

k
so(8)(2)

1
sp(0)(1)

l
so(8)(q)

(3.46)

for q = 1, 3. However, q = 2 is allowed.

k
su(4)(p)

1
sp(0)(1)

l
so(10)(q)

(3.47)

for (p, q) equal to (1, 2) and (2, 1). However, (1, 1) and (2, 2) are allowed.

k
su(3)(p)

1
sp(0)(1)

l
so(10)(q)

(3.48)

for (p, q) equal to (1, 2) and (2, 1).

k
su(3)(p)

1
sp(0)(1)

l
su(5, 6)(q)

(3.49)

for (p, q) equal to (1, 2) and (2, 1).

k
su(2)(1)

1
sp(0)(1)

l
so(12)(2)

(3.50)

k
su(4)(p)

1
sp(0)(1)

l
so(8)(3)

(3.51)

for p = 1, 2.

k
so(7)(1)

1
sp(0)(1)

l
so(8)(3)

(3.52)

• It is not possible for sp(0)(1) to have multiple neighbors when one of the neighbors
is connected to it by a directed edge going outwards from sp(0)(1). This is simply
a consequence of the fact that sp(0) cannot have three neighbors in the context
of 6d SCFTs.
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However, it is possible for sp(0)(1) to have multiple neighbors with some neighbors
having directed edges pointing inwards towards sp(0)(1). These possibilities can
be simply obtained by replacing one or more undirected edges appearing in Tables
6 and 12 by suitable directed edges (pointing inwards) taken from Table 11. One
has to ensure that the matrix associated to the resulting configuration is positive
definite, which disallows some substitutions. We do not pursue a full classification
of such cases since they won’t be useful in this paper. Later on, in Section 5.4.4,
we will provide a general prescription to obtain the gluing rules associated to
such directed edges from the gluing rules associated to their “parent” undirected
edges.

4 Prepotential for 5d KK theories

The goal of this section is to propose a formula for the prepotential of a 5d KK theory
TKK

S,{q–} starting from the tensor branch description of the corresponding 6d SCFT T.

4.1 Prepotential

g O
(q) h Rg æ Rh

su(2m) O
(2) sp(m) F æ F, F̄ æ F, �2

æ �2
ü 1

su(2m+ 1) O
(2) sp(m) F æ F ü 1, F̄ æ F ü 1

so(2m) O
(2) so(2m ≠ 1) F æ F ü 1, S æ S, C æ S

e6 O
(2) f4 F æ F ü 1, F̄ æ F ü 1

so(8) O
(3) g2 F æ F ü 1, S æ F ü 1, C æ F ü 1

Table 13. The table displays the invariant algebra h when g is quotiented by O
(q). An irrep

Rg of g decomposes to an irrepRh of h and this decomposition is displayed (for representations
relevant in this paper) in the column labeled Rg æ Rh. 1 denotes the singlet representation.

Compactify a 6d SCFT T on a circle with a twist S, {q–} around the circle. Let
us analyze the low energy theory. Every node – in �S,{q–}

T gives rise to a low energy
5d gauge algebra h– = g–/O(q–) which is the subalgebra of g– left invariant by the
action of outer automorphism O

(q–). In this paper, our choice of outer automorphisms
is such that the invariant subalgebras are those listed in Table 13. For each node –, we
obtain an additional u(1)– gauge algebra in the low energy 5d theory coming from the
reduction of a tensor multiplet Bi on the circle where i lies in the orbit –.

Now we determine the spectrum of hypermultiplets charged under ü–h– under
the low energy 5d theory. First of all, for every node i in 6d theory, we define Ti =
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üjR
üdim(Rij,j)
ij,i . Recall that Ti ™ Ri and hence the 6d theory contains hypermultiplets

charged under representation Si of gi where Si is defined such that Si ü Ti = Ri. Si is
the representation formed by those hypers that are only charged gi and not under any
other gauge algebra gj with j ”= i.

As detailed in Table 13, irreducible representations Rg– of g– can be viewed as irre-
ducible representations ofRh– . We can thus view hypers transforming in representation
Si of gi as transforming in a representation of h–. Let us denote this representation
of h– by S̃–. The outer automorphism O

(q–) then permutes constituent irreps inside
S̃– and thus acts on S̃– as an automorphism. The low energy 5d theory then contains
hypers transforming in the representation

S– := S̃–/O
(q–) (4.1)

These hypers are only charged under h– and not under any other gauge algebra h— with
— ”= –.

Now consider other hypermultiplets that are charged under multiple gauge alge-
bras in the 6d theory. These descend to hypermultiplets charged under multiple gauge
algebras in the low energy 5d theory plus some hypers only charged under the indi-
vidual algebras. Consider the mixed representation Rij = Rij,i ¢ Rij,j of gi ü gj in
the 6d theory. Let i and j lie in orbits – and — respectively. Let Rij,i decompose as
R–—,– ü n–—,–1 when viewed as a representation of h–, where R–—,– is the full subrep-
resentation that is charged non-trivially under h–. Similarly, let Rij,j decompose as
R–—,— ün–—,—1 when viewed as a representation of h—, where R–—,— is the full subrepre-
sentation that is charged non-trivially under h—. Then, under the twist, Rij descends to
a mixed representation R–— of h– üh— plus representations S–—,– and S–—,— of h– and h—

respectively. Here R–— = R–—,– ¢ R–—,—, S–—,– = n–—,—R–—,–, and S–—,— = n–—,–R–—,—.
In addition to the above, we also obtain hypers in the symmetric product Sym2(Rij,i)

for all j ”= i such that both j and i are in the same orbit –. Thus, the full representation
R– formed by hypers under h– is

R– = üjœ–Sym2(Rij,i)|h– ü S– ü—

1
R

üdim(R–—,—)
–—,– ü S–—,–

2
(4.2)

where Sym2(Rij,i)|h– means that we view Sym2(Rij,i) as a representation of h–. Note
that in the above expression, i is a fixed node in the orbit –, j cannot equal i, and —

cannot equal –. There are no hypers charged under u(1)–. Just as the representations
Ri and Rij for all i and j determine the full matter content for 6d SCFTs, the repre-
sentations R– and R–— for all – and — determine the full matter content for 5d KK
theories.

As an example, let us determine the low energy 5d theory for (3.23). The 5d gauge
algebra is h = sp(n)ü so(2m≠1). A half-bifundamental of sp(n)ü so(2m) decomposes
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as a half-bifundamental of sp(n)ü so(2m≠ 1) plus a half-fundamental of sp(n). Thus,
the two half-bifundamentals between the sp(n) and the two so(2m) in (3.23) descend
to a half-bifundamental of h plus a half-fundamental of sp(n) in the 5d theory. There
are 2m ≠ 8 ≠ n extra fundamentals of the left so(2m) in (3.23) not charged under
any other gauge algebra. Similarly, there are 2m ≠ 8 ≠ n extra fundamentals of the
right so(2m) in (3.23) not charged under any other gauge algebra. These two sets of
fundamentals descend to 2m≠ 8≠ n fundamentals of so(2m≠ 1) in the 5d theory. We
also obtain 2m ≠ 8 ≠ n singlets that decouple and so we ignore them. Finally, there
are 2n + 8 ≠ 2m extra fundamentals of sp(n) in (3.23) not charged under any other
gauge algebra. These hypers descend to 2n + 8 ≠ 2m extra fundamentals of sp(n) in
the low energy 5d theory that are not charged under so(2m ≠ 1). To recap, the low
energy 5d theory is an sp(n)ü so(2m≠ 1) gauge theory with a half-bifundamental plus
4n+ 17≠ 4m half-fundamentals of sp(n) plus 2m≠ 8≠ n fundamentals of so(2m≠ 1).

As another example, let us determine the low energy 5d theory for (3.14). The
two su(m) get identified to a single su(m) algebra. Similarly, the two su(n) get identi-
fied to a single su(n) algebra. Thus the 5d gauge algebra is h = su(n) ü su(m). The
bifundamentals of su(m)ü su(n) descend to a single bifundamental of h. The bifunda-
mental of su(n) ü su(n) descends to S2 of su(n). Furthermore, we obtain n ≠ m extra
fundamentals of su(n) and 2m≠ n extra fundamentals of su(m). Thus, the low energy
5d theory is an su(n) ü su(m) gauge theory with a bifundamental plus (2m ≠ n)F of
su(m) plus (n ≠ m)F ü S2 of su(n).

The low energy 5d gauge theory also contains tree-level Chern-Simons terms that
arise from the reduction of (2.1) on the circle. These can be written as

�–—
S A0,– · tr(F 2

— ) (4.3)

where A0,– is the gauge field corresponding to the u(1)– obtained by reducing B– on
the circle and F— is the gauge field strength for h—. In writing (4.3), we have used the
fact that the index of h— in g— is one which is true for our choice of h listed in Table 7.
(4.3) contributes the following tree-level term to the prepotential

6F tree
S,{q–} = 6

ÿ

–,—

1
2�–—

S „0,–
1
Kab

— „a,—„b,—

2
(4.4)

where „0,– is the scalar living in the vector multiplet corresponding to u(1)– and „a,—

are scalars living in the vector multiplets corresponding to u(1)a,— which parametrize
the Cartan of h—. Here Kab

— is the Killing form on h— normalized such that its diagonal
entries are minimum positive integers while keeping all the other entries integer valued.

Let h = ü–h– be the total gauge algebra visible at low energies. The low energy
hypermultiplets form some representation R of h which decomposes into irreducible
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representations of h as R = üfRf . Note that it is possible to have f ”= f Õ such that
Rf = Rf Õ . In other words, the index f distinguishes multiple copies of representation
Rf . Now we can add the one-loop contribution to the prepotential (4.4) to obtain

6FS,{q–} =
ÿ

–,—

3�–—
S „0,–

1
Kab

— „a,—„b,—

2
+ 1

2

Q

a
ÿ

r

|r · „|3 ≠
ÿ

f

ÿ

w(Rf )
|w(Rf ) · „ +mf |

3

R

b

(4.5)
where r are the roots of h = ü–h–, w(Rf ) parametrize weights of Rf and mf œ R
is a mass term for each full9 hypermultiplet f . The notation w · „ denotes the scalar
product of the Dynkin coe�cients of the weight w with Coulomb branch parameters.
Note that similar approaches for computing prepotentials of 5d theories have appeared
in the literature—see for example [40–42].

In (4.5) we must impose that mass terms for hypers belonging to S–—,– and S–—,—

equal the mass term for hypers belonging to R–—. This is because R–—, S–—,– and S–—,—

all descend from the same 6d representation Rij which has only a single u(1) symmetry
rotating it. The Wilson lines for this u(1) around the compactification circle gives rise
to the mass terms for R–—, S–—,– and S–—,—, and hence all these mass terms must be
equal.

We propose that (4.5) is the full exact prepotential for TKK
S,{q–} where we have ignored

the terms involving the mass parameter 1
R where R is the radius of compactification. We

are justified in doing so since these terms do not play any role in this paper. Moreover,
only the part of 6FS,{q–} that is cubic in Coulomb branch parameters „a,– is relevant to
the discussion in this paper; so, for convenience, we denote the part of the prepotential
cubic in Coulomb branch parameters by 6F„

S,{q–}.
Notice that fixing the relative values of „a,– and mf fixes the signs of the terms

inside absolute values in (4.5). As the relative values of „a,– and mf are changed, the
sign of some of the terms in (4.5) changes. This leads to jumps in the coe�cients of
various terms in the resulting 6F„

S,{q–}. This means that di�erent relative values of „a,–

and mf lead to di�erent phases inside the Coulomb branch of the 5d KK theory.
Let us illustrate through a simple example of the KK theory specified by the graph

2
su(3)(1)

(4.6)

This theory has six hypers in fundamental of su(3). The Dynkin coe�cients of the
positive roots of su(3) are (2,≠1), (1, 1) and (≠1, 2). The Dynkin coe�cients for the

9Half-hypermultiplets do not admit mass parameters unless completed into a full hypermultiplet.
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weights of fundamental are (1, 0), (≠1, 1) and (0,≠1). The Killing form is
A

2 ≠1
≠1 2

B

and �–—
S is a 1 ◊ 1 matrix which equals 2. Without loss of generality, we can take r · „

for positive roots to be positive. This implies that r · „ for negative roots is negative.
Let us first fix all the mass terms to be zero. Then the first weight (1, 0) contributes

with a positive sign since the positivity of r · „ for positive roots implies that „1
is positive. Similarly, the third weight (0,≠1) contributes with a negative sign to
the prepotential. However, the sign of second weight (≠1, 1) cannot be determined
uniquely, and hence the theory has two phases when all mass parameters vanish. These
two phases are distinguished by the sign s of the contribution due to the weight (≠1, 1).
The prepotential can be written as

6F„ = 6F =12„0
1
„2
1 + „2

2 ≠ „1„2
2
+

1
(2„1 ≠ „2)3 + („1 + „2)3 + (2„2 ≠ „1)3

2

≠ 3
1
s („2 ≠ „1)3 + „3

1 + „3
2
2

(4.7)

Here 12„0 („2
1 + „2

2 ≠ „1„2) is the contribution coming from the Green-Schwarz term in
6d, (2„1 ≠ „2)3 + („1 + „2)3 + (2„2 ≠ „1)3 is the contribution coming from the positive
and negative roots, and ≠3

1
s („2 ≠ „1)3 + „3

1 + „3
2
2
is the contribution coming from

the weights of six hypers in fundamental.
When we turn on mass parameters, the sign of the weights corresponding to dif-

ferent hypers can be changed. For example, consider turning on a mass parameter
for one of the fundamentals m1 while keeping the mass parameters for the other five
fundamentals zero. Now we obtain contributions from terms of the form |m1 + „1|,
|m1 ≠„1+„2| and |m1 ≠„2|. Depending on the value of m1, we go through various new
phases of the theory which are parametrized by choices of signs of these three terms.
For example, suppose that m1 is positive and very large, so that all the three terms are
positive. Moreover, assume that „2 ≠„1 is positive, so that s = +1. Then the resulting
phase is governed by the following prepotential

6F =12„0
1
„2
1 + „2

2 ≠ „1„2
2
+

1
(2„1 ≠ „2)3 + („1 + „2)3 + (2„2 ≠ „1)3

2

≠
5
2

1
(„2 ≠ „1)3 + „3

1 + „3
2
2

≠
1
2

1
(„2 ≠ „1 +m1)3 + („1 +m1)3 + (≠„2 +m1)3

2

(4.8)

which implies that the truncated prepotential is

6F„ =12„0
1
„2
1 + „2

2 ≠ „1„2
2
+

1
(2„1 ≠ „2)3 + („1 + „2)3 + (2„2 ≠ „1)3

2

≠ 3
1
(„2 ≠ „1)3 + „3

1
2

≠ 2„3
2 (4.9)
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We caution the reader that there can be phases of the KK theory which cannot
be traversed by changing the signs of various contributions to the prepotential. In
other words, they are not visible to the canonical low energy gauge theory that we
associated to the KK theory in the beginning of this subsection. We will refer to such
phases as non-gauge theoretic. This terminology does not mean that the low energy
theory governing such phases cannot be understood as Coulomb branch of a gauge
theory. Rather it simply means that low energy theory governing such phases cannot
be understood as part of Coulomb branch of the canonical gauge theory associated to
the corresponding KK theory.

4.2 Shifting the prepotential

Consider a 6d theory T with gauge algebras gi on its tensor branch. Consider further
compactifying T on a circle of finite size without a twist. On a generic point of the
resulting 5d Coulomb branch, the massive BPS spectrum includes W-bosons for the
corresponding untwisted a�ne gauge algebras g(1)i . In other words, the abelian gauge
algebra visible at low energies on the Coulomb branch is üau(1)a,i parametrizing the
Cartan of gi plus a u(1)0,i responsible for a�nization. The u(1)i arising from the
reduction of tensor multiplet Bi is central to üau(1)a,i ü u(1)0,i. The untwisted Lie
algebras are listed in Table 14 along with their Coxeter and dual Coxeter labels.

We now generalize the above statements to the twisted case. Consider compactify-
ing T on a circle of finite size with a twist S, {q–}. On a generic point of the resulting 5d
Coulomb branch, the massive BPS spectrum includes W-bosons for the corresponding
twisted/untwisted a�ne gauge algebras g(q–)

– . In other words, the abelian gauge algebra
visible at low energies on the Coulomb branch is üau(1)a,– parametrizing the Cartan
of h– plus a u(1)0,– responsible for a�nization. The u(1)– arising from the reduction of
tensor multiplet Bi (with i in orbit of –) is central to üau(1)a,– ü u(1)0,–. The twisted
Lie algebras are listed in Table 15 along with their Coxeter and dual Coxeter labels.

The charge under u(1)b,– (corresponding to a simple co-root e‚
b ) of a W-boson Wa

(corresponding to simple root ea of g(q–)
– ) is given by the element Aab of the Cartan ma-

trix. Now consider the u(1) embedding into ü
r–
b=0u(1)b,– by the map ei◊ æ ü

r–
b=0

1
eid

‚
b ◊

2

b

where
1
eid

‚
b ◊

2

b
is the element eid‚

b ◊ of u(1)b,– and d‚
b are dual Coxeter labels of g(q–)

– listed
in Tables 14 and 15. Since all the W-bosons Wa are uncharged under this u(1), it fol-
lows that this u(1) can be identified with the central u(1)–. The charge of a particle
n– under u(1)– can be written as qr–

b=0 d
‚
b nb,– where nb,– is the charge of the particle

under u(1)b,–.
The truncated prepotential 6F„

S,{q–} is written in terms of Coulomb branch param-
eters „b,– (with 1 Æ b Æ r–) corresponding to u(1)b,– and „0,– corresponding to u(1)–.
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su(n)(1): e(1)6 :

· · ·
1

1

1 1 1 1 1
1 1 1 1 1 1

1

2

1 2 3 2 1

1

1 2 3 2 1

2

1

so(2n+ 1)(1): e(1)7 :

· · ·
1 2 2 2 2 1

1

1 2 2 2 2 2

1 2

1 2 3 4 3 2 1
1 2 3 4 3 2 1

2

sp(n)(1): e(1)8 :

· · ·
1 1 1 1 1 1
1 2 2 2 2 1

3

2 12 4 6 5 4 3

3

2 12 4 6 5 4 3

so(2n)(1): f(1)4 :

· · ·

1

2 2 2 2

1

11

1

2 2 2 2

1

11
1 2 3 2 1
1 2 3 4 2

11 2
13 2

g(1)2 :

Table 14. Untwisted a�ne Lie algebras. The a�ne node is shown as a hollow circle. The
numbers in black d

‚
a denote the column null vector for the Cartan matrix, popularly known

as dual Coxeter labels. The numbers in red da denote the row null vector for the Cartan
matrix, popularly known as Coxeter labels.

To facilitate comparison with geometry, we wish to write the prepotential in terms of
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su(2n+ 1)(2): e(2)6 :

· · ·
1 2 2 2 2 2
2 2 2 2 2 1

1 2 3 4 2
1 2 3 2 1

so(2n)(2): so(8)(3):

· · ·
1 2 2 2 2 1
1 1 1 1 1 1

3 2 1
1 2 1

su(2n)(2): su(4)(2):

· · ·
1 2 2 2 2 2

1

1 2 2 2 2 1

1
1 2 1
1 1 1

1 2
2 1

su(3)(2):

Table 15. Twisted a�ne Lie algebras. The a�ne node is shown as a hollow circle. The
numbers in black d

‚
a denote the column null vector for the Cartan matrix, popularly known

as dual Coxeter labels. The numbers in red da denote the row null vector for the Cartan
matrix, popularly known as Coxeter labels. The total number of nodes for su(2n + 1)(2) is
n+ 1, for so(2n)(2) is n, and for su(2n)(2) is n+ 1.

Coulomb branch parameters corresponding to u(1)b,– for 0 Æ b Æ r–. This is achieved
by performing the following replacement in 6F„

S,{q–}

„b,– æ „b,– ≠ d‚
b „0,– (4.10)

for all 1 Æ b Æ r– and for all –.10 We will call the prepotential obtained after this shift
as F̃S,{q–}. The Coulomb branch parameter „0,– in F̃S,{q–} corresponds to u(1)0,– rather
than u(1)–.

For illustrative purposes, we note that the shift for our example (4.6) is

„1 æ „1 ≠ „0

„2 æ „2 ≠ „0

10Note that the shift (4.10) has been studied before the in the literature in relation to resolutions
of elliptically fibered Calabi-Yau threefolds; in these examples, the e�ect of the shift is to expand the
Kähler form J in basis of primitive divisors—see for example [43].

– 37 –



which means that the shifted prepotential corresponding (4.7) is

6F̃ = 8„3
0 + 8„3

1 + 2„3
2 ≠ 6„1„

2
0 + 6„1„

2
2 ≠ 6„2„

2
0 ≠ 12„2„

2
1 (4.11)

where we have chosen the phase s = +1.
The shifted prepotential for (4.9) is

6F̃ = 7„3
0 + 8„3

1 + 3„3
2 ≠ 6„1„

2
0 + 6„1„

2
2 ≠ 3„2„

2
0 ≠ 3„0„

2
2 ≠ 12„2„

2
1 (4.12)

A Mathematica notebook accompanying the submission of this draft can be used
to compute the contribution to 6F̃ (in any gauge-theoretic phase) from a single node or
two nodes connected by an edge. Using these two results, one can write the contribution
to 6F̃ from two nodes connected by an edge as contributions from the two nodes alone
and a contribution from the edge. Thus, we can figure out what is the contribution
to 6F̃ by each possible edge. Combining the contributions from the nodes and the
edges, one can obtain 6F̃S,{q–} for any arbitrary graph �S,{q–}

T . More details and the
instructions for using the notebook can be found in Appendix E.

5 Geometries associated to 5d KK theories

In this section, we will show that we can associate (at least one) genus-one fibered
Calabi-Yau threefold XS,{q–} to every 5d KK theory11 TKK

S,{q–}. Compactifying M-theory
on XS,{q–} produces the Coulomb branch of TKK

S,{q–}. Some of the results appearing
below also appeared in [3–5, 44–51]

5.1 General features

In this subsection, we start with a description of general features of the geometric
structure of XS,{q–} and the relationship between this geometry and the low energy
e�ective theory governing the Coulomb branch of the KK theory TKK

S,{q–}.
We will show that XS,{q–} can be realized as a local neighborhood of a collection of

irreducible compact holomorphic surfaces intersecting with each other pairwise trans-
versely. As we will see, the surfaces fall into families indexed by –. We denote the
irreducible surfaces in each family – as Sa,– where 0 Æ a Æ r– (where r– is the rank of
h–). The Kahler parameters associated to Sa,– are identified as the Coulomb branch
parameters „a,– of the corresponding 5d KK theory discussed in the previous section.
Whenever h– is trivial, the rank of h– is zero and hence there is only a single surface
S0,– associated to the node – in that case.

11We remind the reader that this statement is not completely true for KK theories involving the
last node in Table 8. For such KK theories, we only propose an algebraic description whose structure
closely mimics the structure of genus-one fibered Calabi-Yau threefolds to be discussed in the next
subsection 5.1.
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5.1.1 Triple intersection numbers and the prepotential

A key role in the relationship between XS,{q–} and TKK
S,{q–} is played by the shifted

prepotential 6F̃S,{q–}. The coe�cients ca–,b—,c“ of „a,–„b,—„c,“ in 6F̃S,{q–} capture the
triple intersection numbers of surfaces in XS,{q–} as follows:

ca–,a–,a– = Sa,– · Sa,– · Sa,– (5.1)
ca–,a–,b— = 3Sa,– · Sa,– · Sb,— (5.2)
ca–,b—,c“ = 6Sa,– · Sb,— · Sc,“ (5.3)

where (a,–), (b, —), (c, “) denote distinct non-equal indices.
A triple intersection product of three surfaces can be computed via intersection

numbers inside any one of the three surfaces. To explain it, let us first first define the
notion of “gluing curves”. Consider the intersection locus La–,b— between two distinct
surfaces Sa,– and Sb,— in XS,{q–}. La–,b— splits into geometrically irreducible compo-
nents as q

i L
i
a–,b—. Each L

i
a–,b— appears as an irreducible curve Ci

a,–;b,— in Sa,– and an
irreducible curve Ci

b,—;a,– in Sb,—. In other words, we can manufacture the intersection
of Sa,– and Sb,— by identifying the curves

Ci
a,–;b,— ≥ Ci

b,—;a,– (5.4)

with each other for all i. Identifying pairs of curves in the above fashion can be
thought of as “gluing together” two surfaces along those curves12. The reducible curve
Ca,–;b,— := q

iC
i
a,–;b,— is called the “total gluing curve” in Sa,– for the intersection of

Sa,– and Sb,—. Similarly, Cb,—;a,– := q
iC

i
b,—;a,– is called the total gluing curve in Sb,— for

the intersection of Sa,– and Sb,—.
As two distinct surfaces Sa,– and Sb,— can intersect each other, so can a single

surface Sa,– intersect itself. Much as above for the intersection of two distinct surfaces,
the self-intersection of Sa,– can be captured in terms of gluings

Ci
a,– ≥ Di

a,– (5.5)

where Ci
a,– and Di

a,– are irreducible curves in Sa,–.
Then the triple intersection numbers can be expressed as:

Sa,– · Sa,– · Sa,– = K Õ
a,– ·K Õ

a,– (5.6)
Sa,– · Sa,– · Sb,— = K Õ

a,– · Ca,–;b,— = C2
b,—;a,– (5.7)

Sa,– · Sb,— · Sc,“ = Ca,–;b,— · Ca,–;c,“ = Cb,—;c,“ · Cb,—;a,– = Cc,“;a,– · Cc,“;b,— (5.8)
12On multiple occasions throughout this paper, we abuse the language and denote the identification

of two curves as “gluing” of the two curves.
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where
K Õ

a,– := Ka,– +
ÿ

i

1
Ci

a,– +Di
a,–

2
(5.9)

and Ka,– denotes the canonical class of Sa,–.
As an illustrative example consider the KK theory (4.6) for which the shifted

prepotential in a particular phase is displayed in (4.11). We propose that the associated
geometry is as follows. Since there is a single node, we drop the index – and only
display the index a. The surfaces are S0 = F0, S1 = F2, S2 = F6

4. The gluing curves
between S0 and S1 are C0;1 = e, C1;0 = e. The gluing curves between S1 and S2 are
C1;2 = h,C2;1 = e. The gluing curves between S2 and S0 are C2;0 = h ≠

q
xi, C0;2 = e.

Now we can check that the intersections of these curves indeed give rise to the
various coe�cients in (4.11):

• First of all, recall from (A.18) that K2 = 8 ≠ b for Fb
n. Indeed, the coe�cients of

„3
a in (4.11) equal K2

a .

• One third the coe�cient of „0„2
1 is zero which matches C2

0;1 = (e2)S0 where
(e2)S0 denotes that the intersection number e2 is computed inside S0 and that
in particular the curve e is inside S0. The coe�cient also matches K1 · C1;0 =
(K · e)S1 = 0. One third of the coe�cient of „2„2

0 is ≠2 which indeed matches
C2

2;0 = ((h ≠
q

xi)2)S2
= (h2

≠
q

x2
i )S2

= 4 ≠ 6 = ≠2 and K0 · C0;2 = (K · e)S0 =
≠2. Similarly, we can check the matching of such intersection numbers with one
third the coe�cients of other terms of the form „a„2

b .

• One sixth the coe�cient of „0„1„2 is zero which matches C0;1 ·C0;2 = (e2)S0 = 0,
C1;2 · C1;0 = (h · e)S1 = 0, and C2,0 · C2;1 = ((h ≠

q
xi) · e)S2

= 0.

On the other hand, the geometry associated to (4.12) has S0 = F1
0, S1 = F2 and

S2 = F5
4. The gluing curves between S0 and S1 are C0;1 = e, C1;0 = e. The gluing

curves between S1 and S2 are C1;2 = h,C2;1 = e. The gluing curves between S2 and S0
are C2;0 = h ≠

q
xi, C0;2 = e ≠ x. Here x denotes the exceptional curve of the blowup

of S0 and xi denote the exceptional curves of the blowups of S2. One can check that
the intersections of these curves indeed give rise to the various coe�cients in (4.12).

5.1.2 Consistency of gluings: volume matching, the Calabi-Yau condition,
and irreducibility

Not every pair of curves can be identified with one another to form a consistent gluing.
First of all, the topology of the two curves must be identical. This implies that a
geometrically irreducible curve in one surface can only be identified with a geometrically
irreducible curve in another surface, and furthermore that the genera (as defined in
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Appendix A.3) of the two curves must be identical and non-negative. If C µ S is an
irreducible curve, then a necessary condition that must be satisfied by C is that for
any other irreducible curve C Õ

µ S such that C ”= C, the intersection product must be
non-negative:

C · C Õ
Ø 0. (5.10)

In this paper, some of the algebraic examples are non-geometric (i.e. do not admit
a conventional geometric description satisfying these consistency conditions) because
they involve gluings which identify a geometrically reducible curve in one surface with
a geometrically irreducible curve in another surface. Despite this apparent pathology,
these examples nevertheless satisfy the remaining conditions described below.

