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ABSTRACT: We study 6d superconformal field theories (SCFTs) compactified on a circle
with arbitrary twists. The theories obtained after compactification, often referred to
as bd Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to
5d SCF'Ts. According to a conjecture, all 5d SCFTs can be obtained in this fashion.
We compute the Coulomb branch prepotential for all 5d KK theories obtainable in this
manner and associate to these theories a smooth local genus one fibered Calabi-Yau
threefold in which is encoded information about all possible RG flows to 5d SCFTs.
These Calabi-Yau threefolds provide hitherto unknown M-theory duals of F-theory
configurations compactified on a circle with twists. For certain exceptional KK theories
that do not admit a standard geometric description we propose an algebraic description
that appears to retain the properties of the local Calabi-Yau threefolds necessary to
determine RG flows to 5d SCFTs, along with other relevant physical data.
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1 Introduction

Recently, there has been a resurgence of interest in the problem of classifying 5d super-
conformal field theories (SCFTs), with a particular emphasis on exploring the relation-
ship between 5d UV fixed points and 6d UV fixed points [1-11]. The motivation for
studying this relationship is the observation that all known 5d SCF'Ts can be organized
into families of theories (connected to one another by RG flows) whose “progenitors”
are 6d SCFTs compactified on a circle [1, 2], and hence every 6d SCFT compactified
on a circle provides a natural starting point for the systematic identification of a large
family of 5d SCFTs.

While it has been appreciated in the literature for some time that circle com-
pactifications of 6d SCFTs can flow to 5d SCFTs, only recently has the existence of
a 6d UV fixed point been understood in an intrinsically 5d setting. To understand
this point, let us recall that the most widely used method for identifying 5d SCF'Ts
is to construct a candidate effective field theory assumed to be a relevant deformation



of a 5d UV fixed point, and to verify the effective theory passes a number of consis-
tency checks which are believed to be sufficient to guarantee the existence of a such a
non-trivial UV fixed point. This method, which has been used to construct numerous
examples of UV complete minimally supersymmetric 5d QFTs—both by means of stan-
dard gauge theoretic methods [1, 12, 13], as well as string theory constructions such as
(p, q) 5-brane configurations in type IIB string theory [14-20] and M-theory compact-
ifications on local Calabi-Yau threefolds [2, 21-23]—has also led to the identification
of numerous examples of theories that despite not satisfying the criteria necessary for
the existence of a non-trivial 5d UV completion, nonetheless exhibit certain features
that suggest they can be UV completed in 6d. All known examples of such theories
are characterized by the emergence of an intrinsic length scale that is interpreted as
the size of a compactification circle, and it has been argued that each of these theories
is a circle compactification of a 6d SCFT possibly twisted by the action of a discrete
global symmetry!; see for example [2-4, 18, 24-28]. These observations have led to the
identification of a set of criteria believed sufficient to imply the existence of a 6d UV
completion for certain 5d theories, and this introduces the possibility of also classifying
circle compactifications of 6d SCF'Ts using 5d physics.

It was recently conjectured [2] that all 5d SCFTs can be obtained via RG flows
starting from 5d Kaluza-Klein (KK) theories. The latter are defined as 6d SCFTs com-
pactified on a circle (of finite radius) possibly with discrete twists around the circle.
Given a 5d KK theory, the RG flows of interest correspond to integrating out BPS par-
ticles from the 5d KK theory—thus, if the full BPS spectrum is known then according
to the conjecture of [2] it is possible to classify all 5d SCFTs by systematically studying
all possible RG flows from the 5d KK theory.

In this paper, we focus on the geometric approach in which one realizes a 5d KK
theory via a compactification of M-theory on a genus one fibered Calabi-Yau threefold.
The set of holomorphic curves in the threefold completely encode the information about
the spectrum of BPS particles required to track all RG flows down to 5d SCFTs.
Therefore, a precursor to classifying RG flows from 5d KK theories to 5d SCFTs is to
geometrically classify all 5d KK theories themselves in terms of Calabi-Yau threefolds.
See [10] (also [2]) for explicit application of this geometric procedure to the classification
of 5d SCFTs upto rank three.

It is believed that all 6d SCFTs can be constructed by compactifying F-theory
on singular elliptically fibered Calabi-Yau threefolds admitting certain singular limits
characterized by the contraction of holomorphic curves in the base of the fibration.

!Twisting the theory around the circle means that we introduce a holonomy for the background
gauge fields associated to discrete global symmetries of the theory.



Here we should distinguish between two different kinds of compactifications of F-theory
depending on whether or not they contain O7% plane from the point of view of type
IIB string theory. If there is no O7", then the compactification is said to lie in the
unfrozen phase of F-theory; otherwise it is said to lie in the frozen phase [29-31] of
F-theory. These two phases are qualitatively different in the following sense: The rules
for converting geometry in the unfrozen phase to the corresponding 6d physics are far
more straightforward than the rules for converting geometry in the frozen phase to the
corresponding 6d physics [32]. See [33, 34] (see also [35]) for the classification of 6d
SCFTs arising from the unfrozen phase of F-theory, and [36] for the classification of 6d
SCF'Ts arising from the frozen phase of F-theory.

A 5d KK theory corresponding to the untwisted compactification of a 6d SCFT
arising in the unfrozen phase can be constructed by compactifying M-theory on a
Calabi-Yau threefold which is a resolution of the Calabi-Yau threefold arising in the
F-theory construction. This fact is a special case of the duality between M-theory and
(unfrozen phase of) F-theory compactified on a circle (without any twist). Explicit
resolution of all Calabi-Yau threefolds associated to 6d SCFTs was performed by [3, 4],
and hence the Calabi-Yau threefolds associated to corresponding 5d KK theories was
determined. These threefolds are elliptically fibered since the threefolds associated to
6d SCFTs are elliptically fibered to begin with.

In this paper, we extend the work of [3, 4] and determine a resolved local Calabi-
Yau threefold describing every 5d KK theory, with the exception of certain examples
which do not appear to admit a conventional geometric description®. Not only do we
include twisted compactifications of 6d SCF'Ts arising in the unfrozen phase, but also
the untwisted and twisted compactifications of 6d SCFTs arising in the frozen phase.
We find that these Calabi-Yau threefolds are in general only genus one fibered and may
not be elliptically fibered, which means that the fibration may not admit a zero section.

Our analysis can be divided into two parts. In the first part of the analysis, which is
purely field theoretic, we determine the prepotential for each 5d KK theory by using the
following observations: Each 6d SCF'T admits a 6d gauge theory description which can
be reduced on a circle with an appropriate twist to obtain a canonical 5d gauge theory
description of the associated 5d KK theory. The Green-Schwarz term in 6d reduces to
a Chern-Simons term in the 5d gauge theory, which induces a tree-level contribution to

2For these examples, we propose an algebraic description which mimics certain properties of the
Calabi-Yau threefolds associated to other KK theories. This algebraic description can be used to
compute RG flows starting from these KK theories to 5d SCFTs. In the paper we sometimes abuse
terminology and use the word ‘geometry’ to refer to both theories that admit a conventional geometric
description along with those (i.e. “non-geometric” theories) for which only an algebraic description is
available.



the prepotential. Combining this contribution with the one-loop contribution coming
from the 5d gauge theory produces the full prepotential for the 5d KK theory. In
the second part of the analysis, we interpret the prepotential as describing the triple
intersection numbers of 4-cycles inside a yet to be determined Calabi-Yau threefold.
Using the data of these triple intersection numbers, along with some other consistency
conditions, we are able to determine a description of the Calabi-Yau threefold as a
neighborhood of intersecting Kahler surfaces along the lines of the discussion in [2-4],
and we verify that each threefold admits the structure of genus one fibration®. By
construction, compactifying M-theory on this Calabi-Yau threefold leads to the 5d KK
theory whose prepotential we computed in the first part of the analysis.

One can view these Calabi-Yau threefolds as providing hitherto unknown M-theory
duals of general unfrozen and frozen F-theory configurations compactified on a circle
possibly with a discrete twist. Even though we have provided explicit results only for
F-theory configurations realizing 6d SCFTs, our methods should in principle apply to
any general F-theory configuration.

Notice that at no step in our analysis do we distinguish between 6d SCFTs arising
from the unfrozen phase and 6d SCFTs arising from the frozen phase. Thus, according
to our analysis, the rules for converting geometry into the corresponding 5d physics are
uniform irrespective of whether the 5d KK theory arises from the compactification of
a 6d SCFT lying in the frozen or the unfrozen phase. In other words, the frozen and
unfrozen six-dimensional compactifications of F-theory are given a unified geometric
description? in M-theory.

We close the introduction with a brief overview of the structure of Calabi-Yau
threefolds that we associate to bd KK theories. By construction, the structure of
these threefolds descends from the structure of 6d SCFTs. Recall that an important
object characterizing a 6d SCF'T is the matrix of Dirac pairings of “fundamental” BPS
strings visible on the tensor branch of the 6d SCF'T. The matrix of Dirac pairings is a
symmetric, positive definite, integer matrix with positive entries on the diagonal and
non-positive off-diagonal entries. Thus, the Dirac pairing matrix is analogous to the
Cartan matrix of a simply laced Lie algebra, and we can associate to this matrix a
graph analogous to a Dynkin graph for a simply laced Lie algebra.

As discussed in more detail later in the paper, the matrix of Dirac pairings descends
to a matrix of Chern-Simons terms in the canonical gauge theory associated to the 5d
KK theory, where the precise map between the two matrices depends on the choice

3See for example [37] for a discussion of F-theory compactifications on genus one fibered, in contrast
to elliptically fibered, Calabi-Yau varieties.

4Some of the frozen theories belong to the class of exceptional KK theories which do not admit a
conventional geometric description, and thus to which we only associate an algebraic description.



of twist. We find that 5d KK theories end up organizing themselves according to this
matrix of Chern-Simons terms. Like the matrix of Dirac pairings, the matrix of Chern-
Simons terms is in general a positive definite, integer matrix with positive entries on
the diagonal and non-positive off-diagonal entries, where off-diagonal entries can only
be zero if their transposes are also zero. But, unlike the matrix of Dirac pairings, the
matrix of Chern-Simons terms is not necessarily a symmetric matrix. Thus, the matrix
of Chern-Simons couplings is analogous to the Cartan matrix of a general (simply or
non-simply laced) Lie algebra, and we associate to it a graph analogous to a Dynkin
graph for a general Lie algebra.

In this way, 5d KK theories are characterized by graphs that generalize Dynkin
graphs. The associated Calabi-Yau geometry is assembled according to the structure
of this graph:

e To each node in the graph, we associate a collection of Hirzebruch surfaces in-
tersecting with each other. In fact, we associate a family of such collections
parametrized by an integer v, where the collections labeled by different values of
v are related to one another by flop transitions. A key point is that a certain
linear combination of the P! fibers of these Hirzebruch surfaces has genus one,
and an appropriate multiple of the genus one fiber is identified physically with
the KK mode of momentum one around the circle.

e To a pair of nodes connected to each other by some edges, we associate certain
gluing® rules. These gluing rules describe how to glue the collection of surfaces
associated to a node to the collection of surfaces associated to another node.
These gluing rules capture the data of intersections between the two collections
of surfaces. In general, the gluing rules provided in this paper work only for a
subset of the values of v parametrizing the two collections of surfaces being glued
together. Our claim is that given a 5d KK theory, we can always find at least
one value of v for each node in the associated graph such that the gluing rules
for each edge work.

By applying these gluing rules, it can be checked that a multiple of the genus
one fiber in one collection of surfaces is glued to a multiple of the genus fiber
in the other collection of surfaces. These multiples are such that the KK mode
associated to one collection is identified with the KK mode associated to the other

SWhen two Kahler surfaces intersect transversely along a common holomorphic curve inside of a
Calabi-Yau threefold, the intersection implies that a holomorphic curve inside one of the two surfaces
is identified with a holomorphic curve inside of the other surface. We refer to this identification as a
gluing together of the two surfaces.



collection. This must be so since there is only a single KK mode associated to the
full KK theory and the genus one fibers inside each collection are merely different
geometric manifestations of the same mode.

e Once we are done gluing all the collections of surfaces according to the gluing rules
associated to each edge, we obtain a larger collection of surfaces intersecting with
each other. The Calabi-Yau threefold associated to the KK theory is by definition
a local neighborhood of this larger collection of surfaces. As we have described
above, this Calabi-Yau threefold is canonically genus one fibered.

The rest of the paper is organized as follows. In Section 2, we review how all 6d
SCFTs can be neatly encapsulated in terms of graphs that capture the data of the
tensor branch of the corresponding 6d SCFTs. We list all the possible vertices and
edges appearing in such graphs. Our presentation treats unfrozen and frozen cases
on an equal footing. Another distinguishing feature of our presentation is that we
carefully distinguish different theories having the same gauge algebra content and same
Dirac pairing. This includes the theta angle for sp(n), different distributions of hypers
between the spinor and cospinor representations of s0(12), as well as some frozen cases.

In Section 3, we study all the possible twists of 6d SCFTs once they are compactified
on a circle. Each twist leads to a different 5d KK theory. The different twists of a
6d SCF'T T are characterized by equivalence classes in the group of discrete global
symmetries of T. We show that these equivalence classes can be described by foldings
of the graphs Yz associated to T along with choice of an outer automorphism for
each gauge algebra appearing in the low energy theory on the tensor branch of .
Thus, different 5d KK theories are also classified by graphs that generalize the graphs
classifying 6d SCFTs. We provide a list of all the possible vertices and edges that can
appear in the graphs associated to 5d KK theories.

In Section 4, we provide a prescription to obtain the prepotential of any 5d KK
theory. This is done by compactifying the low energy gauge theory appearing on the
tensor branch of the corresponding 6d SCEF'T on a circle with the corresponding twist.
This leads to a 5d gauge theory whose prepotential, along with a shift, is identified as
the prepotential for the 5d KK theory.

In Section 5, we associate a genus-one fibered Calabi-Yau threefold to each 5d KK
theory, except for a few exceptional cases, for which we provide an algebraic description
mimicking the essential properties of genus one fibered Calabi-Yau threefolds. The
chief ingredient in the determination of the threefold is the prepotential determined
in Section 4. The prepotential captures the data of the triple intersection numbers of
surfaces inside the threefold. Once a description of the threefold as a local neighborhood
of a collection of surfaces glued to each other is presented, these triple intersections



can be computed in a multitude of different ways. Demanding all of these different
computations to give the same result leads to strong consistency constraints on such
a description and often uniquely fixes the description (up to isomorphisms). Other
consistency conditions playing a crucial role are also discussed in Section 5.1.

The description of the geometry is provided in two different steps according to the
structure of the graph associated to the 5d KK theory under study. First, a part of
the geometry is assigned to each vertex in the graph according to results presented in
Section 5.2. Then, depending on the configuration of edges in the graph, different parts
of the geometry corresponding to different vertices in the graph are glued to each other
via the gluing rules presented in Sections 5.3 and 5.4.

In Section 6, we present our conclusions. In Appendix A, we review some geometric
background relevant for this paper. In Appendix B, we address certain exceptional
examples of geometries and gluing rules that do not admit a straightforward analysis
following the main methods described in this paper. In Appendix C, we provide a
concrete and non-trivial check of our proposal for computing the prepotential and
geometries associated to bd KK theories. We demonstrate that a 5d KK theory arising
from a non-trivial twist (involving a permutation of tensor multiplets) of a 64 SCFT
has a 5d gauge theory description found in earlier studies by using brane constructions.
In Appendix D, we provide some more checks of our proposal. Finally, in Appendix E
we provide instructions for using the Mathematica notebook submitted as an ancillary
file along with this paper. The Mathematica notebook allows one to compute the
prepotential for 5d KK theories involving one or two nodes. Combining these results,
one can obtain the prepotential for any 5d KK theory. The notebook also converts the
prepotential into triple intersection numbers for the associated geometry and displays
these intersection numbers in a graphical form.

2 Structure of 6d SCFTs

In this section, we review the fact that 6d SCFTs are characterized by graphs that
are analogous to Dynkin graphs associated to simply laced Lie algebras. In the next
section, we will show that 5d KK theories are also characterized by similar graphs that
are instead analogous to Dynkin graphs associated to general (i.e. both simply laced
and non-simply laced) Lie algebras.

The low-energy theory on the tensor branch of a 6d SCFT ¥ can be organized in
terms of tensor multiplets B;. There is a gauge algebra g, associated to each ¢ where g;
can either be a simple or a trivial algebra. Each tensor multiplet B; is also associated
to a “fundamental” BPS string excitation S* such that the charge of S* under B; is the



Oy Comments Hypermultiplet content
sp(ln)e =07 (2n + 8)F
5u1(n) n>3 (n + 8)F + A?
5u1(ﬁ) n > 8; frozen; non-geometric | (n — 8)F + S?