In addition to the above topological constraints, the volumes of a pair of gluing
curves must be the same. The volume of a curve C is computed by intersecting the
curve with the Kahler class J via

vol(C) = ≠J · C (5.11)

where
J =

ÿ

a,–

„a,–Sa,– +
ÿ

f

mfNf (5.12)

wheremf are mass parameters and Nf are non-compact surfaces corresponding to those
mass parameters. The contribution of mass parameters to the volume will not play a
prominent role in this paper, so we define a truncated Kahler class J„ which only keep
track of the contribution of Coulomb branch parameters to the volume

J„ =
ÿ

a,–

„a,–Sa,– (5.13)

The volume of C equals the mass of the BPS state obtained by wrapping an M2 brane
on C because the intersection number

≠ Sa,– · C (5.14)

captures the charge under u(1)a,– of the BPS state arising from M2 brane wrapping C.
If C lies in Sa,–, then the intersection (5.14) is computed via

Sa,– · C = K Õ
a,– · C (5.15)

If C lies in some other surface Sb,—, then (5.14) is computed via

Sa,– · C = Cb,—;a,– · C (5.16)
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Now, for (5.4) to be consistent we must have

J„
· Ci

a,–;b,— = J„
· Ci

b,—;a,– (5.17)

which is an important consistency condition for constructing XS,{q–}. We have checked
that (5.17) is satisfied for all the geometries presented in this paper.

Finally, the gluing curves also have to satisfy the Calabi-Yau condition which states
that 1

Ci
a,–;b,—

22
+

1
Ci

b,—;a,–
22

= 2g ≠ 2 (5.18)

where g is the genus of Ci
a,–;b,—. See [2, 4] for more details.

Notice that in special situations the Calabi-Yau condition (5.18) is automatically
satisfied as long as we satisfy (5.17). This is the situation when there is a single gluing
curve Ca,–;b,— ≥ Cb,—;a,– between two surfaces Sa,– and Sb,— such that neither of them is
a self-glued surface. Then, (5.17) implies

K · Ca,–;b,— = C2
b,—;a,– (5.19)

Adding C2
a,–;b,— to both sides of the above equation we get

C2
a,–;b,— + C2

b,—;a,– = 2g ≠ 2 (5.20)

As an example, in what preceded above we discussed the geometry associated to
(4.11). We can check that (5.17) is satisfied for all the gluing curves in the geometry.
For instance,

J„
· C0;1 = „0 (K0 · C0;1) + „1C

2
0;1 + „2 (C0;2 · C0;1) (5.21)

= „0 (K · e)S0
+ „1

1
e2

2

S0
+ „2

1
e2

2

S0
(5.22)

= ≠2„0 (5.23)

and comparing it with

J„
· C1;0 = „0C

2
1;0 + „1 (K1 · C1;0) + „2 (C1;2 · C1;0) (5.24)

= „0
1
e2

2

S1
+ „1 (K · e)S1

+ „2 (e · h)S1
(5.25)

= ≠2„0 (5.26)

we find that indeed the gluing C0;1 ≥ C1;0 is consistent. Similarly, it can be checked that
all the other gluings are consistent as well. In a similar fashion, one can also check that
all of the gluings in the geometry associated to (4.12) discussed above satisfy (5.17).
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5.1.3 Weights, phase transitions and flops

A hypermultiplet transforming in a representationRf of the 5d gauge algebra h = ü–h–

appears as a collection of curves inside XS,{q–}. These curves are characterized as
follows. Let mf be the mass parameter corresponding to Rf . For each weight w(Rf )
of Rf , define a quantity vol (w(Rf )), which we call the virtual volume, by shifting the
quantity

w(Rf ) · „ +mf (5.27)

by the shift (4.10) for all –. Then, one can find a holomorphic curve Cw(Rf ) in XS,{q–}

such that
vol

1
Cw(Rf )

2
= |vol (w(Rf )) | (5.28)

In general, the curve Cw(Rf ) can be a positive linear combination of curves living
inside various irreducible surfaces. However, some of the curves Cw(Rf ) turn out to be
living purely inside a single irreducible surface Sa,–. If such a curve Cw has genus zero
and self-intersection ≠1 inside Sa,–, then one can perform a flop transition13 on XS,{q–}

by flopping C, which corresponds to a phase transition in the Coulomb branch of the
5d gauge theory described in previous section. We refer to such a flop transition as a
“gauge-theoretic flop transition” to distinguish it from the flop transitions associated
to more general ≠1 curves not associated to any hypermultiplet.

Let the geometry obtained after the flop transition associated to Cw be X Õ
S,{q–}. As

for XS,{q–}, there exist curves C Õ
w(Rf ) in X Õ

S,{q–} associated to weights w(Rf ) such that

vol
1
C Õ

w(Rf )
2
= |volÕ (w(Rf )) | (5.29)

where volÕ (w(Rf )) is the shift of the quantity (5.27) computed in the new phase. The
relationship between the two virtual volumes volÕ (w(Rf )) and vol (w(Rf )) is

volÕ (w(Rf )) = vol (w(Rf )) (5.30)

for all w(Rf ) ”= w, and
volÕ (w) = ≠vol (w) (5.31)

with a minus sign.
We know from the analysis presented in the last section that the canonical 5d gauge

theory associated to (4.6) is an su(3) gauge theory with six fundamental hypers. The
13This transition corresponds to blowing down C inside Sa,– and performing a blow-up in the neigh-

boring surfaces intersecting C transversally. We will explain such transitions via various illustrations
throughout this paper. More detailed background can be found in Section 2 of [4].
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Dynkin coe�cients of the weights of fundamental are (1, 0), (≠1, 1) and (0,≠1). We
call these weights w1, w2 and w3 respectively. We can compute

vol(w1) = ≠„0 + „1 (5.32)
vol(w2) = ≠„1 + „2 (5.33)
vol(w3) = „0 ≠ „2 (5.34)

Recall that the phase (4.11) corresponds to vol(w1) and vol(w2) being positive and
vol(w3) being negative for all the six fundamentals. Now compute the volume of one
of the blowups xi living in the surface S2 in the geoemtry corresponding to (4.11):

vol(xi) = ≠„0 + „2 (5.35)

Thus we see that Cw3 for each fundamental is xi. The reader can check that Cw2 = f2+xi

and Cw1 = f1 + f2 + xi where fa denotes the fiber of the Hirzebruch surface Sa.
In fact, the geometries corresponding to (4.11) and (4.12) are related by a flop

transition. We first blow down one of the blowups, say x6, inside S2. Under this
blowdown the identity of S2 changes from F6

4 to F5
4. Since x6 intersects the gluing curve

h≠
q6

i=1 xi at one point, the gluing curve after the blowdown becomes h≠
q6

i=1 xi+x6 =
h ≠

q5
i=1 xi. The other gluing curve inside S2 is una�ected since x6 does not intersect

with it. Correspondingly, since the gluing curve for S1 in S2 does not intersect x6, the
surface S1 is una�ected by the flop transition. However, since the gluing curve for S0
in S2 intersects x6, we have to blowup S0 at a point lying on the gluing curve for S2
inside S0. Under the blowup the identity of S0 changes from F0 to F1

0. The gluing curve
for S2 inside S1 is changed to e ≠ x.

Recall that the phase (4.12) corresponds to turning on a large mass m for one of
the fundamentals such that

vol(w3) = „0 ≠ „2 +m (5.36)

for this fundamental is positive. Correspondingly, we can compute that

vol(x) = „0 ≠ „2 (5.37)

which indeed matches (5.36) up to the contribution from mass parameter, thus verifying
(5.31). We are not keeping track of non-compact surfaces in this paper, so we are only
able to verify (5.31) up to the contribution from m.

5.1.4 A�ne Cartan matrices and intersections of fibers

For each surface Sa,– in XS,{q–}, we define a canonical fiber fa,– inside it:
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• If g– is non-trivial, then Sa,– will always be a Hirzebruch surface14 whose fiber
class is the canonical fiber fa,–. An M2 brane wrapping this curve gives rise to
the W-boson Wa,– discussed in last section.

• If the node – is

2
su(1)(1)

(5.38)

then it turns out that there is a single corresponding surface S0,– = F 2
0 which is

self-glued since e ≠ x and e ≠ y are identified with each other where x and y are
the exceptional curves corresponding to the two blowups. Due to the self-gluing,
the fiber class of S0,– intersects itself inside the threefold XS,{q–} and appears as
an elliptic curve with a nodal singularity. It is this fiber class that we refer to as
the canonical fiber f0,– in this case.

• If the node – is

1
sp(0)(1)◊

(5.39)

then it turns out that there is a single corresponding surface S0,– = dP9. The del
Pezzo surface15 dP9 admits a unique elliptic fiber class 3l ≠

q
xi which we refer

to as the canonical fiber f0,– in this case.

• If the node – is

2
su(1)(1)

(5.40)

then it turns out that there is no completely geometric description. We provide
an algebraic description in terms of algebraic properties of the curves inside the
surface S0,– = F 2

1 which is self-glued since x and y are identified with each other.
The canonical fiber in this case is f0,– = 2h + f ≠ 2x ≠ 2y which is a genus one
curve of self-intersection zero.

For each – we find that
fa,– · Sb,– = ≠Aab (5.41)

14In this paper, by a “Hirzebruch surface”, we refer to a Hirzebruch surface possibly with blowups at
generic or non-generic locations. Some background on Hirzebruch surfaces can be found in Appendix
A.

15In this paper, by a “del Pezzo surface dPn”, we refer to a surface which is an n point blowup of
P2 but the blowups can be at non-generic locations. Some background on del Pezzo surfaces can be
found in Appendix A.
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where Aab is the Cartan matrix of g(q–)
– and Aab © A00 = 0 whenever g– is trivial. This

means that the fibers of Hirzebruch surfaces Sa,– for a fixed – intersect in the fashion
of Dynkin diagram associated to a�ne Lie algebra g(q–)

– .
Intersection (5.41) is of the form C · Sa,– where C is some curve in the threefold

XS,{q–} and Sa,– is a surface inside the threefold. Like the triple intersection numbers
of surfaces inside a threefold, such intersections can also be computed in terms of
intersection numbers inside a surface. If C is a curve inside Sa,–, then

C · Sa,– = C ·K Õ
a,– (5.42)

and if C is a curve inside a surface Sb,— that is distinct from Sa,–, then

C · Sa,– = C · Cb,—;a,– (5.43)

Consider the example of (4.11) whose associated geometry was described towards
the end of Section 5.1.1. We can compute that

f0 · S0 = (K · f)S0 = ≠2 (5.44)
f1 · S1 = (K · f)S1 = ≠2 (5.45)
f2 · S2 = (K · f)S2 = ≠2 (5.46)
f0 · S1 = C0;1 · f0 = (e · f)S0 = 1 (5.47)
f1 · S2 = C1;2 · f1 = (h · f)S0 = 1 (5.48)
f2 · S0 = C2;0 · f2 =

1
(h ≠

ÿ
xi) · f

2

S0
= 1 (5.49)

f1 · S0 = C1;0 · f1 = (e · f)S1 = 1 (5.50)
f2 · S1 = C2;1 · f2 = (e · f)S2 = 1 (5.51)
f0 · S2 = C0;2 · f0 = (e · f)S0 = 1 (5.52)

Thus we see that fa · Sb indeed reproduces the negative of Cartan matrix of a�ne Lie
algebra su(3)(1). We can similarly check that the geometry associated to (4.12) also
leads to the Cartan matrix of su(3)(1).

5.1.5 The genus one fibration

For each –, combining the fibers fa,–, let us define a fiber f– via

f– = dafa,– (5.53)

where da are Coxeter labels for g(q–)
– listed (in red color) in Tables 14 and 15. If g– is

trivial, then d0 := 1.
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We claim that f– is a genus one fiber. This means that f– can be obtained by a
degeneration of a torus. It is well-known that torus fibers can degenerate into Kodaira
fibers, which are collections of rational curves16 intersecting in the pattern of untwisted
a�ne Dynkin diagrams of type su(n)(1), so(2n)(1) and e(1)n . The multiplicity of each
rational component curve is given by the Coxeter label for the corresponding node in
the a�ne Dynkin diagram. The fiber f–, on the other hand, is composed of rational
curves fa,– with their multiplicity given by the Coxeter labels for a�ne Dynkin diagram
g(q–)

– . Now, one can notice that every a�ne Dynkin diagram can be obtained by folding
a�ne Dynkin diagrams of type su(n)(1), so(2n)(1) and e(1)n as follows:

so(2n)(1) æ so(2n ≠ 1)(1) æ so(2n ≠ 2)(2) (5.54)

e(1)6 æ f(1)4 æ so(8)(3) (5.55)

so(8)(1) æ so(7)(1) æ g(1)2 (5.56)
so(4n)(1) æ su(2n)(2) æ su(2n ≠ 1)(2) (5.57)
so(8)(1) æ so(7)(1) æ su(4)(2) æ su(3)(2) (5.58)

e(1)7 æ e(2)6 (5.59)

Moreover, observe that the Coxeter numbers of two nodes are added if they are iden-
tified under gluing. This means that f– can be obtained by identifying the rational
components of the Kodaira fibers according to the above folding rules. This explicitly
shows that f– is a genus one fiber.

Moreover, we find that due to the virtue of gluing rules, f– is glued to f— as

q–(≠�—–)f– ≥ q—(≠�–—)f— (5.60)

This generalizes the condition in the untwisted unfrozen case [4] where fi ≥ fj whenever
there is an edge between i and j in �T. This shows that certain multiples of genus one
fibers are identified with each other as one passes over from one collection of surfaces
to another, allowing us to extend the fibration structure consistently throughout the
threefold.

More formally, according to a theorem due to Oguiso and Wilson [52, 53], a three-
fold X admits an genus one fibration structure if and only if there exists an e�ective
divisor ST 2 satisfying

ST 2 · ST 2 · ST 2 = 0, ST 2 · ST 2 ”= 0 (5.61)
16This means they have genus zero.
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where ST 2 lives in the extended Kähler cone, possibly on the boundary. The extended
Kähler cone is parameterized by all the Coulomb branch and mass parameters satisfying

J · C Ø 0 (5.62)

for all holomorphic curves C in X. Physically, the extended Kähler cone corresponds
to the Coulomb branch of the (possibly mass deformed) 5d theory corresponding to X.

In all of geometries associated to 5d KK theories, we can find an ST 2 which lies in
the extended Kähler cone satisfies (5.61). Pick any node – and define

ST 2 :=
r–ÿ

a=0
d‚
aSa,– (5.63)

where d‚
a are dual Coxeter labels for the associated a�ne algebra g(q–)

– (see Tables 14
and 15) and r– is the rank of invariant subalgebra h–. If the node – carries a trivial
gauge algebra, then we define d‚

0 = 1 and take (5.63) to be the definition of ST 2 .
In the gauge theoretic case, the direction parametrized by (5.63) is special since all

the fibers fa,– have zero volume along this direction17

≠ ST 2 · fa,– =
ÿ

b

Aabd
‚
b = 0 (5.64)

Similarly, in the non-gauge theoretic case

≠ ST 2 · f0,– = ≠K Õ
0,– · f0,– = 0 (5.65)

where the last equality can be checked to be true for every non-gauge theoretic case.
Moreover, the reader can check using the explicit description of geometries presented
in this paper that

ST 2 · C Ø 0 (5.66)
for all other holomorphic C in the threefold XS,{q–}. So, ST 2 as defiend in (5.63) lies in
the extended Kähler cone of XS,{q–}.

Now it can be easily checked for all the geometries presented in this paper that

ST 2 · ST 2 = ≠q–�––
r–ÿ

a=0
(dafa,–) ”= 0 (5.67)

where da are the Coxeter labels for g(q–)
– with d0 := 1 if – is a non-gauge theoretic node.

We can now compute

ST 2 · ST 2 · ST 2 Ã

r–ÿ

a=0
(dafa,–) · (

r–ÿ

b=0
d‚
b Sb,–) = ≠

r–ÿ

a,b=0
daAabd

‚
b = 0 (5.68)

17In fact, non-negativity of the volumes of fibers implies that the only directions in the Coulomb
branch when mass parameters are turned o� are given by

q
a d

‚
aSa,– for various –.
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thus verifying both the conditions in (5.61) and establishing the presence of a genus
one fibration in XS,{q–}.

Let us now discuss the relationship between fibers f– and the radius of compacti-
fication circle R. In general, we can find at least one node µ such that

nµfµ ≥ nµ,–f– (5.69)

with nµ,– Ø nµ Ø 1 for all – . Then the curve

f := lµnµfµ (5.70)

with lµ defined in Section 3.3 can be identified with the KK mode of unit momentum
in TKK

S,{q–} and has mass 1
R where R is the radius of the circle on which the 6d theory T

has been compactified. Thus, all the f– can be identified as fractional KK modes with
mass 1

n–R
where n– = lµnµ,–. This generalizes the condition in the untwisted unfrozen

case where the KK mode is identified with

f := fi (5.71)

for any i, which is consistent since fi ≥ fj for all i, j.
Let us now discuss some examples. For the KK theory

1
sp(n)(1)

4
so(2m)(2)

(5.72)

we find that
fsp(n)(1) ≥ 2fso(2m)(2) (5.73)

and the KK mode is
f = fsp(n)(1) (5.74)

For the KK theory (3.30), we find that

fsp(n)(1) ≥ 2fso(2m)(1) (5.75)

and the KK mode is
f = fsp(n)(1) (5.76)

For the KK theory (3.28), our gluing rules say that

2fsu(n)(2) ≥ 2fsu(m)(1) (5.77)

and the KK mode is
f = 2fsu(n)(2) (5.78)
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For the KK theory (3.14), our gluing rules say that

fsu(n)(1) ≥ fsu(m)(1) (5.79)

and the KK mode is
f = 2fsu(n)(1) (5.80)

An interesting example to consider is the KK theory defined by the untwisted
compactification of the 6d SCFT

2
su(p)

4
so(m)

1
sp(n)

2 (5.81)

which arises only in the frozen phase. We find that

2fsu(p)(1) ≥ 2fso(m)(1) (5.82)
fso(m)(1) ≥ fsp(n)(1) (5.83)

and the KK mode is
f = 2fsu(p)(1) ≥ 2fso(m)(1) ≥ 2fsp(n)(1) (5.84)

If (5.81) arose in the unfrozen phase of F-theory, then we would have obtained

f = fsu(p)(1) ≥ fso(m)(1) ≥ fsp(n)(1) (5.85)

Thus equation (5.84) is a way to see that (5.81) cannot arise in the unfrozen phase of
F-theory.

5.2 Geometry for each node

In this section we will describe the surfaces Sa,– along with their intersections associated
to a single node –.

5.2.1 Graphical notation

We will capture the data of the surfaces and their intersections by using a graphical
notation that would be a simpler version of the graphical notation used in [3, 4]. This
subsection is devoted to the explanation of this notation. We find it best to explain
the notation with the following example:

02+2
8 12+2

6 20
e-

q
yi h+

q
(f -yi) e-

q
xi-

q
yi 3e+ 2f

f -xi,f -xi,

3
xi yi xi yi

2 2 (5.86)
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which is a particular phase of the KK theory

2
so(8)(3)

(5.87)

Since the rank of invariant subalgebra h = g2 is two, we should have three surfaces in
this case labeled by Sa where 0 Æ a Æ 2. The middle number in the label for each
node denotes the index a. Thus the node labeled 02+2

8 denotes the surface S0, the node
labeled 12+2

6 denotes the surface S1, and the node labeled 20 denotes the surface S2.
Every surface Sa is a Hirzebruch surface. The subscript in the label for each node

denotes the degree of the corresponding Hirzebruch surface. Thus, S0 has degree 8, S1
has degree 6, and S2 has degree 0. The superscript in the label for each node denotes
the number of blowups on the corresponding Hirzebruch surface. Thus, S0 carries
2+2 = 4 blowups and hence S0 = F4

8, S1 carries 2+2 = 4 blowups and hence S1 = F4
6,

and S2 carries no blowups and hence S2 = F0.
The fact that the four blowups on S0 are displayed as 2 + 2 denotes that the four

blowups are divided into two sets, with each set containing two blowups. We denote
the blowups in the first set as xi and the blowups in the second set as yi. The same
is true for S1. In a general graph, the blowups on a surface can be divided into more
than two sets, and the number of blowups inside each set can be di�erent. Whatever
may be the case, we adopt the notation of denoting the blowups inside the first set as
xi, the blowups inside the second set as yi, the blowups inside the third set as zi etc.

The label in the middle of an edge between two nodes denotes the number of
irreducible components of the intersection locus between the two surfaces corresponding
to the two nodes. As already discussed above, each component of the intersection locus
can be viewed as an irreducible gluing curve inside each of the surfaces participating in
the intersection. Thus, there is a single gluing curve between S1 and S2 in the graph
(5.86), but there are three gluing curves between S0 and S1. The graph also tells us
that the surface S0 is a self-glued Hirzebruch surface since there are edges which start
and end at S0. Similarly, S1 is also a self-glued surface. We can see that the number
of self-gluings in S0 are two, and the number of self-gluings in S1 are also two.

The curves displayed at the ends of edges tell us the identities of various gluing
curves. The left end of the edge between 12+2

6 and 20 reads e ≠
q

xi ≠
q

yi, which
means that the corresponding gluing curve inside S1 is e ≠

q
xi ≠

q
yi. The right end

of the edge between 12+2
6 and 20 reads 3e + 2f , which means that the corresponding

gluing curve inside S2 is 3e + 2f . We note that whenever we write q
xi or

q
yi, we

mean a sum of all the blowups in the set of blowups denoted by xi or yi respectively.
In the above graph, the two self-gluings of S0 are displayed by writing xi at one

end and yi at the other end. This tells us that xi in S0 is glued to yi in S0. Since there
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is no sum over i, this gluing is supposed to be true for each valued of i. Hence, the two
self-gluings are x1 ≥ y1 and x2 ≥ y2. The same is true for self-gluings of S1.

The gluing curves for the three gluings between S0 and S1 are displayed as f ≠

xi, e ≠
q

yi inside S0 and as f ≠ xi, h + q(f ≠ yi) inside S1. These are supposed to
be read in the order they are written. Thus, unpacking the notation we learn that the
three gluings are

(f ≠ x1)S0 ≥ (f ≠ x1)S1 (5.88)
(f ≠ x2)S0 ≥ (f ≠ x2)S1 (5.89)

(e ≠ y1 ≠ y2)S0 ≥ (h+ 2f ≠ y1 ≠ y2)S1 (5.90)

We also sometimes suppress multiplicity of a gluing curve. For example, in the
geometry

32+2
6

23 16+6
5

f
e-

q
xi-

q
yi

2h

eh

f -xi-yi

01 h e

6

2
xi yi

(5.91)
the gluing curve for S2 in S3 is displayed simply as f . But the edge between S2 and S3
shows that there are six gluing curves involved. This means that the true gluing curve
for S2 in S3 is actually six copies of the fiber f of S3.

Now, let us extract the prepotential 6F̃ from the graph (5.86). The coe�cient of
„3
0 is

(K Õ2)S0 =
1
(K +

ÿ
xi +

ÿ
yi)2

2

S0
= (K2+

ÿ
x2
i +

ÿ
y2i +2

ÿ
K ·xi+2

ÿ
K · yi)S0

(5.92)
We have K2 = 8 ≠ 4 = 4 and K · xi = K · yi = ≠1, using which (5.92) reduces to

(K Õ2)S0 = 4 ≠ 2 ≠ 2 ≠ 4 ≠ 4 = ≠8 (5.93)

Similarly the coe�cient of „3
1 is ≠8. The coe�cient of „3

2 is 8. The coe�cient of „2„2
1

can be computed as 1
(3e+ 2f)2

2

S2
= 12 (5.94)

which coincides with
1
K Õ

· (e ≠
ÿ

xi ≠
ÿ

yi)
2

S1
=

1
(K +

ÿ
xi +

ÿ
yi) · (e ≠

ÿ
xi ≠

ÿ
yi)

2

S1
= 12
(5.95)
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as it should for consistency. We can compute the coe�cient of „0„2
1 to be

31
(e ≠

ÿ
yi) + (f ≠ x1) + (f ≠ x2)

224

S0
= ≠8 (5.96)

which indeed coincides with

(K Õ
· ((h+ 2f ≠ y1 ≠ y2) + (f ≠ x1) + (f ≠ x2)))S1

= ≠8 (5.97)

Similarly, we can compute coe�cients for other terms of the form „a„2
b . Finally, the

coe�cient of „0„1„2 must be 0 since there is no edge between S0 and S2. But this
coe�cient can also be computed as an intersection number of gluing curves inside S1.
Thus, the corresponding intersection number better be zero for consistency. Indeed we
find that

1
(e ≠

ÿ
xi ≠

ÿ
yi) · ((h+ 2f ≠ y1 ≠ y2) + (f ≠ x1) + (f ≠ x2))

2

S1
= 0 (5.98)

5.2.2 Untwisted

In this subsection, we collect our results for nodes of the form

k
g(1)

(5.99)

That is, we restrict ourselves to the case where the associated a�ne Lie algebra is
untwisted. All such nodes are displayed in Table 1 and Table 2. Most such cases were
first studied in [3, 4]. We will be able to recover their results. We will associate a
collection of geometries parametrized by ‹ to each node of the form (5.99). Geometries
for di�erent values of ‹ are flop equivalent as long as there are no neighboring nodes, but
might cease to be flop equivalent in the presence of neighboring nodes. The geometries
associated to (5.99) in [4] are obtained as ‹ = 0, 1 versions of the geometries associated
in this paper.

The geometries associated to nodes of the form (5.99) are presented below. We
will display the corresponding node inside a circle placed at top of the geometry:

02n+8≠‹
1 12n+2≠‹ · · · (n ≠ 2)8≠‹ n‹

0(n ≠ 1)6≠‹
eh 2e+f -

q
xiehh2h-

q
xi e

1
sp(n)(1)(n+1)fi

(5.100)
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where 0 Æ ‹ Æ 2n + 8, n Ø 1 and the theta angle should be viewed modulo 2fi. We
can see that fa · Sb reproduces the negative of Cartan matrix for untwisted a�ne Lie
algebra sp(n)(1), where fa is the canonical fiber of Hirzebruch surface Sa. The same
hold true for all the examples discussed below in this subsection. One can check in each
example below that fa ·Sb reproduces the negative of Cartan matrix for the associated
untwisted a�ne Lie algebra g(1).

02n+8≠‹
1 12n+2≠‹ · · · (n ≠ 2)8≠‹ n‹

1(n ≠ 1)6≠‹
eh 2h-

q
xiehh2h-

q
xi e

1
sp(n)(1)nfi

(5.101)
where 0 Æ ‹ Æ 2n + 8, n Ø 1 and the theta angle should be viewed modulo 2fi.
See Appendix (B.3) for more discussion on the relationship between theta angle and
geometry.

Notice that the two geometries (5.100) and (5.101) are isomorphic by virtue of the
isomorphism between F1

0 and F1
1 discussed in Appendix A.1. Suppose first that ‹ > 0.

Then, the isomorphism applied to Sn sends 2h ≠ x1 in F‹
1 to 2e + f ≠ x1 in F‹

0, thus
mapping the gluing curve for Sn≠1 in Sn in (5.101) to the gluing curve for Sn≠1 in Sn in
(5.100). Thus the whole geometry (5.101) is mapped to the geometry (5.100) by this
isomorphism. For ‹ = 0, the two geometries (5.101) and (5.100) are flop equivalent
due to this isomorphism. This is because they are flop equivalent to ‹ > 0 versions of
the geometries (5.101) and (5.100), and we have already established an isomorphism
between the latter geometries.

However, it is possible for this isomorphism to not extend to the full Calabi-Yau
threefold when sp(n) has other neighbors. The gluing curves inside S0 and Sn for the
surfaces corresponding to these neighbors might not map to each other under the above
isomorphism plus flops. Whenever the isomorphism extends to the full threefold, the
sp(n) theta angle is physically irrelevant. Whenever the isomorphism does not extend
to the full threefold, the sp(n) theta angle is physically relevant. We will see examples
of both situations later when we discuss gluing rules for sp(n).
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For n = 0, we claim that the associated geometry is

08
1

1
sp(0)(1)◊

(5.102)

One way to see this is to notice that both the geometries (5.100) and (5.101) reduce
to (5.102) in the limit n = 0. For a more precise way to see that (5.102) is the correct
geometry, see the discussion around (B.9).
When sp(0)(1)◊ has no other neighbors, then all the blowups are generic and we can write
S0 = dP9. When sp(0)(1)◊ has neighbors, it turns out that S0 = dP9 with 9 non-generic
blowups is the correct answer, instead of S0 = F8

1 with eight non-generic blowups. This
is because when the 9 blowups are non-generic, it is not always possible to represent
dP9 as F8

1 with 8 non-generic blowups. So, S0 = F8
1 is not quite the correct answer. See

[4] for more discussion on this point. Thus, in this paper, from this point on, we will
represent the geometry associated to sp(0)(1)◊ by dP9.

02n+8
1

(2n ≠ 1)2n+5 (2n ≠ 2)12n+4

11+1
3 21

4

· · ·

· · ·

(n+ 1)1n+7

(n ≠ 1)1n+1

nn+3

h-
q

xi

h

h

e h-x e h-x

e

h+f

e

h

eh-xh-x
e

e

x

x

f -x

f -x x

xf

f -x-y

f -x

f -x

1
su(2n)(1)

(5.103)
For this geometry, we do not define multiple versions distinguished by the parameter ‹.
Nevertheless, for uniformity of notation, we denote this geometry with ‹ = 0. Similarly,
we will denote all the following geometries having a single unique version with ‹ = 0.
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For n = 2, we have

012
1

39

11+1
3

25

h-
q

xi

h

h

h+f

e

e

f

f -x-y

1
su(4)(1)

e

h

(5.104)

02n+9
1

(2n)2n+6 (2n ≠ 1)12n+5

11+1
3 21

4

· · ·

· · ·

(n+ 2)1n+8

(n ≠ 1)1n+1

(n+ 1)1n+5

h-
q

xi

h

h

e h-x e h-x e

h+f

e-x

h-xeh-xh-x
e

e

x

x

f -x

f -x x

xf

f -x-y

f -x

f -x

1
su(2n+ 1)(1)

nn+2

h+f -x

x

x

e

(5.105)
For n = 1, we have

012
1

27

13

h-
q

xi

h

h+f

e

e

h+f

1
su(3)(1)

(5.106)
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0(2n≠8)+2
3

(2n ≠ 1)12n≠7 (2n ≠ 2)12n≠8

11
1 21

0

· · ·

· · ·

(n+ 1)1n≠5

(n ≠ 1)1n≠3

n1+1
n≠5

h-x-2y-
q

xi,

e

h-x,x

e h-x e h-x

e

e+(n-6)f

e+f -x-2y,

h-x,x

eh-xe-x
h

e

x

x f -x

f -x

x

x
f -x

f -x

f -x

f -x
2

f -x

x

y

1
su(„2n)(1)

x

y

f -x
2

(5.107)

0(2n≠7)+2
3

(2n)12n≠6 (2n ≠ 1)12n≠7

11
1 21

0

· · ·

· · ·

(n+ 2)1n≠4

(n ≠ 1)1n≠3

h-x-2y-
q

xi,

e

h-x,x

e h-x e h-x

eh-xe-x
h

e

x

x f -x

f -x

x

x
f -x

f -x

f -x

f -x

(n+ 1)1+1+1
n≠4

n1
n≠2e

f -z
e+f -x-2y-z,

h,f

1
su(\2n+ 1)(1)

2

x

h-x

e+(n-5)fe

z-x

x y

x

y

2
f -x

(5.108)
The above two examples are not completely geometric. See the discussion after

equation (5.160).
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015
1

512 41
10

11+1
3 24

38

h-
q

xi

h

h

e h
e

e

e

h

h-x
e h+f

y

f -x

f

f

f -x-y
x-y

1
su(6̃)(1)

(5.109)

0(4n≠‹)+‹
0

12≠‹ 24≠‹

(2n ≠ 1)4n≠2≠‹ (2n ≠ 2)4n≠4≠‹

· · ·

· · ·

(n ≠ 1)2n≠2≠‹

(n+ 1)2n+2≠‹

n2n≠‹

e-
q

yi

e-
q

xi

e

h e h e

h

e

h

e

hee

h

h

2
su(2n)(1)

(5.110)

where 0 Æ ‹ Æ 4n and n Ø 2.
For n = 1, we have

04≠‹
0 1‹

2
e, e-

q
xi e, h-

q
xi2

2
su(2)(1)

(5.111)

where 0 Æ ‹ Æ 4.
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0(4n+2≠‹)+‹
0

12≠‹ 24≠‹

(2n)4n≠‹ (2n ≠ 1)4n≠2≠‹

· · ·

· · ·

n2n≠‹

(n+ 1)2n+2≠‹

e-
q

yi

e-
q

xi

e

h e h e

h

e

hee

h

h

2
su(2n+ 1)(1)

(5.112)

where 0 Æ ‹ Æ 4n+ 2 and n Ø 1.
For n = 0, we claim that the geometry is

01+1
0

e-x

e-y

2
su(1)(1)

(5.113)

which can be recognized as a limit of ‹ = 1 phase of (5.112). See Appendix B.1 for a
derivation that this is the correct answer.
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01

21

11

e

e

e

e

e

e

3
su(3)(1)

(5.114)

0‹+‹
‹+2

1‹+2 n(2n≠8≠‹)+(2n≠8≠‹)
2n≠6≠‹

2‹ 32≠‹ · · ·

(n ≠ 1)2n≠6≠‹

(n ≠ 2)2n≠8≠‹

h

h

e

h

e

fe

f -xi-yi

h
ehe

e

e
2n-8-‹‹

4
so(2n)(1)

f -xi-yi

f

(5.115)
where 0 Æ ‹ Æ 2n ≠ 8.

0‹+‹
‹+2

1‹+2

2‹ 32≠‹ · · · (n)(2n≠7≠‹)+(2n≠7≠‹)
6(n ≠ 1)2n≠6≠‹

h

e

h

e-
q

xi-
q

yi2hehe

e

e

2n-7-‹

xi yi

‹

f -xi-yi

f

4
so(2n+ 1)(1)

(5.116)
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where 0 Æ ‹ Æ 2n ≠ 7.

36

21≠‹ 1(2≠‹)+(2≠‹)
3≠‹

f

e

2h+ ‹f

eh

f -xi-yi

0‹+‹
1+‹ e e

2 ≠ ‹
‹

f -xi-yi

f

3
so(7)(1)

(5.117)

where 0 Æ ‹ Æ 1.

31+1
6

22≠‹ 1(4≠‹)+(4≠‹)
4≠‹

f

e-x-y

2h+ ‹f

eh

f -xi-yi

0‹+‹
‹ e e

4 ≠ ‹‹

f -xi-yi

f

2
so(7)(1)

x y

(5.118)

where 0 Æ ‹ Æ 2.
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32+2
6

23 16+6
5

f
e-

q
xi-

q
yi

2h

eh

f -xi-yi

01 h e

6

1
so(7)(1)

2
xi yi

(5.119)

24≠k

44(4≠k)
6≠k

34≠k
2

f

h

h
e-

q
xi

h

f -xi-yi

14≠k
2

xi

e

4 ≠ k

4 ≠ k

e-
q

xi xi

f

f -zi-wi

02≠k 4 ≠ k
h e

k

so(8)(1)

(5.120)

where 1 Æ k Æ 3 and we have divided the 16 ≠ 4k blowups into four sets of 4 ≠ k

blowups each. We label blowups in the four sets by xi, yi, zi and wi respectively.

– 62 –



21≠‹ 31+1
3≠‹ 4(2≠‹)+(2≠‹)

4e

h+ ‹f

e

13+‹

h e0‹+‹
1+‹ 2h-x-y

f -x-y

e

e-
q

xi-
q

yi

f

2 ≠ ‹

xi yi

‹

f -xi-yi

f

3
so(9)(1)

(5.121)

where 0 Æ ‹ Æ 1.

24≠k 3(4≠k)+(4≠k)
6≠k 4(5≠k)+(5≠k)

2≠2kh

h

e

16≠k

h e
02≠k 2h-

q
xi-

q
yi

f -xi-yi

e

h-
q

xi-
q

yi

f

5 ≠ k

xi yi

k

so(9)(1)

4 ≠ k

(5.122)
where 1 Æ k Æ 2.
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21≠‹ 31
3≠‹ 44≠‹e

h+ ‹f

e

11
3+‹

h e0‹+‹
1+‹ h-x

f -x

e

e

f -x
5(3≠‹)+(3≠‹)+1
4≠‹

3 ≠ ‹

f

f -xi-yi

x z

e-z

h

‹

f -xi-yi

f

3
so(10)(1)

(5.123)
where 0 Æ ‹ Æ 1.

24≠k 34≠k
6≠k 44h

h

e

14≠k
6≠k

h e
02≠k

h-
q

xi

f -xi

e

e

f -xi

5(6≠k)+(6≠k)+(4≠k)
4

6 ≠ k

f

f -xi-yi

xi zi

e-
q

zi

h

k

so(10)(1)

4 ≠ k

4 ≠ k

(5.124)
for 1 Æ k Æ 2.
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21≠‹ 33≠‹ 41
5≠‹

e

h+ ‹f

h 5(4≠‹)+(4≠‹)
5e h

12
3+‹

e

x2-x1

2h-x

0‹+‹
1+‹

f -x1-x2

x1

f
f

f -x

e

e
e-

q
xi-

q
yi

4 ≠ ‹

xi yi

‹

f -xi-yi

f

3
so(11)(1)

(5.125)
where 0 Æ ‹ Æ 2.

22 34 42
6

e

h

h
55+5
4e h

14
4

e

x2-x1,

2h-
q

xi

00

f -x1-x3,

x1, x3

f

f

f -xi

e

e
e-

q
xi-

q
yi

5
xi yi

2
so(11)(1)

f -x2-x4 2
2

x4-x3
2

(5.126)
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23 35 43
7

e

h

h
56+6
3e h

16
5

e

x2-x1,

2h-
q

xi

01

f -x1-x3,

x1,x3,x5

f

f

f -xi

h

e
e-

q
xi-

q
yi

6
xi yi

1
so(11)(1)

f -x2-x4, f -x5-x6 3
3

x4-x3,

3
x6-x5

(5.127)

21≠‹ 33≠‹ 41
5≠‹

e

h+ ‹f

h

57≠‹

e h

12
3+‹

e

e

x2-x1

h

0‹+‹
1+‹

f -x1-x2

x1

f

f

f -x

f -xi-yie

e

6(5≠‹)+(5≠‹)
6≠‹

5 ≠ ‹

f

h-x

e

‹

f -xi-yi

f

3
so(12)(1)

(5.128)

where 0 Æ ‹ Æ 2.
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22 34 42
6

e

h

h

58

e h

14
4

e

x2-x1,

h-
q

xi

00

f -x1-x3,

x1, x3 f

f

f -xi

e

e

e

2
so(12)(1)

f -x2-x4 2
2

x4-x3

2

66+6
6

6

f -xi-yih

e

f

(5.129)

23 35 43
7

e

h

h

59

e h

16
5

e

x2-x1,

h-
q

xi

01

f -x1-x3,

x1,x3,x5 f

f

f -xi

e

e

e

1
so(12)(1)

f -x2-x4,f -x5-x6 3
3

x4-x3, 3

67+7
6

6

f -xi-yih

e

f
x6-x5

(5.130)

– 67 –



22 34 41+1
6

e

h

h

57

e h

12+2
4

e

e

x2
-x1

h-y

00

f -x1-x2 ,f -y1-y2

x1,y1

f

f

f -x,f -y

f -xi-yi

f

e

e

66+6
7

6

y 2
-y 1

f

h-x

e

2
so(„12)(1)

2

2

(5.131)
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23 35 42+1
7

e

h

h

58

e h

12+2
5

e

e

x2-x1,x4 ≠ x3

h-y

01

f -x1-x3,f -x2-x4,f -y1-y2

x1,x3,y1
f

f

f -x1 ,f -x2 ,f -y

f -xi-yi

f

e

e

67+7
7

7

y 2
-y 1

f

h-x1 -x2

e

1
so(„12)(1)

3

3

2

(5.132)
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00

22 31
2 44 51

8 61
19,7

11
2

x

e

e
x

x

h-x

e-x

x

f -xx

h-x e-x h e h+f e 2h-x e

f -x
x

f -x

f -x f -x
x

2
so(13)(1)

(5.133)

0‹+‹
‹ 22≠‹ 1(4≠‹)+(4≠‹)

4+‹

e e 3h+‹f e-
q

xi-
q

yi

4 ≠ ‹

xi yi

‹

f -xi-yi f

2
g(1)2

(5.134)

where 0 Æ ‹ Æ 2.
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0k≠2 24≠k 1(10≠3k)+(10≠3k)
3k≠2

e e 3h e-
q

xi-
q

yi 10 ≠ 3k

xi

yi

k
g(1)2

(5.135)

where k = 1, 3.

44≠k 36≠k 2(5≠k)+(5≠k)
6

e e h 1(5≠k)+(5≠k)
8

e 2h0k≠2
e -

q
xi-

q
yi

e-
q

yi,

5 ≠ k

xi yi

h+
q

(f -yi),
f -xi f -xi6 ≠ k

5 ≠ k

xi yi

k
f(1)4

(5.136)
for 1 Æ k Æ 5.

0k≠2 6k≠4 36≠k

54

e eh e

xi-yi

h

6 ≠ k

h

46≠k
8≠k

26≠k
8≠k 1(6≠k)+(6≠k)

10≠k

6 ≠ k

6 ≠ k

e

h

e

xi

f -xi

f

e

h-
q

xi

e

f -xi

f -xi

k
e(1)6

(5.137)
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for 1 Æ k Æ 6.

62m≠4 52m≠6 44≠m
4≠m 14≠m

18≠3me h e 34≠m
6≠m 24≠m

8≠mh e he
02m≠2 e-

q
xi

h

eh

74≠m
6≠m

h+(4-m)f e

e

f -xi

4 ≠ m 4 ≠ m
4 ≠ m

f -xi

f -xi

xi

f -xi

f -xi

f -xi xi
f -xi

f -xi

2m
e(1)7

4 ≠ m

4 ≠ m

(5.138)
for 1 Æ m Æ 4.
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62m≠5 52m≠7 44≠m
5≠m 14≠m

20≠3me h e 3(4≠m)+2
6≠m 24≠m

8≠mh e he
02m≠3 e-

q
xi

h

eh

74≠m
7≠m

h+(5-m)f e

e

f -xi

5 ≠ m 4 ≠ m
4 ≠ m

f -xi

f -xi

xi

f ,f -xi

y1-y2,f -xi

f -xi xi

f ,f -xi

f -y1-y2,f -xi

2m ≠ 1
e(1)7

5 ≠ m

4 ≠ m

(5.139)
for 1 Æ m Æ 4.

18 26 34 62
e h e 42 50

h e

e

e

e010
h eh

82

e e h ee

12
e(1)8

74

5.2.3 Twisted

In this subsection, we will generalize our results to nodes of the form

k
g(q)

(5.140)
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for q > 1 and

2
su(n)(1)

(5.141)

All such nodes are listed in Table 8.

m1 (m ≠ 1)6 · · · 22m

02m+2m
2m+2

f

f -xi-yi

2h e h

h

e

e

2m

12m+2

h

e

2
su(2m)(2)

(5.142)

where m Ø 3. Notice that the Cartan matrix associated to this geometry is precisely
that of su(2m)(2). Similar comments hold for all the geometries discussed below in this
subsection. For each example below, one can check that fa · Sb reproduces negative of
Cartan matrix of the associated twisted a�ne algebra g(q).

m1 (m ≠ 1)6 · · · 12m+2 0(2m+1)+(2m+1)
6

yi

xi

2h e h 2h e-
q

xi-
q

yie 2m+1

2
su(2m+ 1)(2)

(5.143)
where m Ø 2.
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0(9≠3k)+(9≠3k)
4k≠2 10

e-
q

xi-
q

yi 4e+(4-k)f

xi

yi

k
su(3)(2)

9 ≠ 3k

(5.144)

where 1 Æ k Æ 3.

04+4
6 21 16

e 2h 2h e

4

2
su(4)(2)

f -xi-yi
f

(5.145)

06+6+1+1
6 21 16

e-z-w 2h+f 2h e

6

1
su(4)(2)

f -xi-yi

f

z

w

(5.146)
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0‹+‹
6+2‹ 11+‹ 21≠‹ · · · (n ≠ 2)2n≠7≠‹ (n ≠ 1)(2n≠8≠‹)+(2n≠8≠‹)

6
e 2h e e h 2h e-

q
xi-

q
yie

f -xi-yif

4
so(2n)(2)

2n ≠ 8 ≠ ‹

xi yi
‹

(5.147)
where 0 Æ ‹ Æ 2n ≠ 8.

010 18 20
e h e 3e+f

4
so(8)(3)

(5.148)

01+1
9 11+1

7 21
e-y h+f -y e-x-y 3h

3
so(8)(3)

f -x,f -x,

2
x y x y

(5.149)

02+2
8 12+2

6 20
e-

q
yi h+

q
(f -yi) e-

q
xi-

q
yi 3e+ 2f

2
so(8)(3)

f -xi,f -xi,

3
xi yi xi yi

2 2 (5.150)
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03+3
7 13+3

5 21
e-

q
yi h+

q
(f -yi) e-

q
xi-

q
yi 3h+ f

1
so(8)(3)

f -xi,f -xi,

4
xi yi xi yi

3 3 (5.151)

02k≠2 1(4≠k)+(4≠k)
1 21 3(4≠k)+(4≠k)

6
e 2h-

q
xi e e

f -x
i-y

i
f

e-
q

xi-
q

yi2h+(4 ≠ k)f

4 ≠ k

k
so(8)(2)

4 ≠ k

xi yi

(5.152)
where 1 Æ k Æ 4.

02 14
1 21 35 44+4

14
e 2h-

q
xi

x 2
-x 3

, x
1-
x 4

f ,f

e e h+f e 2h e
f -x1-x2

f

2
so(10)(2)

2

4

xi yi

(5.153)
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02 14
1 21 35 41 56+6

18
e 2h-

q
xi

x 2
-x 3

x 1
-x

2,
x 3

-x
4

f ,f

e e h+f e h e 2h e

ff -x1-x2
f

2
so(„12)(2)

2

6

xi yi

(5.154)

42≠m34≠m

2(3≠m)+(3≠m)
6 1(3≠m)+(3≠m)

8 0(3≠m)+(3≠m)
k+4

he

2h

e-
q

xi-
q

yi
h+

q
(f -yi) h-

q
xie-

q
yi e-

q
xi

2m
e(2)6

3 ≠ m 3 ≠ m 3 ≠ m

f -xi,

4 ≠ m

f -xi, f -yi, f -yi,

4 ≠ m

xi yi xi yi xi yi

(5.155)
for 1 Æ m Æ 3.
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(2n ≠ 1)12n≠3 (2n ≠ 2)12n≠4
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· · ·
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(n ≠ 1)1n+1
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n≠1
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q
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h

h

e h-x e h-x

e

e+(n-2)f

e+f -x-2y,

h-x,x
eh-xh-x

e

e

x

x f -x

f -x

x

x
f -x

f -x

f -x

f -x 2
f -x

x

y

2
su(2n)(1)

(5.156)
for n Ø 2.
For n = 1, we have

02
1 11+1

0
h, h-

q
xi e+f -x-2y, e-x

2

x

y

2
su(2)(1)

(5.157)

Now we discuss some examples which are not completely geometric:
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02n+1
1

(2n)12n≠2 (2n ≠ 1)12n≠3

11
3 21
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· · ·

· · ·
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h-
q

xi

h

h

e h-x e h-x

eh-xh-x
e

e

x

x f -x

f -x

x

x
f -x

f -x

f -x

f -x

(n+ 1)1+1+1
n

n1
n+2e

f -z
e+f -x-2y-z,

h,f

2
su(2n+ 1)(1)

2

x

h-x

e+(n-1)fe

z-x

x y

(5.158)
for n Ø 2.
For n = 1 we have

21+1+1
2

03
1

13

e+f
e+f -x-2y,

h

e

h-
q

xi

h,f

2

f -x-z

x y

2
su(3)(1)

(5.159)
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For n = 0 we have

01+1
1

x

y

2
su(1)(1)

(5.160)

Let us now discuss the reasons why the above five examples are not completely ge-
ometric. Let us start with (5.160). The geometry for this example contains the ≠1
curve h ≠ x ≠ y and hence an M2 brane wrapping this curve should give rise to a BPS
particle. However, this BPS particle cannot appear in the associated 5d KK theory for
the following reason. The existence of a particle associated to h ≠ x ≠ y implies that
the KK mode, which is associated to the elliptic curve 2h + f ≠ 2x ≠ 2y, decomposes
as a bound state of h ≠ x ≠ y and h+ f ≠ x ≠ y but this is a contradiction since these
two curves do not meet each other and hence there cannot be such a bound state.

Another reasoning is as follows. The volume of f is 2„ where „ is the Coulomb
branch parameter associated to the above surface. On the other hand, the volume of
h ≠ x ≠ y is ≠„. Requiring non-negative volumes for both curves implies that „ must
be zero. In other words, there is no direction in the Coulomb branch where all BPS
particles have non-negative mass. Thus, this geometry is not marginal, in the sense
defined by [2], which is a condition that must be satisfied by geometries associated to
KK theories.

The precise sense in which the above self-glued F1 surface is associated to the KK
theory

2
su(1)(1)

(5.161)

is as follows. The Mori cone of the surface is generated by h≠x≠y, f≠x, x, e. However,
since the curve h ≠ x ≠ y does not correspond to a BPS particle, the generators of the
Mori cone thus do not correspond to the fundamental BPS particles18 in the associated
KK theory (5.161). We propose that the fundamental BPS particles instead correspond
to the curves 2h≠ x≠ 2y, f ≠ x, x, e. This set of curves satisfies all the properties that

18We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of
other BPS particles.
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must be satisfied by the generators of the Mori cone of a surface. Thus, it is a complete
set which can be consistently associated to fundamental BPS particles. The KK mode
can be found as a bound state of 2h≠x≠ 2y and f ≠x. One can check that this set of
proposed BPS particles is marginal in the sense that it allows a direction in Coulomb
branch with all BPS particles having non-negative volumes. See also Appendix B.1
where we verify that this description of the KK theory allows the existence of an RG
flow to an N = 2 5d SCFT, which is a fact well-known in the literature.

There are two viewpoints one can take on the relationship between self-glued F1 and
the KK theory (5.161). The first is that indeed compactifying M-theory on this surface
leads to the KK theory (5.161), but the compactification has some extra ingredients
which account for the mismatch between the set of Mori cone generators and the set
of fundamental BPS particles19. The other viewpoint is that the relationship with self-
glued F1 has no deep meaning and is probably a red herring. At the time of writing
of this paper, we do not know which of these two viewpoints, or if either of these two
viewpoints, is the correct one. We leave this issue for future exploration, and only
use the relationship between the two as an algebraic tool to build a formalism for KK
theories from which one can explicitly perform RG flows to 5d SCFTs.

Now let us discuss the non-geometric nature of the KK theories

2
su(m)(1)

(5.162)

with m > 1. Consider as an example the case of m = 3. The surface S2 contains
a gluing curve e + f ≠ x ≠ 2y and hence there must be a BPS particle associated to
it. However, notice that it decomposes as e + f ≠ x ≠ 2y = (e ≠ x ≠ y) + (f ≠ y)
such that the components e ≠ x ≠ y and f ≠ y do not intersect each other. This leads
to the same problem as discussed above, and we are forced to hypothesize that the
fundamental BPS particles are distinct from the generators of Mori cone due to some
non-geometric feature in the M-theory compactification. It is also evident that some
of the components of the gluing curves in certain surfaces (which are identified with
irreducible curves in adjacent surfaces as part of the gluing construction) fail to satisfy
the necessary properties of irreducible curves that are described at the beginning of
Section 5.1.2.20 Similar comments apply to each of the m > 1 models presented above

19A similar situation occurs in the frozen phase of F-theory [32], where the set of generators of
the Mori cone of the base of a threefold used for compactifying F-theory does not match the set of
fundamental BPS strings arising in the associated 6d theory.

20For example, in the case m = 3, one can see that the surface 21+1+1
0 contains a curve class
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should be regarded as an algebraic proposal which retains many of the features of the
local threefolds that seem to be necessary to compute RG flows to 5d SCFTs.

Similar comments apply to (5.107) and (5.108), and they are also not conventionally
geometric.

5.3 Gluing rules between two gauge theoretic nodes

In this section we will describe how to glue the surfaces Sa,– corresponding to a node –

to the surfaces Sb,— corresponding to another node — if there is an edge between – and
—. The gluing rules are di�erent for di�erent kinds of edges between the two nodes. It
turns out that the gluing rules between – and — are insensitive to the values of �––

and �——. This was also true for all of the cases studied in [4]. For this reason, we will
often suppress the data of �–– and �—— in this subsection.

As a preface to the following subsections, we re-emphasize that the gluing rules must
be compatible with the general consistency conditions described in Section 5.1.2, and
those that do not must again be regarded, most conservatively, as an algebraic proposal
that retains certain salient features of conventional smooth threefold geometries. The
basic, underlying hypothesis of the gluing rules is that, given a pair of geometries
corresponding to circle compactifications of 6d SCFTs, if there exists a consistent gluing
of these two nodes along their respective genus one fibers, then there must also exist a
mutual gauging of the respective global symmetries of the parent 6d SCFTs that allows
the two theories to be coupled together in the sense described in Section 2.

5.3.1 Undirected edges between untwisted algebras

Such edges are displayed in Table 3. The gluing rules for all of these cases except for
su(n–)(1) so(n—)(1)2 were first studied in [4]. We are able to reproduce their
results using our methods.

Gluing rules for sp(n–)(1)◊ su(n—)(1) : We can take any geometry with 0 Æ

‹ Æ 2n– +8≠n— for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ 2n— ≠2n– for su(n—)(1).
The gluing rules below work irrespective of the value of ◊. The gluing rules are:

• f ≠ x1, xn—
in S0,– are glued to f ≠ x1, x2n– in S0,—.

• xi ≠ xi+1 in S0,– is glued to f in Si,— for i = 1, · · · , n— ≠ 1.

• xi ≠ xi+1, x2n–≠i ≠ x2n–≠i+1 in S0,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

e+ f ≠ x ≠ 2y, which is identified with the curve class h in the surface 13. Since h is irreducible, this
implies that e+f ≠x≠2y must also be irreducible, but this leads to a contradiction (with smoothness)
if the usual class f ≠ y remains among the generators of the Mori cone of 21+1+1

0 .
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• xn– ≠ xn–+1 in S0,— is glued to f in Sn–,–.

By convention, the first item in the above list of gluing rules displays the gluings in an
order. That is, f ≠ x1 in S0,– is glued to f ≠ x1 in S0,— and xn—

in S0,– is glued to x2n–

in S0,—. We will adopt this convention in what follows. All the gluings should be read
in the order in which they are written.

Let us label the fiber of the Hirzebruch surface Sa,– as fa,– and the fiber of the
Hirzebruch surface Sb,— as fb,—. According the above gluing rules, f0,– is glued to
f0,—≠x1+x2n–+

qn—≠1
i=1 fi,— where x1 and x2n– are blowups in S0,—, and 2qn–≠1

i=1 fi,–+fn–,–

is glued to x1 ≠ x2n– in S0,—. Combining these two we see that

f0,– + 2
n–≠1ÿ

i=1
fi,– + fn–,– ≥

n—≠1ÿ

i=0
fi,— (5.163)

thus confirming the gluing rule (5.60) for the torus fibers. In a similar fashion, the
reader can verify that (5.60) is satisfied for all the gluing rules that follow.

The theta angle of sp(n–) is physically irrelevant if n— < 2n– + 8 and physically
relevant if n— = 2n– + 8. Thus the above gluing rules should allow the isomorphism
between (5.100) and (5.101) to extend to the combined geometry for

sp(n–)(1)◊ su(n—)(1) (5.164)

in the case n— < 2n– + 8, but not in the case of n— = 2n– + 8.
To see this for n— < 2n– + 8, we can go to the flop frame ‹ = 1 for sp(n–)(1)◊ without
changing the above gluing rules. Then we can implement the map that formed the
isomorphism between (5.100) and (5.101). Since the above gluing rules do not inter-
act with blowups living on Sn–,–, the map trivially extends to an isomorphism of the
combined geometry associated to (5.164). For n— = 2n– + 8, we cannot reach ‹ > 0
frame without changing the above gluing rules. Thus the map implementing isomor-
phism between (5.100) and (5.101) does not extend to an isomorphism of the combined
geometry associated to (5.164).

Gluing rules for sp(n–)(1)◊ so(2n—)(1) : Here we allow 2n— = „12. We can take

any geometry with 0 Æ ‹ Æ 2n– +8≠n— for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ

2n— ≠ 4 ≠ �——
≠ n– for so(2n—)(1). The gluing rules below work for both values of ◊.

In the future, if the value of ◊ is unspecified, then the gluing rules work for both the
values. In our present case, the gluing rules are:

• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.
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• xi ≠ xi+1 in S0,– is glued to f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—≠1 , xn—
in S0,– are glued to f ≠ x1, y1 in Sn— ,—.

• xi ≠ xi+1, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ yn– in Sn— ,— is glued to f in Sn–,–.