6

5u1( ) 15F + JA°
su(n) 2nF

2
su(3)

3
soin) n>8 (n—8)F
50}58) 1<k<3 4—EkF+(4—-kS+(4—-k)C
50}5") 1<k<3;7<n<12n+#8| (n—4—kF+2I""1(4—k)S
501212) k=1,2 (8—k)F+1(3—k)S+3iC
s0(13

(2 ) TF+1s

5]’;2 1<k<3 (10 — 3k)F

]f: 1<k<5 (5—Fk)F

26 1<k<6 (6 — k)F

¢7 1<k<8 (8 —k)F

I 2

€8

12

Table 1. List of all the possible nodes with non-trivial g; appearing in graphs associated to
6d SCFTs. A hat or a tilde distinguishes different nodes having same values of Q% and g;.



?{” Comments | Flavor symmetry algebra, f
5P§O>0 6 = O, T €g
su(1) 2
5 su(2)

Table 2. List of all the possible nodes with trivial g; that can appear in graphs associated
to 6d SCFTs. If Q% = 2, we refer to the trivial gauge algebra as su(1) and if Q% = 1, we refer
to the trivial gauge algebra as sp(0). In the latter case, sometimes a Zy valued theta angle
is physically relevant. We also list the flavor symmetry algebra § for each case. The sum of
gauge algebras neighboring each such node must be contained inside the corresponding f.

Kronecker delta §?. The Dirac pairing Q% between S* and S’ appears in the Green-
Schwarz term in the Lagrangian

QYB; A tr(F?) (2.1)

where Fj is the field strength for g; if g; is simple and F; = 0 if g; is trivial.

[Q7] is a symmetric, positive definite matrix with all of its entries valued in integers.
Thus, it is analogous to the Cartan matrix for a simply laced Lie algebra. The only
possible values for off-diagonal entries are Q% = 0, —1, —2. We note that Q¥ = —2 is
only possible for 6d SCFTs arising from the frozen phase of F-theory [32, 36].

We can thus display the data of a 6d SCFT in terms of an associated graph Y«
that is constructed as follows:

Yi
e Nodes: For each tensor multiplet B;, we place a node i with value Q% . All
such possibilities are listed in Table 1 when g; is non-trivial, and in Table 2 when
g; is trivial. In the former case, each node contributes hypers charged under a
representation R; of g; where R; is shown in Table 1. In the latter case, for the
node with g; = sp(0), an important role is played by the adjoint representation
of eg, which is formed by the BPS string excitations associated to this node.
su(n)
We note that the node 1 only arises in the frozen phase of F-theory.
In the case of Q% = 1 and g; = sp(n), there is a possibility of a Z, valued 6d
theta angle which is physically relevant (in the context of 6d SCFTs) only when
the 2n + 8 hypers in fundamental are gauged by a neighboring su(2n + 8) gauge
algebra. For g; = sp(0), the theta angle is physically relevant (in the context of



gg;“ é;] Comments Mixed hyper content
spgm) Sué”j) n < ngmg < 2n+ 7 FQF
510(17%)9 sugnj) nj=2n; +8; 0 =07 FoF
spgm) 50](;1]') ni<nj—4—k;n; <4n;+16;2<k<4| LF®F)
5p§ni) 50(2ﬁ) n; <6 LWF®F)
5p§m)50]§8) ng<4d—rk k<3 LF®S)
sp@”fok(ﬂ ni <8—2k k=23 5(F®S)
ﬁpgnﬁ %2 n; <10 — 3k: k=23 LF®F)
5u§ni> sugnj) n; < 2nj; nj < n; + 8 FQF
5u§“1) sugnj) n; < 2nj; n; <n; — 8 FQF
5111(6) ﬁug"j) 3<n; <15 FaF
5u§nz‘) 5“%”3‘) ni < 2nj;my < 2n; FOF
5uéni) ; ioinj) n; < nj —8; n; < 2ny; frozen FoF
5u2(27)77j0kg7) 1<k<3 5(F®S)
5u2(2)§l€2 1<k<3 s(F®F)

Table 3. List of all the possible edges between two gauge-theoretic nodes that can appear in
graphs characterizing 6d SCFTs. An edge with 2 in the middle of it denotes the fact that there
are two edges between the two asocciated nodes. Solid edges denote matter in bifundamental
and dashed edges denote matter in F ® S. The theta angle of sp(n) is only displayed when it
is physically relevant.

6d SCFEFTs) only if there is a neighboring su(8) gauge algebra [38]. This can be

— 10 —



92 Comments Mixed hyper content
sp(0)  su(n)
1 2 n<9n#8
sp(0)p  su(n)
1 2 n=8,0=0,7
sp(0)  su(3)
1 3

1 2
sp(0 92
1—k k=23
sp(0 fa
1——k% 2<k<5h
sp(0)
1——k 2<kE<6
sp(0 e7
1—k 2<k<8
sp(0 eg
1—12
su(l)  sp(1)
2 1 +F in g; = sp(1)
su(l) su(2)
2 2 +F in g; = su(2)

Table 4. List of all the possible edges between a gauge-theoretic and a non-gauge-theoretic
node that can appear in graphs characterizing 6d SCFTs. The theta angle of sp(0) is only
displayed when it is physically relevant.

understood in terms of two different embeddings of su(8) into es (both having
embedding index one), so that the adjoint of es decomposes differently in the two
cases, leading to different spectrum of string excitations.

In the case of Q% = 1 and g; = su(6), there are two possible choices of matter
content. We distinguish the non-standard choice of matter content by denoting
the corresponding g; as su(6).

— 11 —



gi gj
QO OJJ
sp(0)  su(1)
1 2
su(l)  su(l)
2 2

Table 5. List of all the possible edges between two non-gauge-theoretic nodes that can appear
in graphs characterizing 6d SCFTs. The theta angle of sp(0) is not displayed since it is not
physically relevant.

g sp(0) ok

Qv 1 — QF | Comments
su(2)  sp(0) g

2 1—k k> 3; g = e, eq,f1, 92,50(n < 12)
su(3) sp(0) 9

k 1 [ k,l22;]{I+ZZ5;92267f4792,50(n§10),5u(n§6>
su(4)  sp(0) g

2 11—k k=3,4; g = go,50(n < 10)
so(7) sp(0) @

k 1 l k,J1>2k+1>5;g=gs50n<9)
s0(8) sp(0) g

k 1 l k,0>2,k+1>5;g=g250(8)
s50(9) sp(0) g

k 1 l kJ1>2,k+1>5g=go

92 sp(0) g

k 1 l kol >2k+12>5;g=f4,0

Table 6. List of all the possibilities for multiple neighbors of sp(0).

In the case of g; = s0(12), the two spinor representations S and C are not conju-
gate to each other but have same contributions to the anomaly polynomial. The
total number of hypers in the two spinor representations is fixed by the value
of Q. But since the two spinor representations are not conjugate, the relative
distribution of hypers between the two makes a difference. For Q% = 1,2, we
can obtain two inequivalent theories in this way (note that the existence of two
inequivalent theories with so0(12) gauge symmetry was pointed out in [11].) The
version containing both S and C is distinguished from the one contataining only

- 12 —



o~

S by denoting its g; as so(12).

9i 9;

e Edges: Consider two nodes i and j whose values are Q% and 7 respectively.
We place —Q% number of edges between i and j. For instance, if Q% = —1, then
we display this as

g 9
o Q7 (2.2)

and, if 9% = —2, then we display this as

Bi 9
Q=2 = QF (2.3)

There are no edges between nodes i and j if Q¥ = 0. All the possible edges are
listed in Table 3 when both g; and g; are non-trivial, in Table 4 when only one
of g; and g; is non-trivial, and in Table 5 when both g, and g, are trivial.

Each edge corresponds to a hyper transforming in a mixed representation R;; =
Riji ® Rijj of g; @ g; where R;;; is a representation of g; and R,; ; is a represen-
tation of g;. The possible R;; are shown in the third column of Table 3. Note
that we must have GEjR?;»jim(Rij‘j
In the case of Q" =1, g; = sp(n;), W =k, g; = 50(7,8) and QY = —1, there
are two possible mixed representations ;(F ® F) or £ (F ® S). We distinguish the

) C R; as representations of g; for each node 1.

case %(F ® S) by denoting the corresponding edge as a dashed line. Notice that
when g; = s0(8), the dashed edge is only physically relevant when it is a part of
a configuration of form

1 (2.4)

Otherwise, the dashed edge can be converted to the non-dashed edge by applying
an outer-automorphism of s0(8).

sp(0)
e Multiple neighbors of sp(0): Consider a node ¢ with value 1 . Related to

the fact that the flavor symmetry algebra associated to this node is eg, it can be
shown that its neighbors must satisfy @;g; C es where only those j are included
in the sum for which Q¥ = —1. In fact all such subalgebras are realized except®
for s0(13) @ su(2).

61t can be shown that the embedding index of each neighboring g; inside eg must be one. The only
possible embedding of s0(13) $su(2) into eg follows from first embedding s0(13) ®su(2) into s0(16) as a
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In the context of 6d SCFTs, it is not possible for sp(0) to have more than two

neighbors. We collect all the possibilities for multiple neighbors of sp(0) in Table
6.

Notice that the relationship between Y and [Q¥] is analogous to the relationship
between Dynkin graph and Cartan matrix of a simply laced Lie algebra.

3 Structure of 5d KK theories

3.1 Twists

Consider a QFT ¥ that admits a discrete global symmetry group I'. When we com-
pactify ¥ on a circle, we have the option of “twisting” ¥ around the circle. This means
that we introduce a holonomy v € T" for the background gauge field corresponding to
I'. Note that the number of distinct twists is not given by the number of elements in
I, but rather by the number of conjugacy classes in I'. This is because two holonomies
that are conjugate in I' are physically equivalent and thus lead to the same twist.

In this section, we will explore all the possible twists for 6d SCFTs. Each twist
leads to a different 5d KK theory.

3.2 Discrete symmetries from outer automorphisms

A general discrete symmetry of a 6d SCFT ¥ is generated by combining two kinds
of basic discrete symmetries. We start by discussing the first kind of basic discrete
symmetries. These arise from outer automorphisms of gauge algebras g;.

su(n) for n > 3, s0(2m) for m > 4 and ¢s admit an order two outer automorphism
that we call O®). It exchanges the roots in the following fashion

e e i

N/

su2n+1), 0% o—e— - —0—0—--- —0—e
No—

special maximal subalgebra and then embedding s0(16) into eg as a regular maximal subalgebra. The
embedding index of the su(2) factor under this embedding is two rather than one, thus so(13) @ su(2)
cannot be realized as a neighbor of sp(0). The absence of s0(13) @ su(2) neighbor was first noticed in
[39].
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so(2n), 0?: e—e—e— - —e—eo

'
e @
50(8) also admits an order three outer automorphism which we call O®). It cyclically

o

s0(8), 0O®: e—e
\_B.

The full group of outer automorphisms of s0(8) is the symmetric group S3 which can

permutes the roots as shown below

be generated by combining @ and O®. Note that O® and O® are not conjugate
to each other (since they have different orders) and hence we need to consider both of
them.

The above action of an outer automorphism O@ (for ¢ = 2,3) on the roots of g
translates to an action on the Dynkin coefficients of the weights for representations of
g. In other words, the action of @@ can be viewed as an action on representations of
g——see Table 7.

An outer automorphism O@) of a gauge algebra g; € T is a symmetry of T if

O . R, =R,
o) “Riji = Riji VY

where ©4) . R denotes the action of O%) on R. We should keep in mind that a hyper
in a representation R is the same as a hyper in representation R. So, R; and Rijq are
only defined up to complex conjugation on constituent irreps. Thus, whenever R <+ R
in Table 7, it means that two distinct hypers in R are interchanged with each other
under the action of the outer automorphism.
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g |ow]|ow.R,

su(m) | O® | F«— F, A" «— A" S? «— S?

so(2m) | O@ | F—F,S+—C
)
)

¢ O® | F+«—F
s0(8) |O® |F—S S—C C—F

Table 7. List of non-trivial outer automorphisms @@ of g and their actions O@ - Rq on
various irreducible representations R4 of g. F denotes fundamental representation, A" denotes
the irreducible n-index antisymmetric representation, S? denotes the irreducible 2-index sym-
metric representation, and S and C denote irreducible spinor and cospinor representations.
Bar on top of a representation denotes the complex conjugate of that representation. F of
50(2m) is left invariant by the action of O(%).

As an example consider the 6d theory given by

su(n)
2 (3.3)

The theory includes 2n hypers in F. The outer automorphism O of su(n) descends
to a discrete symmetry of the theory whose action on the hypermultiplets can be
manifested as follows. We divide the 2n hypers into two ordered sets such that each
set contains n hypers. Then we exchange these two sets with each other.

3.3 Discrete symmetries from permutation of tensor multiplets

Now we turn to a discussion of the second kind of basic discrete symmetries. These

arise from permutation of tensor multiplets ¢ — S(i) such that

gsi) = 8i
OS@SG) — i

for all 4, 7. This is a symmetry of T if

Rsiys) = Rij

for all 7, j.
As an example, consider the 6d theory given by

so(p) sp(n) so(m) sp(n) so(p)
4 1 4 1 4 (3.8)
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The permutation

(3.9)
is a symmetry of the theory.
As another example, consider the 6d theory given by
su(m) su(n) su(n) su(m)
2 2 2 2 (3.10)
The permutation
su(m) su(n) su(n) su(m)
2 2 2 2
(3.11)

is a symmetry of the theory.

Now, consider a permutation S that is a symmetry of . We can use the data of S
to convert [Q27] into another matrix [Q%°]. Here v, 3 etc. parametrize orbits of nodes
1 under the iterative action of S. To define a particular entry Qgﬁ , we pick a node 17
lying in the orbit a and let

Qy =3"qv (3.12)
Jjes
where the sum is over all nodes j lying in the orbit 5. Notice that the resulting
matrix [Q2°] need not be symmetric but must be positive definite. It turns out for S
associated to 6d SCFTs that whenever Q%7 # Q2% then the smaller of the two entries
is —1. Thus, [Q2%°] is analogous to the Cartan matrix for a general (i.e. either simply
laced or non-simply laced) Lie algebra.

Let us compute the matrix [Q%°] for the above example (3.8). To start with, [Q]

Is
4 -10 0 O
-11 -10 0
0 -14 -10
0 0 -11 —1
0 0 0 —-14
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There are three orbits. The third node lies in the first orbit, the second and fourth
nodes lie in the second orbit, and the first and fifth nodes lie in the third orbit. Applying
our prescription (3.12), we find that [Q%] is

4 =20
-1 1 -1
0 -1 4

Similarly, we can compute the matrix [Q%°] for the above example (3.10). [Q4] is

2 =10 0
-1 2 —-10
0 -1 2 -1
0 0 -1 2

and [Q%7] is
1 -1
-1 2
Now, we define a graph X associated to [Q%]:

e Nodes: The nodes of ¥F are in one-to-one correspondence with the set of orbits
Ui
a. The value of node avis 2" where i is a node of X lying in the orbit «.

e Edges: Let a # [ and let Qgﬁ > ng‘. Then we place —Qgﬁ number of edges
between nodes o and §. If Q2 = Q5% then the edges are undirected. If Q%7 >
Q’ga, then all the edges are directed from a to S.

e Self-edges: Let [, = Q% — Q% where i is a node of Xz lying in the orbit «.
Then, we introduce [, edges such that the source and target of each edge is the
same node a.

32 can be understood as a folding” of ¥z by the action of S. Observe that the re-
lationship between ©2 and [Qgﬂ | is analogous to the relationship between the Dynkin
graph and Cartan matrix for a general (i.e. either simply laced or non-simply laced)
Lie algebra.

"Notice that, unlike the foldings of Dynkin diagrams, the foldings of graphs Y can lead to self-
edges.
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For our example (3.8), the folded graph 2 is

4—2—1—4 (3.13)

- (3.14)

We note that, starting from the data of %2, we can only reconstruct S up to
conjugation. But this is enough to keep track of the twist associated to S. Thus,
throughout this paper, we will specify twists via folded graphs X2 and will not refer to
an explicit S inducing the folding.