To show that the theta angle is irrelevant for n— < 2n– + 8, we first notice that we
can go to the flop frame ‹ = 1 for sp(n–)(1)◊ without changing the above gluing rules.
Then the isomorphism between (5.100) and (5.101) extends to an isomorphism of the
combined geometry for

sp(n–)(1)◊ so(2n—)(1) (5.165)

For n— = 2n–+8, the above argument does not work since going to ‹ = 1 frame changes
the gluing rules. However, it turns out that the combined geometries for di�erent ◊ are
flop equivalent up to an outer automorphism of so(2n—). To see this, notice that the
combined geometry for (5.165) is flop equivalent to the following geometry. We pick
the frame ‹ = 2n– +8 for sp(n–)(1)◊ and ‹ = 2n— ≠8 for so(2n—)(1) with the gluing rules
being:

• f ≠ x1 ≠ x2 in Sn–,– is glued to f in Sn— ,—.

• xi ≠ xi+1 in Sn–,– is glued to f in Sn—≠i,— for i = 1, · · · , n— ≠ 1.

• xn—≠1 , xn—
in Sn–,– are glued to f ≠ x1, y1 in S0,—.

• xi ≠ xi+1, yi+1 ≠ yi in S0,— are glued to f, f in Sn–≠i,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ yn– in S0,— is glued to f in S0,–.

Now it is clear that exchanging f ≠x1 and x1 interchanges Sn— ,— and Sn—≠1,—. Thus the
choice of theta angle for sp(n–)(1) is correlated to the choice of an outer automorphism
frame of so(2n—)(1) for n— = 2n– + 8.

The gluing rules for a configuration having multiple edges are simply obtained by
combining the gluing rules mentioned above. We have to just make sure that we never
use the same blowup twice. For example, consider the configuration

sp(n–)(1)◊ so(2n—)(1)su(n“)(1) (5.166)
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Then we can use any geometry with 0 Æ ‹ Æ 2n– + 8 ≠ n— ≠ n“ for sp(n–)(1)◊ , any
geometry with 0 Æ ‹ Æ 2n— ≠ 4 ≠ �——

≠ n– for so(2n—)(1), and any geometry with
0 Æ ‹ Æ 2n“ ≠ 2n– for su(n“)(1). The gluing rules for the sub-configuration

sp(n–)(1)◊ so(2n—)(1) (5.167)

are the same as the ones listed above, while the gluing rules for the sub-configuration

sp(n–)(1)◊ su(n“)(1) (5.168)

are as follows:

• f ≠ xn—+1, xn—+n“ in S0,– are glued to f ≠ x1, x2n– in S0,“.

• xn—+i ≠ xn—+i+1 in S0,– is glued to f in Si,“ for i = 1, · · · , n“ ≠ 1.

• xi ≠ xi+1, x2n–≠i ≠ x2n–≠i+1 in S0,“ are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ xn–+1 in S0,“ is glued to f in Sn–,–.

In a similar way, by choosing mutually exclusive sets of blowups, we can combine the
gluing rules to obtain geometries for graphs with multiple algebras and edges between
them. Sometimes some of the blowups are allowed to appear in more than one gluing
rules. In such cases, we will explicitly mention such blowups and the configurations in
which they can appear in multiple gluing rules.

Gluing rules for sp(n–)(1)◊ so(2n— + 1)(1) : We can take any geometry with

1 Æ ‹ Æ 2n– +8≠n— for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ 2n— ≠ 3≠ �——
≠n–

for so(2n— + 1)(1). The gluing rules are:

• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.

• xi ≠ xi+1 in S0,– is glued to f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
, xn—

in S0,– are glued to x1, y1 in Sn— ,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– , f ≠ yn– in Sn— ,— are glued to f ≠ x1, x1 in Sn–,–.
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To show that the theta angle is irrelevant, use the map that exchanges x1 and f ≠ x1
in Sn–,–. If this is accompanied by xi ¡ yi in Sn— ,—, then the gluing rules remain
unchanged.

Consider a configuration of the form

sp(n–)(1)◊ so(2n— + 1)(1)so(2n“ + 1)(1) (5.169)

We wish to emphasize that we use the same blowup x1 on Sn–,– in the gluing rules
associated to both

sp(n–)(1)◊ so(2n— + 1)(1) (5.170)
and

sp(n–)(1)◊ so(2n“ + 1)(1) (5.171)
More explicitly, to obtain gluing rules for (5.169), we can take any geometry with
1 Æ ‹ Æ 2n– +8≠n— ≠n“ for sp(n–)(1)◊ , any geometry with 0 Æ ‹ Æ 2n— ≠3≠�——

≠n–

for so(2n— +1)(1), and any geometry with 0 Æ ‹ Æ 2n“ ≠3≠�““
≠n– for so(2n“ +1)(1).

The gluing rules for (5.170) are those listed above, and the gluing rules for (5.171) are:

• f ≠ xn—+1 ≠ xn—+2 in S0,– is glued to f in S0,“.

• xn—+i ≠ xn—+i+1 in S0,– is glued to f in Si,“ for i = 1, · · · , n“ ≠ 1.

• xn—+“
, xn—+“

in S0,– are glued to x1, y1 in Sn“ ,“.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn“ ,“ are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– , f ≠ yn– in Sn“ ,“ are glued to f ≠ x1, x1 in Sn–,–.

with the x1 in Sn–,– being the same blowup as used in the gluing rules above for (5.170).
However, if we have a third neighbor so(2n” + 1)(1) of sp(n–)(1)◊ , then we must

use a second blowup x2 on Sn–,–. As a consequence, we must choose a geometry with
2 Æ ‹ Æ 2n– + 8 ≠ n— + n“ + n” for sp(n–)(1)◊ to obtain the combined geometry for the
configuration

sp(n–)(1)◊ so(2n— + 1)(1)so(2n“ + 1)(1)

so(2n” + 1)(1)

(5.172)

Gluing rules for sp(n–)(1)◊ so(8)(1) : We can take any geometry with 0 Æ

‹ Æ 2n– + 4 for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ 4 ≠ �——
≠ n– for so(8)(1).

The gluing rules are:
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• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.

• x1 ≠ x2 in S0,– is glued to f in S3,—.

• x2 ≠ x3 in S0,– is glued to f in S2,—.

• x3 ≠ x4 in S0,– is glued to f in S1,—.

• x3, x4 in S0,– are glued to f ≠ z1, w1 in S4,—.

• zi ≠ zi+1, wi+1 ≠ wi in S4,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• zn– ≠ wn– in S4,— is glued to f in Sn–,–.

The theta angle is irrelevant as can be seen in the ‹ = 1 frame of sp(n–)(1)◊ .

Gluing rules for sp(n–)(1)◊ so(7)(1) : We can take any geometry with 0 Æ

‹ Æ 2n– + 4 for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ 8 ≠ 2�——
≠ n– for so(7)(1).

The gluing rules are:

• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.

• x2 ≠ x3 in S0,– is glued to f in S2,—.

• x1 ≠ x2, x3 ≠ x4 in S0,– is glued to f in S3,—.

• x3, x4 in S0,– are glued to f ≠ x1, y1 in S1,—.

• xi ≠ xi+1, yi+1 ≠ yi in S1,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ yn– in S1,— is glued to f in Sn–,–.

The theta angle is irrelevant as in the last case.

Gluing rules for sp(n–)(1)◊ g(1)2 : We can take any geometry with 1 Æ ‹ Æ

2n– + 5 for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ 10 ≠ 3�——
≠ n– for g(1)2 . The

gluing rules are:

• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.

• x2 ≠ x3 in S0,– is glued to f in S2,—.

• x1 ≠ x2, x3, x3 in S0,– are glued to f, x1, y1 in S1,—.

• xi+1 ≠ xi, yi+1 ≠ yi in S1,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.
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• f ≠ xn– , f ≠ yn– in S1,— are glued to f ≠ x1, x1 in Sn–,–.

The theta angle is irrelevant.
The blowup x1 in Sn–,– can be repeated once more if there is another g(1)2 neighbor

or an so(2n“ + 1)(1) neighbor of sp(n–)(1)◊ . That is, when we consider configurations of
the form

sp(n–)(1)◊ g(1)2g(1)2 (5.173)

or of the form
sp(n–)(1)◊ g(1)2so(2n“ + 1)(1) (5.174)

As before, if there is a third g2 or so(2n” + 1)(1) neighbor of sp(n–)(1)◊ , then we must
use another blowup x2 on Sn–,– for the gluing rules corresponding to this neighbor.

Gluing rules for su(n–)(1) su(n—)(1) : Here we allow n– = ‚n– and n– = 6̃.
We can take any geometry with 0 Æ ‹ Æ 2n– ≠n— for su(n–)(1), and any geometry with
0 Æ ‹ Æ 2n— ≠ n– for su(n—)(1). The gluing rules are:

• f ≠ x1, xn—
in S0,– are glued to f ≠ x1, xn– in S0,—.

• xi ≠ xi+1 in S0,– is glued to f in Si,— for i = 1, · · · , n— ≠ 1.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.

Gluing rules for su(n–)(1) so(2n—)(1)2 : We can take any geometry with n— Æ

‹ Æ 2n– ≠n— for su(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠8≠n– for so(2n—)(1).
The gluing rules are:

• f ≠ x1 ≠ x2, f ≠ y1 ≠ y2 in S0,– are glued to f, f in S0,—.

• xi ≠ xi+1, yi ≠ yi+1 in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—≠1, xn—
, yn—≠1, yn—

in S0,– are glued to f ≠ x1, y1, f ≠ yn– , xn– in Sn— ,—.

• xi ≠ xi+1, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

Gluing rules for su(n–)(1) so(2n— + 1)(1)2 : We can take any geometry with
n— Æ ‹ Æ 2n– ≠ n— ≠ 1 for su(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 7 ≠ n– for
so(2n—)(1). The (non-geometric) gluing rules are:

• f ≠ x1 ≠ x2, f ≠ y1 ≠ y2 in S0,– are glued to f, f in S0,—.

– 89 –



• xi ≠ xi+1, yi ≠ yi+1 in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ xn—+1, xn—

≠ xn—+1, yn—
, yn—

, xn—+1, xn—+1 in S0,– are glued to f, f, x1, y1, f ≠

xn– , f ≠ yn– in Sn— ,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

Gluing rules for su(2)(1) so(7)(1) : We must take the geometry with ‹ = 0
for su(2)(1), and we can take any geometry with 0 Æ ‹ Æ 7 ≠ 2�—— for so(7)(1). The
gluing rules are:

• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.

• x2 ≠ x3 in S0,– is glued to f in S2,—.

• x1 ≠ x2, x3 ≠ x4 in S0,– is glued to f in S3,—.

• x3, x4 in S0,– are glued to f ≠ x1, y1 in S1,—.

• x1 ≠ y1 in S1,— is glued to f in S1,–.

Gluing rules for su(2)(1) g(1)2 : We must take the geometry with ‹ = 1 for

su(2)(1), and any geometry with 0 Æ ‹ Æ 9 ≠ 3�—— for g(1)2 . The gluing rules are:

• f ≠ x1 ≠ x2 in S0,– is glued to f in S0,—.

• x2 ≠ x3 in S0,– is glued to f in S2,—.

• x1 ≠ x2, x3, x3 in S0,– are glued to f, x1, y1 in S1,—.

• f ≠ x1, f ≠ y1 in S1,— are glued to f ≠ x1, x1 in S1,–.

There is another possibility appearing in the twisted case that involves an undi-
rected edge between two untwisted algebras. This possibility is

2
su(n–)(1)

2
su(n—)(1)

(5.175)

and it is displayed in Table 9. The gluing rules for this case are the same as the gluing
rules for

su(n–)(1) su(n—)(1) (5.176)

presented above.
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5.3.2 Undirected edges between a twisted algebra and an untwisted algebra

Now let us provide gluing rules for those cases in Table 9 in which both the nodes
have non-trivial gauge algebras associated to them, such that at least one of the gauge
algebras is twisted.

Gluing rules for sp(n–)(1)◊ so(2n—)(2) : Here we allow 2n— = „12. We can take

any geometry with 1 Æ ‹ Æ 2n– +8≠n— for sp(n–)(1)◊ , and any geometry with 0 Æ ‹ Æ

2n— ≠ 4 ≠ �——
≠ n– for so(2n—)(2). The gluing rules are:

• f ≠ x1 ≠ x2, x1 ≠ x2 in S0,– are glued to f, f in S0,—.

• xi ≠ xi+1 in S0,– is glued to f in Si≠1,— for i = 2, · · · , n— ≠ 1.

• xn—
, xn—

in S0,– are glued to x1, y1 in Sn—≠1,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn—≠1,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– , f ≠ yn– in Sn—≠1,— are glued to f ≠ x1, x1 in Sn–,–.

The theta angle can be seen to be irrelevant by using the blowup x1 on Sn–,–.
The blowup x1 in Sn–,– can be used in gluing rules corresponding to one more neighbor
of the form so(2n“ + 1)(1), g(1)2 or so(2n“)(2) of sp(n–)(1)◊ .

The fact that n— = 2n– + 8 is not allowed manifests in the above gluing rules.
The total number of blowups carried by S0,– is at max 2n– + 7 but the gluing rules
require the presence of 2n– + 8 blowups on S0,–. See the discussion around (3.36) for
an explanation of this restriction.
Gluing rules for su(n–)(1) so(2n—)(2)2 : We can take any geometry with n— ≠

1 Æ ‹ Æ 2n– ≠ n— ≠ 1 for su(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 8 ≠ n– for
so(2n—)(1). The (non-geometric) gluing rules are:

• f ≠ x1 ≠ x2, x1 ≠ x2, f ≠ x1 ≠ y1, x1 ≠ y1 in S0,– are glued to f, f, f, f in S0,—.

• xi+1 ≠ xi+2, yi ≠ yi+1 in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 2.

• xn—
≠ xn—+1, xn—

≠ xn—+1, yn—
, yn—

, xn—+1, xn—+1 in S0,– are glued to f, f, x1, y1, f ≠

xn– , f ≠ yn– in Sn— ,—.

• xi ≠ xi+1, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

– 91 –



5.3.3 Directed edges

Now we move onto gluing rules for edges listed in Table 10.
Gluing rules for sp(n–)(1) so(2n—)(1)2 : We can take any geometry with 0 Æ

‹ Æ 2n– + 8 ≠ 2n— for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 4 ≠ �——
≠ n–

for so(2n—)(1). The gluing rules are:

• xn—≠1 ≠ xn—+1, xn—
≠ xn—+2 in S0,– are glued to f, f in S0,—.

• xn—≠i≠xn—≠i+1, xn—+i≠xn—+i+1 in S0,– are glued to f, f in Si,— for i = 1, · · · , n—≠1.

• f ≠x1 ≠x2 in S0,– is glued to f in Sn— ,—. x2n—≠1 in S0,– is glued to f ≠x1 in Sn— ,—.
x2n—

in S0,– is glued to y1 in Sn— ,—.

• xi ≠ xi+1, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ yn– in Sn— ,— is glued to f in Sn–,–.

From this case onward, we are dropping the subscript ◊ on sp(n)(1) whenever theta
angle is not physically relevant. In such cases, the gluing rules will work uniformly for
both values of ◊ and using arguments used earlier in the paper, the reader can easily
check that the combined geometries descending from di�erent values of theta angle are
indeed isomorphic.
Gluing rules for sp(n–)(1) so(2n— + 1)(1)2 : We can take any geometry with
1 Æ ‹ Æ 2n–+7≠2n— for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠3≠�——

≠n–

for so(2n— + 1)(1). The (non-geometric) gluing rules are:

• xn—
≠ xn—+2, xn—+1 ≠ xn—+3 in S0,– are glued to f, f in S0,—.

• xn—≠i+1 ≠ xn—≠i+2, xn—+i+1 ≠ xn—+i+2 in S0,– are glued to f, f in Si,— for i =
1, · · · , n— ≠ 1.

• f ≠ x1 ≠ x2, x1 ≠ x2 in S0,– are glued to f, f in Sn— ,—. x2n—+1 in S0,– is glued to
x1 in Sn— ,—. x2n—+1 in S0,– is glued to y1 in Sn— ,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– in Sn— ,— is glued to x1 in Sn–,–. f ≠ yn– in Sn— ,— is glued to f ≠ x1 in
Sn–,–.
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Notice that the blowup x1 in Sn–,– can be used for gluing sp(n–)(1) to one more neighbor,
that is in configurations of the following form

sp(n–)(1) so(2n— + 1)(1)so(2n“ + 1)(1) 2 (5.177)

sp(n–)(1) so(2n— + 1)(1)g(1)2 2
(5.178)

sp(n–)(1) so(2n— + 1)(1)so(2n“)(2) 2 (5.179)

but cannot be used for gluing sp(n–)(1) to two more neighbors.

Gluing rules for sp(n–)(1) so(2n—)(2)2 : We can take any geometry with 1 Æ

‹ Æ 2n– + 7 ≠ 2n— for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 8 ≠ n– for
so(2n—)(2). The (non-geometric) gluing rules are:

• xn—
≠xn—+2, xn—+1 ≠xn—+3, xn—

≠xn—+1, xn—+2 ≠xn—+3 in S0,– are glued to f, f, f, f

in S0,—.

• xn—≠i≠xn—≠i+1, xn—+i+2≠xn—+i+3 in S0,– are glued to f, f in Si,— for i = 1, · · · , n—≠

2.

• f ≠ x1 ≠ x2, x1 ≠ x2 in S0,– are glued to f, f in Sn—≠1,—. x2n—+1 in S0,– is glued to
x1 in Sn—≠1,—. x2n—+1 in S0,– is glued to y1 in Sn—≠1,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn—≠1,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– in Sn—≠1,— is glued to x1 in Sn–,–. f ≠ yn– in Sn— ,— is glued to f ≠ x1 in
Sn–,–.

The blowup x1 in Sn–,– can be used to glue sp(n–)(1) to exactly one more neighboring
node connected to it by an undirected edge. The neighboring node can carry so(2n“ +
1)(1), g(1)2 or so(2n“)(2).

The fact that n— = n– + 4 is not allowed manifests in the above gluing rules.
The total number of blowups carried by S0,– is at max 2n– + 7 but the gluing rules
require the presence of 2n– + 9 blowups on S0,–. See the discussion around (3.37) for
an explanation of this restriction.
Gluing rules for sp(n–)(1) so(7)(1)2 : We can take any geometry with 0 Æ ‹ Æ

2n– for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2≠ n– for so(7)(1). The gluing rules
are:

• x3 ≠ x5, x4 ≠ x6 in S0,– are glued to f, f in S0,—.
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• f ≠ x1 ≠ x2, x7, x8 in S0,– are glued to f, f ≠ x1, y1 in S1,—.

• x2 ≠ x3, x6 ≠ x7 in S0,– are glued to f, f in S2,—.

• x1 ≠ x2, x3 ≠ x4, x5 ≠ x6, x7 ≠ x8 in S0,– are glued to f, f, f, f in S3,—.

• xi ≠ xi+1, yi+1 ≠ yi in S1,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ yn– in S1,— is glued to f in Sn–,–.

Gluing rules for sp(1)(1) g(1)22 : We can take any geometry with 1 Æ ‹ Æ 3
for sp(1)(1). The (non-geometric) gluing rules are:

• x3 ≠ x5, x4 ≠ x6 in S0,– are glued to f, f in S0,—.

• x2 ≠ x3, x6 ≠ x7 in S0,– are glued to f, f in S2,—.

• f ≠ x1 ≠ x2, x1 ≠ x2, x3 ≠ x4, x5 ≠ x6, x7, x7 in S0,– are glued to f, f, f, f, x1, y1 in
S1,—.

• f ≠ x1, x1 in S1,– are glued to f ≠ x1, f ≠ y1 in S1,—.

Notice that the blowup x1 in S1,– can be used in gluing rules corresponding to exactly
one more neighbor of sp(1)(1) carrying algebra so(2n“ + 1)(1) or so(2n“)(2).

Gluing rules for sp(n–)(1) so(2n—)(1)3 : We can take any geometry with 0 Æ

‹ Æ 2n– + 8 ≠ 3n— for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 8 ≠ n– for
so(2n—)(1). The gluing rules are:

• f ≠ x1 ≠ x2, x2n—≠1 ≠ x2n—+1, x2n—
≠ x2n—+2 in S0,– are glued to f, f, f in S0,—.

• xi ≠xi+1, x2n—≠i ≠x2n—≠i+1, x2n—+i ≠x2n—+i+1 in S0,– are glued to f, f, f in Si,— for
i = 1, · · · , n— ≠ 1.

• xn—≠1≠xn—+1, xn—
≠xn—+2, x3n—≠1, x3n—

in S0,– are glued to f, f, f ≠x1, y1 in Sn— ,—.

• xi ≠ xi+1, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ yn– in Sn— ,— is glued to f in Sn–,–.

Gluing rules for sp(n–)(1) so(2n— + 1)(1)3 : We can take any geometry with
1 Æ ‹ Æ 2n– + 7 ≠ 3n— for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 7 ≠ n– for
so(2n— + 1)(1). The (non-geometric) gluing rules are:
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• f ≠ x1 ≠ x2, x2n—
≠ x2n—+2, x2n—+1 ≠ x2n—+3 in S0,– are glued to f, f, f in S0,—.

• xi ≠ xi+1, x2n—≠i+1 ≠ x2n—≠i+2, x2n—+i+1 ≠ x2n—+i+2 in S0,– are glued to f, f, f in
Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ xn—+1, xn—

≠ xn—+1, xn—+1 ≠ xn—+2, xn—+1 ≠ xn—+2, x3n—+1, x3n—+1 in S0,– are
glued to f, f, f, f, x1, y1 in Sn— ,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn— ,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– , f ≠ yn– in Sn— ,— are glued to f ≠ x1, x1 in Sn–,–.

Gluing rules for sp(n–)(1) so(2n—)(2)3 : We can take any geometry with 1 Æ

‹ Æ 2n– + 7 ≠ 3n— for sp(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ 8 ≠ n– for
so(2n—)(2). The (non-geometric) gluing rules are:

• f ≠ x1 ≠ x2, x1 ≠ x2, x2n—
≠ x2n—+2, x2n—

≠ x2n—+1, x2n—+1 ≠ x2n—+3, x2n—+2 ≠ x2n—+3
in S0,– are glued to f, f, f, f, f, f in S0,—.

• xi+1 ≠ xi+2, x2n—≠i ≠ x2n—≠i+1, x2n—+i+2 ≠ x2n—+i+3 in S0,– are glued to f, f, f in
Si,— for i = 1, · · · , n— ≠ 2.

• xn—
≠ xn—+1, xn—

≠ xn—+1, xn—+1 ≠ xn—+2, xn—+1 ≠ xn—+2, x3n—+1, x3n—+1 in S0,– are
glued to f, f, f, f, x1, y1 in Sn—≠1,—.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn—≠1,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• f ≠ xn– , f ≠ yn– in Sn—≠1,— are glued to f ≠ x1, x1 in Sn–,–.

Again, the fact that 3n— = 2n– + 8 is not allowed manifests in the above gluing rules.
The total number of blowups carried by S0,– is at max 2n– + 7 but the gluing rules
require the presence of 2n– + 9 blowups on S0,–. See the discussion around (3.38) for
an explanation of this restriction.
Gluing rules for su(n–)(1) su(n—)(1)2 : We can take any geometry with 0 Æ

‹ Æ 2n– ≠ 2n— for su(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ n– for su(n—)(1).
The gluing rules are:

• f ≠ x1, xn—
≠ xn—+1, x2n—

in S0,– are glued to f ≠ x1, f, xn– in S0,—.

• xi ≠ xi+1, xn—+i ≠ xn—+i+1 in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.
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Gluing rules for su(n–)(1) su(n—)(1)3 : We can take any geometry with 0 Æ

‹ Æ 2n– ≠ 3n— for su(n–)(1), and any geometry with 0 Æ ‹ Æ 2n— ≠ n– for su(n—)(1).
The gluing rules are:

• f ≠x1, xn—
≠xn—+1, x2n—

≠x2n—+1, x3n—
in S0,– are glued to f ≠x1, f, f, xn– in S0,—.

• xi ≠ xi+1, xn—+i ≠ xn—+i+1, x2n—+i ≠ x2n—+i+1 in S0,– are glued to f, f, f in Si,— for
i = 1, · · · , n— ≠ 1.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.

Gluing rules for su(2n–)(2) su(n—)(1)2 : We can take any geometry with 0 Æ

‹ Æ 2n— ≠ 2n– for su(n—)(1). The gluing rules are:

• f ≠ yn—
, xn—

, f ≠ x1, y1 in S0,– are glued to x2n–≠1, x2n– , f ≠ x2, f ≠ x1 in S0,—.

• xi ≠ xi+1, yi+1 ≠ yi in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xi ≠ xi+1, x2n–≠i ≠ x2n–≠i+1 in S0,— are glued to f, f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– ≠ xn–+1 in S0,— is glued to f in Sn–,–.

Gluing rules for su(2n– ≠ 1)(2) su(n—)(1)2 : We can take any geometry with
1 Æ ‹ Æ 2n— ≠ 2n– + 1 for su(n—)(1). The (non-geometric) gluing rules are:

• yn—
, xn—

, f ≠ x1, f ≠ y1, f, f in S0,– are glued to x2n–≠1, x2n–≠1, y1, f ≠ x1, x1 ≠

x2, f ≠ x2 ≠ y1 in S0,—.

• xi ≠ xi+1, yi ≠ yi+1 in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xi+1 ≠xi+2, x2n–≠i≠1 ≠x2n–≠i in S0,— are glued to f, f in Si,– for i = 1, · · · , n– ≠2.

• xn– ≠ xn–+1 in S0,— is glued to f in Sn–≠1,–.

Gluing rules for g(1)2 su(2)(1)2 : We can take any geometry with 1 Æ ‹ Æ 3

for g(1)2 , and we must use the geometry with ‹ = 1 for su(2)(1). The (non-geometric)
gluing rules are:

• f ≠ x1, y1 in S0,– are glued to f ≠ x2, f ≠ x1 in S0,—.

• x1 ≠ y1 in S0,– is glued to f in S1,—.
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• x2 ≠ x3 in S0,— is glued to f in S2,–.

• x1 ≠ x2, x3, x3 in S0,— are glued to f, x1, y1 in S1,–.

• f ≠ x1, f ≠ y1 in S1,– are glued to f ≠ x1, x1 in S1,—.

Gluing rules for g(1)2 su(2)(1)3 : We can take any geometry with 2 Æ ‹ Æ 3

for g(1)2 , and we must use the geometry with ‹ = 1 for su(2)(1). The (non-geometric)
gluing rules are:

• f ≠ x1, y1, x2 ≠ y2 in S0,– are glued to f ≠ x2, f ≠ x1, f in S0,—.

• x1 ≠ x2, y2 ≠ y1 in S0,– are glued to f, f in S1,—.

• x2 ≠ x3 in S0,— is glued to f in S2,–.

• x1 ≠ x2, x3, x3 in S0,— are glued to f, x1, y1 in S1,–.

• f ≠ x1, f ≠ y1 in S1,– are glued to f ≠ x1, x1 in S1,—.

Gluing rules for so(7)(1) sp(1)(1)2 and so(7)(1) su(2)(1)2 : We can
take any geometry with 1 Æ ‹ Æ 7 ≠ 2�–– for so(7)(1), any geometry with 0 Æ ‹ Æ 6
for sp(1)(1), and we must use the geometry with ‹ = 0 for su(2)(1). The gluing rules
are:

• f ≠ x1, y1 in S0,– are glued to f ≠ x2, f ≠ x1 in S0,—.

• x1 ≠ y1 in S0,– is glued to f in S1,—.

• x3, x4 in S0,— are glued to f ≠ x1, y1 in S1,–.

• x2 ≠ x3 in S0,— is glued to f in S2,–.

• x1 ≠ x2, x3 ≠ x4 in S0,— are glued to f, f in S3,–.

• x1 ≠ y1 in S1,– is glued to f in S1,—.

Gluing rules for so(7)(1) su(2)(1)3 : We can take any geometry with 2 Æ ‹ Æ

3 for so(7)(1), and we must use the geometry with ‹ = 0 for su(2)(1). The gluing rules
are:

• f ≠ x1, y1, x2 ≠ y2 in S0,– are glued to f ≠ x2, f ≠ x1, f in S0,—.
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• x1 ≠ x2, y2 ≠ y1 in S0,– are glued to f, f in S1,—.

• x3, x4 in S0,— are glued to f ≠ x1, y1 in S1,–.

• x2 ≠ x3 in S0,— is glued to f in S2,–.

• x1 ≠ x2, x3 ≠ x4 in S0,— are glued to f, f in S3,–.

• x1 ≠ y1 in S1,– is glued to f in S1,—.

Gluing rules for so(8)(2) sp(1)(1)2 : We can take any geometry with 0 Æ ‹ Æ

6 for sp(1)(1). The gluing rules are:

• f ≠ x1, y1 in S1,– are glued to x3, x4 in S0,—.

• x1 ≠ y1 in S1,– is glued to f in S1,—.

• f ≠ x1 ≠ x2, f ≠ x3 ≠ x4 in S0,— are glued to f, f in S0,–.

• x2 ≠ x3 in S0,— is glued to f in S2,–.

• x1 ≠ x2, x3 ≠ x4 in S0,— are glued to f, f in S3,–.

Gluing rules for so(2n–)(1) sp(n—)(1)2 : We can take any geometry with n— Æ

‹ Æ 2n– ≠ 4 ≠ �––
≠ n— for so(2n–)(1), and any geometry with 0 Æ ‹ Æ 2n— + 8 ≠ n–

for sp(n—)(1). The gluing rules are:

• f ≠ x1, y1 in S0,– are glued to f ≠ x2, f ≠ x1 in S0,—.

• xi ≠ xi+1, yi+1 ≠ yi in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ yn—

in S0,– is glued to f in Sn— ,—.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.

• xn–≠1, xn– in S0,— are glued to f ≠ x1, y1 in Sn–,–.

• xi ≠ xi+1, yi+1 ≠ yi in Sn–,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ yn—

in Sn–,– is glued to f in Sn— ,—.

Gluing rules for so(2n– + 1)(1) sp(n—)(1)2 : We can take any geometry with
n— Æ ‹ Æ 2n– ≠ 3 ≠ �––

≠ n— for so(2n– + 1)(1), and any geometry with 1 Æ ‹ Æ

2n— + 8 ≠ n– for sp(n—)(1). The gluing rules are:
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• f ≠ x1, y1 in S0,– are glued to f ≠ x2, f ≠ x1 in S0,—.

• xi ≠ xi+1, yi+1 ≠ yi in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ yn—

in S0,– is glued to f in Sn— ,—.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– , xn– in S0,— are glued to x1, y1 in Sn–,–.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn–,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• f ≠ xn—
, f ≠ yn—

in Sn–,– are glued to f ≠ x1, x1 in Sn— ,—.

The blowup x1 in Sn— ,— can be used to glue sp(n—)(1) to exactly one more neighboring
node connected to it by an undirected edge. The neighboring node can carry so(2n“ +
1)(1), g(1)2 or so(2n“)(2).

Gluing rules for so(2n–)(2) sp(n—)(1)2 : We can take any geometry with n— Æ

‹ Æ 2n– ≠ 8 ≠ n— for so(2n–)(2), and any geometry with 1 Æ ‹ Æ 2n— + 8 ≠ n– for
sp(n—)(1). The gluing rules are:

• f ≠ x1, y1, f in S0,– are glued to f ≠ x2, f ≠ x1, x1 ≠ x2 in S0,—.

• xi ≠ xi+1, yi+1 ≠ yi in S0,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ yn—

in S0,– is glued to f in Sn— ,—.

• xi+1 ≠ xi+2 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 2.

• xn– , xn– in S0,— are glued to x1, y1 in Sn–≠1,–.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn–≠1,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• f ≠ xn—
, f ≠ yn—

in Sn–≠1,– are glued to f ≠ x1, x1 in Sn— ,—.

Again, the blowup x1 in Sn— ,— can be used to glue sp(n—)(1) to exactly one more neigh-
boring node carrying so(2n“ + 1)(1), g(1)2 or so(2n“)(2).

Gluing rules for so(2n–)(1) sp(n—)(1)3 : We can take any geometry with 2n— Æ

‹ Æ 2n– ≠ 8 ≠ n— for so(2n–)(1), and any geometry with 0 Æ ‹ Æ 2n— + 8 ≠ n– for
sp(n—)(1). The gluing rules are:

• f ≠ x1, x2n—
≠ y2n—

, y1 in S0,– are glued to f ≠ x2, f, f ≠ x1 in S0,—.
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• xi≠xi+1, yi+1≠yi, x2n—≠i≠x2n—≠i+1, y2n—≠i+1≠y2n—≠i in S0,– are glued to f, f, f, f

in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ xn—+1, yn—+1 ≠ yn—

in S0,– are glued to f, f in Sn— ,—.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.

• xn–≠1, xn– in S0,— are glued to f ≠ x1, y1 in Sn–,–.

• xi ≠ xi+1, yi+1 ≠ yi in Sn–,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ yn—

in Sn–,– is glued to f in Sn— ,—.

Gluing rules for so(2n– + 1)(1) sp(n—)(1)3 : We can take any geometry with
2n— Æ ‹ Æ 2n– ≠7≠n— for so(2n–+1)(1), and any geometry with 1 Æ ‹ Æ 2n— +8≠n–

for sp(n—)(1). The (non-geometric) gluing rules are:

• f ≠ x1, x2n—
≠ y2n—

, y1 in S0,– are glued to f ≠ x2, f, f ≠ x1 in S0,—.

• xi≠xi+1, yi+1≠yi, x2n—≠i≠x2n—≠i+1, y2n—≠i+1≠y2n—≠i in S0,– are glued to f, f, f, f

in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ xn—+1, yn—+1 ≠ yn—

in S0,– are glued to f, f in Sn— ,—.

• xi ≠ xi+1 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 1.

• xn– , xn– in S0,— are glued to x1, y1 in Sn–,–.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn–,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• f ≠ xn—
, f ≠ yn—

in Sn–,– are glued to f ≠ x1, x1 in Sn— ,—.

Gluing rules for so(2n–)(2) sp(n—)(1)3 : We can take any geometry with 2n— Æ

‹ Æ 2n– ≠ 8 ≠ n— for so(2n–)(2), and any geometry with 1 Æ ‹ Æ 2n— + 8 ≠ n– for
sp(n—)(1). The (non-geometric) gluing rules are:

• f ≠ x1, x2n—
≠ y2n—

, y1, f in S0,– are glued to f ≠ x2, f, f ≠ x1, x1 ≠ x2 in S0,—.

• xi≠xi+1, yi+1≠yi, x2n—≠i≠x2n—≠i+1, y2n—≠i+1≠y2n—≠i in S0,– are glued to f, f, f, f

in Si,— for i = 1, · · · , n— ≠ 1.

• xn—
≠ xn—+1, yn—+1 ≠ yn—

in S0,– are glued to f, f in Sn— ,—.

• xi+1 ≠ xi+2 in S0,— is glued to f in Si,– for i = 1, · · · , n– ≠ 2.
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• xn– , xn– in S0,— are glued to x1, y1 in Sn–≠1,–.

• xi+1 ≠ xi, yi+1 ≠ yi in Sn–≠1,– are glued to f, f in Si,— for i = 1, · · · , n— ≠ 1.

• f ≠ xn—
, f ≠ yn—

in Sn–≠1,– are glued to f ≠ x1, x1 in Sn— ,—.

5.4 Gluing rules involving non-gauge-theoretic nodes

There are only three such nodes which are listed below

1
sp(0)(1)◊

(5.180)

2
su(1)(1)

(5.181)

2
su(1)(1)

(5.182)

The theta angle for sp(0)(1) is physically irrelevant as long as there is no neighboring
su(8).

First consider the edges shown as last two entries of Table 4. The gluing rules for
these cases are as follows.

Gluing rules for 2
su(1)(1)

1
sp(1)(1)

and 2
su(1)(1)

2
su(2)(1)

: We can choose any
geometry with 1 Æ ‹ Æ 10 for sp(1)(1) and any geometry with 1 Æ ‹ Æ 4 for su(2)(1).
The (non-geometric) gluing rules are:

• f ≠ x ≠ y in S0,– is glued to f in S0,—.

• x, y in S0,– are glued to f ≠ x1, x1 in S1,—.

As in cases discussed in last subsection, the blowup x1 in S1,— can be used for gluing
sp(1)(1) or su(2)(1) with another neighbor such that the gluing rules for sp(1)(1) or
su(2)(1) with that neighbor allow a blowup on S1,— to be used for more than once.

The gluing rules for the edges shown in Table 5 are as follows.

Gluing rules for 1
sp(0)(1)

2
su(1)(1)

:

• 3l ≠
q

xi in S0,– is glued to f in S0,—.
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See Appendix (B.2) for a derivation of the above gluing rules.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

:

• f ≠ x, x in S0,– are glued to f ≠ x, x in S0,—.

The blowups x in S0,– and x in S0,— can be used for gluing to other su(1)(1) neighbors.
See Appendix (B.2) for a derivation of the above gluing rules.

Now consider the edges shown in the last entry of Table 9:

Gluing rules for 2
su(2)(1)

2
su(1)(1)

:

• f ≠ x1, x1 in S0,– are glued to x, y in S0,—.

• f in S1,– is glued to f ≠ x ≠ y in S0,—.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

:

• 2h ≠ x ≠ 2y, f ≠ x in S0,– are glued to f ≠ x, x in S0,—.

The blowup x in S0,— can be used for gluing to other su(1)(1) neighbors. See Appendix
(B.2) for a derivation of the above gluing rules. We remind the reader that this gluing
rule involves the non-geometric node (5.161) and hence the above gluing rules should
be viewed only as an algebraic description and not as a geometric description. See the
discussion after equation (5.160) for more details.

Now consider the last entry of Table 11:

Gluing rules for 2
su(2)(1)

2
su(1)(1)

2 : We can use any geometry with 1 Æ ‹ Æ 3 for
su(2)(1). The gluing rules are:

• f ≠ x1, x1 in S0,– are glued to x, y in S0,—.

• f ≠ x1, x1 in S1,– are glued to f ≠ x, f ≠ y in S0,—.

– 102 –



The blowups x1 in S0,– and x1 in S1,– can also be used for gluing to other neighboring
nodes of su(2)(1) that carry some su(n)(1).

Gluing rules for 2
su(2)(1)

2
su(1)(1)

3 : We can use any geometry with 1 Æ ‹ Æ 3 for
su(2)(1). The gluing rules are:

• f ≠ x1, x1 in S0,– are glued to x, y in S0,—.

• f ≠ x1, x1 in S1,– are glued to 2f ≠ x, f ≠ y in S0,—.

The blowups x1 in S0,– and x1 in S1,– can also be used for gluing to other neighboring
nodes of su(2)(1) that carry some su(n)(1).

Gluing rules for 2
su(1)(1)

2
su(1)(1)

2 :

• f ≠ x, x in S0,– are glued to 2f ≠ x, x in S0,—.

(Note that the gluing rules proposed above are non-geometric.) The blowups x in S0,–
and x in S0,— can be used to further glue to other neighboring su(1)(1). See Appendix
(B.2) for a derivation of the above gluing rules.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

3 :

• f ≠ x, x in S0,– are glued to 3f ≠ x, x in S0,—.

(Note that the gluing rules proposed above are non-geometric.) The blowups x in S0,–
and x in S0,— can be used to further glue to other neighboring su(1)(1).

5.4.1 sp(0)(1) gluings: untwisted, without non-simply-laced

At this point, we are only left with gluings of sp(0)(1) to other nodes carrying non-trivial
gauge algebras. In this case, we also have to provide gluing rules for two neighbors at
a time. This is because the torus fiber for dP9 is 3l ≠

q
xi which involves all of the

blowups. So all of the blowups must appear in the gluing rules associated to each edge.
This is in stark contrast to the gluing rules for non-trivial algebras g(q) where (typically)
the blowups used for gluing rules associated to di�erent edges are di�erent. Thus in
the case of g(q), the gluing rules for di�erent edges naturally decouple. However, in the
case of sp(0)(1), we have to provide gluing rules for multiple neighbors at a time and
show explicitly that the curves inside dP9 involved in gluing rules for di�erent edges
do not intersect. It turns out that in the context of 6d SCFTs, sp(0)(1) can only have
a maximum of two neighbors carrying non-trivial algebras.
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In the case when all the neighbors are untwisted, sp(0)(1) gluings were first studied
in [4]. For the completeness of our presentation, we reproduce their results in this sub-
section (providing enhanced explanations while we do so) before moving onto sp(0)(1)
gluings arising in the twisted case. Following [4], we will represent these sp(0)(1) gluing
rules in a graphical notation that we review as we review the results of [4].

To start with, let us consider the gluing rules for

sp(0)(1) e(1)8 (5.183)

which are displayed below

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) e(1)8

(5.184)
where each node denotes a curve in dP9 whose genus is zero and self-intersection is ≠2.
If there are n edges between two nodes, it denotes that the two corresponding curves
intersect in n number of points. Each curve Ca shown above is glued to the fiber f of
a Hirzebruch surface Sa in the geometry associated to e(1)8 . Which curve glues to the
fiber of which Sa can be figured out from the position of the curve in the graph above,
because the graph takes the form of the corresponding Dynkin diagram, which in this
case is e(1)8 . Notice that
ÿ

a

daCa =(x8 ≠ x9) + 2(x7 ≠ x8) + 3(x6 ≠ x7) + 4(x5 ≠ x6) + 5(x4 ≠ x5) + 6(x1 ≠ x4)

+ 4(x2 ≠ x1) + 2(x3 ≠ x2) + 3(l ≠ x1 ≠ x2 ≠ x3)
= 3l ≠

ÿ
xi (5.185)

and thus the torus fibers on both nodes are glued to each other, satisfying (5.60) for
the untwisted case.

Now, we can use the above gluing rules to obtain gluing rules for regular maximal
subalgebras of e8 as follows. For example, to obtain the gluing rules for

su(2)(1) sp(0)(1) e(1)7 (5.186)

we first delete the second curve from the left x7 ≠x8 in (5.184). After this deletion, the
graph takes the form of Dynkin diagram for finite algebra su(2) ü e7. To obtain the
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gluing rules for (5.186), we simply need to add two extra ≠2 curves to the graph such
that the finite Dynkin diagram of su(2) is converted to the a�ne Dynkin diagram of
su(2)(1) and similarly the finite Dynkin diagram of e7 is converted to the a�ne Dynkin
diagram of e(1)7 . This is easy to do since we know that a weighted sum of the ≠2
curves participating in gluing to each a�ne Dynkin diagram must be 3l ≠

q
xi. This

requirement uniquely fixes the extra ≠2 curves that need to be added. We thus obtain

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

l ≠ x3 ≠ x8 ≠ x9x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

su(2)(1)sp(0)(1)e(1)7

(5.187)
as the gluing rules for (5.186). l ≠ x3 ≠ x8 ≠ x9 glues to the fiber of a�ne surface for
e(1)7 and x8 ≠ x9 glues to the fiber of a�ne surface for su(2)(1). Notice that the curves
in each sub-Dynkin diagram sum up to 3l≠ q

xi if the sum is weighted by the Coxeter
labels of the corresponding a�ne Dynkin diagram. Also notice that the curves forming
the Dynkin diagram for e(1)7 do not intersect the curves forming the Dynkin diagram for
su(2)(1), which explicitly shows that the gluing rules for the two neighbors of sp(0)(1)
decouple from each other as required.

Incidentally, (5.187) allows us to determined gluing rules for

sp(0)(1) e(1)7 (5.188)

and
sp(0)(1) su(2)(1) (5.189)

without any other second neighbor for sp(0)(1). This is done by only keeping the curves
spanning the Dynkin diagram of e(1)7 or the Dynkin diagram of su(2)(1), while omitting
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the rest of the curves from (5.187). Thus, we obtain

l ≠ x3 ≠ x8 ≠ x9x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) e(1)7

(5.190)
with the fiber in a�ne surface glued to l ≠ x3 ≠ x8 ≠ x9 and

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

sp(0)(1) su(2)(1)

(5.191)

with the fiber in a�ne surface glued to x8 ≠ x9.
Deleting other nodes from (5.184), we can obtain the following gluing rules

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) so(16)(1)

(5.192)

where x8 ≠ x9 glues to the fiber of a�ne surface for so(16)(1).

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ x8

sp(0)(1) su(9)(1)

(5.193)
where x8 ≠ x9 glues to the fiber of a�ne surface for su(9)(1).
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x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

l ≠ x7 ≠ x8 ≠ x9

x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

su(3)(1)sp(0)(1)e(1)6

(5.194)
where l ≠ x7 ≠ x8 ≠ x9 glues to the fiber of a�ne surface for e(1)6 and x8 ≠ x9 glues to
the fiber of a�ne surface for su(3)(1). Incidentally, this also allows us to obtain the
following individual gluing rules

l ≠ x7 ≠ x8 ≠ x9

x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) e(1)6

(5.195)

with the fiber in a�ne surface glued to l ≠ x7 ≠ x8 ≠ x9, and

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

sp(0)(1) su(3)(1)

(5.196)

with the fiber in a�ne surface glued to x8 ≠ x9.
Now we can delete some nodes from the above set of gluing rules to obtain gluing

rules for other algebras that arise as regular maximal subalgebras of the above algebras.
For example, by deleting nodes from (5.192), we can obtain the gluing rules for

so(8)(1) sp(0)(1) so(8)(1) (5.197)
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since so(8) ü so(8) is a regular maximal subalgebra of so(16). The gluing rules are

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

l ≠ x3 ≠ x6 ≠ x7

l ≠ x1 ≠ x2 ≠ x3

so(8)(1)sp(0)(1)so(8)(1)

(5.198)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.
Tha bove gluing rules imply that the gluing rules for a single so(8)(1) are obtained by
amputating one of the so(8)(1) sub-graph from (5.198).

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7

l ≠ x3 ≠ x6 ≠ x7

sp(0)(1) so(8)(1)

(5.199)

with the fiber in a�ne surface glued to x8≠x9. The reader might wonder what happens
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if amputate the other so(8)(1) sub-graph from (5.198) to obtain the gluing rules as

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

l ≠ x1 ≠ x2 ≠ x3

(5.200)

It turns out that (5.199) and (5.200) are related by an automorphism of dP9. To see
this, let’s first relabel the blowups as

x1 ¡ x7 (5.201)
x2 ¡ x6 (5.202)
x3 ¡ x5 (5.203)
x4 ¡ x8 (5.204)

so that (5.199) is converted to

x4 ≠ x9 x1 ≠ x4

2l ≠ x1 ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8

x2 ≠ x1

l ≠ x1 ≠ x2 ≠ x5 (5.205)

Now we perform two basic automorphisms of dP9. The basic automorphisms are de-
scribed in Appendix A.2 and involve a choice of three blowups. For the first basic
automorphism we choose the blowups x1, x2 and x4, and after performing this opera-
tion the gluing rules (5.205) are transformed to

l ≠ x1 ≠ x2 ≠ x9 x1 ≠ x4

2l ≠ x1 ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8

x2 ≠ x1

x4 ≠ x5 (5.206)
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For the second basic automorphism we choose x6, x7 and x8 thus transforming (5.206)
to

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4

l ≠ x1 ≠ x2 ≠ x3

x2 ≠ x1

x4 ≠ x5 (5.207)

which precisely matches (5.200), thus demonstrating that (5.199) and (5.200) are iso-
morphic gluing rules.

This will hold true in general in what follows. Whenever we will find two seemingly
di�erent gluing rules, they will always turn out to be related by an automorphism,
except for two cases. These two cases are the gluing rules for su(8)(1) and su(8)(2),
where we find two possible gluing rules in each case. The two possibilities correspond
to di�erent choices of theta angle for sp(0) in the 6d theory.

Let us collect all of the remaining gluing rules below

x8 ≠ x9

x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

su(4)(1)sp(0)(1)so(10)(1)

(5.208)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x1 ≠ x3 ≠ x4

sp(0)(1) so(14)(1)

(5.209)
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where the fiber in a�ne surface glues to x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

l ≠ x7 ≠ x8 ≠ x9

x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

su(2)(1)sp(0)(1)e(1)6

(5.210)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and l ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9 l ≠ x1 ≠ x2 ≠ x3

su(2)(1)sp(0)(1)so(12)(1)

(5.211)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

su(3)(1)sp(0)(1)so(10)(1)

(5.212)
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where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9

x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x2 ≠ x3 ≠ x5

su(4)(1)sp(0)(1)so(8)(1)

(5.213)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9 l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) so(12)(1)

(5.214)

where the fiber in a�ne surface glues to 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4

3l ≠ 2x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ x8

sp(0)(1) su(7)(1)

(5.215)
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where the fiber in a�ne surface glues to x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

su(2)(1)sp(0)(1)so(10)(1)

(5.216)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x2 ≠ x3 ≠ x5

su(3)(1)sp(0)(1)so(8)(1)

(5.217)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) so(10)(1)

(5.218)
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where the fiber in a�ne surface glues to 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5

3l ≠ x1 ≠ x2 ≠ x3 ≠ 2x4 ≠ x5 ≠ x6 ≠ x7 ≠ x8

sp(0)(1) su(6)(1)

(5.219)

where the fiber in a�ne surface glues to x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

l ≠ x2 ≠ x3 ≠ x5

su(2)(1)sp(0)(1)so(8)(1)

(5.220)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

su(3)(1)sp(0)(1)su(6)(1)

(5.221)

– 114 –



where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠

x7 ≠ x8 ≠ x9.

x4 ≠ x6 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

su(3)(1)sp(0)(1)su(5)(1)

(5.222)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠

x7 ≠ x8 ≠ x9.

x1 ≠ x6 x2 ≠ x1 x3 ≠ x2

3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

su(3)(1)sp(0)(1)su(4)(1)

(5.223)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠
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x7 ≠ x8 ≠ x9.

x2 ≠ x6 x3 ≠ x2

3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

su(3)(1)sp(0)(1)su(3)(1)

(5.224)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠

x7 ≠ x8 ≠ x9.

x3 ≠ x6 3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

su(3)(1)sp(0)(1)su(2)(1)

(5.225)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ x2 ≠ 2x3 ≠ x4 ≠ x5 ≠

x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ 2x5 ≠ x6 ≠ x7 ≠ x8

sp(0)(1) su(5)(1)

(5.226)
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where the fiber in a�ne surface glues to x8 ≠ x9.

x8 ≠ x9

x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

x6 ≠ x7

sp(0)(1) su(4)(1)

(5.227)

where the fiber in a�ne surface glues to x8 ≠ x9.
Finally, we come to the gluing rules for su(8)(1) for which we have two versions

depending on the choice of theta angle for sp(0). The adjoint of e8 decomposes into
the adjoint plus an irreducible spinor of so(16). In our study, this spinor corresponds
to the node of so(16) Dynkin diagram whose corresponding fiber is glued to x2 ≠ x1 in
(5.192). This is visible from the gluing rules (5.184) for e(1)8 since the extra particles
in adjoint of e8 come from the curve x3 ≠ x2 which indeed transform in the spinor of
so(16) associated to x2 ≠ x1 since x3 ≠ x2 intersects x2 ≠ x1.

Now, to obtain the gluing rules for su(8)(1), we delete 2l≠x1≠x2≠x4≠x5≠x6≠x7
from (5.192), and we have the choice to either delete l ≠ x1 ≠ x2 ≠ x3 or x2 ≠ x1. This
latter choice leads to another choice of spinor of so(16). If we delete x2 ≠ x1, then this
matches the previous choice of spinor we had, and leads to the gluing rules for ◊ = 0.
If we delete l ≠ x1 ≠ x2 ≠ x3, then this does not match the previous choice of spinor
we had, and leads to the gluing rules for ◊ = fi. In the latter case, su(8) gauges the
spinor of so(16) in the adjoint of e8, and in the former case it does not. Thus the latter
case has less global symmetry compared to former. We refer the reader to [38] for more
details. The two gluing rules are thus as follows:

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

3l ≠ x1 ≠ 2x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ x8

sp(0)(1)fi su(8)(1)

(5.228)
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x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 l ≠ x1 ≠ x2 ≠ x3

2l ≠ x1 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ x8

sp(0)(1)0 su(8)(1)

(5.229)
In both the cases, the fiber in a�ne surface glues to x8 ≠ x9.

5.4.2 sp(0)(1) gluings: untwisted, with non-simply-laced

Until now, we have only considered simply laced subalgebras of e8. To generalize
our gluing rules to non-simply laced subalgebras of e8, we use the folding of Dynkin
diagrams. The Dynkin diagrams for untwisted a�ne non-simply laced algebras can be
produced by folding the Dynkin diagrams for untwisted a�ne simply laced algebras.
The foldings relevant in our analysis are:

so(2n)(1) æ so(2n ≠ 1)(1) (5.230)

e(1)6 æ f(1)4 (5.231)

so(8)(1) æ so(7)(1) æ g(1)2 (5.232)

For example, to obtain the gluing rules for

sp(0)(1) so(15)(1) (5.233)

we simply fold the graph (5.192) to obtain

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

sp(0)(1) so(15)(1)

(5.234)
where the fiber in a�ne surface glues to x8 ≠ x9 and the rightmost node denotes two
≠2 curves x2 ≠ x1 and l ≠ x1 ≠ x2 ≠ x3. Both of these curves glue to a copy of the
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fiber of the corresponding surface in the geometry for so(15)(1). We can check that the
weighted sum of fibers equals 3l ≠

q
xi.

Since we can now have multiple gluing curves associated to the gluing of dP9 to
some other surface, we have to make sure that all of the gluing curves are on an equal
footing. More precisely, we have to make sure that the condition (5.17) is satisfied,
which translates to the following condition. Let Sa be the di�erent surfaces dP9 is
glued to, and let Ci

a be the di�erent gluing curves in dP9 for the gluing to Sa. The total
gluing curve for the gluing to Sa is

Ca :=
ÿ

i

Ci
a (5.235)

Then (5.17) translates to the condition that

Ci
a · Cb = Cj

a · Cb (5.236)

for all i, j, a, b. It can be easily verified that (5.234) satisfies this condition. This
condition (5.236) will be an important consistency condition in what follows and the
reader can verify that all of the geometries that follow satisfy (5.236).

By folding other gluing rules presented above, we can obtain the following gluing
rules

x8 ≠ x9

x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7

l ≠ x1 ≠ x2 ≠ x3, x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

su(4)(1)sp(0)(1)so(9)(1)

(5.237)
where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4, l ≠ x1 ≠ x3 ≠ x4

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

sp(0)(1) so(13)(1)

(5.238)
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where the fiber in a�ne surface glues to x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

l ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x2 ≠ x1, x4 ≠ x5 x3 ≠ x2, x5 ≠ x6l ≠ x1 ≠ x2 ≠ x3

su(3)(1)sp(0)(1)f(1)4

(5.239)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and l ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

l ≠ x1 ≠ x2 ≠ x3

so(7)(1)sp(0)(1)so(8)(1)

(5.240)

– 120 –



where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

so(7)(1)sp(0)(1)so(7)(1)

(5.241)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1

l ≠ x1 ≠ x2 ≠ x3

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

so(8)(1)sp(0)(1)g(1)2

(5.242)
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where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9

so(11)(1)sp(0)(1)su(2)(1)

(5.243)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

l ≠ x1 ≠ x2 ≠ x3, x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

so(9)(1)sp(0)(1)su(3)(1)

(5.244)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9

x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2, l ≠ x2 ≠ x3 ≠ x5

so(7)(1)sp(0)(1)su(4)(1)

(5.245)
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where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9

sp(0)(1) so(11)(1)

(5.246)

where the fiber in a�ne surface glues to 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

l ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x2 ≠ x1, x4 ≠ x5 x3 ≠ x2, x5 ≠ x6l ≠ x1 ≠ x2 ≠ x3

su(2)(1)sp(0)(1)f(1)4

(5.247)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and l ≠ x7 ≠ x8 ≠ x9.

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

so(7)(1)sp(0)(1)g(1)2

(5.248)
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where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x4 ≠ x5

x1 ≠ x4

x2 ≠ x1

3l ≠ x1 ≠ 2x2 ≠ x3 ≠ x4 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

su(4)(1)sp(0)(1)g(1)2

(5.249)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ 2x2 ≠ x3 ≠ x4 ≠ x6 ≠

x7 ≠ x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

l ≠ x1 ≠ x2 ≠ x3, x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

so(9)(1)sp(0)(1)su(2)(1)

(5.250)
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where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2, l ≠ x2 ≠ x3 ≠ x5

so(7)(1)sp(0)(1)su(3)(1)

(5.251)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

l ≠ x1 ≠ x2 ≠ x3, x4 ≠ x5 x1 ≠ x4 x2 ≠ x1 x3 ≠ x2

sp(0)(1) so(9)(1)

(5.252)

where the fiber in a�ne surface glues to 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

l ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x2 ≠ x1, x4 ≠ x5 x3 ≠ x2, x5 ≠ x6l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) f(1)4

(5.253)

where the fiber in a�ne surface glues to l ≠ x7 ≠ x8 ≠ x9.

x1 ≠ x4 x2 ≠ x1, x4 ≠ x5, l ≠ x1 ≠ x2 ≠ x32l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

g(1)2sp(0)(1)g(1)2

(5.254)
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where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x4 ≠ x5 x1 ≠ x4

3l ≠ 2x1 ≠ x2 ≠ x3 ≠ x4 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

g(1)2sp(0)(1)su(3)(1)

(5.255)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ 2x1 ≠ x2 ≠ x3 ≠ x4 ≠ x6 ≠

x7 ≠ x8 ≠ x9.