3.4 General discrete symmetries

We now discuss twists associated to general discrete symmetries that combine the basic
discrete symmetries discussed in Sections 3.2 and 3.3. That is, we consider actions of
the form

(H O@i)) S (3.15)

where S is a permutation of the tensor multiplets and ©%) is an outer automorphism
of order g; of gauge algebra g;, where each ¢; € {1,2,3} and ¢; = 1 denotes the identity
automorphism. (3.15) is a symmetry of the 6d theory T only if

9s(¢) = 0i (3.16)
QS@SG) — i (3.17)

and
00 - Rgwysiysty = Rija (3.19)

As in Section 3.3, we associate the matrix [Qgﬁ ] to the twist generated by the action of
(3.15).
As an example, consider the 6d SCFT

su(m) su(n) su(m)
2 2 2 (3.20)
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Suppose we want to perform the outer-automorphism O® for the middle su(n) node.
Recall from the discussion around (3.3) that the outer automorphism of su(n) ex-
changes the fundamental hypers in pairs. However, the graph in (3.20) indicates that
the fundamental hypers of the middle su(n) algebra are part of bifundamental repre-
sentations formed by taking the tensor product with the fundamental representations
of the neighboring su(m) algebras. Therefore, if we want O to be a symmetry of the
theory, we must permute the two neighboring su(m) as well. Thus, O® by itself is not
a symmetry of the theory, but its combination with the permutation

su(m) su(n) su(m)
2 2 2

NS

is a symmetry of the theory. Thus, we see that in general it is not possible to decompose

(3.21)

a general symmetry of the form (3.15) into more basic symmetries discussed earlier.
As another illustrative example, consider

s0(2m) sp(n) so(2m)
4 ! 4 (3.22)

Consider sending the left s0(2m) to the right s0(2m) with an outer automorphism O®),
and sending the right so(2m) to the left so(2m) without any outer automorphism. We
can represent this action as

oW

N

s0(2m) sp(n) so(2m)

4 1 4
o® (3.23)

This action is a symmetry of the theory and is represented as

oMol s (3.24)
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in the notation of (3.15). Here we have labeled the nodes as 1,23 from left to right
and the subscript of O denotes the node it is acting at. We can also consider the action

O2)

s0(2m) sp(n) so(2m)
4 1 4

O?)

which is also a symmetry of the theory and is represented as

(3.25)

oo s (3.26)

in the notation of (3.15).

Now, let g, = g; and Q% = Q% where ¢ is a node of Xs lying in the orbit a of
S. Then O%) can be viewed as an outer automorphism of g,. Let us define an outer
automorphism Q) of g, by

Ol4) — H O'4) (3.27)
ica

where each O%) on the right hand side is viewed as an outer automorphism of g, and
the O@) for all i lying in the orbit a are then multiplied with each other to produce the
outer automorphism QW) of g,. Notice that we have chosen some ordering of various
i while evaluating the product [[;c, O“). Different orderings produce different but
conjugate @), Thus, we leave the ordering unspecified since we are only interested
in the conjugacy class of (),

We can now associate a graph Eg’{q"} to the action of (3.15). We start from the

(ga)

«

graph X2 defined in Section 3.3 and modify the values of the node a to Q%" where i
is a node of ¥z lying in the orbit a. The graph obtained after this simple modification
is what we refer to as X519,

Note that the data of Zi’{%} is enough to reconstruct the action (3.15) up to
conjugation. Thus, we will capture the twist associated to the action (3.15) by the

graph Ei’{qa} and call the resulting 5d KK theory as TG F 5.

For the example discussed around (3.20), Eg’{qa} is

su(n)®  su(m)®

2—2—2 (3.28)

- 21 —



Comments

08)? | cp<4g=23

% k=246

2 n > 1; non-geometric

Table 8. List of all the new nodes that can appear in graphs associated to 5d KK theories. We
also list all the possibilities where an edge starts and ends on the same node. The comment
“non-geometric” for the last entry refers to the fact that there is no completely geometric
description of this node. See also a node appearing in Table 1. If a KK theory involves either
of these two kinds of nodes, then it does not admit a conventional geometric description.

Similarly, for (3.23), Eg’{q‘*} is

sp(n)d  s0(2m)@
l—2—4 (3.29)

However, for (3.25), {4} i

sp(n)®  so(2m)™M)
l—2—4 (3.30)
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o (g8)
gg%a; 965,3 Comments
1 2

sp(qa)( ) 50(7;6)( : o <ng—4—Fkyng <dn, +14;2< k<4

sp(qa)“) 5o(£§ﬂ2> Ny < 6

su(ga)(l) 50(25)(2) ne < ng—8; ng < 2n,

_ g —

Bu(ga)(l)su( gﬁ)(l) na < 2ng; ng < ng
BP(E)(” 5u(;)(2> 3<n<9n#8
sp(f)é” su<§><2> =01
sp(0)M  su(3)®@

1———3
w@w> wfw) 29<k<dq=23

BP(?)(I) 50(2())(2) k=24
513(;))(1) 50(2471)(2) n==6,7
sp(0)) s0(12)

1—2
@?W) f) k=2,4,6
5u(;1)(1)5u(21)(1) n=1,2

Table 9. List of all the new undirected edges that can appear in graphs characterizing 5d

KK theories.

which is the same as 2%{"&} for the symmetry

s0(2m) sp(n) so(2m)

4

1

4

NS
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(g0) (g5)
Qﬁaa 9555 Comments
1) (ag)
510(7101) 50(71]5) P e <mg—A—k;ng < 20 +10 — 2q5; k = 3,45 g5 = 1,2
—_—2 —
513(7104)(1) 50(;)(1) ng = 1,2
-2 -->
sp()® gl
1 —2—3
1) (ag)
sp(qa% so(nf) a no <ng—8; 3ng < 4ng + 17 — g g = 1,2
SN
1 1
5“(7;()4)( ) 5’4(7;6)( ) No < 2ng; eng < 2n,; e = 2,3
5u(7;a)(2) Bu(gﬂ)(l) Ne < 2ng; ng < ng
— 2 —
gg) ﬁu(22)(1) e=2,3
50(27)(1) 5“(22)(1) =23
so(7)®  su(2)®
3---2--92
so(1) sp(1)")
3---2--51
s0(8)  sp(1)")
3---2—01
(qa) 1)
50(”]:)(1 sp(qﬁ) na§4n5+16’ 27’Lﬂ§na_4_k, k:3747 QQ:172
—_—2 —
N 1
50(”;)@ ) ﬁp(qﬁ)( ) Ng < 4715 + 16; 3”5 <Ng—8;¢a=1,2
— 3 —

Table 10. List of all the possible directed edges between two gauge-theoretic nodes that can
appear in graphs characterizing 5d KK theories. An arrow with e in the middle of it denotes
e edges directed in the direction of arrow. Solid edges arise from foldings of solid edges and
dashed edges arise from foldings of dashed edges. A partially dashed and partially solid edge
with 2 in the middle of it arises from a folding together of a dashed edge and a solid edge.
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o €]
éi; gg/;/; Comments
1
513(?)() 2 i‘(??)(q) g=1,2
sp(0) so(7)M)
1—2—3
m?W) wa) k=34
sp(0)® gV
| —>—3
1
(@) ap(0)” =12
”?w) @?WJ n<16:2<e<k—1 k=234 qg—=12
g’ sp(0)
3— 02— 1
1
%) @$W) 2<e<k-1:3<k<5
f) ”@W) 2<e<k—1:3<k<6 q=12
1
i) @?W) 29<e<k—1;3<k<8
ﬁ) W$W) 2<e <11
ng) wgw) n=12¢c=23

Table 11. List of all the possible directed edges involving at least one non-gauge-theoretic
node that can appear in graphs characterizing 5d KK theories.

which does not involve any outer automorphisms. Thus, according to our claim, (3.25)
and 3.31) must be in the same conjugacy class. Let us demonstrate it explicitly. Con-
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gZ(Qi) 5}3(0)(1) g](fk)
Qi 1 QFkk Comments
5u(2)(1) 5p(0)(1) g(Q)
P 1 k k>3 g9 =¢l” 50(8,10)? 50(8)®
su(3)®  sp(0)™ gl@
k 1 l E0>3;k+1>5; g9 =50(8)3 50(8)® su(n <4)®
5u(3)(2) 5p(0)(1) g(l)
k 1 l kl>2; k+1>5;9=7fs40260(n <9),su(4)
s sp(0) g
k 1 l k,l1>2;:k+1>5;g=es50(8,10),su(n < 6)
5u(4)(2) 5p(0)(1) g((I)
9 1 k k=3,4; g9 = g{" s0(n < 9)®, s0(8,10)®
50(8)(2) 5p(0)(1) g(Q)
k 1 l ke 1>2k+1>5; g9 =g su(4)®, 50(7)V, 50(8)2
50(8)(3) gp(O)(l) g(Q)
k 1 l k,l>2k+1>5; g9 =s5u(3)? s0(8)®

Table 12. List of all the new possibilities for multiple neighbors of sp(0)(!) connected to it
by undirected edges.

jugating (3.26) by (’)?), we get

o oPoPs)0P (3.32)
0P so? (3.33)
0P 0P s (3.34)
=5 (3.35)

Thus, the KK theories corresponding to (3.25) and (3.31) must be the same, and we
denote it by the folded graph (3.30).

In a similar fashion, by studying various 6d SCFTs and their symmetries, we can
isolate all the possible ingredients that can appear in graphs of the form Ei’{q(’} asso-

ciated to bd KK theories:

e First of all, the nodes listed in Tables 1 and 2 are all allowed. We simply write
each gauge algebra g appearing in Table 1 as g(!.

e Similarly, the edges appearing in Tables 3, 4 and 5 are all allowed with each gauge
algebra being written as g(").
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e The new nodes that can appear in graphs associated to 5d KK theories but do
not appear in graphs associated to 6d SCFTs are listed in Table 8.

e The new undirected edges appearing for graphs associated to 5d KK theories are
listed in Table 9.

The configuration
sp(na) ) so(ng)?
l——"% (3.36)
for ng = 4n, + 16 and n, > 0 is not allowed since the choice of theta angle
for sp(n,) in the associated 6d theory is correlated to the choice of a spinor

representation of the neighboring so(4n, + 16). Thus, the outer automorphism
O®@ of s0(4n, + 16) is not a symmetry of the theory®.

e The directed edges between two nodes both carrying a non-trivial gauge algebra
are listed in Table 10.
The configuration
sp(na)) so(ng)®
l—=>—% (3.37)

with ng = 2n, + 8 is not allowed. This configuration descends from (3.23) with
n = n, and m = n, + 4. Recall that the choice of theta angle of the gauge
algebra sp(n,) is equivalent to the choice of a spinor representation of its flavor
symmetry algebra so(4n, + 16). But so(2n, + 8) @ so(2n, + 8) subalgebra of
s0(4n, + 16) is gauged. The S of so(4n,, + 16) decomposes as (S®C) & (C®S) of
50(2n,+8)@s0(2n,+8) which is sent to (C®C)B(S®S) of s0(2n,+8)Bs0(2n,+8)
by the action depicted in (3.23). Thus, (3.23) is not a symmetry when n = n,
and m = n, + 4.

For similar reasons, the configuration

sp(na)V so(ng)?
l—s—% (3.38)

with 3ng = 4n, + 16 is not allowed.
The KK theory
s0(8)  sp(1)V
-2l (3.39)

8The authors thank Gabi Zafrir for a discussion on this point
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arises from the 6d SCFT

1--mmmmm 3—1 (3.40)

by performing the outer automorphism O®) of s0(8) which permutes F and S,
and hence induces the exchange of the two sp(1).

Other kinds of directed edges are listed in Table 11.

Due to similar reasons as explained above, the configuration

sp(0)) s0(8)®
l—2—1% (3.41)

is not allowed.

There are various kinds of possibilities for multiple neighbors of sp(0)™). All of
the possibilities listed in Table 6 are allowed with the substitution of g*) in place
of every trivial or non-trivial algebra g appearing in that table. New possibilities
involving undirected edges are listed in Table 12. These are obtained by perform-
ing outer automorphisms on the possibilities listed in Table 6. However, some of
the outer automorphisms do not yield a symmetry of the the theory.

For example, consider the decomposition of the adjoint 248 of eg under su(3) @ eq
248 — (8,1) ® (1,78) @& (3,27) & (3',27) (3.42)

It can be seen from the above decomposition that neither the outer automorphism
of su(3) nor the outer automorphism of ¢g is a symmetry of the decomposition,
implying that neither the configuration

k 1 l (3.43)

nor the configuration

k 1 l (3.44)

is an allowed KK theory. However, the configuration

su(3)® sp(0)™ s
k 1 l (3.45)
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is an allowed KK theory since the combined outer automorphism of su(3) and
¢¢ is indeed a symmetry of the decomposition (3.42). Correspondingly, neither
(3.43) nor (3.44) appears in the Table 12, while (3.45) does appear in Table 12.

Similarly, the reader can check that the following configurations do not give rise
to allowed KK theories:

k 1 l (3.46)

k 1 l (3.47)

for (p,q) equal to (1,2) and (2,1). However, (1,1) and (2,2) are allowed.

su(3)®  sp(0)®  50(10)@
k 1 l (3.48)

for (p,q) equal to (1,2) and (2,1).

su(3)®  sp(0)®  su(5,6)@
k 1 l (3.49)

for (p,q) equal to (1,2) and (2,1).

su(2)®  sp(0)  50(12)3)
k 1 l (3.50)

k 1 l (3.51)
forp=1,2.
s0(7) M sp(0)D)  s50(8)®
k 1 l (3.52)

It is not possible for sp(0)M) to have multiple neighbors when one of the neighbors
is connected to it by a directed edge going outwards from 5]3(0)(1). This is simply
a consequence of the fact that sp(0) cannot have three neighbors in the context
of 6d SCFTs.
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However, it is possible for sp(0)™") to have multiple neighbors with some neighbors
having directed edges pointing inwards towards sp(0)"). These possibilities can
be simply obtained by replacing one or more undirected edges appearing in Tables
6 and 12 by suitable directed edges (pointing inwards) taken from Table 11. One
has to ensure that the matrix associated to the resulting configuration is positive
definite, which disallows some substitutions. We do not pursue a full classification
of such cases since they won’t be useful in this paper. Later on, in Section 5.4.4,
we will provide a general prescription to obtain the gluing rules associated to
such directed edges from the gluing rules associated to their “parent” undirected
edges.

4 Prepotential for 5d KK theories

The goal of this section is to propose a formula for the prepotential of a 5d KK theory
ng ga} starting from the tensor branch description of the corresponding 6d SCFT ¥.

4.1 Prepotential

| g | 0@ | b | Ry — Ry
su(2m) | O@ sp(m) FoFFoF AN Nal
su2m+1) | OP | sp(m) |FoFal FoFal
so(2m) | O® |so(2m—1) |F5F®1,S—5,C—S
¢ 0@ 4 FoFpl FoFal
50(8) o) g2 FoFol,S—»Fol,CoFal

Table 13. The table displays the invariant algebra h when g is quotiented by @@, An irrep
R4 of g decomposes to an irrep Ry of h and this decomposition is displayed (for representations
relevant in this paper) in the column labeled Ry — Ry. 1 denotes the singlet representation.

Compactify a 6d SCFT ¥ on a circle with a twist S, {¢q,} around the circle. Let

zi’{qa} gives rise to a low energy

us analyze the low energy theory. Every node « in
5d gauge algebra b, = g,/O'%) which is the subalgebra of g, left invariant by the
action of outer automorphism @) In this paper, our choice of outer automorphisms
is such that the invariant subalgebras are those listed in Table 13. For each node «, we
obtain an additional u(1), gauge algebra in the low energy 5d theory coming from the
reduction of a tensor multiplet B; on the circle where ¢ lies in the orbit a.

Now we determine the spectrum of hypermultiplets charged under ®,b, under

the low energy 5d theory. First of all, for every node i in 6d theory, we define 7; =
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@ij‘?iim(RijJ ). Recall that 7; € R; and hence the 6d theory contains hypermultiplets
charged under representation S; of g; where S; is defined such that S; & 7; = R;. S; is
the representation formed by those hypers that are only charged g; and not under any
other gauge algebra g; with j # 1.

As detailed in Table 13, irreducible representations R, of g, can be viewed as irre-
ducible representations of Ry,,. We can thus view hypers transforming in representation
S; of g; as transforming in a representation of h,. Let us denote this representation
of b, by S,. The outer automorphism @) then permutes constituent irreps inside
S, and thus acts on S, as an automorphism. The low energy 5d theory then contains

hypers transforming in the representation
S, = 38,/0) (4.1)

These hypers are only charged under b, and not under any other gauge algebra hz with
B#a.

Now consider other hypermultiplets that are charged under multiple gauge alge-
bras in the 6d theory. These descend to hypermultiplets charged under multiple gauge
algebras in the low energy 5d theory plus some hypers only charged under the indi-
vidual algebras. Consider the mixed representation R;; = Ri;; ® R4j; of g; @ g; in
the 6d theory. Let ¢ and j lie in orbits o and 3 respectively. Let R;;; decompose as
Rapa @ Nap.al when viewed as a representation of b,, where R, is the full subrep-
resentation that is charged non-trivially under b,. Similarly, let R;;; decompose as
Rap,p @ nappl when viewed as a representation of hg, where R,p 5 is the full subrepre-
sentation that is charged non-trivially under hg. Then, under the twist, R;; descends to
a mixed representation R,z of b, @ hg plus representations S, 3, and S, of b, and hg
respectively. Here Rog = Rap,a @ Rag g, Sasa = Nas,gRasa, and Sag s = NagaRas,s-

In addition to the above, we also obtain hypers in the symmetric product Sym2(7€ij,i)
for all 7 # i such that both j and ¢ are in the same orbit o. Thus, the full representation
R, formed by hypers under b,, is

Ro = BjeaSym*(Riji)ly. & Sa &5 (Roga " & Supa) (4.2)

af,a

where Sym*(R;;.)s, means that we view Sym?(R;;;) as a representation of h,. Note
that in the above expression, 7 is a fixed node in the orbit a, j cannot equal i, and
cannot equal a. There are no hypers charged under u(1),. Just as the representations
R; and R;; for all ¢ and j determine the full matter content for 6d SCFTs, the repre-
sentations R, and R,s for all o and 3 determine the full matter content for 5d KK
theories.

As an example, let us determine the low energy 5d theory for (3.23). The 5d gauge
algebra is h = sp(n) ®so(2m —1). A half-bifundamental of sp(n) @ so(2m) decomposes
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as a half-bifundamental of sp(n) @ so(2m — 1) plus a half-fundamental of sp(n). Thus,
the two half-bifundamentals between the sp(n) and the two so(2m) in (3.23) descend
to a half-bifundamental of h plus a half-fundamental of sp(n) in the 5d theory. There
are 2m — 8 — n extra fundamentals of the left so(2m) in (3.23) not charged under
any other gauge algebra. Similarly, there are 2m — 8 — n extra fundamentals of the
right s0(2m) in (3.23) not charged under any other gauge algebra. These two sets of
fundamentals descend to 2m — 8 — n fundamentals of so(2m — 1) in the 5d theory. We
also obtain 2m — 8 — n singlets that decouple and so we ignore them. Finally, there
are 2n + 8 — 2m extra fundamentals of sp(n) in (3.23) not charged under any other
gauge algebra. These hypers descend to 2n + 8 — 2m extra fundamentals of sp(n) in
the low energy 5d theory that are not charged under so(2m — 1). To recap, the low
energy 5d theory is an sp(n) @ so(2m — 1) gauge theory with a half-bifundamental plus
4n + 17 — 4m half-fundamentals of sp(n) plus 2m — 8 — n fundamentals of so(2m — 1).

As another example, let us determine the low energy 5d theory for (3.14). The
two su(m) get identified to a single su(m) algebra. Similarly, the two su(n) get identi-
fied to a single su(n) algebra. Thus the 5d gauge algebra is h = su(n) & su(m). The
bifundamentals of su(m) @ su(n) descend to a single bifundamental of h. The bifunda-
mental of su(n) @ su(n) descends to S? of su(n). Furthermore, we obtain n — m extra
fundamentals of su(n) and 2m — n extra fundamentals of su(m). Thus, the low energy
5d theory is an su(n) @ su(m) gauge theory with a bifundamental plus (2m — n)F of
su(m) plus (n — m)F & S? of su(n).

The low energy 5Hd gauge theory also contains tree-level Chern-Simons terms that
arise from the reduction of (2.1) on the circle. These can be written as

QY Ag o A tr(F2) (4.3)

where Ag, is the gauge field corresponding to the u(1), obtained by reducing B, on
the circle and Fj is the gauge field strength for hs. In writing (4.3), we have used the
fact that the index of hsz in gg is one which is true for our choice of § listed in Table 7.
(4.3) contributes the following tree-level term to the prepotential

ree 1 (7 a
6F§ h.) =6 2% 525" 000 (K5 du005) (4.4)

where ¢g, is the scalar living in the vector multiplet corresponding to u(1), and ¢,
are scalars living in the vector multiplets corresponding to u(1), s which parametrize
the Cartan of hg. Here Kgb is the Killing form on hz normalized such that its diagonal
entries are minimum positive integers while keeping all the other entries integer valued.

Let h = ®,b. be the total gauge algebra visible at low energies. The low energy
hypermultiplets form some representation R of h which decomposes into irreducible
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representations of h as R = @;R;. Note that it is possible to have f # f’ such that
R¢ = Ry. In other words, the index f distinguishes multiple copies of representation
Rs. Now we can add the one-loop contribution to the prepotential (4.4) to obtain

675 (g = 2398 d0.0 (K& Gus005) + ; (Z ool =32 > [w(Ry) é+ mf’?’)
B r fw(Ry)

(4.5)
where 7 are the roots of h = @b, w(Rs) parametrize weights of Ry and m; € R
is a mass term for each full® hypermultiplet f. The notation w - ¢ denotes the scalar
product of the Dynkin coefficients of the weight w with Coulomb branch parameters.
Note that similar approaches for computing prepotentials of 5d theories have appeared
in the literature—see for example [40-42].

In (4.5) we must impose that mass terms for hypers belonging to Sas,, and Saps s
equal the mass term for hypers belonging to R,g. This is because Rag, Sap,o and Sas s
all descend from the same 6d representation R;; which has only a single u(1) symmetry
rotating it. The Wilson lines for this u(1) around the compactification circle gives rise
to the mass terms for R,g, Sapo and S,s4, and hence all these mass terms must be
equal.

We propose that (4.5) is the full exact prepotential for ‘Ig ga} where we have ignored
the terms involving the mass parameter % where R is the radius of compactification. We
are justified in doing so since these terms do not play any role in this paper. Moreover,
only the part of 6.Fg ¢4, that is cubic in Coulomb branch parameters ¢, is relevant to
the discussion in this paper; so, for convenience, we denote the part of the prepotential
cubic in Coulomb branch parameters by 6F gf (ga}"

Notice that fixing the relative values of ¢,, and my fixes the signs of the terms
inside absolute values in (4.5). As the relative values of ¢, , and m; are changed, the
sign of some of the terms in (4.5) changes. This leads to jumps in the coefficients of
various terms in the resulting 6.F g (ga}- This means that different relative values of ¢, o
and my lead to different phases inside the Coulomb branch of the 5d KK theory.

Let us illustrate through a simple example of the KK theory specified by the graph

su(3)M
2 (4.6)

This theory has six hypers in fundamental of su(3). The Dynkin coefficients of the
positive roots of su(3) are (2,—1), (1,1) and (—1,2). The Dynkin coefficients for the

9Half-hypermultiplets do not admit mass parameters unless completed into a full hypermultiplet.
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weights of fundamental are (1,0), (—1,1) and (0, —1). The Killing form is

(2

and Qgﬁ is a 1 x 1 matrix which equals 2. Without loss of generality, we can take r - ¢
for positive roots to be positive. This implies that r - ¢ for negative roots is negative.

Let us first fix all the mass terms to be zero. Then the first weight (1, 0) contributes
with a positive sign since the positivity of r - ¢ for positive roots implies that ¢,
is positive. Similarly, the third weight (0,—1) contributes with a negative sign to
the prepotential. However, the sign of second weight (—1,1) cannot be determined
uniquely, and hence the theory has two phases when all mass parameters vanish. These
two phases are distinguished by the sign s of the contribution due to the weight (—1,1).
The prepotential can be written as

6F% = 6F =1200 (67 + 63 — d102) + (261 — d2)" + (61 + 02)" + (202 — 1)°)
-3 (5 (d2 — d1)” + &} + ¢§) (4.7)

Here 12¢ (¢? + ¢3 — ¢1¢) is the contribution coming from the Green-Schwarz term in
6d, (2¢1 — ¢2)° + (1 + d2)” + (202 — ¢1)” is the contribution coming from the positive
and negative roots, and —3 (s (P — ¢1)3 + @3 + qﬁ%) is the contribution coming from
the weights of six hypers in fundamental.

When we turn on mass parameters, the sign of the weights corresponding to dif-
ferent hypers can be changed. For example, consider turning on a mass parameter
for one of the fundamentals m; while keeping the mass parameters for the other five
fundamentals zero. Now we obtain contributions from terms of the form |m; + ¢,
|m1 — @1+ ¢o| and |my — ¢2|. Depending on the value of m;, we go through various new
phases of the theory which are parametrized by choices of signs of these three terms.
For example, suppose that m; is positive and very large, so that all the three terms are
positive. Moreover, assume that ¢o — ¢; is positive, so that s = +1. Then the resulting
phase is governed by the following prepotential

6F =12¢0 (67 + 5 — d10s) + (261 — 02) + (61 + 62)” + (262 — 6n)?)

- ; ((¢2 — ¢1)3 + Cb? + Qﬁ) - ; ((¢2 — o1+ m1)3 + (o1 + m1)3 + (g2 + m1)3)

(4.8)
which implies that the truncated prepotential is
67 =12¢0 (67 + 63 — d16h2) + (261 — 62)° + (d1 + $2)° + (262 — &)°)
=3 ((¢2 = 61)° + 6}) — 263 (4.9)
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We caution the reader that there can be phases of the KK theory which cannot
be traversed by changing the signs of various contributions to the prepotential. In
other words, they are not visible to the canonical low energy gauge theory that we
associated to the KK theory in the beginning of this subsection. We will refer to such
phases as non-gauge theoretic. This terminology does not mean that the low energy
theory governing such phases cannot be understood as Coulomb branch of a gauge
theory. Rather it simply means that low energy theory governing such phases cannot
be understood as part of Coulomb branch of the canonical gauge theory associated to
the corresponding KK theory.

4.2 Shifting the prepotential

Consider a 6d theory T with gauge algebras g; on its tensor branch. Consider further
compactifying ¥ on a circle of finite size without a twist. On a generic point of the
resulting bd Coulomb branch, the massive BPS spectrum includes W-bosons for the
(1)

corresponding untwisted affine gauge algebras g,

;. In other words, the abelian gauge

algebra visible at low energies on the Coulomb branch is ®,u(1),; parametrizing the
Cartan of g; plus a u(1)y,; responsible for affinization. The u(1l); arising from the
reduction of tensor multiplet B; is central to @,u(1l),; @ u(l)p;. The untwisted Lie
algebras are listed in Table 14 along with their Coxeter and dual Coxeter labels.

We now generalize the above statements to the twisted case. Consider compactify-
ing T on a circle of finite size with a twist S, {¢.}. On a generic point of the resulting 5d
Coulomb branch, the massive BPS spectrum includes W-bosons for the corresponding
twisted /untwisted affine gauge algebras g{%). In other words, the abelian gauge algebra
visible at low energies on the Coulomb branch is @,u(1),,, parametrizing the Cartan
of b, plus a u(1)g o responsible for affinization. The u(1), arising from the reduction of
tensor multiplet B; (with ¢ in orbit of ) is central to @,u(1),6 S u(1)g,. The twisted
Lie algebras are listed in Table 15 along with their Coxeter and dual Coxeter labels.

The charge under u(1), (corresponding to a simple co-root ¢;) of a W-boson W,
(corresponding to simple root e, of g'%)) is given by the element A, of the Cartan ma-
trix. Now consider the u(1) embedding into &, ,u(1),, by the map e — @, ( idbv@)b

where (e’d 9) is the element €% of u(1),,, and d) are dual Coxeter labels of g(9) listed

in Tables 14 and 15. Since all the W-bosons W, are uncharged under this u(1), it fol-
lows that this u(1) can be identified with the central u(1),. The charge of a particle
ne under u(1), can be written as >;%, dy/ny o where ny, is the charge of the particle
under u(1), 4

The truncated prepotential 6.F g (g0} is written in terms of Coulomb branch param-
eters ¢p o (with 1 < b <r,) corresponding to u(1),, and ¢g, corresponding to u(1),.
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su(n)M: el!):

—_

O11
1
° |
@22
oo —0— - —0—0——0 ° ° ° ° °
1 1 1 1 1 1 1 2 3 2 1
1 1 1 1 1 1 1 2 3 2 1
1
so(2n + 1)W: etV
O11 @22
o—o —0— —o—0——0 o) ° ° ° ° ° °
1 2 2 2 2 1 1 2 3 4 3 2 1
1 2 2 2 2 2 1 2 3 4 3 2 1
1
sp(n)V el
@33
O=—0—0— - —0—0=<0 ° ° ° ° ° ° o
1 1 1 1 1 1 2 4 6 5 4 3 2 1
1 2 2 2 2 1 2 4 6 5 4 3 2 1
1
s0(2n)W: i
1 1
1 1 o) ° ° ° °
1 2 3 2 1
O L 2 3 4 2
oe—o— - —0—@ (1),
2 2 2 2 g2
2 2 2 2
° ° e==e—O
1 1 1 2 1
1 1 3 2 1

Table 14. Untwisted affine Lie algebras. The affine node is shown as a hollow circle. The
numbers in black d) denote the column null vector for the Cartan matrix, popularly known
as dual Coxeter labels. The numbers in red d, denote the row null vector for the Cartan
matrix, popularly known as Coxeter labels.

To facilitate comparison with geometry, we wish to write the prepotential in terms of
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su(2n 4+ 1)@ el):

O—4-0— 0 — 0 —0—<0 O — 0 —0—<0—80
1 2 2 2 2 2 1 2 3 4 2
2 2 2 2 2 1 1 2 3 2 1
s0(2n)@: 50(8)®):
O—4-0—0— " —0—0——0 e=—e0 O
T2 2 > 2 1 3 7 2 1
1 1 1 1 1 1 1 2 1
su(2n): su(4)®:
O=%=0——0
1 2 1
1 1 1
1
1
? su(3)?
oo o - —0 —0—<08o o=-e
1 2 2 2 2:% 2 1 $
1 2 2 2 2 1 2 1

Table 15. Twisted affine Lie algebras. The affine node is shown as a hollow circle. The
numbers in black d) denote the column null vector for the Cartan matrix, popularly known
as dual Coxeter labels. The numbers in red d, denote the row null vector for the Cartan
matrix, popularly known as Coxeter labels. The total number of nodes for su(2n + 1)(2) is
n + 1, for s0(2n)® is n, and for su(2n)® is n + 1.

Coulomb branch parameters corresponding to 1(1), for 0 < b < r,. This is achieved
by performing the following replacement in 6.F, g (ga}

(bb,a — (bb,a - dZQéO,a (410)

for all 1 < b < r, and for all .’ We will call the prepotential obtained after this shift
as fs,{qa}- The Coulomb branch parameter ¢, in fs,{qa} corresponds to u(1)g o rather
than u(1),.

For illustrative purposes, we note that the shift for our example (4.6) is

1 — O1 — do
P2 = P2 — Po
10Note that the shift (4.10) has been studied before the in the literature in relation to resolutions

of elliptically fibered Calabi-Yau threefolds; in these examples, the effect of the shift is to expand the
Kéhler form J in basis of primitive divisors—see for example [43].
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which means that the shifted prepotential corresponding (4.7) is
6F = 86} + 867 + 203 — 66163 + 66163 — 66207 — 120267 (4.11)

where we have chosen the phase s = +1.
The shifted prepotential for (4.9) is

6F = Toy + 8¢5 + 3¢5 — 60105 + 6105 — 320 — 3od3 — 120207 (4.12)

A Mathematica notebook accompanying the submission of this draft can be used
to compute the contribution to 6F (in any gauge-theoretic phase) from a single node or
two nodes connected by an edge. Using these two results, one can write the contribution
to 6.F from two nodes connected by an edge as contributions from the two nodes alone
and a contribution from the edge. Thus, we can figure out what is the contribution
to 6F by each possible edge. Combining the contributions from the nodes and the
edges, one can obtain 6f57{qa} for any arbitrary graph Eg’{q“}. More details and the
instructions for using the notebook can be found in Appendix E.

5 Geometries associated to 5d KK theories

In this section, we will show that we can associate (at least one) genus-one fibered
Calabi-Yau threefold X ¢, to every 5d KK theory'! T¢F . Compactifying M-theory
on Xgg.} produces the Coulomb branch of igga}. Some of the results appearing
below also appeared in [3-5, 44-51]

5.1 General features

In this subsection, we start with a description of general features of the geometric
structure of Xg 4.3 and the relationship between this geometry and the low energy
effective theory governing the Coulomb branch of the KK theory T¢ ga}.