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2, l ≠ x2 ≠ x3 ≠ x5

su(2)(1)sp(0)(1)so(7)(1)

(5.256)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x1 ≠ x4 x2 ≠ x1 x3 ≠ x2, l ≠ x2 ≠ x3 ≠ x5

sp(0)(1) so(7)(1)

(5.257)
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where the fiber in a�ne surface glues to 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9.

x4 ≠ x5 3l ≠ x1 ≠ x2 ≠ x3 ≠ 2x4 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

g(1)2sp(0)(1)su(2)(1)

(5.258)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 3l ≠ x1 ≠ x2 ≠ x3 ≠ 2x4 ≠ x6 ≠

x7 ≠ x8 ≠ x9.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

sp(0)(1) g(1)2

(5.259)

where the fiber in a�ne surface glues to x8 ≠ x9.
The above cases do not completely exhaust all the possible non-simply laced sub-

algebras of e8. Some of these subalgebras cannot be thought of as foldings of simply
laced subalgebras of e8. One such example is f4 ü g2. Notice that unfolding f(1)4 ü g(1)2
leads to e(1)6 ü so(8)(1), but e6 ü so(8) is not a subalgebra of e8. To obtain the gluing
rules for this example, we find a collection of curves giving rise to g(1)2 not intersecting
(5.253) and satisfying (5.236):

l ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x2 ≠ x1, x4 ≠ x5 x3 ≠ x2, x5 ≠ x6l ≠ x1 ≠ x2 ≠ x3

x8 ≠ x9 x7 ≠ x8 l ≠ x1 ≠ x4 ≠ x7, l ≠ x2 ≠ x5 ≠ x7, l ≠ x3 ≠ x6 ≠ x7

g(1)2sp(0)(1)f(1)4

(5.260)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and l ≠ x7 ≠ x8 ≠ x9. Notice that
even though, by the virtue of (5.236), the total gluing curves see di�erent component
gluing curves equally, the di�erent components do not. For example, even though the
gluing curve x3 ≠ x2 has di�erent intersections with the gluing curves l ≠ x2 ≠ x5 ≠ x7
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and l ≠ x1 ≠ x4 ≠ x7, the total gluing curve (x3 ≠ x2) + (x5 ≠ x6) equal intersections
with the two gluing curves l≠x2 ≠x5 ≠x7 and l≠x1 ≠x4 ≠x7, as required by (5.236).
Similar remarks apply to many of the gluing rules that follow.

To obtain the gluing rules for so(9) ü so(7), we start from (5.241) and extend the
chains for one of the so(7):

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x6 ≠ x7

x4 ≠ x5 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

x2 ≠ x6, l ≠ x2 ≠ x3 ≠ x6

so(7)(1)sp(0)(1)so(9)(1)

(5.261)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.
By folding so(7)(1) we can obtain g(1)2 , so folding the above gluing rules we obtain

the following gluing rules

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3, x4 ≠ x5

x2 ≠ x6, l ≠ x2 ≠ x3 ≠ x6

g(1)2sp(0)(1)so(9)(1)

(5.262)

where the fibers in a�ne surfaces glue to x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9.
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5.4.3 sp(0)(1) gluings: twisted algebras, undirected edges

Now we provide gluing rules for the cases involving twisted gauge algebras and undi-
rected edges, that is gluing rules of the form

g(q–)
– sp(0)(1) g(q“)

“ (5.263)

Most of these gluing rules can be understood as foldings of gluing rules of the form

g(1)– sp(0)(1) g(1)“ (5.264)

provided above. The relevant foldings are

so(4n)(1) æ su(2n)(2) æ su(2n ≠ 1)(2) (5.265)
so(7)(1) æ su(4)(2) æ su(3)(2) (5.266)

so(2n+ 1)(1) æ so(2n)(2) (5.267)

g(1)2 æ su(3)(2) (5.268)

e(1)7 æ e(2)6 (5.269)

f(1)4 æ so(8)(3) (5.270)

For example, for so(14)(2), we fold (5.234) to obtain

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 l ≠ x1 ≠ x2 ≠ x3
≠x5 ≠ x6 ≠ x7

sp(0)(1) so(14)(2)

(5.271)
where two copies of fibers in a�ne surface glue to x8≠x9, 2l≠x1≠x2≠x4≠x5≠x6≠x7.
Let da be the dual Coxeter labels for so(14)(2) and fa be the fibers in the Hirzebruch
surfaces corresponding to so(14)(2). Then,

2dafa =(x8 ≠ x9) + (2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7) + 2(x7 ≠ x8) + 2(x6 ≠ x7) + 2(x5 ≠ x6)
+ 2(x4 ≠ x5) + 2(x1 ≠ x4) + (x2 ≠ x1) + (l ≠ x1 ≠ x2 ≠ x3)

=3l ≠
ÿ

xi (5.272)

Thus, (5.60) holds true in this case. Same holds true for all the following examples in
this subsection, as the reader can verify.
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To obtain other so(2n)(2) of lower rank, we add the curves lying in the middle of
the chain in (5.271). Adding x4≠x5 to x1‘≠x4, we obtain the gluing rules for so(12)(2):

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x5 ≠ x6 x1 ≠ x5 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 l ≠ x1 ≠ x2 ≠ x3
≠x5 ≠ x6 ≠ x7

sp(0)(1) so(12)(2)

(5.273)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to fibers in a�ne surface.
Continuing in this fashion, we obtain

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x1 ≠ x6 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) so(10)(2)

(5.274)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to fibers in a�ne surface.

x8 ≠ x9, x7 ≠ x8 x1 ≠ x7 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) so(8)(2)

(5.275)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to fibers in a�ne surface.

x8 ≠ x9, x1 ≠ x8 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x1 ≠ x2 ≠ x3

sp(0)(1) su(4)(2)

(5.276)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to fibers in a�ne surface.
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By folding (5.192), we obtain the following two gluing rules

x8 ≠ x9, x7 ≠ x8, x6 ≠ x7, x5 ≠ x6

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, l ≠ x1 ≠ x2 ≠ x3

x4 ≠ x5x1 ≠ x4x2 ≠ x1

sp(0)(1)0 su(8)(2)

(5.277)

where x8 ≠ x9, x2 ≠ x1 glue to fibers in the a�ne surface.

x8 ≠ x9, x7 ≠ x8, x6 ≠ x7, x5 ≠ x6

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, x2 ≠ x1

x4 ≠ x5x1 ≠ x4l ≠ x1 ≠ x2 ≠ x3

sp(0)(1)fi su(8)(2)

(5.278)

where x8 ≠ x9, l ≠ x1 ≠ x2 ≠ x3 glue to fibers in the a�ne surface.
Combining x6 ≠ x7, x5 ≠ x6 and x4 ≠ x5 in (5.277), we obtain the gluing rules for

su(6)(2):

x8 ≠ x9, x7 ≠ x8, x4 ≠ x7

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, l ≠ x1 ≠ x2 ≠ x3

x1 ≠ x4x2 ≠ x1

sp(0)(1) su(6)(2)

(5.279)

where x8 ≠ x9, x2 ≠ x1 glue to fibers in the a�ne surface.
Folding (5.277), we obtain

x8 ≠ x9, x7 ≠ x8, x6 ≠ x7, x5 ≠ x6
x4 ≠ x5x1 ≠ x4x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

sp(0)(1) su(7)(2)

(5.280)
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where x8 ≠ x9, x2 ≠ x1, l≠ x1 ≠ x2 ≠ x3 and2l≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to four
copies of fiber in the a�ne surface.

By adding the curves in the previous configuration, we obtain the following two:

x8 ≠ x9, x7 ≠ x8, x4 ≠ x7
x1 ≠ x4x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

sp(0)(1) su(5)(2)

(5.281)

where x8 ≠ x9, x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3 and 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to
four copies of fiber in the a�ne surface.

x8 ≠ x9, x1 ≠ x8
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

sp(0)(1) su(3)(2)

(5.282)

where x8 ≠ x9, x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3 and 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to
four copies of fiber in the a�ne surface.

Folding (5.253), we obtain

x1 ≠ x4 x2 ≠ x1, x3 ≠ x2,

sp(0)(1) so(8)(3)

x4 ≠ x5,

l ≠ x1 ≠ x2 ≠ x3

x5 ≠ x6,

l ≠ x7 ≠ x8 ≠ x9 (5.283)

where x3 ≠ x2, x5 ≠ x6 and l ≠ x7 ≠ x8 ≠ x9 glue to three copies of fiber in the a�ne
surface.

By folding (5.190) and (5.187) we obtain:

x6 ≠ x7, x5 ≠ x6, x4 ≠ x5, x1 ≠ x4 l ≠ x1 ≠ x2 ≠ x3
x2 ≠ x1x3 ≠ x2l ≠ x3 ≠ x8 ≠ x9

sp(0)(1) e(2)6

(5.284)
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where l ≠ x3 ≠ x8 ≠ x9 and x6 ≠ x7 glue to two copies of fiber in the a�ne surface.

x6 ≠ x7, x5 ≠ x6, x4 ≠ x5, x1 ≠ x4 l ≠ x1 ≠ x2 ≠ x3
x2 ≠ x1x3 ≠ x2l ≠ x3 ≠ x8 ≠ x9

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

su(2)(1)sp(0)(1)e(2)6

(5.285)

where x8 ≠ x9, l ≠ x3 ≠ x8 ≠ x9 and x6 ≠ x7 glue to fibers inside corresponding a�ne
surfaces.

In a similar fashion, by folding other configurations and sometimes adding some of
the curves in them, we can obtain the following configurations:

x3 ≠ x2, x2 ≠ x1 x1 ≠ x4 x4 ≠ x5,
2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9 l ≠ x1 ≠ x2 ≠ x3

x8 ≠ x9

x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

x6 ≠ x7

su(4)(1)sp(0)(1)so(8)(2)

(5.286)

where x8 ≠ x9, 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9 and x3 ≠ x2 glue to fibers inside
corresponding a�ne surfaces.

x3 ≠ x2, x2 ≠ x1 x1 ≠ x4 x4 ≠ x5,
2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9 l ≠ x1 ≠ x2 ≠ x3

x8 ≠ x9

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

x6 ≠ x8

su(3)(1)sp(0)(1)so(8)(2)

(5.287)
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where x8 ≠ x9, 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9 and x3 ≠ x2 glue to fibers inside
corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9, l ≠ x1 ≠ x2 ≠ x3

x6 ≠ x7

x1 ≠ x4 x2 ≠ x1, x4 ≠ x5

l ≠ x3 ≠ x6 ≠ x7

su(4)(2)sp(0)(1)so(8)(1)

(5.288)

where x8 ≠ x9, 2l≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 and l≠ x1 ≠ x2 ≠ x3 glue to fibers inside
corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7

l ≠ x3 ≠ x6 ≠ x7

x4 ≠ x5, x1 ≠ x4
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)so(8)(1)

(5.289)
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where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9, x2 ≠ x1, x4 ≠ x5 and l ≠ x1 ≠ x2 ≠ x3
glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9, l ≠ x1 ≠ x2 ≠ x3

x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7

x1 ≠ x4 x2 ≠ x1, x4 ≠ x5

su(4)(2)sp(0)(1)so(7)(1)

(5.290)

where x8 ≠ x9, 2l≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 and l≠ x1 ≠ x2 ≠ x3 glue to fibers inside
corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7

x4 ≠ x5, x1 ≠ x4
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)so(7)(1)

(5.291)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9, x2 ≠ x1, x4 ≠ x5 and l ≠ x1 ≠ x2 ≠ x3
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glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x1 ≠ x4 x2 ≠ x1, x4 ≠ x5

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9, l ≠ x1 ≠ x2 ≠ x3

su(4)(2)sp(0)(1)g(1)2

(5.292)

where x8 ≠ x9, 2l≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 and l≠ x1 ≠ x2 ≠ x3 glue to fibers inside
corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8 x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x4 ≠ x5, x1 ≠ x4
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)g(1)2

(5.293)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9, x2 ≠ x1, x4 ≠ x5 and l ≠ x1 ≠ x2 ≠ x3
glue to fibers inside corresponding a�ne surfaces.

x6 ≠ x7, x5 ≠ x6 x4 ≠ x5 x1 ≠ x4 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9 l ≠ x1 ≠ x2 ≠ x3

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8 x8 ≠ x9

su(2)(1)sp(0)(1)so(10)(2)

(5.294)
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where x8 ≠ x9 and 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9, x6 ≠ x7 glue to fibers inside
corresponding a�ne surfaces.

x6 ≠ x7, x5 ≠ x6 x1 ≠ x5 x2 ≠ x1,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x8 ≠ x9 l ≠ x1 ≠ x2 ≠ x3

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8 x8 ≠ x9

su(2)(1)sp(0)(1)so(8)(2)

(5.295)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 and x5 ≠ x9 glue to fibers inside
corresponding a�ne surfaces.

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x2 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x2 ≠ x3 ≠ x6

x4 ≠ x5 x1 ≠ x4

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

so(7)(1)sp(0)(1)so(8)(2)

(5.296)

where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9
glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x2 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x2 ≠ x3 ≠ x6

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x4 ≠ x5, l ≠ x1 ≠ x2 ≠ x3, x2 ≠ x1

g(1)2sp(0)(1)so(8)(2)

(5.297)
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where x8 ≠ x9, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9
glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x2 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x2 ≠ x3 ≠ x6

x4 ≠ x5, x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3

su(4)(2)sp(0)(1)so(8)(2)

2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 (5.298)

where x8≠x9, 2l≠x1≠x2≠x4≠x5≠x6≠x7, x4≠x5 and 2l≠x1≠x2≠x6≠x7≠x8≠x9
glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9, x7 ≠ x8 x6 ≠ x7 x2 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x2 ≠ x3 ≠ x6

x4 ≠ x5, x1 ≠ x4
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)so(8)(2)

(5.299)

where 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, x8 ≠ x9, x4 ≠ x5, x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3 and
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9, x6 ≠ x8 x2 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x2 ≠ x3 ≠ x6

x4 ≠ x5, x1 ≠ x4
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)su(4)(2)

(5.300)
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where 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, x8 ≠ x9, x4 ≠ x5, x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3 and
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding a�ne surfaces.

x4 ≠ x5, x1 ≠ x4
x2 ≠ x1,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9, x6 ≠ x8
x2 ≠ x6,

l ≠ x2 ≠ x3 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)su(3)(2)

(5.301)

where 2l≠x1 ≠x2 ≠x4 ≠x5 ≠x6 ≠x7, x8 ≠x9, x2 ≠x6, l≠x2 ≠x3 ≠x6, x4 ≠x5, x2 ≠x1,
l ≠ x1 ≠ x2 ≠ x3 and 2l≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding
a�ne surfaces.

l ≠ x7 ≠ x8 ≠ x9 x1 ≠ x4 x2 ≠ x1, x4 ≠ x5 x3 ≠ x2, x5 ≠ x6l ≠ x1 ≠ x2 ≠ x3

x8 ≠ x9, x7 ≠ x8
l ≠ x1 ≠ x4 ≠ x7,
l ≠ x2 ≠ x5 ≠ x7,
l ≠ x3 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)f(1)4

(5.302)

where x8 ≠ x9, l ≠ x1 ≠ x4 ≠ x7, l ≠ x2 ≠ x5 ≠ x7, l ≠ x3 ≠ x6 ≠ x7 and l ≠ x7 ≠ x8 ≠ x9
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glue to fibers inside corresponding a�ne surfaces.

x1 ≠ x4 x2 ≠ x1, x3 ≠ x2,

x4 ≠ x5,

l ≠ x1 ≠ x2 ≠ x3

x5 ≠ x6,

l ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9, x7 ≠ x8
l ≠ x1 ≠ x4 ≠ x7,
l ≠ x2 ≠ x5 ≠ x7,
l ≠ x3 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)so(8)(3)

(5.303)

where x8 ≠ x9, l ≠ x1 ≠ x4 ≠ x7, l ≠ x2 ≠ x5 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, x3 ≠ x2, x5 ≠ x6, and
l ≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding a�ne surfaces.

x1 ≠ x4 x2 ≠ x1, x3 ≠ x2,

x4 ≠ x5,

l ≠ x1 ≠ x2 ≠ x3

x5 ≠ x6,

l ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

su(3)(1)sp(0)(1)so(8)(3)

(5.304)

where x8 ≠ x9, x3 ≠ x2, x5 ≠ x6, and l≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding
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a�ne surfaces.

x1 ≠ x4 x2 ≠ x1, x3 ≠ x2,

x4 ≠ x5,

l ≠ x1 ≠ x2 ≠ x3

x5 ≠ x6,

l ≠ x7 ≠ x8 ≠ x9

x8 ≠ x9 3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ x7 ≠ 2x8

su(2)(1)sp(0)(1)so(8)(3)

(5.305)

where x8 ≠ x9, x3 ≠ x2, x5 ≠ x6, and l≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding
a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

x1 ≠ x4, x2 ≠ x1 x3 ≠ x2,

su(4)(2)sp(0)(1)su(3)(1)

l ≠ x2 ≠ x3 ≠ x5 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

(5.306)

where x8 ≠ x9, x3 ≠ x2 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9 glue to fibers inside
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corresponding a�ne surfaces.

x8 ≠ x9 x6 ≠ x7

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ 2x6 ≠ x7 ≠ x8

x7 ≠ x8

x1 ≠ x4, x2 ≠ x1
x3 ≠ x2,

l ≠ x2 ≠ x3 ≠ x5,
2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)su(4)(1)

(5.307)

where x8 ≠ x9, x3 ≠ x2, x1 ≠ x4, l ≠ x2 ≠ x3 ≠ x5 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9
glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

3l ≠ x1 ≠ x2 ≠ x3 ≠ x4 ≠ x5 ≠ x6 ≠ 2x7 ≠ x8

x1 ≠ x4, x2 ≠ x1
x3 ≠ x2,

l ≠ x2 ≠ x3 ≠ x5,
2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)su(3)(1)

(5.308)

where x8 ≠ x9, x3 ≠ x2, x1 ≠ x4, l ≠ x2 ≠ x3 ≠ x5 and 2l ≠ x2 ≠ x3 ≠ x6 ≠ x7 ≠ x8 ≠ x9
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glue to fibers inside corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7 x2 ≠ x6, l ≠ x2 ≠ x3 ≠ x6

x4 ≠ x5, x1 ≠ x4 x2 ≠ x1, l ≠ x1 ≠ x2 ≠ x3
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(4)(2)sp(0)(1)so(9)(1)

(5.309)

where x8 ≠ x9, x4 ≠ x5 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 glue to fibers inside
corresponding a�ne surfaces.

x8 ≠ x9 x7 ≠ x8

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x6 ≠ x7 x2 ≠ x6, l ≠ x2 ≠ x3 ≠ x6

x2 ≠ x1, x1 ≠ x4
x4 ≠ x5,

l ≠ x1 ≠ x2 ≠ x3,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

su(3)(2)sp(0)(1)so(9)(1)

(5.310)

where x8 ≠ x9, x2 ≠ x1, x4 ≠ x5, l ≠ x1 ≠ x2 ≠ x3 and 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9
glue to fibers inside corresponding a�ne surfaces.

Now, we are left with some possibilities that do not arise as foldings. For example,
the unfolding of e(2)6 ü su(3)(1) is e(1)7 ü su(3)(1) which cannot be embedded into e(1)8 . To
obtain the gluing rules for this case, we notice that folding of (5.190) has zero mutual
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intersection with (5.196).

x6 ≠ x7, x5 ≠ x6, x4 ≠ x5, x1 ≠ x4

l ≠ x1 ≠ x2 ≠ x3

x2 ≠ x1x3 ≠ x2l ≠ x3 ≠ x8 ≠ x9

x8 ≠ x9, x7 ≠ x8
x6 ≠ x7,

l ≠ x3 ≠ x6 ≠ x7,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)e(2)6

(5.311)

where x8 ≠ x9, x6 ≠ x7, l ≠ x3 ≠ x6 ≠ x7, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, x6 ≠ x7 and
l ≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding a�ne surfaces.

In a similar fashion, by folding, adding curves or by guessing a correct configuration
of curves, we can obtain all the other following gluing rules:

x8 ≠ x9, x7 ≠ x8, x6 ≠ x7, x5 ≠ x6, x4 ≠ x5
x2 ≠ x3x1 ≠ x2l ≠ x1 ≠ x4 ≠ x5,

l ≠ x1 ≠ x3 ≠ x6,
l ≠ x1 ≠ x2 ≠ x7

sp(0)(1) su(9)(2)

x3 ≠ x4

(5.312)

where x8 ≠ x9, l≠ x1 ≠ x4 ≠ x5, l≠ x1 ≠ x3 ≠ x6 and l≠ x1 ≠ x2 ≠ x7 glue to four copies
of fiber in the a�ne surface.

x5 ≠ x2, x2 ≠ x1 x1 ≠ x4 x4 ≠ x5,
l ≠ x2 ≠ x3 ≠ x5 2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9

x5 ≠ x6, x6 ≠ x7 x7 ≠ x8 x8 ≠ x9,
l ≠ x3 ≠ x5 ≠ x6 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

so(8)(2)sp(0)(1)so(8)(2)

(5.313)
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where x8≠x9, 2l≠x1≠x2≠x4≠x5≠x6≠x7, x4≠x5 and 2l≠x1≠x2≠x6≠x7≠x8≠x9
glue to fibers inside corresponding a�ne surfaces.

x4 ≠ x5, x1 ≠ x4 x2 ≠ x1 x7 ≠ x2 x5 ≠ x7,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 l ≠ x3 ≠ x5 ≠ x7

x8 ≠ x9, x6 ≠ x8 x5 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 l ≠ x3 ≠ x5 ≠ x6

su(4)(2)sp(0)(1)so(10)(2)

(5.314)

where x8≠x9, 2l≠x1≠x2≠x4≠x5≠x6≠x7, x4≠x5 and 2l≠x1≠x2≠x6≠x7≠x8≠x9
glue to fibers inside corresponding a�ne surfaces.

x4 ≠ x5, x1 ≠ x4 x2 ≠ x1 x7 ≠ x2 x5 ≠ x7,
2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 l ≠ x3 ≠ x5 ≠ x7

x8 ≠ x9, x6 ≠ x8
x5 ≠ x6,

l ≠ x3 ≠ x5 ≠ x6,
2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)so(10)(2)

(5.315)

where x8 ≠ x9, x5 ≠ x6, l ≠ x3 ≠ x5 ≠ x6, 2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7, x4 ≠ x5 and
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2l ≠ x1 ≠ x2 ≠ x6 ≠ x7 ≠ x8 ≠ x9 glue to fibers inside corresponding a�ne surfaces.

l ≠ x1 ≠ x2 ≠ x4, x4 ≠ x5, x5 ≠ x9,
l ≠ x2 ≠ x3 ≠ x6 l ≠ x2 ≠ x7 ≠ x8

x1 ≠ x4

x8 ≠ x9, x7 ≠ x8
l ≠ x1 ≠ x4 ≠ x7,
l ≠ x2 ≠ x5 ≠ x7,
l ≠ x3 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)su(6)(2)

x2 ≠ x1

(5.316)

where x8≠x9, l≠x1≠x4≠x7, l≠x2≠x5≠x7, l≠x3≠x6≠x7, x5≠x9 and l≠x2≠x7≠x8
glue to fibers inside corresponding a�ne surfaces.

l ≠ x1 ≠ x2 ≠ x4, x4 ≠ x5,

x5 ≠ x9

l ≠ x2 ≠ x3 ≠ x6,

l ≠ x2 ≠ x7 ≠ x8,

x1 ≠ x4

x8 ≠ x9, x7 ≠ x8
l ≠ x1 ≠ x4 ≠ x7,
l ≠ x2 ≠ x5 ≠ x7,
l ≠ x3 ≠ x6 ≠ x7

su(3)(2)sp(0)(1)su(5)(2)

x2 ≠ x1

(5.317)

where x8 ≠x9, l≠x1 ≠x4 ≠x7, l≠x2 ≠x5 ≠x7, l≠x3 ≠x6 ≠x7, x5 ≠x9, l≠x2 ≠x3 ≠x6,
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l ≠ x1 ≠ x2 ≠ x4 and l ≠ x2 ≠ x7 ≠ x8 glue to fibers inside corresponding a�ne surfaces.

l ≠ x1 ≠ x2 ≠ x3 x1 ≠ x4, x4 ≠ x7,

x2 ≠ x5,

x3 ≠ x6

x5 ≠ x8,

x6 ≠ x9

l ≠ x1 ≠ x4 ≠ x7 x1 ≠ x2, x2 ≠ x3,

x4 ≠ x5,

x7 ≠ x8

x5 ≠ x6,

x8 ≠ x9

so(8)(3)sp(0)(1)so(8)(3)

(5.318)

where x8 ≠ x9, x5 ≠ x6, x2 ≠ x3, x6 ≠ x9, x5 ≠ x8 and x4 ≠ x7 glue to fibers inside
corresponding a�ne surfaces.

5.4.4 sp(0)(1) gluings: Directed edges

Finally we consider cases in which one or both the neighbors of sp(0)(1) are connected
to it via directed edges. Our main constraint comes from (5.60) which states that the
torus fibers must be glued appropriately. Let us define C0,– be a ≠2 curve in dP9 which
glues to the a�ne surface for g(q–)

– in the gluing rule associated to an undirected edge,
that is gluing rule for

sp(0)(1) g(q–)
– (5.319)

If q– = 1, then there is a unique C0,–. If q– > 1, then there can be multiple such
≠2 curves. In this case, we pick the curve containing the blowup x9 as C0,–. This
uniquely fixes the ≠2 curve C0,–. The reason for the prominence of the blowup x9 in
this definition is that the KK mass 1

R enters into the volume of x9, and the volume
of any other curve in dP9 that does not involve x9 is independent of 1

R . We refer the
reader to [4] for more details.

To obtain the gluing rules for

g(q–)
– sp(0)(1) g(q“)

“
e“

(5.320)

we start from the gluing rules for

g(q–)
– sp(0)(1) g(q“)

“ (5.321)
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and simply replace the curve C0,“ in dP9 by the curve C0,“ + e“ (3l ≠
q

xi). Similarly,
to obtain the gluing rules for

g(q–)
– sp(0)(1) g(q“)

“
e“e–

(5.322)

we start from the gluing rules for

g(q–)
– sp(0)(1) g(q“)

“ (5.323)

and simply replace the curves C0,“ and C0,– in dP9 by the curves C0,“ + e“ (3l ≠
q

xi)
and C0,– + e– (3l ≠

q
xi) respectively. It is trivial to see that this replacement satisfies

(5.60).
Now we only need to consider gluing rules of the form

sp(0)(1) g(q“)
“

e“

(5.324)

since in the context of 6d SCFTs, it is not possible for any other node to attach to
sp(0)(1) in (5.324).

We first work out the following gluing rules by hand:

x8 ≠ x9, x7 ≠ x8,

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x4 ≠ x5,

x4 ≠ x6,

sp(0)(1) so(8)(1)2

x2 ≠ x1 x1 ≠ x4

x5 ≠ x7

x6 ≠ x7

l ≠ x1 ≠ x2 ≠ x3,

(5.325)

where x8 ≠ x9, x2 ≠ x1 glue to two copies of fiber in the a�ne surface. Indeed we can
check that twice the torus fiber for so(8)(1) is glued to 3l ≠

q
xi.
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By folding the above gluing rules, we obtain:

x4 ≠ x6, x7 ≠ x8,

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x4 ≠ x5,

x2 ≠ x1,

sp(0)(1) so(7)(1)2

x5 ≠ x7 x1 ≠ x4

x8 ≠ x9

x6 ≠ x7,

l ≠ x1 ≠ x2 ≠ x3,

(5.326)

where x8 ≠x9, x2 ≠x1, x6 ≠x7, x4 ≠x5 glue to four copies of fiber in the a�ne surface.
Treating su(3)(1) as a subalgebra of so(7)(1), we can obtain the following gluing

rules

x7 ≠ x8,

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x2 ≠ x7,

sp(0)(1) su(3)(1)2

x1 ≠ x4 x4 ≠ x9

l ≠ x1 ≠ x2 ≠ x3,

(5.327)

where x4 ≠ x9, x2 ≠ x7 glue to two copies of fiber in the a�ne surface.
Finally, folding (5.326), we obtain

x4 ≠ x6,

x7 ≠ x8,

2l ≠ x1 ≠ x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7

x4 ≠ x5,

x2 ≠ x1,

sp(0)(1) su(3)(2)2

x5 ≠ x7

x1 ≠ x4

x8 ≠ x9,

x6 ≠ x7,

l ≠ x1 ≠ x2 ≠ x3,

(5.328)

where x8 ≠ x9, x2 ≠ x1, x6 ≠ x7, x4 ≠ x5, x4 ≠ x6, x5 ≠ x7, l ≠ x1 ≠ x2 ≠ x3, 2l ≠ x1 ≠

x2 ≠ x4 ≠ x5 ≠ x6 ≠ x7 glue to eight copies of fiber in the a�ne surface.
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6 Conclusions and future directions

In this paper, we have associated a genus-one fibered Calabi-Yau threefold to every 5d
KK theory, except a few cases for which we provide an algebraic description mimicking
the properties of genus-one fibered Calabi-Yau threefolds. Compactifying M-theory
on the threefold constructs the KK theory on its Coulomb branch. The threefold is
presented as a local neighborhood of a collection of surfaces intersecting with each other.
We explicitly identify all the surfaces and their intersections for every KK theory. Such
a description of the threefold allows an easy determination of the set of all compact
holomorphic curves (known as the Mori cone) inside the threefold along with their
intersection numbers with other cycles in the threefold. The Mori cone encodes crucial
non-perturbative data needed to perform RG flows on the KK theory which lead to 5d
SCFTs. For the cases without a completely geometric description we propose an analog
of Mori cone using which one can perform RG flows on these outlying KK theories as
well.