We will show that Xg 4.1 can be realized as a local neighborhood of a collection of
irreducible compact holomorphic surfaces intersecting with each other pairwise trans-
versely. As we will see, the surfaces fall into families indexed by «. We denote the
irreducible surfaces in each family « as S, o, where 0 < a < r, (where r, is the rank of
o). The Kahler parameters associated to S, are identified as the Coulomb branch
parameters ¢, , of the corresponding 5d KK theory discussed in the previous section.
Whenever §,, is trivial, the rank of b, is zero and hence there is only a single surface
So,a associated to the node « in that case.

1We remind the reader that this statement is not completely true for KK theories involving the
last node in Table 8. For such KK theories, we only propose an algebraic description whose structure
closely mimics the structure of genus-one fibered Calabi-Yau threefolds to be discussed in the next
subsection 5.1.
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5.1.1 Triple intersection numbers and the prepotential

A key role in the relationship between Xg g,y and TEF  is played by the shifted
prepotential 6.7:"57{%}. The coefficients conpscy Of Gaa®psde~ in 6.7}37{%} capture the
triple intersection numbers of surfaces in Xg 4.} as follows:

Caa,ac,ac = Sa,oz : Sa,a : Sa,a
Caa,ac,bf = 3Sa,oz : Sa,a : Sb,B
Caa,bﬁ,c’}’ = 6Sa9a ’ Sb’ﬁ ’ 8677

where (a, a), (b, ), (¢,7) denote distinct non-equal indices.

A triple intersection product of three surfaces can be computed via intersection
numbers inside any one of the three surfaces. To explain it, let us first first define the
notion of “gluing curves” Consider the intersection locus L4453 between two distinct
surfaces Sq and Sy in Xg 4.1 Laaps splits into geometrically irreducible compo-

nents as >; L} 5. Each L 5 appears as an irreducible curve Ct

aa,b aa,b a,a;b,8 m Sa,a and an

irreducible curve Cj 4., , in Sy g. In other words, we can manufacture the intersection
of Sq and Sy g by identifying the curves
Cz,a;b,ﬂ ~ Cg,ﬂ;a,a (54)

a

with each other for all 7. Identifying pairs of curves in the above fashion can be
thought of as “gluing together” two surfaces along those curves!?. The reducible curve
Caang = 2iCh oy p is called the “total gluing curve” in S, for the intersection of
Sa,o and Sy 5. Similarly, C g.a.0 1= 32; Cp 5.4, 18 called the total gluing curve in Sy g for
the intersection of S, , and Sy 3.

As two distinct surfaces S,, and S, can intersect each other, so can a single
surface S, o intersect itself. Much as above for the intersection of two distinct surfaces,
the self-intersection of S, , can be captured in terms of gluings

Coa ™ Do (5.5)

where C?  and D!  are irreducible curves in S, 4.
Then the triple intersection numbers can be expressed as:

Sa,a : Sa,a : Sa,a = K(/z,a ’ K(,Z,CM
Sa7a : Sa,a ' Sb7ﬁ = Kl’lyOé ’ Cava;bzﬁ = Cg

7ﬁ;a7a

Scw ) Sb,ﬁ ’ Sc,v = Ca,a;bw@’ ) Cava;cyv = Cbﬁ;cw ) Cbﬁ;a,oc = Ccma#x ) Ccmb,ﬁ

120n multiple occasions throughout this paper, we abuse the language and denote the identification
of two curves as “gluing” of the two curves.
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where

K, o= Koo+ (Cin+Di) (5.9)

and K, , denotes the canonical class of Sg 4.

As an illustrative example consider the KK theory (4.6) for which the shifted
prepotential in a particular phase is displayed in (4.11). We propose that the associated
geometry is as follows. Since there is a single node, we drop the index a and only
display the index a. The surfaces are Sy = Fy, S; = Fy, Sy = F$. The gluing curves
between Sy and S are Cp; = e,Ch,p = e. The gluing curves between S; and S, are
Ci.2 = h,Cy1 = e. The gluing curves between Sy and Sy are Cog = h — >z, Cpo = €.

Now we can check that the intersections of these curves indeed give rise to the
various coefficients in (4.11):

e First of all, recall from (A.18) that K? =8 — b for F2. Indeed, the coefficients of
¢3 in (4.11) equal K2

e One third the coefficient of ¢o¢7 is zero which matches Cf,, = (e?)s, where
(e?)s, denotes that the intersection number e* is computed inside Sy and that
in particular the curve e is inside Sp. The coefficient also matches K; - Cy,p =
(K -€)s, = 0. One third of the coefficient of ¢op3 is —2 which indeed matches
Cio=((h=Xx)?)g, = (B = Taj)g, =4—-6=—2and K- Cop = (K - )5, =
—2. Similarly, we can check the matching of such intersection numbers with one
third the coefficients of other terms of the form ¢,¢3.

e One sixth the coefficient of ¢g¢1¢2 is zero which matches Coq - Coa = (€%)g, = 0,
Cip-Cro=(h-e)s, =0,and Cog - Co1 = ((h — X ;) - €)g, = 0.

On the other hand, the geometry associated to (4.12) has Sy = Fy, S; = Fy and
Sy = F}. The gluing curves between Sy and S are Cp; = e,C1o = e. The gluing
curves between S; and Sy are C,2 = h, (1 = e. The gluing curves between S, and Sy
are Cy0 = h — > x;,Co2 = e — x. Here o denotes the exceptional curve of the blowup
of Sy and z; denote the exceptional curves of the blowups of S;. One can check that
the intersections of these curves indeed give rise to the various coefficients in (4.12).

5.1.2 Consistency of gluings: volume matching, the Calabi-Yau condition,
and irreducibility

Not every pair of curves can be identified with one another to form a consistent gluing.
First of all, the topology of the two curves must be identical. This implies that a
geometrically irreducible curve in one surface can only be identified with a geometrically
irreducible curve in another surface, and furthermore that the genera (as defined in
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Appendix A.3) of the two curves must be identical and non-negative. If C' C S is an
irreducible curve, then a necessary condition that must be satisfied by C' is that for
any other irreducible curve C’ C S such that C' # C', the intersection product must be
non-negative:

C-C'>0. (5.10)

In this paper, some of the algebraic examples are non-geometric (i.e. do not admit
a conventional geometric description satisfying these consistency conditions) because
they involve gluings which identify a geometrically reducible curve in one surface with
a geometrically irreducible curve in another surface. Despite this apparent pathology,
these examples nevertheless satisfy the remaining conditions described below.

In addition to the above topological constraints, the volumes of a pair of gluing
curves must be the same. The volume of a curve C' is computed by intersecting the
curve with the Kahler class J via

vol(C)=—-J-C (5.11)
where
J = baaSan+ Y msNg (5.12)
a,o f

where m are mass parameters and Ny are non-compact surfaces corresponding to those
mass parameters. The contribution of mass parameters to the volume will not play a
prominent role in this paper, so we define a truncated Kahler class J¢ which only keep
track of the contribution of Coulomb branch parameters to the volume

J* =" ¢00Sua (5.13)

)

The volume of C' equals the mass of the BPS state obtained by wrapping an M2 brane
on C' because the intersection number

- Sa,a : C (514)

captures the charge under u(1),, of the BPS state arising from M2 brane wrapping C.
If C lies in S, 4, then the intersection (5.14) is computed via

Saa - C=K,,-C (5.15)
If C lies in some other surface S, 5, then (5.14) is computed via

SuaC = Chpaa-C (5.16)
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Now, for (5.4) to be consistent we must have
J? Ccit,oz;b,ﬁ = Jo. Clﬁ,ﬂ;a,a (517)

which is an important consistency condition for constructing Xg (4.;. We have checked
that (5.17) is satisfied for all the geometries presented in this paper.

Finally, the gluing curves also have to satisfy the Calabi- Yau condition which states
that

, 2 , 2
( ;,a;b,ﬁ) + (Cg,ﬁ;a,a> - 2g -2 (518)

where g is the genus of C, ., 5. See [2, 4] for more details.
Notice that in special situations the Calabi-Yau condition (5.18) is automatically
satisfied as long as we satisfy (5.17). This is the situation when there is a single gluing

curve Cy ap.8 ~ Ch g.a,a between two surfaces S, o and S g such that neither of them is
a self-glued surface. Then, (5.17) implies

K- Coanp = Cipan (5.19)
Adding C? ., 5 to both sides of the above equation we get
CZ s+ Ch e =29 — 2 (5.20)

As an example, in what preceded above we discussed the geometry associated to
(4.11). We can check that (5.17) is satisfied for all the gluing curves in the geometry.
For instance,

J? - Coq = o (Ko - Co) + 91C3 + 2 (Coz - Co) (5.21)
=0 (K -e)g, + b (), +2(¢) (5.22)
= —2¢o (5.23)

and comparing it with

J? - Cryo = ¢oChy + ¢1 (K1 - Cro) + ¢2 (Cr2 - Co) (5.24)
=00 (%), + 1 (K -e)s, + (e D), (5.25)
— 24, (5.26)

we find that indeed the gluing Cy.; ~ o is consistent. Similarly, it can be checked that
all the other gluings are consistent as well. In a similar fashion, one can also check that
all of the gluings in the geometry associated to (4.12) discussed above satisfy (5.17).
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5.1.3 Weights, phase transitions and flops

A hypermultiplet transforming in a representation R of the 5d gauge algebra b = ©,b,
appears as a collection of curves inside Xg,,;. These curves are characterized as
follows. Let m; be the mass parameter corresponding to Ry. For each weight w(Ry)
of Ry, define a quantity vol (w(Ry)), which we call the virtual volume, by shifting the
quantity

w(Rf) “ O+ my (5.27)

by the shift (4.10) for all a. Then, one can find a holomorphic curve Cyr,) in Xg (4.}
such that
vol (Cur,)) = [vol (w(Ry)) | (5.28)

In general, the curve Cy(r,) can be a positive linear combination of curves living
inside various irreducible surfaces. However, some of the curves Cyr,) turn out to be
living purely inside a single irreducible surface S, o. If such a curve C,, has genus zero
and self-intersection —1 inside S, o, then one can perform a flop transition™ on Xg (4.3
by flopping C', which corresponds to a phase transition in the Coulomb branch of the
5d gauge theory described in previous section. We refer to such a flop transition as a
“gauge-theoretic flop transition” to distinguish it from the flop transitions associated
to more general —1 curves not associated to any hypermultiplet.

Let the geometry obtained after the flop transition associated to C, be X g (ga}- As
for Xg (4.1, there exist curves C{U(Rf) in Xg r,., associated to weights w(Ry) such that

w

vol (Clyr,) = Ivol (w(Ry)) | (5.29)

where vol’ (w(Ry)) is the shift of the quantity (5.27) computed in the new phase. The
relationship between the two virtual volumes vol’ (w(R;)) and vol (w(Ry)) is

vol' (w(Ry)) = vol (w(Ry)) (5.30)
for all w(Ry) # w, and
vol' (w) = —vol (w) (5.31)

with a minus sign.
We know from the analysis presented in the last section that the canonical 5d gauge
theory associated to (4.6) is an su(3) gauge theory with six fundamental hypers. The

13This transition corresponds to blowing down C' inside S, ,, and performing a blow-up in the neigh-
boring surfaces intersecting C' transversally. We will explain such transitions via various illustrations
throughout this paper. More detailed background can be found in Section 2 of [4].
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Dynkin coefficients of the weights of fundamental are (1,0), (—1,1) and (0, —1). We
call these weights wq, we and ws respectively. We can compute

VOl(wl) = —¢0 —+ qbl (532)
VOl(wg) = —¢1 =+ ¢2 (533)
VOl(wg) = ¢0 - gbg (534)

Recall that the phase (4.11) corresponds to vol(w;) and vol(ws) being positive and
vol(ws) being negative for all the six fundamentals. Now compute the volume of one
of the blowups z; living in the surface Sy in the geoemtry corresponding to (4.11):

VOl(ZEi) = —qb() —|— qbg (535)

Thus we see that Cy,, for each fundamental is ;. The reader can check that Cy,, = fo+z;
and Cy, = f1 + fo + x; where f, denotes the fiber of the Hirzebruch surface S,,.

In fact, the geometries corresponding to (4.11) and (4.12) are related by a flop
transition. We first blow down one of the blowups, say xg, inside S;. Under this
blowdown the identity of Sy changes from F§ to F3. Since z¢ intersects the gluing curve
h—32% | x; at one point, the gluing curve after the blowdown becomes h—5% | x;4-24 =
h — Zle x;. The other gluing curve inside S, is unaffected since x4 does not intersect
with it. Correspondingly, since the gluing curve for S; in S5 does not intersect xg, the
surface S; is unaffected by the flop transition. However, since the gluing curve for Sy
in Sy intersects xg, we have to blowup Sy at a point lying on the gluing curve for S,
inside Syp. Under the blowup the identity of Sy changes from Fy to F§. The gluing curve
for S5 inside S is changed to e — .

Recall that the phase (4.12) corresponds to turning on a large mass m for one of
the fundamentals such that

VOl(wg) = gbo — gbg +m (536)
for this fundamental is positive. Correspondingly, we can compute that
VOI(SL’) = ¢0 — ¢2 (537)

which indeed matches (5.36) up to the contribution from mass parameter, thus verifying
(5.31). We are not keeping track of non-compact surfaces in this paper, so we are only
able to verify (5.31) up to the contribution from m.

5.1.4 Affine Cartan matrices and intersections of fibers

For each surface S, in Xg(q,), we define a canonical fiber f, . inside it:
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e If g, is non-trivial, then S, , will always be a Hirzebruch surface'® whose fiber
class is the canonical fiber f,,. An M2 brane wrapping this curve gives rise to
the W-boson W, , discussed in last section.

e If the node v is
su(1)W
2 (5.38)

then it turns out that there is a single corresponding surface Sp, = F§ which is
self-glued since e — x and e — y are identified with each other where z and y are
the exceptional curves corresponding to the two blowups. Due to the self-gluing,
the fiber class of Sy, intersects itself inside the threefold Xg ¢, 1 and appears as
an elliptic curve with a nodal singularity. It is this fiber class that we refer to as
the canonical fiber fj, in this case.

e If the node «v is

5p(0)5”
1 (5.39)

then it turns out that there is a single corresponding surface Sy, = dFPy. The del
Pezzo surface'® dPy admits a unique elliptic fiber class 31 — 3 x; which we refer
to as the canonical fiber fj, in this case.

e If the node « is
su(1)W
2

- (5.40)

then it turns out that there is no completely geometric description. We provide
an algebraic description in terms of algebraic properties of the curves inside the
surface Sp, = F} which is self-glued since z and y are identified with each other.
The canonical fiber in this case is fo o, = 2h + f — 22 — 2y which is a genus one
curve of self-intersection zero.

For each o we find that
Jae * Sba = —Aab (5.41)

141n this paper, by a “Hirzebruch surface”, we refer to a Hirzebruch surface possibly with blowups at
generic or non-generic locations. Some background on Hirzebruch surfaces can be found in Appendix
A.

15Tn this paper, by a “del Pezzo surface dP,”, we refer to a surface which is an n point blowup of
P? but the blowups can be at non-generic locations. Some background on del Pezzo surfaces can be
found in Appendix A.
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where A, is the Cartan matrix of g&q“) and Ay = Aoy = 0 whenever g, is trivial. This
means that the fibers of Hirzebruch surfaces S, , for a fixed o intersect in the fashion
of Dynkin diagram associated to affine Lie algebra gld).

Intersection (5.41) is of the form C' - S,, where C' is some curve in the threefold
X5,{¢ay and S, o is a surface inside the threefold. Like the triple intersection numbers
of surfaces inside a threefold, such intersections can also be computed in terms of
intersection numbers inside a surface. If C' is a curve inside S, o, then

C-Sa=0C" Kc’w (5.42)
and if C is a curve inside a surface S g that is distinct from S, ,, then
C:-S0=C-Chpaan (5.43)

Consider the example of (4.11) whose associated geometry was described towards
the end of Section 5.1.1. We can compute that

Jo- So= (K- f)s, =2 (5.44)
fi-Si=(K"f)s =2 (5.45)
fa Sy = (K" f)s, =2 (5.46)
fo-S1=Co1-fo=(e-f)s, =1 (5.47)
fi:8=Cio-fi=(h-flg,=1 (5.48)
farSo=Cop- fo=((h =Y x:)- f)SO =1 (5.49)
fi-So=Cro-fi= (e fls, =1 (5.50)
fo-S1=Co1-fao=(e-flg, =1 (5.51)
fo-S2=Coa-fo=1(e-fls, =1 (5.52)

Thus we see that f, - S, indeed reproduces the negative of Cartan matrix of affine Lie
algebra su(3))). We can similarly check that the geometry associated to (4.12) also
leads to the Cartan matrix of su(3)®.