According to a conjecture (see [2–4]) for which substantial evidence was provided
in [2], all the 5d SCFTs sit at the end points of such RG flows emanating from 5d KK
theories. Thus, this work can be viewed as providing a preliminary step towards an
explicit classification of 5d SCFTs. In principle, the Coulomb branch data of all 5d
SCFTs is encoded in the properties of Calabi-Yau threefolds presented in this paper
(see Section 5). Explicitly, such RG flows are performed by performing sequences of
flops and blowdowns on the Calabi-Yau threefolds associated to 5d KK theories. See
[2–4] for a general discussion and [10] for the explicit classification of 5d SCFTs upto
rank three using the results of this paper. Extending the classification to higher ranks,
perhaps using a computer program, would be of significant interest.

The Calabi-Yau threefold associated to a 5d KK theory is determined by combin-
ing the data of the prepotential of the KK theory with certain geometric consistency
conditions. We provide a concrete proposal for the computation of this prepotential
based on the definition of the 5d KK theory in terms of a 6d SCFT on a circle and
twisted by a discrete global symmetry around the circle. See Section 4 for more details.

Along the way, we provide a graphical classification scheme for 5d KK theories
which mimics the graphical classification scheme used to classify 6d SCFTs. In fact
the graphs associated to 5d KK theories generalize the graphs associated to 6d SCFTs
just as Dynkin graphs associated to general Lie algebras generalize the Dynkin graphs
associated to simply laced Lie algebras. We provide a full list of all the possible vertices
and edges that can appear in graphs associated to 5d KK theories. See Section 3 for
more details. We leave an explicit classification of 5dKK theories to a future work. Such
a classification can be performed in a straightforward fashion starting from the explicit
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classification of 6d SCFTs presented in [33, 36] and applying the folding operations
discussed in Section 3.

A noteworthy point deserving a special mention is that our work applies uniformly
to all 6d SCFTs irrespective of whether they are constructed in the frozen phase of
F-theory or in the unfrozen phase of F-theory. In other words, the dictionary relating
M-theory and 5d KK theories applies uniformly to all 5d KK theories irrespective of
the F-theory origin of the associated 6d SCFT. This is in stark contrast with the case
of 6d SCFTs for which the dictionary relating F-theory and the resulting 6d theory is
modified depending on the presence (called the frozen phase) or absence (called the
unfrozen phase) of O7+ planes in the base of the elliptic Calabi-Yau threefold used for
compactification of F-theory. See [32] for more details.

In the future, it will be interesting to use the geometries presented in this paper
to derive 5d gauge theory descriptions associated to 6d SCFTs compactified on a cir-
cle (possibly with a twist). This can be done by performing local S-dualities on the
geometries associated to 5d KK theories. See the recent work [54] for more details on
the methodology.
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A Geometric background

In this section, we recall some background useful for this paper. We refer the reader
to Section 2 of [4] for a more detailed background on various points discussed below in
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this appendix.

A.1 Hirzebruch surfaces

A Hirzebruch surface is a P1 fibration over P1. We denote a Hirzebruch surface with a
degree ≠n fibration as Fn. We refer to the fiber P1 as f and the base P1 as e. Their
intersection numbers are

e2 = ≠n (A.1)
f 2 = 0 (A.2)

e · f = 1 (A.3)

Another very important curve in Fn is

h := e+ nf (A.4)

whose genus is zero and intersection numbers are

h2 = n (A.5)
h · e = 0 (A.6)
h · f = 1 (A.7)

Note that e = h for F0. The set of holomorphic curves, often referred to as Mori cone,
for Fn with n Ø 0 is generated by e and f . For Fn with n Æ 0, the Mori cone is
generated by h and f .

The canonical class K of Fn is an antiholomorphic curve which can be determined
by the virtue of adjunction formula which states that for a surface S and a curve C

inside S, the canonical class KS of S satisfies

(KS + C) · C = 2g(C) ≠ 2 (A.8)

where g(C) is the genus of C. Demanding that K satisfies (A.8) for e, f determines it
to be

K = ≠(e+ h+ 2f) (A.9)

from which we can compute that
K2 = 8 (A.10)

Notice that Fn and F≠n are isomorphic to each other via the map

e ¡ h (A.11)
f ¡ f (A.12)
h ¡ e (A.13)
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Thus, we will restrict our attention to Hirzebruch surfaces with n Ø 0 in what follows.
However, at various points in the main body of the paper we find it useful to include
Hirzebruch surfaces with negative degrees since they allow us to express answers in a
more uniform way.

We also deal with surfaces which arise by performing b number of blowups on Fn.
The blowups will often be non-generic. We can obtain di�erent surfaces by performing
b blowups in di�erent fashions on Fn. In this paper, we refer to all the di�erent surfaces
arising via b blowups of Fn as Fb

n. The curves inside Fb
n can be described by adding the

curves xi with i = 1, · · · , b which are the exceptional divisors created by the blowups.
We will use the convention that the total transforms21 of the curves e, f and h are
denoted by the same names e, f and h in Fb

n. Thus, the intersection numbers between
e, f and h are those mentioned above, and their intersections with xi are

xi · xj = ≠”ij (A.14)
e · xi = 0 (A.15)
f · xi = 0 (A.16)
h · xi = 0 (A.17)

The blowup procedure creates curves that can be written as

–e+ —f ≠
ÿ

“ixi (A.18)

with –, —, “i Ø 0. The important point is that the blowups xi can appear with negative
sign.

Again, using the adjunction formula (A.8) we can find the canonical class K for
Fb
n to be

K = ≠(e+ h+ 2f) +
ÿ

xi (A.19)

from which we compute
K2 = 8 ≠ b (A.20)

An important isomorphism exists between F1
0 and F1

1 with the blowup on both
surfaces being performed at a generic point. In fact, a single blowup of F0 is always
generic. The map from F1

1 to F1
0 is

e æ e ≠ x (A.21)
f ≠ x æ x (A.22)

x æ f ≠ x (A.23)
21If B : S̃ æ S is a blowup of a surface S, then the total transform of a curve C in S is the curve

f
≠1(C) in S̃.
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It is easy to see that the above isomorphism only works when the blowups are generic.
For, the non-generic one point blowup of F1 contains the curve e ≠ x, which would
be sent to e ≠ f inside F1

0. But e ≠ f is not a holomorphic curve in F1
0. The above

isomorphism is responsible for the equivalence of geometries corresponding to

1
sp(n)(1)(n+1)fi

(A.24)

and

1
sp(n)(1)nfi

(A.25)

whenever the theta angle is physically irrelevant. In the situations where theta angle
is physically relevant, the above isomorphism is broken by the presence of neighboring
surfaces.

To di�erentiate between the di�erent surfaces Fb
n for fixed n and b, we have to track

the data of their Mori cone. One important point is that the gluing curves inside the
surfaces must be the generators of Mori cone. In the paper, we find many instances
in which a surface Fb

n appearing in di�erent contexts carries di�erent kinds of gluing
curves, thus demonstrating that the two Fb

n are di�erent surfaces. For example, the
geometry with ‹ = 0 for

2
su(n+ 4)(1)

(A.26)

and the geometry with ‹ = 0 for

1
sp(n)(1)(n+1)fi

(A.27)

both contain a surface F2n+8
0 with di�erent gluing curves e ≠

q
xi and 2e + f ≠

q
xi

respectively. Thus the F2n+8
0 appearing in the two theories are di�erent blowups of F0.

The final point we want to address is that F2 and F0 are same up to decoupled
states. This can be seen by noticing that the Mori cone of latter embeds into the Mori
cone of former. This embedding F0 æ F2 is

e æ e+ f (A.28)
f æ f (A.29)

This means that F2 equals F0 plus some decoupled states. Decoupling these states
corresponds to performing a complex structure deformation F2 æ F0. When F0 and F2
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carry blowups, this conclusion might be changed or unchanged depending on how the
blowups are done. See the discussion after (B.17) for an example where this conclusion
still holds true even in the presence of blowups.

A.2 del Pezzo surfaces

The discussion of del Pezzo surfaces starts with the discussion of complex projective
plane P2 which contains a single curve l whose genus is zero and intersection number is

l2 = 1 (A.30)

(A.8) determines the canonical class to be

K = ≠3l (A.31)

from which we compute
K2 = 9 (A.32)

Performing n blowups on P2 at generic locations leads to the del Pezzo surface dPn.
It can be described in terms of curve l and xi with intersection numbers

xi · xj = ≠”ij (A.33)
l · xi = 0 (A.34)

Again, the blowups create new holomorphic curves which can be written as

–l ≠
ÿ

“ixi (A.35)

with –, “i Ø 0. In the paper, we abuse the notation and call a non-generic n point
blowup of P2 as dPn too. The canonical class for dPn is

K = ≠3l +
ÿ

xi (A.36)

with
K2 = 9 ≠ n (A.37)

del Pezzo surfaces and Hirzebruch surfaces are related to each other by virtue of
an isomorphism dP1 æ F1 which acts as

x æ e (A.38)
l ≠ x æ f (A.39)

l æ h (A.40)
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A one point blowup of P2 is always generic and thus there is a unique dP1 which appears
in the above isomorphism.

A special example of del Pezzo surfaces for us in this paper will be dP9 which is
the geometry associated to

1
sp(0)(1)

(A.41)

The curve
F = 3l ≠

ÿ
xi (A.42)

has the properties that
F 2 = 0 (A.43)

and
K · F = 0 (A.44)

Thus, F is a fiber of genus one, or in other words a torus fiber inside dP9.
dPn for n Ø 3 admits the following basic automorphism. We first choose three

distinct blowups xi, xj and xk, and then implement

xi æ l ≠ xj ≠ xk (A.45)
xj æ l ≠ xi ≠ xk (A.46)
xk æ l ≠ xi ≠ xj (A.47)
l æ 2l ≠ xi ≠ xj ≠ xk (A.48)

Combining this automorphism with permutations of blowups, we can obtain more gen-
eral automorphisms of dPn (with n Ø 3) which can be decomposed as a sequence
comprising of above mentioned basic automorphisms and permutations of blowups.
Notice that for dP9, any such automorphism leaves the torus fiber (A.42) invariant.

A.3 Arithmetic genus for curves in a self-glued surface

When a surface has no self-gluings, then the arithmetic genus22 of curves living inside
the surface can be computed using the adjunction formula (A.8).

However, when the surface has self-gluings, the genus of the curve is modified. For
example, consider gluing the exceptional curves x and y in a generic two point blowup
of F1. The curve h ≠ x ≠ y looks like an elliptic fiber with nodal singularity, so its
arithmetic genus should be one instead of zero, which is what would be suggested by
(A.8). This example suggests that the intersection numbers of a curve C with the

22Throughout this paper, we never use the geometric genus. Whenever the word “genus” appears
in this paper, it always refers to arithmetic genus.
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curves C1 and C2 participating in a self-gluing should be used to modify (A.8) in order
to obtain the correct arithmetic genus. However, not all such intersection numbers
participate in such a modification. To see this, consider the curve f ≠ x in the above
example. Even though it intersects x, its genus is correctly captured by (A.8).

What we learn from the examples of h ≠ x ≠ y and f ≠ x is that the genus of a
curve C is only modified whenever an intersection with C1 has a partner intersection
with C2. Thus our proposal for the computation of genus of an arbitrary curve C is as
follows: Let n1 and n2 be the intersections of C with C1 and C2 respectively, and let
n = min(n1, n2). Then, our proposal for computation of genus is

2g(C) ≠ 2 = (KS + C) · C + 2n (A.49)

(A.49) allows certain curves to have a non-negative genus even though they did
not have a non-negative genus before self-gluing. For example, consider

• A surface F2
m with x glued to y. The curve e ≠ x ≠ 2y has g = 0 according to

(A.49) while it has g = ≠1 according to (A.8) which is the formula we would use
in the absence of self-gluing. e ≠ x ≠ 2y appears as a gluing curve in some of our
geometries, for example (5.107), (5.108), (5.156) and (5.158).

• A surface F2
0 with e ≠ x glued to e ≠ y. The curve 2f ≠ x has g = 0 according to

(A.49) while it has g = ≠1 according to (A.8). 2f ≠ x appears as a gluing curve
in the gluing rules for

2
su(1)(1)

2
su(1)(1)

2 (A.50)

B Exceptional cases

In this Appendix we study some of the exceptional cases where the methods used in
the paper are not applicable in a straightforward manner.

B.1 Geometries for non-gauge theoretic nodes

The following non-gauge theoretic nodes arise in our analysis

1
sp(0)(1)

(B.1)

2
su(1)(1)

(B.2)
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2
su(1)(1)

(B.3)

According to our proposal the prepotential 6F̃ for each case must be zero. So the
geometry cannot be directly guessed from the prepotential. One can try to take corre-
sponding limits of the geometries for the following gauge theoretic nodes

1
sp(n)(1)

(B.4)

2
su(n)(1)

(B.5)

2
su(n)(1)

(B.6)

But this procedure is unreliable. For example, taking the limit of the geometry (5.112)
would suggest that there should exist a phase of (B.2) governed by the geometry

01+1
0

e-x-y

e
(B.7)

However, even though the self-gluing here satisfies the Calabi-Yau condition (5.18), it
does not satisfy the condition (5.17). So, this is not a consistent geometry, and there
should be no such phase for (B.2).

Fortunately, a gauge theory description of the KK theories (B.1), (B.2) and (B.3)
is known, which allows us to reliably compute the corresponding geometries. In terms
of the language used throughout this paper, this gauge theory description is a “non-
canonical” gauge theory description of these KK theories, since it does not correspond
to the 6d gauge theory description on the tensor branch of the corresponding 6d SCFT.

To start with, it is known that (B.1) can be described by the gauge theory su(2)
with eight fundamental hypers. We can compute the prepotential via

6F = 1
2

Q

a
ÿ

r

|r · „|3 ≠
ÿ

f

ÿ

w(Rf )
|w(Rf ) · „ +mf |

3

R

b (B.8)
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and convert it into a geometry as described in Section 5.1. When all mass parameters
are turned o�, we obtain the geometry

08
1 (B.9)

which equals dP9. See the discussion that follows (5.102).
Next, it is known that (B.2) can be described by the gauge theory sp(1) with an

adjoint hyper and ◊ = 0. Moreover, it is known that upon integrating out the adjoint
matter of sp(n), the theta angle remains unchanged. We know that the geometry
corresponding to pure sp(1) with ◊ = 0 is

00 (B.10)

where we adopt the convention that f is the W-boson of sp(1) and e is an instanton.
So, we just have to integrate the adjoint matter into (B.10) to figure out the geometry
for (B.2). We can write the weights of the adjoint as w1 = (2), w2 = (0) and w3 = (≠2)
in terms of their Dynkin coe�cient. When mass parameter for adjoint is very large,
then according to the discussion in Section 5.1, we should be able to find a ≠1 curve
C living inside a non-compact surface N such that C intersects S0 = F0 transversely
at two points. We can consistently choose the gluing curve for N inside S0 to be f

since N · f must be zero as the mass of the W-boson must be independent of the mass
parameter associated to N which is the mass parameter associated to adjoint hyper.
As we bring the mass of adjoint to zero, C undergoes a flop transition. If a ≠1 curve
living outside a surface S intersects S at two points transversely, then flopping the ≠1
curve leads to the emergence of self-gluing on the surface S. Thus, the geometry for
(B.2) is

01+1
0

x

y
(B.11)

with the gluing curve to N being the genus one curve f ≠ x ≠ y. We can write the
geometry in an isomorphic way by first exchanging e with f , which keeps the descrip-
tion (B.11) while changing the gluing curve to N as e ≠ x ≠ y. Now we perform the
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isomorphism F2
0 æ F2

2 such that

e ≠ x ≠ y æ e (B.12)
f ≠ x æ x (B.13)
f ≠ y æ y (B.14)

x æ f ≠ x (B.15)
y æ f ≠ y (B.16)

which changes (B.11) to

01+1
2

f -x

f -y
(B.17)

with the gluing curve to N being e. As discussed at the end of Appendix A.1, this
geometry gives rise to some decoupled states which can be decoupled by doing a complex
structure deformation to

01+1
0

f -x

f -y
(B.18)

Performing an exchange of e and f again leads to the geometry

01+1
0

e-x

e-y
(B.19)

which is what is displayed in (5.113) because the fiber f becomes an elliptic fiber in this
frame (with a nodal singularity). This is as we would expect from the fact that (B.2)
arises from an untwisted unfrozen 6d SCFT and hence it must be possible to feed the
geometry (B.19) into F-theory, which requires the presence of an elliptic fibration. The
gluing curves for the non-compact surface responsible for mass parameter of adjoint
are x and y in this frame.

Finally, it is known that (B.3) can be described by the gauge theory sp(1) with an
adjoint hyper and ◊ = fi. The geometry corresponding to pure sp(1) with ◊ = fi is

01 (B.20)
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In a similar fashion as above, integrating in the adjoint leads to

01+1
1

x

y
(B.21)

which is indeed the “geometry” presented in (5.160). We write the word geometry
in quotation marks because it is only to be understood as an algebraic description
mimicking the properties of the geometric description available for other KK theories.
See the discussion after equation (5.160) for more details.

B.2 Gluing rules between non-gauge theoretic nodes

As we combine non-gauge theoretic nodes via edges, the prepotential 6F̃ still remains
zero. Thus, another method to compute the gluing rules presented in the main body of
this paper is desirable. The goal of this section is to provide this alternative derivation.

Gluing rules for 2
su(1)(1)

1
sp(0)(1)

: It is known that this KK theory is equivalent
to a 5d sp(2) gauge theory with eight fundamentals and an antisymmetric. The theta
angle for sp(2) is irrelevant due to the presence of fundamentals. So we can start with
geometry corresponding to any theta angle for pure sp(2) and then integrate in the
matter. The geometry with theta angle zero is

16 21
e 2h

(B.22)

where we have labeled the surfaces according to the labeling of the corresponding simple
co-roots of sp(2). Notice that this is di�erent than a similar labeling of the surfaces
in terms of simple co-roots of a�ne algebras used in the main body of the text. The
weights for fundamental are

(1, 0)+

(≠1, 1)+

(1,≠1)+

(≠1, 0)+

where we have arranged the weights in a spindle shape according to their level and the
superscripts on top of the weights denotes the sign of virtual volume of the weights
in the totally integrated out phase (B.22). The last weight (≠1, 0) can be recognized
as a ≠1 curve living in a non-compact surface and intersecting S1 once. Since there
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are eight fundamentals, there are eight copies of the above weight system. Making the
virtual volume of (≠1, 0) negative for all eight copies leads to the phase

18
6 21

e 2h
(B.23)

The weights system in this phase can be written as eight copies of

(1, 0)+

(≠1, 1)+

(1,≠1)+

(≠1, 0)≠

The blowups xi corresponding to eight copies of the weight (≠1, 0). Indeed, the volume
of xi is „1 which is negative of the virtual volume of the weight (≠1, 0) in this phase.
The other weights are obtained by adding the fibers fi of the two surfaces Si. For
example, f1 ≠xi are eight copies of the weight (1,≠1) and indeed vol(f1 ≠xi) = „1 ≠„2
which matches the virtual volume of (1,≠1). Now making the virtual volume of all the
eight copies of the weight (1,≠1) negative corresponds to flopping the curves f1 ≠ xi

in (B.23) where f1 is the fiber of S1. The resulting geometry is

12 28
1

h 2h-
q

xi

(B.24)

with the weight system being eight copies of

(1, 0)+

(≠1, 1)+

(1,≠1)≠

(≠1, 0)≠

The curves xi in the phase (B.24) correspond to eight copies of the weight (1,≠1).
Notice that we can take mass parameter for all eight fundamentals to be zero in this
phase since weights which are negatives of each other have virtual volumes of opposite
signs. Thus, we have completely integrated in the eight fundamentals. Now we move
onto the integration of antisymmetric.

– 162 –



The weight system for antisymmetric of sp(2) in phase (B.24) is

(0, 1)+

(2,≠1)+

(0, 0)+

(≠2, 1)+

(0,≠1)+

Flipping the sign for (0,≠1), we obtain

12 28+1
1

e 2h-
q

xi

(B.25)

with the ninth blowup y on S2 not participating in the gluing curve for S1 inside S2.
Now, flipping the sign for (≠2, 1) corresponds to flopping f2 ≠ y. Since it intersects the
gluing curve 2h ≠

q
xi twice, this results in a self-gluing on S1

11+1
2 28

1
h-x-y 2h+f -

q
xi

x

y (B.26)

The reader can check that both (5.17) and (5.18) are satisfied here. The weight system
of antisymmetric corresponding to this phase is

(0, 1)+

(2,≠1)+

(0, 0)+

(≠2, 1)≠

(0,≠1)≠

with x ≥ y being identified with the weight (≠2, 1). After performing an isomorphism
on S1 can be rewritten as

11+1
0 28

1
f 2h+f -

q
xi

e-x

e-y (B.27)

leading to the same gluing rules as those presented in the main text.
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Gluing rules for 2
su(1)(1)

2
su(1)(1)

: It is known that this KK theory is equivalent
to a 5d su(3) gauge theory with an adjoint and Chern-Simons level zero. The geometry
for su(3) with CS level zero is

11 21
e e

(B.28)

The weight system for adjoint in this phase is

(1, 1)+

(≠1, 2)+ (2,≠1)+

(0, 0)+ (0, 0)+

(1,≠2)+ (≠2, 1)+

(≠1,≠1)+

The weight (≠1,≠1) can be identified with a ≠1 curve living in a non-compact surface
and intersecting both S1 and S2 at one point each. Flipping the sign of this weight
leads to the appearance of a blowup on both S1 and S2

11
1 21

1
e,x e,x

2 (B.29)

Notice that both the blowups are glued to each other. This can be understood as a
consequence of the fact that they both correspond to the same weight i.e. (≠1,≠1)≠,
but since there is a single such weight, these two curves must be identified with each
other. In this flop frame, the weight system is

(1, 1)+

(≠1, 2)+ (2,≠1)+

(0, 0)+ (0, 0)+

(1,≠2)+ (≠2, 1)+

(≠1,≠1)≠

and the curves corresponding (≠1, 2)+ and (≠2, 1)+ can be identified as (f ≠ x)S1 and
(f ≠x)S2 respectively. Flopping both of these, flips the sign of both the weights (≠1, 2)
and (≠2, 1) and leads to the geometry

11+1
0 21+1

0
e-y, f -x e-y, f -x

x

y

x

y

2

(B.30)
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which after performing an isomorphism of both the surfaces can be written as

11+1
0 21+1

0
f -x,x f -x,x

e-x

e-y

e-x

e-y
2

(B.31)

leading to the same gluing rules as those presented in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

2 : It is known that this KK theory is equivalent
to a 5d sp(2) gauge theory with an adjoint and theta angle zero. The geometry for
pure sp(2) with zero theta angle is known to be

16 21
e 2h

(B.32)

The weight system for adjoint in this phase is

(2, 0)+

(0, 1)+

(≠2, 2)+ (2,≠1)+

(0, 0)+ (0, 0)+

(2,≠2)+ (≠2, 1)+

(0,≠1)+

(≠2, 0)+

Flipping the sign for (≠2, 0) leads to the geometry

11+1
6 21

e 2h
x

y (B.33)

In this phase, the weight (0,≠1)+ can be identified with curves f1 ≠x and f1 ≠y, along
with a ≠1 curve z living in a non-compact surface and intersecting S2 at one point. z is
glued to f1≠x but not to f1≠y. Since if it glues also to f1≠y, then it would mean that
f1 ≠ x is glued to f1 ≠ y resulting in another self-gluing of S1, namely f1 ≠ x ≥ f1 ≠ y.
After this self-gluing, the volumes of f1 ≠ x and f1 ≠ y will be „1 ≠ „2 leading to a
contradiction with our starting step that their volume is ≠„2.

Now, to flip the sign of the weight (0,≠1), we have to flop f1 ≠ x ≥ z which
automatically flops f1 ≠ y since its volume is same. The flop of f1 ≠ x creates a new
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blowup on S1 that we call xÕ. Similarly, the flop of f1 ≠ y creates a new blowup on S1
that we call yÕ. Moreover the flop of z creates a blowup on S2 that we call zÕ.

After the flop S1 = F2
4 with f1 ≠ xÕ glued to f1 ≠ yÕ and S2 = F1

2. The total gluing
curve for S2 in S1 is e1 + xÕ + yÕ, and the total gluing curve for S1 in S2 is 2h. The
gluing f1 ≠ x ≥ z transforms into the gluing xÕ

≥ zÕ in the new frame. Thus, the total
gluing curve splits into two gluing curves:

e1 + yÕ
≥ 2h ≠ zÕ (B.34)

xÕ
≥ zÕ (B.35)

The reader can check that the curves involved on both sides in both of these gluings
have same genus, and moreover (5.17) and (5.18) are satisfied for both gluings. Notice
that if we would have tried to split the total gluing curve into three gluing curves
e1, xÕ, yÕ glued respectively to 2h ≠ 2zÕ, zÕ, zÕ, we would have run into two problems.
First is the same problem that we noted before the flop was performed, that this would
imply a second self gluing xÕ

≥ yÕ of S1 and the weight system won’t match with the
system of curves in the geometry anymore. Second, the genus of 2h2 ≠ 2zÕ is ≠1 and
the genus of e1 is +1, so the first gluing curve wouldn’t make sense.

Thus at this step of the integration process, the geometry is

11+1
4 21

1
e+y, x 2h-z, z

f -x

f -y

2

(B.36)

where we have dropped the primes on the blowups. The corresponding weight system
is

(2, 0)+

(0, 1)+

(≠2, 2)+ (2,≠1)+

(0, 0)+ (0, 0)+

(2,≠2)+ (≠2, 1)+

(0,≠1)≠

(≠2, 0)≠

By performing an isomorphism, we can write the geometry as

11+1
2 21

1
e+f -x-2y, f -x 2h-z, z

x

y

2

(B.37)

– 166 –



The weight (2,≠2)+ corresponds to the curve x ≥ y, and the weight (≠2, 1)+ corre-
sponds to the curve f2 ≠ z. Upon flopping them, we obtain the geometry with adjoint
matter completely integrated in

11+1
2 21+1

0
e+f -y, f -x 2e+f -x-2y, f -x

x

y

x

y

2

(B.38)

After an isomorphism, we obtain

11+1
0 21+1

0
f -x, x 2f -x, x

e-x

e-y

e-x

e-y
2

(B.39)

which shows that gluing rules are precisely those quoted in the main text.

Gluing rules for 2
su(1)(1)

2
su(1)(1)

: It is known that this KK theory is equivalent

to a 5d sp(2) gauge theory with an adjoint and theta angle fi. Thus, the analysis for
this case is similar to that of the last case which was

2
su(1)(1)

2
su(1)(1)

2 (B.40)

since only the theta angle is di�erent for these two cases. Following similar steps as
above, the final “geometry”23 analogous to (B.38) is found to be

11+1
2 21+1

1
e+f -y, f -x 2h-x-2y, f -x

x

y

x

y

2

(B.41)

which after an isomorphism becomes

11+1
0 21+1

1
f -x, x 2h-x-2y, f -x

e-x

e-y

x

y

2

(B.42)

which matches the gluing rules claimed in the text.
23We remind the reader that it should only be viewed as an algebraic description since the KK

theory involves the non-geometric node.
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B.3 Theta angle for sp(n)

Notice that there are two inequivalent geometries which give rise to a 5d pure sp(n)
gauge theory:

12n+2 · · · (n ≠ 2)8 n0(n ≠ 1)6
e 2e+fehh e

(B.43)

and
12n+2 · · · (n ≠ 2)8 n1(n ≠ 1)6

e 2hehh e

(B.44)

These two geometries correspond to two di�erent possible values of theta angle. The
only di�erence between (B.43) and (B.44) is whether Sn = F0 or Sn = F1. It is well-
known that (see for instance [2]) for sp(1), ◊ = 0 has S1 = F0 and ◊ = fi has S1 = F1,
while for sp(2), ◊ = 0 has S2 = F1 and ◊ = fi has S2 = F0.