5.1.5 The genus one fibration

For each o, combining the fibers f, ., let us define a fiber f, via

foc = dafa,a (553)

where d, are Coxeter labels for g{%) listed (in red color) in Tables 14 and 15. If g, is
trivial, then dy := 1.
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We claim that f, is a genus one fiber. This means that f, can be obtained by a
degeneration of a torus. It is well-known that torus fibers can degenerate into Kodaira
fibers, which are collections of rational curves'® intersecting in the pattern of untwisted
affine Dynkin diagrams of type su(n)V); so(2n) and ¢(!). The multiplicity of each
rational component curve is given by the Coxeter label for the corresponding node in
the affine Dynkin diagram. The fiber f,, on the other hand, is composed of rational
curves f, o with their multiplicity given by the Coxeter labels for affine Dynkin diagram
g(aqa). Now, one can notice that every affine Dynkin diagram can be obtained by folding

affine Dynkin diagrams of type su(n)®); s0(2n) and e{l) as follows:

s0(2n)M — s0(2n — 1)V = s0(2n — 2)@ (5.54)
el = i = 50(8)(3) (5.55)
50(8) 1 — s0(7)V — gtV (5.56)
so(4n)M — su(2n)@ — 5u(2n 1H® (5.57)
50(8) M) = 50(7)Y — su(4)@ — su(3)® (5.58)
e — oY (5.59)

Moreover, observe that the Coxeter numbers of two nodes are added if they are iden-
tified under gluing. This means that f, can be obtained by identifying the rational
components of the Kodaira fibers according to the above folding rules. This explicitly
shows that f, is a genus one fiber.

Moreover, we find that due to the virtue of gluing rules, f, is glued to f3 as

QQ(_QBa)foz ~ QB(_Qaﬁ)fﬁ (560)

This generalizes the condition in the untwisted unfrozen case [4] where f; ~ f; whenever
there is an edge between ¢ and j in 5. This shows that certain multiples of genus one
fibers are identified with each other as one passes over from one collection of surfaces
to another, allowing us to extend the fibration structure consistently throughout the
threefold.

More formally, according to a theorem due to Oguiso and Wilson [52, 53], a three-
fold X admits an genus one fibration structure if and only if there exists an effective
divisor St 2 satisfying

STZ . ST2 . ST2 = 07 ST2 . ST2 7é 0 (561)

16This means they have genus zero.
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where Sz lives in the extended Kéhler cone, possibly on the boundary. The extended
Kéhler cone is parameterized by all the Coulomb branch and mass parameters satisfying

J-C>0 (5.62)

for all holomorphic curves C' in X. Physically, the extended Kéahler cone corresponds
to the Coulomb branch of the (possibly mass deformed) 5d theory corresponding to X.

In all of geometries associated to 5d KK theories, we can find an Sr2 which lies in
the extended Kéahler cone satisfies (5.61). Pick any node « and define

Sp2 =3 dY Sua (5.63)
a=0

where d are dual Coxeter labels for the associated affine algebra g%) (see Tables 14
and 15) and 7, is the rank of invariant subalgebra b,. If the node « carries a trivial
gauge algebra, then we define dj = 1 and take (5.63) to be the definition of Sy.

In the gauge theoretic case, the direction parametrized by (5.63) is special since all
the fibers f, o, have zero volume along this direction'”

— ST2 . fa,a — ZAabdl\;/ =0 (564)
b

Similarly, in the non-gauge theoretic case
— Sr2+ foa =Ko foa =0 (5.65)

where the last equality can be checked to be true for every non-gauge theoretic case.
Moreover, the reader can check using the explicit description of geometries presented
in this paper that

Sr2-C >0 (5.66)

for all other holomorphic C' in the threefold Xg 4.1. So, Sr2 as defiend in (5.63) lies in
the extended Kahler cone of Xg (4.}
Now it can be easily checked for all the geometries presented in this paper that

Ta

ST2 . ST2 = —anaa Z(dafa,a) 75 0 (567)

a=0

where d, are the Coxeter labels for g{%) with dj := 1 if o is a non-gauge theoretic node.
We can now compute

Sra - Spe - Sp2 ¢S (dafan) - (S A Spa) = — Y deAud) =0 (5.68)
a=0 b=0

a,b=0

"In fact, non-negativity of the volumes of fibers implies that the only directions in the Coulomb
branch when mass parameters are turned off are given by >~ dy S, o for various a.
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thus verifying both the conditions in (5.61) and establishing the presence of a genus
one fibration in Xg 4.}

Let us now discuss the relationship between fibers f, and the radius of compacti-
fication circle R. In general, we can find at least one node p such that

N fu ~ Ny fo (5.69)

with n, . > n, > 1 for all a . Then the curve

f=1ln.f, (5.70)

with [, defined in Section 3.3 can be identified with the KK mode of unit momentum
in TEF 1 and has mass + where R is the radius of the circle on which the 6d theory €
has been compactified. Thus, all the f, can be identified as fractional KK modes with

mass %LR where n, = [,n, . This generalizes the condition in the untwisted unfrozen
case where the KK mode is identified with

for any ¢, which is consistent since f; ~ f; for all ¢, j.
Let us now discuss some examples. For the KK theory

sp(n)d  s0(2m)®

1 4 (5.72)
we find that

fsp(n)(l) ~ 2f50(2m)(2) (573)

and the KK mode is
I = Jopmm (5.74)

For the KK theory (3.30), we find that

Fopmy® ~ 2feo@my (5.75)

and the KK mode is
= Tamo (5.76)

For the KK theory (3.28), our gluing rules say that

2f5u(n)(2) ~ 2f5u(m)<1) (577)

and the KK mode is
f - 2f5u(n)(2) (578)
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For the KK theory (3.14), our gluing rules say that

Faumy® ~ foum)® (5.79)
and the KK mode is
f = 2fsu(n)<1> (580)
An interesting example to consider is the KK theory defined by the untwisted
compactification of the 6d SCFT

su(p) so(m) sp(n)
2—:—4 1 (5.81)

which arises only in the frozen phase. We find that

2foumy® ~ 2fso(my® (5.82)
fsa(m)(l) ~ fsp(n)(l) (583)
and the KK mode is
J =2 am® ~ 2fs0m)® ~ 2fepm)® (5.84)
If (5.81) arose in the unfrozen phase of F-theory, then we would have obtained
f= fsu(p)(U ~ fso(m)(l) ~ fsp(n)(l) (585)

Thus equation (5.84) is a way to see that (5.81) cannot arise in the unfrozen phase of
F-theory.

5.2 Geometry for each node
In this section we will describe the surfaces S, , along with their intersections associated
to a single node «a.

5.2.1 Graphical notation

We will capture the data of the surfaces and their intersections by using a graphical
notation that would be a simpler version of the graphical notation used in [3, 4]. This
subsection is devoted to the explanation of this notation. We find it best to explain
the notation with the following example:

f-zi, f-zi,
02+2 ey yi 5 h+> (f-ui) 12+2 ey wi-y i 3e 4 2f 2

Y Y

(5.86)
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which is a particular phase of the KK theory

50(8)®
2 (5.87)

Since the rank of invariant subalgebra h = g is two, we should have three surfaces in
this case labeled by S, where 0 < a < 2. The middle number in the label for each
node denotes the index a. Thus the node labeled 0272 denotes the surface Sy, the node
labeled 12*2 denotes the surface S, and the node labeled 2¢ denotes the surface Ss.

Every surface S, is a Hirzebruch surface. The subscript in the label for each node
denotes the degree of the corresponding Hirzebruch surface. Thus, Sy has degree 8, S;
has degree 6, and S; has degree 0. The superscript in the label for each node denotes
the number of blowups on the corresponding Hirzebruch surface. Thus, S, carries
2+ 2 = 4 blowups and hence Sy = Fg, S; carries 2+ 2 = 4 blowups and hence S; = Fg,
and Sy carries no blowups and hence S, = Fy.

The fact that the four blowups on Sy are displayed as 2 4+ 2 denotes that the four
blowups are divided into two sets, with each set containing two blowups. We denote
the blowups in the first set as x; and the blowups in the second set as y;. The same
is true for S7. In a general graph, the blowups on a surface can be divided into more
than two sets, and the number of blowups inside each set can be different. Whatever
may be the case, we adopt the notation of denoting the blowups inside the first set as
x;, the blowups inside the second set as y;, the blowups inside the third set as z; etc.

The label in the middle of an edge between two nodes denotes the number of
irreducible components of the intersection locus between the two surfaces corresponding
to the two nodes. As already discussed above, each component of the intersection locus
can be viewed as an irreducible gluing curve inside each of the surfaces participating in
the intersection. Thus, there is a single gluing curve between S; and Sy in the graph
(5.86), but there are three gluing curves between Sy and S;. The graph also tells us
that the surface Sy is a self-glued Hirzebruch surface since there are edges which start
and end at Sy. Similarly, S; is also a self-glued surface. We can see that the number
of self-gluings in Sy are two, and the number of self-gluings in S; are also two.

The curves displayed at the ends of edges tell us the identities of various gluing
curves. The left end of the edge between 1272 and 2¢ reads e — Y. x; — > %;, which
means that the corresponding gluing curve inside S is e — > x; — > y;. The right end

1272 and 2, reads 3e + 2f, which means that the corresponding

of the edge between

gluing curve inside S5 is 3e + 2f. We note that whenever we write > x; or > y;, we

mean a sum of all the blowups in the set of blowups denoted by x; or y; respectively.
In the above graph, the two self-gluings of S, are displayed by writing x; at one

end and y; at the other end. This tells us that x; in Sy is glued to y; in Sy. Since there
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is no sum over ¢, this gluing is supposed to be true for each valued of i. Hence, the two
self-gluings are x1 ~ y; and x5 ~ y5. The same is true for self-gluings of S;.

The gluing curves for the three gluings between Sy and S; are displayed as f —
x;, e — > y; inside Sy and as f — x;,h + > (f — v;) inside S;. These are supposed to
be read in the order they are written. Thus, unpacking the notation we learn that the
three gluings are

(f —21)s, ~ (f — 1) (5.88)
(f —x2)sy ~ (f — 22)s, (5.89)
(e =y —va)so ~ (h+2f —y1 — ya)s, (5.90)

We also sometimes suppress multiplicity of a gluing curve. For example, in the

o

242
36

e-z xi-z Yi f\
6
2h \"99

23 1g+6

geometry

0,

h e h e

(5.91)

the gluing curve for S, in S3 is displayed simply as f. But the edge between Sy and S5
shows that there are six gluing curves involved. This means that the true gluing curve
for Sy in S5 is actually six copies of the fiber f of Ss.

Now, let us extract the prepotential 6F from the graph (5.86). The coefficient of
it i

(K")s, = ((K+in+2yi)2)so = (KP+) 22 +> i +2) K- 2;+2) K -y)s,

(5.92)
We have K? =8 —4 =4 and K - z; = K - y; = —1, using which (5.92) reduces to
(K*)s,=4—-2-2—-4—4=-8 (5.93)

Similarly the coefficient of ¢3 is —8. The coefficient of ¢3 is 8. The coefficient of ¢y¢?
can be computed as

((3e+2 f)2)52 — 12 (5.94)
which coincides with

(K (=2 ai =2 u)), = (K+Xwi+30) (e =X wi—2w), =12

(5.95)
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as it should for consistency. We can compute the coefficient of ¢g¢? to be

((e=Sw+(—a)+ (7 —a)) =8 (5.96)
which indeed coincides with

(K- ((h+2f —y1 —92) + (f —21) + (f — 22)))g, = -8 (5.97)

Similarly, we can compute coefficients for other terms of the form ¢,¢7. Finally, the
coefficient of ¢gp1¢s must be 0 since there is no edge between Sy and S;. But this
coefficient can also be computed as an intersection number of gluing curves inside .5;.
Thus, the corresponding intersection number better be zero for consistency. Indeed we

find that

(==Y w) (h+2f —pn—p) + (f—w) + (f =), =0  (5.98)

1

5.2.2 Untwisted

In this subsection, we collect our results for nodes of the form

g
k (5.99)

That is, we restrict ourselves to the case where the associated affine Lie algebra is
untwisted. All such nodes are displayed in Table 1 and Table 2. Most such cases were
first studied in [3, 4]. We will be able to recover their results. We will associate a
collection of geometries parametrized by v to each node of the form (5.99). Geometries
for different values of v are flop equivalent as long as there are no neighboring nodes, but
might cease to be flop equivalent in the presence of neighboring nodes. The geometries
associated to (5.99) in [4] are obtained as v = 0, 1 versions of the geometries associated
in this paper.

The geometries associated to nodes of the form (5.99) are presented below. We
will display the corresponding node inside a circle placed at top of the geometry:

oy B M, S (= 2)s, (= D)o, S g

(5.100)
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where 0 < v < 2n 4+ 8, n > 1 and the theta angle should be viewed modulo 27. We
can see that f, - .9, reproduces the negative of Cartan matrix for untwisted affine Lie
algebra sp(n)™), where f, is the canonical fiber of Hirzebruch surface S,. The same
hold true for all the examples discussed below in this subsection. One can check in each
example below that f, - S, reproduces the negative of Cartan matrix for the associated
untwisted affine Lie algebra g).

—v 2h- i h h h 2h-) @i
O%n—i—S ”Lbnw—uef'“ _n (n—2)8_ye (n—1)g_, © > T ny

(5.101)
where 0 < v < 2n + 8, n > 1 and the theta angle should be viewed modulo 27.
See Appendix (B.3) for more discussion on the relationship between theta angle and
geometry.

Notice that the two geometries (5.100) and (5.101) are isomorphic by virtue of the
isomorphism between F§ and F} discussed in Appendix A.1. Suppose first that v > 0.
Then, the isomorphism applied to S,, sends 2h — x; in F} to 2e + f — x; in Fy, thus
mapping the gluing curve for S,,_; in S, in (5.101) to the gluing curve for S,_; in .S, in
(5.100). Thus the whole geometry (5.101) is mapped to the geometry (5.100) by this
isomorphism. For v = 0, the two geometries (5.101) and (5.100) are flop equivalent
due to this isomorphism. This is because they are flop equivalent to v > 0 versions of
the geometries (5.101) and (5.100), and we have already established an isomorphism
between the latter geometries.

However, it is possible for this isomorphism to not extend to the full Calabi-Yau
threefold when sp(n) has other neighbors. The gluing curves inside Sy and S,, for the
surfaces corresponding to these neighbors might not map to each other under the above
isomorphism plus flops. Whenever the isomorphism extends to the full threefold, the
sp(n) theta angle is physically irrelevant. Whenever the isomorphism does not extend
to the full threefold, the sp(n) theta angle is physically relevant. We will see examples
of both situations later when we discuss gluing rules for sp(n).
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For n = 0, we claim that the associated geometry is

5p(0)5
1

(5.102)

One way to see this is to notice that both the geometries (5.100) and (5.101) reduce
to (5.102) in the limit n = 0. For a more precise way to see that (5.102) is the correct
geometry, see the discussion around (B.9).

When sp(0) ((,1) has no other neighbors, then all the blowups are generic and we can write
So = dPy. When 5p(0)((,1) has neighbors, it turns out that Sy = dPy with 9 non-generic
blowups is the correct answer, instead of Sy = F$ with eight non-generic blowups. This
is because when the 9 blowups are non-generic, it is not always possible to represent
dPy as F$ with 8 non-generic blowups. So, Sy = F?$ is not quite the correct answer. See
[4] for more discussion on this point. Thus, in this paper, from this point on, we will
represent the geometry associated to 5]3(0)((,1) by dP.