We claim that for higher n, the same pattern continues to hold and the theta angle
corresponding to F0 (or F1) changes by fi (mod 2fi) every time one increases the rank
n by one unit. To see this, one can start from the statement [55] that the KK theory

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

(B.45)

with a total of n nodes is equivalent to a 5d sp(n) gauge theory with an adjoint hyper
and ◊ = fi. We can build the geometry corresponding to (B.45) by using the data
presented in this paper and derived in Appendix (B.2). Now the key point is that
integrating out the adjoint matter does not change the theta angle. So, we can simply
integrate out the adjoint matter from the geometry corresponding to (B.45) to land on
to pure sp(n) theory with ◊ = fi. This process is inverse of the process of integrating
in of matter discussed in Appendices (B.1) and (B.2) and corresponds to making the
virtual volumes of all the weights of adjoint of sp(n) to have the same sign. Once this
is done, it is found that the geometry for ◊ = fi is (B.43) whenever n is even, and the
geometry (B.44) whenever n is odd. From this we conclude that the geometry (B.43)
corresponds to ◊ = ◊0 and the geometry (B.44) corresponds to ◊ = ◊1 where

◊1 = nfi (mod 2fi) (B.46)
◊0 = ◊1 + fi (mod 2fi) (B.47)
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C A concrete non-trivial check of our proposal

We devote this section to a concrete and non-trivial check of our proposal. It is known
that [24] the KK theory

2
su(2)(1)

2
su(2)(1)

2 (C.1)

is equivalent to the 5d gauge theory with gauge algebra su(2) ü su(4) with a hyper
transforming in F ¢ �2. More precisely, the gauge-theoretic phase diagram for the
su(2) ü su(4) embeds into the phase diagram for the KK theory (C.1). In this section
we will show this explicitly.

Let us start with the geometry assigned to (C.1) in the draft with ‹ chosen to be
zero for both su(2)(1):

04
0 0Õ4

0

12 1Õ
2

e, e-
q

xi

e, h

f -x1, x2-x3, x4

f ,f

x1-x2,

f

x1-x2

f -x1, f , x2

x3-x4

2 2

3

2

e, e-
q

xi

e, h

(C.2)

where the surfaces S0 and S1 correspond to the left su(2)(1) in (C.1), and the surfaces
S Õ
0 and S Õ

1 correspond to the right su(2)(1) in (C.1). As visible in the above diagram,
x4 in S0 is glued to x2 in S Õ

0. Flopping this curve, we obtain

03
0 0Õ3

0

11
2 1Õ1

2

e, e-
q

xi

e, h-x

f -x1, x2-x3

f ,f -x

x1-x2,

f -x

x1

f -x1, f

x3

2 2

2

2

e, e-
q

xi

e, h-x

x x (C.3)
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Now flopping f ≠ x in S1 which is glued to x1 in S Õ
0, we obtain

03+1
0 0Õ2

0

11 1Õ2
2

e-y, e-
q

xi

e, h

f -x1-y, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, y

2 2

2

3

e, e-
q

xi

e, h-
q

xi

f x1-x2

x2

(C.4)

which after performing an isomorphism on S0 can be written as

04
1 0Õ2

0

11 1Õ2
2

e, h-
q

xi

e, h

x4-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, f -x4

2 2

2

3

e, e-
q

xi

e, h-
q

xi

f x1-x2

x2

(C.5)

Now, flopping the e curves inside S0 and S1 (which are glued to each other), we obtain

04 0Õ2
0

1 1Õ2+1
2

l-
q

xi

l

x4-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, l-x4

2

2

3

e, e-
q

xi

e, h-
q

xi

l x1-x2-y

x2-y

(C.6)

where a surface without a subscript denotes that the surface is a del Pezzo surface
rather than a Hirzebruch surface. That is, S0 = dP4 and S1 = P2 = dP0. Let us use
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the blowup x4 on S0 to write S0 in terms of the Hirzebruch surface F1

03
1 0Õ2

0

1 1Õ2+1
2

f -
q

xi

l

e-x1, x2-x3

f ,f -x1,

x1-x2,

f , f

x3, f

2

2

3

e, e-
q

xi

e, h-
q

xi

l x1-x2-y

x2-y

(C.7)

Flopping x3 in S0 glued to f ≠ x1 in S Õ
1 gives rise to

02
1 0Õ2+1

0

11 1Õ1+1
1

f -
q

xi

l-x

e-x1, x2

x1-x2,

f ,f -y

f

2

2

2

e-y, e-
q

xi

e, h-x

l-x f -x-y

f ,x-y
x

y

(C.8)

We use x in S1 to write S1 in terms of Hirzebruch surface F1

02
1 0Õ2+1

0

11 1Õ1+1
1

f -
q

xi

f

e-x1, x2

x1-x2,

f ,f -y

f

2

2

2

e-y, e-
q

xi

e, h-x

f f -x-y

f ,x-y
e

y

(C.9)
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Flop x2 in S0 glued to f ≠ y in S Õ
0 to obtain

01
1 0Õ2

1

11
1 1Õ2+1

1

f -x

f -x

e-x

x, f

f

2
2

e, h-
q

xi

e, h-
q

xi

f , x f -x1-y, x2

f -x2,

e-x

f

2

x1-y

(C.10)

Now flopping f ≠ x in S0 glued to f ≠ x in S1, we obtain

02 0Õ2
1

12 1Õ2+2
1

e

f , f

f

2
2

e, h-
q

xi

e, h-
q

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.11)

Flopping f ≠ x2 in S Õ
0 we obtain

02 0Õ1
0

12 1Õ2+2+1
1

e

f , f

f

2
2

e, e-x

e-z, h-
q

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.12)
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Now flopping x in S Õ
0 we get

02 0Õ
0

12 1Õ3+2+1
1

e

f , f

f

2
2

e, e

e-z, h-
q

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

f

2

x1-y1

(C.13)

Performing the automorphism on S Õ
0 that exchanges e and f , we obtain

02 0Õ
0

12 1Õ3+2+1
1

e

f , f

e

2
2

f , f

e-z, h-
q

xi

f , f f -x1-y1, x2-y2

f -x2-y2,

e

e

2

x1-y1

(C.14)

Now let us write S Õ
1 as a del Pezzo surface. This rewrites the e curve as a blowup which

we denote by w

02 0Õ
0

12 1Õ3+2+1+1

e

f , f

e

2
2

f , f

w-z, l-
q

xi

f , f l-w-x1-y1, x2-y2

l-w-x2-y2,

e

e

2

x1-y1

(C.15)

We can now perform a basic automorphism (of del Pezzo surfaces) on S Õ
1 involving the
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three blowups x1, x2 and y1 to obtain

02 0Õ
0

12 1Õ3+2+1+1

e

f , f

e

2
2

f , f

w-z, y1-x3

f , f x2-w, l-x1-y1-y2

l-w-x2-y2,

e

e

2

x1-y1

(C.16)

Converting S Õ
1 back into F1 using the blowup y2, we obtain

02 0Õ
0

12 1Õ3+1+1+1
1

e

f , f

e

2
2

f , f

w-z, y-x3

f , f x2-w, f -x1-y

f -w-x2,

e

e

2

x1-y

(C.17)

This is the final form of the geometry that we wanted to obtain.
It is clear that S0, S Õ

0 and S1 describe an su(4) and S Õ
1 describes an su(2) in

(C.17). This can be checked by intersecting the fibers of the corresponding Hirzebruch
surfaces with these surfaces. The intersection matrix yields the Cartan matrix for
su(4) ü su(2). Now, let us show that the configuration of blowups indeed describes
�2

¢ F of su(4) ü su(2). For this we relabel the surfaces as

S0 æ S1 (C.18)
S Õ
0 æ S2 (C.19)

S1 æ S3 (C.20)
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thus rewriting the geometry as

12 20

32 1Õ3+1+1+1
1

e

f , f

e

2
2

f , f

w-z, y-x3

f , f x2-w, f -x1-y

f -w-x2,

e

e

2

x1-y

(C.21)

The weight system for �2
¢ F can be written as

(0, 1, 0|1)
(1,≠1, 1|1) (0, 1, 0| ≠ 1)

(≠1, 0, 1|1) (1, 0,≠1|1) (1,≠1, 1| ≠ 1)
(≠1, 1,≠1|1) (≠1, 0, 1| ≠ 1) (1, 0,≠1| ≠ 1)

(0,≠1, 0|1) (≠1, 1,≠1| ≠ 1)
(0,≠1, 0| ≠ 1)

where the three entries on the left hand side of slash denote the weights with respect to
su(4) comprised by S1, S2 and S3, and the entry on the right hand side of slash denotes
the weight with respect to su(2) comprised by S Õ

1.
From the geometry (C.21) we see that the holomorphic curves

vol(x1) = (1, 0,≠1|1) (C.22)
vol(x2) = (≠1, 0, 1|1) (C.23)
vol(x3) = (0,≠1, 0|1) (C.24)
vol(y) = (≠1, 1,≠1|1) (C.25)

vol(f ≠ z) = (0, 1, 0|1) (C.26)
vol(f ≠ w) = (1,≠1, 1|1) (C.27)

match weights of the form (x, y, z|1), and the antiholomorphic curves x1≠f, x2≠f, x3≠

f, y ≠ f,≠z,≠w match weights of the form (x, y, z| ≠ 1), where f denotes the fiber of
Hirzebruch surface S Õ

1 = F6
1. Thus we have reproduced the full weight system for �2

¢F,
justifying our claim. More precisely, the geometry (C.21) describes the su(4) ü su(2)
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gauge theory in the gauge-theoretic phase given by the following virtual volumes

(0, 1, 0|1)+

(1,≠1, 1|1)+ (0, 1, 0| ≠ 1)≠

(≠1, 0, 1|1)+ (1, 0,≠1|1)+ (1,≠1, 1| ≠ 1)≠

(≠1, 1,≠1|1)+ (≠1, 0, 1| ≠ 1)≠ (1, 0,≠1| ≠ 1)≠

(0,≠1, 0|1)+ (≠1, 1,≠1| ≠ 1)≠

(0,≠1, 0| ≠ 1)≠

D Comparisons with known cases in the literature

In this section we present evidence strongly suggesting that our results recover all 5d
KK theories associated to compactifications of 6d SCFTs on a circle with (or without)
outer automorphism twists along the fiber obtained previously via other methods. In
particular, we show that the geometries we obtain admit 5d gauge theory descriptions
already proposed in the literature.

D.1 Untwisted

Let us start with an example of untwisted compactification. It has been proposed [28]
that

1
sp(n)(1)

(D.1)

can be described by the 5d gauge theory having gauge algebra su(n + 2) with 2n + 8
hypers in fundamental. To see this consider the ‹ = 1 phase of (5.101)

02n+7
1 12n+1 · · · (n ≠ 2)7 n1

1(n ≠ 1)5
eh 2h-xehh2h-

q
xi e

(D.2)
which after an isomorphism can be written as

02n+7
2n+3 12n+1 · · · (n ≠ 2)7 n1

1(n ≠ 1)5
eh e+2f -xehhe e

(D.3)
Now flopping the blowup sitting on Sn back to S0, we obtain

02n+8
2n+4 12n+2 · · · (n ≠ 2)8 n0(n ≠ 1)6

eh e+2fehhe e

(D.4)
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where we can see that the associated Cartan matrix is that of su(n+2) and the 2n+8
blowups sitting on S0 can be identified with the fundamentals. This identification is
done by noticing that the volume for a blowup matches the absolute value of virtual
volume of a weight for the fundamental of su(n+ 2).

D.2 Twisted

Now, let us consider an example when we twist by an outer automorphism. It has been
proposed in [24] that

2
su(n)(2)

(D.5)

can be described by 5d gauge theory with gauge algebra so(n+ 2) and n fundamental
hypers. First let us consider the case when n = 2m. In this case the geometry is
displayed in (5.142). Flopping all the yi, we obtain

m1 (m ≠ 1)6 · · · 22m

02m
2m+2

f -xi

f -xi

2h e h

h

e

e

2m

12m
2m+2

h

e

(D.6)

Now flopping all the f ≠ xi, we obtain

m1 (m ≠ 1)6 · · · 22m
2m

02

2h e h

h-
q

xi

e

e

12

h-
q

xi

e

(D.7)
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Now we can carry the 2m blowups onto Sm to obtain the geometry

m2m
1 (m ≠ 1)2m≠6 · · · 20

02

2h-
q

xi h e

e

e

h

12

e

e

(D.8)

which after an isomorphism on Sm can be rewritten as

m2m
2m≠4 (m ≠ 1)2m≠6 · · · 20

02

e h e

e

e

h

12

e

e

(D.9)

The Cartan matrix associated to this geometry is indeed that for so(2m + 2) and the
2m blowups can be identified as 2m hypers in fundamental of so(2m+ 2).

Similarly, the geometry for n = 2m+ 1 is given in (5.143). Flopping xi ≥ yi living
on S0, we obtain

m1 (m ≠ 1)6 · · · 12m+1
2m+2 06

2h e h 2h-2
q

xi ee

(D.10)

After performing an isomorphism we can write the above geometry as

m1 (m ≠ 1)6 · · · 12m+1
1 06

2h e h 2h ee-
q

xi

(D.11)

Now moving the blowups onto Sm we obtain

m2m+1
1 (m ≠ 1)2m≠5 · · · 11 06

2h-
q

xi e h 2h ee

(D.12)

which can be rewritten as

m2m+1
2m≠3 (m ≠ 1)2m≠5 · · · 11 06

e h e 2h ee

(D.13)

which precisely describes so(2m+3) with 2m+1 hypers in fundamental of so(2m+3).
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E Instructions for using the attached Mathematica notebook

A Mathematica notebook is included as an ancillary file with the arXiv submission of
this paper. The use of this notebook requires installation of the Mathematica package
LieArt.nb which can be found online at. In particular, the notebook provides the
evaluation of two functions Geometry5dKK and SignsKK. The former can be used to
compute the shifted prepotential 6F̃ (defined in Section 4.2) for 5d KK theories whose
associated graph contains either one or two nodes; see Tables 1–5 and Tables 8–11.
The latter function can be used for the evaluation of all possible signs associated to
di�erent phases of the above prepotential.

The Mathematica notebook is built around the use of the function

Geometry5dKK[...]

The above function outputs a graphical representation of the shifted prepotential
6F̃ associated to the input 5d KK theory. The graphical output is naturally organized
in the form of triple intersection numbers for the associated geometry. See Section 5.1.1
for the map between triple intersection numbers and the shifted prepotential.

Input
Let us now describe possible inputs for the function Geometry5dKK:

• For a single node

k
g(q)

(E.1)

the first input is the number k as shown below

Geometry5dKK[{k,...}]

• For two nodes – and —, the first input is the matrix � =
A

�––
S �–—

S

�—–
S �——

S

B

:

Geometry5dKK[{W,...}]

See Section 3.3 for the definition of �–—
S etc.

• When there is a single node, the second and final input captures the data of g(q).
When there are two nodes, the second input captures the data of g(q–)

– , and the

– 179 –



third and final input captures the data of g(q—)
— . The data of an a�ne algebra is

captured by dividing it into the “algebra part” and the “twist part”. For example,
the algebra part of g(q) is g which is a finite Lie algebra, and the twist part of g(q)
is q. The algebra part can be inserted in LieArt format. For example, A-type can
be inserted as

A1, A2, ..., An

B-type can be inserted as

B2, B3, ..., Bn

C-type can be inserted as

C2, C3, ..., Cn

D-type can be inserted as

D3, D4, ..., Dn

E-type can be inserted as

E6, E7, E8

And other types can be inserted as

G2, F4

The twist part can be inserted as

U, T2, T3

where U means ‘untwisted’ (corresponding to q = 1), T2 means ‘Z2 twisted
(corresponding to q = 2) and T3 means ‘Z3 twisted’ (corresponding to q = 3).

The full input thus is as follows:

• For a single node, the following format is used:

Geometry5dKK[{k,{Algebra,Twist}}]
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For example,

Geometry5dKK[{2,{A4,T2}}]

• For two nodes, the format is:

Geometry5dKK[{W,{Algebra1,Twist1},{Algebra2,Twist2}}]

For example,

Geometry5dKK[{W,{C3,U},{D6,T2}}]

In order to consider trivial gauge algebras of type su(1), sp(0), one needs to
insert a zero in the place of the algebra and twist input: that is we perform the
replacement {Algebra, Twist} æ 0. For example, if g– is trivial, but g— is not,
then the input takes the form

Geometry5dKK[{W,0,{Algebra2,Twist2}}]

Some of the nodes contain extra decorations. Such nodes can be inserted by using extra
identifiers as follows:

• 1
su(n)(1)

vs. 1
su(‚n)(1)

To incorporate the second case, we replace Twist with {Twist, Frozen}. For
example,

Geometry5dKK[{2,{A8,U}}]

becomes

Geometry5dKK[{2,{A8,{U,Frozen}}}]

• 1
su(6)(1)

vs. 1
su(6̃)(1)

To incorporate the second case, we replace Twist with {Twist, Three}, so that
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Geometry5dKK[{2,{A5,U}}]

becomes

Geometry5dKK[{2,{A5,{U,Three}}}]

• 2
su(n)(1)

vs 2
su(n)(1)

To incorporate the second case, we replace Twist with {Twist, Loop}, so that

Geometry5dKK[{2,{A5,U}}]

becomes

Geometry5dKK[{2,{A5,{U,Loop}}}]

• k
so(12)(q)

vs 1
so(1̂2)(q)

To incorporate the second case, we replace Twist with {Twist, Cospinor}, so
that

Geometry5dKK[{2,{D6,U}}]

becomes

Geometry5dKK[{2,{D6,{U,Cospinor}}}]

• 3
so(8)(2)

1
sp(1)(1)

2

To incorporate this case we use the usual input without any extra identifiers.

Geometry5dKK[{W,{D4,T2},{A1,U}}]
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• 1
sp(ni)(1)

k
so(7)(1)

vs. 1
sp(ni)(1)

k
so(7)(1)

and

1
sp(ni)(1)

k
so(8)(q)

vs. 1
sp(ni)(1)

k
so(8)(q)

To incorporate these cases, we replace Twist with {Twist, S}. For example, one
would use the following formats:

Geometry5dKK[{W,{C2,U},{B3,{U,S}}}]

and

Geometry5dKK[{W,{C2,U},{D4,{U,S}}}]

Choice of Phase

For each input, the output (i.e. the prepotential) depends on a particular choice of
gauge-theoretic phase for the theory. The di�erent gauge-theoretic phases correspond
to di�erent choices of signs for the virtual volumes of the weights of the representations
associated to the matter content for the input KK theory. See Sections 4 and 5.1.3
along with Appendix B for more details.

After the input is inserted, the notebook will request as additional input the signs
of virtual volumes for all the weights corresponding to matter hypermultiplets. A pop-
up window appears containing the information needed to make a consistent choice of

signs. For example, consider 1
su(5)(1)

. After inputting the correct data associated to
this theory, a window appears as depicted in Figure 1. The information indicated in
the window can be understood as follows:

1 This labels the di�erence choices of irreducible representaitons of the invariant
subalgebra (under the twist) in which the hypers of the canonical 5d gauge theory as-
sociated to the KK theory transform. In this particular case we have two distinct rep-
resentations, namely the fundamental and the antisymmetric representations of su(5),
as can be seen from Table 1. The slider on top can be used to slide between the two
irreps. For example in Figure 1, we see data associated to fundamental representation
and in 2 we see the data associated to antisymmetric representation.
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Figure 1. An illustration of the various features of the initial (sign input) pop-up window of
the function Geometry5dKK. The various aspects, numbered 1 through 5, are explained in
the body of this appendix.

2 This indicates the highest weight of the representation.

3 Here, Nf represents the number full hypermultiplets transforming in the given rep-
resentation. In Figure 1 there are 13 hypermultiplets transforming in the fundamental
representation, while in Figure 2 there is one hypermultiplet transforming in the anti-
symmetric representation.

4 shows the Hasse diagram of the weight system of the representation. The Hasse
diagram is a graphical representation of the partial order of the weight system. Recall,
that given a highest weight w1 one can construct the entire weight system by subtracting
positive simple roots, wi = wi≠1 ≠ ni–i (–i denote the simple roots). For example,
the fundamental representation of su(5), which is comprised of weights wi=1,...,5, is
characterized by the partial order w1 Ø w2 Ø · · · Ø w5, where wi Ø wj means that
wi ≠ wj = ni–i where ni Ø 0. This information is important when determining the
possible choices of signs for the virtual volumes of weights lying in this weight system.
For example, if we choose w3 to be have a positive virtual volume, then w2 needs to
also have a positive virtual volume since w2 Ø w3 according to the Hasse diagram.

The red superscript indicates whether a weight is positive or negative. A positive
(resp. negative) weight is defined as the positive (resp. negative) linear combination
of simple roots. When no mass parameters are turned on, then the signs of virtual
volumes for positive and negative weights are fixed to be positive and negative, respec-
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Figure 2. The slider moves between di�erent representations; in the example depicted above,
the slider moves from the first to the second representation.

tively (assuming the dual of the irreducible Weyl chamber is defined as the region in
which the virtual volumes of all positive simple roots are positive.) The signs of the
rest of the weights are undetermined by the signs of simple roots and hence can be
chosen freely as long as the ordering described by the Hasse diagram is satisfied. When
mass parameters are turned on, then it is possible for positive weights to have negative
virtual volume and negative weights to have positive virtual volume, for some values
of the mass parameters. For a generic choice of mass parameters, the only constraint
for any of the signs of the weights is that the ordering provided by the Hasse diagram
is respected.

5 This is the area in which a choice of signs should be specified.A default input is
given where all the signs are positive, that is “+1”. The notation s[i]j is explained
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as follows: i labels each di�erent representation (in this case, i runs over two two
representations) and j labels the di�erent of weights (in this case, for the fundamental
representation, j runs from 1 to 5, while for the antisymmetric representation, j runs
from 1 to 10). For example, based on the Hasse diagram presented in Figure 1 and
assuming we do not turn on any mass parameters, we can make a list of all the allowed
choices of signs for the fundamental representation of su(5):

s(1)1 æ 1, s(1)2 æ 1, s(1)3 æ 1, s(1)4 æ 1, s(1)5 æ ≠1
s(1)1 æ 1, s(1)2 æ 1, s(1)3 æ 1, s(1)4 æ ≠1, s(1)5 æ ≠1
s(1)1 æ 1, s(1)2 æ 1, s(1)3 æ ≠1, s(1)4 æ ≠1, s(1)5 æ ≠1
s(1)1 æ 1, s(1)2 æ ≠1, s(1)3 æ ≠1, s(1)4 æ ≠1, s(1)5 æ ≠1.

(E.2)

If we choose to turn mass parameters on then we can also have the following sign
choices:

s(1)1 æ 1, s(1)2 æ 1, s(1)3 æ 1, s(1)4 æ 1, s(1)5 æ 1
s(1)1 æ ≠1, s(1)2 æ ≠1, s(1)3 æ ≠1, s(1)4 æ ≠1, s(1)5 æ ≠1.

(E.3)

In the case of two nodes, the code first asks for the signs of the weights associated
to the first algebra. The pop-up window is exactly as discussed above, with the sole
di�erence being that the notation for the signs is modified to s[i]j,1, where in addition
to the subscripts i, j that respectively label the di�erent representations and weights,
there is another subscript 1 that indicates the representation is charged under the first
algebra. After the signs associated to the representations of the first algebra have
been specified, a second window appears requesting the signs associated to the second
algebra. The format is identical, with the distinction that the signs are denoted by
s[i]j,2, with the subscript 2 labeling the second algebra. Finally, a third window appears
requesting signs for the weights of tensor product representations charged under both
the first and second algebras.

For example consider 2
su(2)

2
su(2)

, for which the input is:

Geometry5dKK[{{{2,-1},{-1,2}},{A1,U},{A1,U}}]

An example of the third window is displayed in Figure 3. In this case, on the upper
left side of the window instead of a slider one can find the number of hypermultiplets
transforming in a mixed representation. In Figure 3 there is one such hypermultiplet,
but in other cases there can be a half-integer number of hypermultiplets. This infor-
mation is necessary to determine a consistent choice of signs, since for example mass
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Figure 3. Signs for the tensor product representation.

parameters cannot be switched on for half-hypermultiplets. The Hasse diagram in this
case is that of the tensor product representation R1 ¢R2, where R1 = R2 = 2 of su(2).
Let vi denote the weights associated to the first su(2) and let Êi denote the weights
associated to the second su(2). The weight system of the tensor product of these two
representations is

w{i,j} = vi ü Êj. (E.4)

The Hasse diagram of this weight system can now be determined based on the ordering
of the weights vi and Êj. For example,

w{1,1} = v1 + Ê1 Ø v2 + Ê1 = w{2,1} (E.5)

The Hasse diagram and the number of hypermultiplets is enough to determine a con-
sistent choice of signs. The signs follow a similar notation as above, namely

b[1]i,j (E.6)
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where the bracketed ‘1’ indicates that there is only one mixed representation and the
subscripts i, j are the same as the subscripts for w{i,j}, referring to weights of the first
and second algebras respectively.

Allowed signs for the representations

As mentioned above the choice of signs depends on the Hasse diagrams, the values
of mass parameters, and on which combinations of representations are chosen. The
function

SignsKK[]

determines all the possible allowed signs for each hypermultplet of a specific theory. A
word of caution: the computational expensive of this function increases very quickly
with the dimensions of the representations.

The input of for this function is of the same format described in the previous
section:

SignsKK[{k,{Algebra,Twist}}]

OR

SignsKK[{W,{Algebra1,Twist1},{Algebra2,Twist2}}]

The output of this function is the appropriate number of hypermultiplets and the
type of representation, together with the Hasse diagrams of the weight systems. As
described above, the Hasse diagram includes superscripts indicating whether a weight
is positive, negative, or indeterminate sign. In the absence of mass parameters the only
signs that need to be determined are those of the indeterminate weights. Note that
zero weights have superscript ‘0’. The output, namely all consistent gauge-theoretic
phases of the theory, is presented both as a collection of Hasse diagrams and as a list of
sign choices. The Hasse diagrams for the allowed signs includes superscripts indicating
when the signs are taken to be positive (blue) or negative (red). This function is useful
for determining all allowed phases and corresponding sign choices when computing the
geometry.

It is important to note that in some cases the signs associated to di�erent hyper-
multiplets are not independent. For example, consider
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Nf

2n– + 8 ≠
n— ≠1

2 1
sp(n–)(1)

k
so(n—)(2)

1
2 (n– ¢ (n— ≠ 1))

n— ≠ 8 ≠ n–
2

Nf

(E.7)

where the extra labels indicate the number of hypermultiplets included in the
theory. In particular, note that there are 2n– +8≠

n—

2 full hypermultiplets of sp(n–)(1)
and one half-hyper in a mixed representation. This half-hypermultiplet comes from the
branching of the bifundamental n– ¢n— æ n– ¢((n— ≠1)ü1) after performing the twist
of so(n—)(2), which leaves invariant the algebra so(n— ≠ 1). This implies that the signs
associated to the half-hypermultiplet are not independent but rather depend on the
signs chosen for the bifundamental representation. In this case the function SignsKK
returns all possible sign choices consistent with these branching rules.

For example, consider n– = 1 , k = 3 and n— = 4. The Hasse diagram for the
bifundamental combined with the half-hypermultiplet of sp(1) is displayed in Figure 4.
The possible sign choices are displayed in Figure 5.

Figure 4. Hasse diagram for the case n– = 1, k = 3, n— = 4 of the theory displayed in
(E.7). Note that w{i,j} are the weights of the bifundamental and v1, v2 are the weights of the
half-hypermultiplet.

Output
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Once the signs have been specified in Geometry5dKK, the following output is returned
(see an example shown in Figure 6), and is comprised of the following elements:

1. The triple intersection numbers for the corresponding geometry are presented in
a graphical form similar to the graphs presented in Section 5 of this paper. The
vertices of the graph are surfaces and edges between the vertices indicate the
intersections between the corresponding surfaces. The superscript on a vertex i

denotes 8 ≠ S3
i . If the superscript is zero, then it is not displayed. Every edge

carries two yellow boxes at either ends. Consider an edge going between vertices
i and j. The number in the yellow box near the vertex i denotes the triple
intersection number SiS2

j , and the number in the yellow box near the vertex j

denotes the triple intersection number S2
i Sj. If the number carried by some yellow

box is zero, then that box is not displayed. There is a purple box placed in the
middle of every face formed by three edges joining three vertices, say i, j and k.
The number in the purple box denotes the triple intersection number SiSjSk. If
the number carried by purple box is zero, then it is not displayed.

2. The choice of signs made by the user.

3. The the shifted prepotential 6F̃ . In the case of a KK theory with a single node,
„0 is the Coulomb branch parameter associated to the a�ne node of the Dynkin
diagram and „i with i = 1, ...Rank[Algebra] are the Coulomb branch parameters
associated to the finite part of the diagram. In the case of a KK theory with
two nodes, „0,1,„i,1 are the Coulomb branch parameters associated to the first
(a�ne) algebra and „0,2,„i,2 are the Coulomb branch parameters associated to
the second (a�ne) algebra.
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