(20— D)nys = (20 = Dy o " (4 1y
f z x e
R / fx f-z NJF f
O%I’IJrS nn+3
h\f-x—y - = /
f-z f-z n
ARTEN 2 —— (-1,
(5.103)

For this geometry, we do not define multiple versions distinguished by the parameter v.
Nevertheless, for uniformity of notation, we denote this geometry with v = 0. Similarly,
we will denote all the following geometries having a single unique version with v = 0.
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For n = 2, we have

ho 39 .
f
h-> " a; h+f
012 2,
h\—x—y /e
¢ 1141 h
3 (5.104)
e h-x e h-z e h+f-z
X (2n)2n6 — (2n — 1)%n+5 - (n+ 2)31+8 (n+ 1)r11+5
f ey x T
h‘Z%’/ fx fox e-T
0%n+9
h f-a-y x T
f f Wt f
c it — — 2 — . - (n 1)hq — — Dy
(5.105)
For n = 1, we have
hig 27
s /
012
h
h+f
13 (5.106)
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hq1 1 1
11 e-x e 20 h-x e (n - 1)n—3

(20)k ¢ " (2n— 1)k, ;& T+ 2)L, D g )L

h—x,:v/ T e+ f-z-2y-z,
h—x—2y—z i, 2 —x v o|fe e f-z Z-T
z f-x /
C0g2n7)+2 5

Yy e
[z f-x [z
x x h:f

h 11 1 R RY! I |
11 e-xr e 20 h-x e (n 1)1173 h-x e nn72

(5.108)
The above two examples are not completely geometric. See the discussion after
equation (5.160).
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(1 ;o 3s
3 ha e ™ (5.109)
1271/ " ‘ 2471/ " : (n_1)2n727u

¢ h
e—z yi/ \e

Og4n—1/)+u

Nap—y
e—in h
h e
(211 - 1)4n727u e—h (2n - 2)4n—4—1/ e 7 T (n + 1>2n+27u (5110)
where 0 < v < 4n and n > 2.
For n = 1, we have
4—v e,e—Zzi e, h—Z T; 1Y
%% ’ 2 (5.111)

where 0 < v < 4.
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h e h e
1y, 24, s Nop—p

y h
ey y/

084n+271/)+1/

e-z z;
h e

20)4n—, —— 2n — 1)ypo_, — -+ — M+ 1)opi2_,
where 0 < v <4n +2and n > 1.
For n = 0, we claim that the geometry is
w
- (5.113)

which can be recognized as a limit of ¥ = 1 phase of (5.112). See Appendix B.1 for a
derivation that this is the correct answer.
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(5.114)

OZI; Il - 1)2n 6—v
€ f
f-zi-yi
h
e
v 2, 320 (n—2)2n-s- n-8-v
h \
f . f-2i-yi
(2n—8—v)+(2n—8-v)
1,,+2 2n 6—v

(5.115)
where 0 < v < 2n — 8.

—
8
¢ O
AN
4
[ VAN
/////1
>

! 9, & ° B 2h e—szqu( )2n 7—v)+(2n—7-v)
b i
f / (2n7u\>
1,42
(5.116)



where 0 < v <2n—1"1.

/f . f\
v 2—v
f ”CN/ oh +vf Nﬁyz
vTv 2—v)+(2—v
o2, g
where 0 < v < 1.
()
31+1
AN
/ HN
v 4—v
fm/ oh +vf \xy
Oz—w - : 2, - - 1(4*1’)+(4*V)

v (5.118)

where 0 < v < 2.
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0,

(5.119)

Y

(5.120)

where 1 < k£ < 3 and we have divided the 16 — 4k blowups into four sets of 4 — k
blowups each. We label blowups in the four sets by x;, v;, 2; and w; respectively.
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13+V
/fe s
o y/ N \w
Oiiz ¢ € 21y h ¢ 3%:; 2h-z-y ey T~y i 4‘(12_V)+(2_V)
X4 Yi
oD
v (5.121)
where 0 < v < 1.
lg x
e \f
4—k
B \'Ii'yi
(4—k)+(4-k) (5—k)+(5—-k)
02—k n e 24—k h e 36—k Qh-zﬂﬁi-zyi h‘Zl'i‘Eyi j2—2k N
CoD
(5.122)

where 1 < k < 2.
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1%+V T z 5513:1/1/)+(37u)+1

! f-z
/ e “ f-zi-yi
3—v
fx/ htvf S ‘ i

Oiiz e e 2171/ h e 3%,_1/ hex e 4471/
(5.123)
where 0 < v < 1.
14k & 14—k % g8 HE- ) +H(4k)

02k
h € h € 6-k h-> " @ e

for 1 < k <2.
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] T Yi
f-zi-yi /6 l (4—1/B
e

v+v
01+V

where 0 < v < 2.

XT2-T1,
T4-T3
2
T1, T3

14 L T
' pw 2 2 \
e ~T2-T4
f-z; f
\h \Jx
2, 34 4 5515

h e
e

¥

¥
:
w
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To-T1,
T4-T3,
V—\

16
5 f-z1-z3, s
e f-wa-xs, f-ws-ze 3
h 23 f 35 43 56+6
j h e h e 7 2h—2xi e—in-Zyi N Q3 y
/ D
0, "
(5.127)
W’M .
1
v 21_V h e 33—1/ h e 4% v 5—v
f-zi-y; /
e -’Ez Yi
057
6 *HE)
(5.128)

where 0 < v < 2.
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2 f
T2-21, \ 58

T4-T3

x1, 23 ‘ f

= T,

e f-wo-m4 )
\ \ \-x, h ‘ F-i-yi
! 2

h 25 i . 34 h o B . 62+6
0p ° (5.129)
L2 3 f
T4-T3, \
mt—xi 59

Z1,23,L5 ‘ f

8=

-xo-T4,f-T5-T6
\ f\ \—mi h ‘ F-zi-yi

g,

0, (5.130)
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(5.131)



(5.132)
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(5.133)

f-zi-yi f
3h v - i i — —
OZ+V e e 22—1/ +vf e ZZ’ Ey 14(14_~_VV)+(4 v)
T Yi
C,o0

(5.134)

where 0 < v < 2.
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T4

3h ey Ti-y yi1(10—3k)+(10_3k) 10 — 3k

Ok_z 3k—2

Yi

(5.135)

where k£ =1, 3.

h+ Y (f-i), > vis
o e Ay hoe 36 1 20 e-Y T Yi 225_1()4_(5_1() f-zi 6k f-z; 1(5—k)+(5—k)

Ox—2

8
g Yi Ti Yi
Cs—k> 5—"3>
(5.136)
for 1 < k <5.
54 f
Ox—2 e  h 6k—4 e e 36-k h e 2g:§ h e 1(1%7_1;”(671() (5.137)
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for 1 <k <6.

02 m-4—— 92m-6 ———— 4
m—2 62 —
e h 47 h 52 -6 ¢ e—§ T;

for 1 <m < 4.
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yl-yzvf-x \

h
02m73 e h 621’1175 e 52m 7 ¢ P le §:$ e 3534 m)+2 h e 8 m h+ 5-m) e 20 3n'1
f-zi J-y1- y2,f x; /
Iof-zi
4—m
(5.139)
for 1 <m < 4.
82
01— 1g 26 ——"- 3, 4y == 5 6, =74

5.2.3 Twisted
In this subsection, we will generalize our results to nodes of the form

g(q)

k (5.140)
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for ¢ > 1 and

(5.141)
All such nodes are listed in Table &.
e 12m+2
/ f
m; 2 (m—1)g 2 = 22m )
h
f-xi-y;
€ 2m-+2m
O2m i3 (5.142)

where m > 3. Notice that the Cartan matrix associated to this geometry is precisely
that of su(2m)®. Similar comments hold for all the geometries discussed below in this

subsection. For each example below, one can check that f, - Sy reproduces negative of
Cartan matrix of the associated twisted affine algebra g(9).

Ty

m, 2h e(m . ]-)6 h L e 12m+2 2h e~y Ti-» y; 0é2m+1)+(2m+1) om4+1
yz\/
(5.143)

where m > 2.
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T

o3k 05& 32k)+9 3k) ey mi-y yi  det(4-k)f 1,
Yi
(5.144)
where 1 < k < 3.
Oé+4 e 2h 2, 2h e 16
fy\ Jf
4 (5.145)
f-zi- & _J
(5.146)
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Ogigy = 2h 130, 52, , o2 (n—2)an_7-, h_ed me) yi(n — 1)é2n_8_y)+(2n_8_y)
f( >f-$i‘yi . \yi
2n—8—v
(5.147)
where 0 < v < 2n — 8.
50(8)®)
4
010 — s 2 (5.148)
f'xz f'x7
0$+1 ey ) h+f-y 1;+1 ez-y  3h 2,
x Yy x )
) ) 5.149
f-zi, f-zi,
0§+2 ey yi 5 h+> (f-ui) 1§+2 ey wi-y yi 3e 4 2f 2
x; Yi 1'2( >yi
( 2 > 2 (5.150)
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f-zi, f-zi,
3+3 Qv M) (fvi) y34ged wip v 3htS
07 4 15 2

Y Y

(5.151)
4—k
\'&y f
0212 e My w 1(14—k)+(4—k) e 2, 2h+(4 - k) f e‘zfi-zyi3é4—k)+(4—k)
mz( Byz‘
4—k
(5.152)
where 1 < k < 4.
P 1
0, e 2h- > 1% e e 2, h+f e 3, 2h e ‘44{14 |

4 (5.153)
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34m 4y,

2h
e- ZI’L Zyz f-zi, f-zi, f-yi, f-y4,

3 m)+(3-m) b+ (fv) , eZy 3 m)+(3—m) h-)_ % 7mixi0(3—m)+(3—m)

k+4
( D) ( DY COY
3—m
(5.155)

for 1 <m < 3.
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e h-x e h-x
2n—1)5, 53— (2n—2)5, 4 — - —— (n+1);,

h . e
f-z T |f-x f-z
h_zxi e+(n-2)f -
o2 nitt )

h /e-l-f-ac-Qy7 v
f—IE f—:E f—x 2 -

h-x,x
1% h-x e 2411 h-x (n 1)111+1
(5.156)
for n > 2.
For n = 1, we have
02 h, h-é z; 9 e+ f-z-2y, e-x 11+1 :)
1 0
Yy
(5.157)

Now we discuss some examples which are not completely geometric:
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(2m)}, 5 " (20— 1)}, 5 (n 4 2)) T 4 1)
y f-z z |f-z e e+ f-a-2y-z,
f-z z-T
h—z T;
0%n+1 9
h
f-x f-x f-z
;i . T h,f
‘ 13 hex 225 b o . (n— L)it1 e e N
(5.158)

for n > 2.
For n = 1 we have

1+1+1
22
e+f €+f‘33'2y,
f-z-z
h‘Z x;
3
03 2
h
h’f
e 13

(5.159)
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For n = 0 we have

xT

o

! (5.160)

Let us now discuss the reasons why the above five examples are not completely ge-
ometric. Let us start with (5.160). The geometry for this example contains the —1
curve h — x — y and hence an M2 brane wrapping this curve should give rise to a BPS
particle. However, this BPS particle cannot appear in the associated 5d KK theory for
the following reason. The existence of a particle associated to h — x — y implies that
the KK mode, which is associated to the elliptic curve 2h + f — 22 — 2y, decomposes
as a bound state of h —x —y and h + f — x — y but this is a contradiction since these
two curves do not meet each other and hence there cannot be such a bound state.

Another reasoning is as follows. The volume of f is 2¢ where ¢ is the Coulomb
branch parameter associated to the above surface. On the other hand, the volume of
h —x —y is —¢. Requiring non-negative volumes for both curves implies that ¢ must
be zero. In other words, there is no direction in the Coulomb branch where all BPS
particles have non-negative mass. Thus, this geometry is not marginal, in the sense
defined by [2], which is a condition that must be satisfied by geometries associated to
KK theories.

The precise sense in which the above self-glued F; surface is associated to the KK
theory

su(1)®
2

- (5.161)

is as follows. The Mori cone of the surface is generated by h—x—vy, f —x, x,e. However,
since the curve h — x — y does not correspond to a BPS particle, the generators of the
Mori cone thus do not correspond to the fundamental BPS particles® in the associated
KK theory (5.161). We propose that the fundamental BPS particles instead correspond
to the curves 2h — x — 2y, f — x, x, e. This set of curves satisfies all the properties that

18We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of
other BPS particles.
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must be satisfied by the generators of the Mori cone of a surface. Thus, it is a complete
set which can be consistently associated to fundamental BPS particles. The KK mode
can be found as a bound state of 2h —x — 2y and f — z. One can check that this set of
proposed BPS particles is marginal in the sense that it allows a direction in Coulomb
branch with all BPS particles having non-negative volumes. See also Appendix B.1
where we verify that this description of the KK theory allows the existence of an RG
flow to an V' = 2 5d SCFT, which is a fact well-known in the literature.

There are two viewpoints one can take on the relationship between self-glued F; and
the KK theory (5.161). The first is that indeed compactifying M-theory on this surface
leads to the KK theory (5.161), but the compactification has some extra ingredients
which account for the mismatch between the set of Mori cone generators and the set
of fundamental BPS particles!?. The other viewpoint is that the relationship with self-
glued F; has no deep meaning and is probably a red herring. At the time of writing
of this paper, we do not know which of these two viewpoints, or if either of these two
viewpoints, is the correct one. We leave this issue for future exploration, and only
use the relationship between the two as an algebraic tool to build a formalism for KK
theories from which one can explicitly perform RG flows to 5d SCFTs.

Now let us discuss the non-geometric nature of the KK theories

su(m)®
2

- (5.162)

with m > 1. Consider as an example the case of m = 3. The surface S5 contains
a gluing curve e + f — x — 2y and hence there must be a BPS particle associated to
it. However, notice that it decomposes as e + f —x —2y = (e —z —y) + (f — y)
such that the components e — x — y and f — y do not intersect each other. This leads
to the same problem as discussed above, and we are forced to hypothesize that the
fundamental BPS particles are distinct from the generators of Mori cone due to some
non-geometric feature in the M-theory compactification. It is also evident that some
of the components of the gluing curves in certain surfaces (which are identified with
irreducible curves in adjacent surfaces as part of the gluing construction) fail to satisfy
the necessary properties of irreducible curves that are described at the beginning of
Section 5.1.2.2° Similar comments apply to each of the m > 1 models presented above

19A similar situation occurs in the frozen phase of F-theory [32], where the set of generators of
the Mori cone of the base of a threefold used for compactifying F-theory does not match the set of
fundamental BPS strings arising in the associated 6d theory.

20For example, in the case m = 3, one can see that the surface 2(1)+1+:l

contains a curve class
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should be regarded as an algebraic proposal which retains many of the features of the
local threefolds that seem to be necessary to compute RG flows to 5d SCFTs.

Similar comments apply to (5.107) and (5.108), and they are also not conventionally
geometric.

5.3 Gluing rules between two gauge theoretic nodes

In this section we will describe how to glue the surfaces S, , corresponding to a node «
to the surfaces S g corresponding to another node 3 if there is an edge between o and
(. The gluing rules are different for different kinds of edges between the two nodes. It
turns out that the gluing rules between o and [ are insensitive to the values of Q%
and QPP. This was also true for all of the cases studied in [4]. For this reason, we will
often suppress the data of Q% and Q%% in this subsection.

As a preface to the following subsections, we re-emphasize that the gluing rules must
be compatible with the general consistency conditions described in Section 5.1.2, and
those that do not must again be regarded, most conservatively, as an algebraic proposal
that retains certain salient features of conventional smooth threefold geometries. The
basic, underlying hypothesis of the gluing rules is that, given a pair of geometries
corresponding to circle compactifications of 6d SCFTs, if there exists a consistent gluing
of these two nodes along their respective genus one fibers, then there must also exist a
mutual gauging of the respective global symmetries of the parent 6d SCFTs that allows
the two theories to be coupled together in the sense described in Section 2.

5.3.1 Undirected edges between untwisted algebras
Such edges are displayed in Table 3. The gluing rules for all of these cases except for

su(na)M — 2 —s0(ng)M  were first studied in [4]. We are able to reproduce their
results using our methods.

Gluing rules for 5p(na)é1) su(ng) . We can take any geometry with 0 <

v < 2n,+8—ng for ﬁp(na)él), and any geometry with 0 < v < 2ng —2n,, for su(ng)W.
The gluing rules below work irrespective of the value of 6. The gluing rules are:

o [ —x1,T,, in Sy, are glued to f — 1, T9,, in Sop.
® ;, — ;i in Sy, is glued to fin S;gfore=1,--- ,ng — 1.

® Ui — Tit1,Long—i — L2ng—i+1 in Soﬂ are glued to f, f in S@a for i = 17 e Ny — 1.

e+ f —x — 2y, which is identified with the curve class h in the surface 13. Since h is irreducible, this
implies that e+ f — 2 — 2y must also be irreducible, but this leads to a contradiction (with smoothness)
if the usual class f — y remains among the generators of the Mori cone of 2(1)+1+1.
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® T, — Tp,4+1 10 Sop is glued to fin S, 4.

By convention, the first item in the above list of gluing rules displays the gluings in an
order. That is, f — 1 in Sp is glued to f —x1 in Sp g and x,,, in Sp 4 is glued to xay,,
in Sy . We will adopt this convention in what follows. All the gluings should be read
in the order in which they are written.

Let us label the fiber of the Hirzebruch surface S,, as f,. and the fiber of the
Hirzebruch surface S, as f, 3. According the above gluing rules, fy, is glued to
fog—x1+Ton, +Z:~Lﬁfl fi,p where z1 and x5, are blowups in Sy g, and 2 Z?gfl fiatfroa
is glued to x; — xgy,,, in Sy g. Combining these two we see that

Na—1 nﬂ—l
fO,a +2 Z fi,a + fna,a ~ Z fi,ﬁ (5163)
i=1 =0

thus confirming the gluing rule (5.60) for the torus fibers. In a similar fashion, the
reader can verify that (5.60) is satisfied for all the gluing rules that follow.

The theta angle of sp(n,) is physically irrelevant if ng < 2n, + 8 and physically
relevant if ng = 2n, + 8. Thus the above gluing rules should allow the isomorphism
between (5.100) and (5.101) to extend to the combined geometry for

Pl —— sulns)® (5.164)

in the case ng < 2n, + 8, but not in the case of ng = 2n, + 8.

To see this for ng < 2n, + 8, we can go to the flop frame v =1 for 5p(na)§)1) without
changing the above gluing rules. Then we can implement the map that formed the
isomorphism between (5.100) and (5.101). Since the above gluing rules do not inter-
act with blowups living on S, o, the map trivially extends to an isomorphism of the
combined geometry associated to (5.164). For ng = 2n, + 8, we cannot reach v > 0
frame without changing the above gluing rules. Thus the map implementing isomor-
phism between (5.100) and (5.101) does not extend to an isomorphism of the combined
geometry associated to (5.164).

Gluing rules for 5P(”a)£)1) 50(2”,8)(1) : Here we allow 2ngz = 12. We can take

any geometry with 0 < v < 2n, +8 —ng for 5p(na)((,1), and any geometry with 0 < v <
2ng — 4 — Q%% — n,, for s0(2ng)M. The gluing rules below work for both values of 6.
In the future, if the value of 0 is unspecified, then the gluing rules work for both the
values. In our present case, the gluing rules are:

o f—x; —x9in Sy, is glued to f in Sp .
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® I, — 1 in Sy, is glued to fin S; 5 fore=1,--- ,ng — 1.

® T, Ty, in Sp, are glued to f —xy,y1 in Sy .

® T — Tip1,Yir1 — Y in Sy, 5 are glued to f, fin Si, fori=1,--+ ng — 1.
® Tn, — Yn, N Sy pis glued to fin Sy, o

To show that the theta angle is irrelevant for ng < 2n, + 8, we first notice that we
can go to the flop frame v = 1 for 5p(na)é1) without changing the above gluing rules.
Then the isomorphism between (5.100) and (5.101) extends to an isomorphism of the

combined geometry for

sp(na)y — s0(2ng)") (5.165)

For ng = 2n,+38, the above argument does not work since going to v = 1 frame changes
the gluing rules. However, it turns out that the combined geometries for different 6 are
flop equivalent up to an outer automorphism of so(2ng). To see this, notice that the
combined geometry for (5.165) is flop equivalent to the following geometry. We pick
the frame v = 2n, + 8 for 5p(na)((,1)
being:

and v = 2ng — 8 for s0(2n3)V) with the gluing rules

o f—x1—1xyin Sy, 4 is glued to [ in S, .

® 1, —Tip1in Sy, 4 is glued to fin S, ;5 fori=1,--- ng—1.

® Ty s Tn, 0 Sy, o are glued to f — zy,y; in Spg.

® T — Tit1,Yir1 — Y in Sp g are glued to f, fin Sy, _jq fori=1,--- n, —1.

o,

— Yn,, 10 Sp 5 is glued to f in Sy 4.

e

Now it is clear that exchanging f —x; and z; interchanges S,, 3 and Sy, 1,3. Thus the
choice of theta angle for sp(n,)) is correlated to the choice of an outer automorphism
frame of so(2ns)W) for ng = 2n, + 8.

The gluing rules for a configuration having multiple edges are simply obtained by
combining the gluing rules mentioned above. We have to just make sure that we never
use the same blowup twice. For example, consider the configuration

1)

s0(2ns)M

5’4(”7)(1) 5p(na)é

(5.166)
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Then we can use any geometry with 0 < v < 2n, + 8 — ng — n, for 5p(na)§1), any

geometry with 0 < v < 2ng — 4 — Q% — n,, for s0(2nz)Y), and any geometry with
0<v<2n,—2n, for 5u(n7)(1). The gluing rules for the sub-configuration

splna)y” —— so(2ny)" (5.167)

are the same as the ones listed above, while the gluing rules for the sub-configuration

are as follows:
® [ — Tngi1, Tngin, N Soo are glued to f — 1, Tap, in So .
® Tyyti — Tpgritl N Soq is glued to fin S, fori=1,--- ,n, — 1.
® Ty — Tip1,Ton,—i — Tong—it1 i So, are glued to f, fin S;o fori=1,--- n, — 1.
® T, — Tp,4+1 10 Sp is glued to fin Sy, 4.

In a similar way, by choosing mutually exclusive sets of blowups, we can combine the
gluing rules to obtain geometries for graphs with multiple algebras and edges between
them. Sometimes some of the blowups are allowed to appear in more than one gluing
rules. In such cases, we will explicitly mention such blowups and the configurations in
which they can appear in multiple gluing rules.

Gluing rules for ﬁp(na)él) 50(2n5 + 1) . We can take any geometry with

1 <v <2n,+8—ng for sp(na)él), and any geometry with 0 < v < 2ng—3— 088 —n,
for s0(2ns + 1), The gluing rules are:

o f—x1 —x9in Sy, is glued to f in Sps.

® 2, — ;1 in Sy, is glued to fin S;gfore=1,--- ,ng — 1.

Tng, Tng N Sy are glued to x1,y; in Sy, 4.

Tiy1 — Ti, Yir1 — Yi in Sy, p are glued to f, fin S;, fori=1,--- ,n, — 1.

J = Tny, [ — Yn, in Sy, s are glued to f— 1,21 in Sy, o
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To show that the theta angle is irrelevant, use the map that exchanges x; and f — x;
in Sy, o If this is accompanied by z; <> y; in S,, 5, then the gluing rules remain
unchanged.
Consider a configuration of the form
s0(2n, + 1) — () — s0(2n5 + 1)
We wish to emphasize that we use the same blowup z; on S, , in the gluing rules
associated to both

sp(na ) —— s0(2n5 + 1) (5.170)

and

5p(na)é1) — s0(2n, + 1)® (5.171)

More explicitly, to obtain gluing rules for (5.169), we can take any geometry with
1<v<2n,+8—ng—n, for ﬁp(na)él), any geometry with 0 < v < 2ng—3— Q% —n,
for s0(2ns +1)M), and any geometry with 0 < v < 2n., — 3 — Q7 —n,, for s0(2n, + 1)WY,
The gluing rules for (5.170) are those listed above, and the gluing rules for (5.171) are:

® [ —Tn,41 — Tnyyo in Spq is glued to fin Sp .
® Tpngii— Tngrivl i So,a is glued to fin S;, fori=1,--- ,n, — 1.

® T, s Tny, IS, are glued to x1,y1 in Sy -

® Tiy1 — T, Yiy1 — ¥ in S, are glued to f, fin Sj, fori=1,--- n, — 1.
o [ — T, [ — Yn, in Sy, are glued to f —xy, 21 in Sy o

with the z; in S, o being the same blowup as used in the gluing rules above for (5.170).

However, if we have a third neighbor so(2ns + 1)) of sp(n,)}”, then we must
use a second blowup z3 on S, .. As a consequence, we must choose a geometry with
2<v<2n,+8—ng+n,+ns for 5p(na)§1) to obtain the combined geometry for the
configuration

s0(2ns + 1)

s0(2n, + 1) — sp(n, )5 — so(2ns + 1)V (5.172)

Gluing rules for sp(na)él) ””” 50(8)(1) : We can take any geometry with 0 <

v < 2ng + 4 for 5p(na)S”, and any geometry with 0 < v < 4 — Q% — n,, for s0(8)M.
The gluing rules are:
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o f—x; —x9in Sy, is glued to f in Spa.

e 11 — 2y in Sy, is glued to f in Ss 4.

® 9 —x3in Sy, is glued to f in Sy 4.

® 3 — x4 in Sy, is glued to f in Sy 5.

® 13,14 in Sp, are glued to f — 21, wy in Syp.

® 2, — 21, Wip1 — w; in Sy g are glued to f, fin S;, fori=1,--- ,n, — 1.

® 2z, — Wy, in Sypis glued to f in S, 4.

e

The theta angle is irrelevant as can be seen in the v = 1 frame of 5p(na)é1).

Gluing rules for sp(na)él) ””” 50(7)M . We can take any geometry with 0 <

v < 2n, + 4 for 5p(na)§1), and any geometry with 0 < v < 8 — 2Q% — n, for s0(7)M).
The gluing rules are:

o f—x1 —x9in Sy, is glued to f in Spp.

® 9 —x3in Sy, is glued to f in Sy 4.

® T — X9, T3 — T4 in Sy, is glued to f in S5 .

® 13,14 in Sp, are glued to f — xy,y; in Sy .

® ¥, — Tit1,Yir1 — Y in Sy pare glued to f, fin S;, fore=1,--- ny — 1.

o T,

— Y, in 51 5 is glued to f in S, 4.

@

The theta angle is irrelevant as in the last case.

Gluing rules for 5p(na)§1) - gé” : We can take any geometry with 1 < v <

2ng, + 5 for 5p(na)é1), and any geometry with 0 < v < 10 — 3Q% — n,, for ggl). The
gluing rules are:

o f—x; —x9in Sy, is glued to f in Sps.
® 1y — x3in Sy, is glued to f in Sy 5.
® I — X9, 73,23 in Sy, are glued to f,z1,y; in S 8.

® i1 — T, Yir1 — Y in Sy gare glued to f, fin S; o fori=1,--+ ny — 1.
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o f—x,.,f—Yn, in S pare glued to f — 21,21 in Sy, a-

The theta angle is irrelevant.
The blowup z; in S, o can be repeated once more if there is another g(gl) neighbor
or an s0(2n, + 1)) neighbor of sp(na)él). That is, when we consider configurations of

the form

1
gél) sp(na)é ) ggl) (5173)

or of the form

m_ (1)

s50(2n,, + 1)1 5p(na)g 9 (5.174)

As before, if there is a third g, or so(2ns + 1)) neighbor of sp(na)él), then we must
use another blowup z, on S, , for the gluing rules corresponding to this neighbor.

Gluing rules for 5u<na)(1) 511(”,8)(1) . Here we allow n, = 7, and n, = 6.

We can take any geometry with 0 < v < 2n, —ng for su(ny), and any geometry with

0 <v < 2ng —n, for su(ng). The gluing rules are:
o f— T1, Tn, N So.« are glued to f — z1, 2, in Sy s.
® x;, — ;i in Sy, is glued to fin S;gfore=1,--- ,ng — 1.

o z;, — ;1 in Sy is glued to fin S; 4 fore=1,--- ,ny — 1.

Gluing rules for su(ng)V —2 — 50(2nﬁ)(1) : We can take any geometry with ng <

v < 2n, —ng for su(n,), and any geometry with 0 < v < 2ng —8 — n,, for so(2nz)M.
The gluing rules are:

o f—ua1—x9, [ —y1 —y2in Sy, are glued to f, f in Sy g.
® T, — Tit1,Yi — Yit1 in S are glued to f, fin S; g fori=1,--- ,ng — 1.
® Ty 15 Tng, Yng—1,Yny 1N Soq are glued to f — x1,y1, [ — Yny, Tn, 0 Sy g

® X, — Tii1,Yir1 — Y in Snﬁ’g are glued to f, fin S;, fore=1,--- ny — 1.

Gluing rules for su(na)") — 2 — s0(2ns + DM . We can take any geometry with

ng < v < 2n, —ng— 1 for su(n,)V, and any geometry with 0 < v < 2ng — 7 — n, for
50(2n3)V. The (non-geometric) gluing rules are:

o f—x1—x9, [ —y1 — y2in Sy, are glued to f, f in Sy 6.
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® T, — Tit1,Yi — Yit1 in S are glued to f, fin S; g fori=1,--- ng — 1.

hd xnﬁ - wn5+17 xng - xn,g-i—la yn/ga yn/;y Inﬁ+17 xnﬁ“l‘l m SO,O& are glued to f7 f’ T1, Y1, f -
Tngs | = Yno I Spy -

® Tit1— Ty Yir1 — Y in Sy, 5 are glued to f, fin Si, fori=1,--+ ng — 1.

Gluing rules for su(2) - 50(7)™) ;. We must take the geometry with v =0

for su(2)), and we can take any geometry with 0 < v < 7 — 207 for s0(7)). The
gluing rules are:

o f—x; —x9in Sy, is glued to f in Sps.

To — x3 in Sy, is glued to f in Sy 4.
® ] — X9, T3 — T4 in Sy, is glued to f in S5 .
® 13,14 in Sp, are glued to f — xy,y1 in Sy .

e 1 —y; in Sy g is glued to f in S 4.

Gluing rules for su(2)V) ——— gé” : We must take the geometry with v = 1 for

su(2)M | and any geometry with 0 < v < 9 — 3058 for ggl). The gluing rules are:
o f—xy —x9in Sy, is glued to f in Spgs.
® 1y — x3in Sy, is glued to f in Sy 4.
® I — X9, T3,%3 in Sy, are glued to f,z1,y; in Si .
o f—uxy,f—uy1in S are glued to f — 1,21 in S 4.

There is another possibility appearing in the twisted case that involves an undi-
rected edge between two untwisted algebras. This possibility is

su(ng) M  su(ng)®
2———2

- (5.175)

and it is displayed in Table 9. The gluing rules for this case are the same as the gluing
rules for

su(ng)W su(ng)

(5.176)

presented above.
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5.3.2 Undirected edges between a twisted algebra and an untwisted algebra

Now let us provide gluing rules for those cases in Table 9 in which both the nodes
have non-trivial gauge algebras associated to them, such that at least one of the gauge
algebras is twisted.

Gluing rules for 5P(”a)é1) 50(2n3)® . Here we allow 2np = 12. We can take

any geometry with 1 <v < 2n, 4+ 8 —ng for 5p(na)é1), and any geometry with 0 < v <
2ng — 4 — QPP — n, for 50(2n5)?. The gluing rules are:

o f—x1 —x9, 71 — T2 in Sy, are glued to f, f in Sy p.

® ;, — ;1 in Sy, is glued to fin S,y fori=2,--- ;ng—1.
® Ty, Tp, N Sp, are glued to xy,y; in Sy, 1.
® Tii1— T Yir1 — Y in Sy, 1 are glued to f, f in S;, fori=1,--- n, — 1.

o f—xn,,f—Yn, in Snﬁ_l,g are glued to f — x1, 21 in S, 4.

The theta angle can be seen to be irrelevant by using the blowup z; on S, 4-
The blowup 2 in S, » can be used in gluing rules corresponding to one more neighbor
of the form so(2n., + 1)), g5 or s0(2n.,)? of sp(na)él).

The fact that ng = 2n, + 8 is not allowed manifests in the above gluing rules.
The total number of blowups carried by Sy, is at max 2n, + 7 but the gluing rules
require the presence of 2n, + 8 blowups on Sp,. See the discussion around (3.36) for
an explanation of this restriction.

Gluing rules for su(ng) — 2 — 50(2n)® . We can take any geometry with ng —

1 <v < 2n, —ng— 1 for su(n,)V, and any geometry with 0 < v < 2ng — 8 — n,, for
50(2n3)". The (non-geometric) gluing rules are:

o f—x1—x9,x — T, f — 1 —y1,71 — Y1 In Sp, are glued to f, f, f, f in Sop.
® Tii1 — Tiy2,Yi — Yir1 10 Sp o are glued to f, fin S;gfori=1,--- ,ng—2.

® Ty — Tyl Tng = Tngtls Yngy Yngs Tng+1, Tng+1 N So o are glued to f, f, 21, y1, f —
Tngs | = Yno I Sny -

® X, — Tii1,Yir1 — Yi in Snﬁ’g are glued to f, fin S;, fore=1,--- n, — 1.
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5.3.3 Directed edges
Now we move onto gluing rules for edges listed in Table 10.
Gluing rules for 5p(na)® — 2 — 50(2n5)Y . We can take any geometry with 0 <

v < 2n, + 8 — 2ng for sp(n,)), and any geometry with 0 < v < 2ng —4 — Q% —n,,
for 50(2ng)M. The gluing rules are:

® Tpy 1~ Tngils Tny — Tyt 0 So e are glued to f, fin Sp .
® Lyyi—Tng—itl Tngti—Lngritl D So,q are glued to f, finS;gfori =1,--- ;ng—1.

o f—x1—x5in Sy, is glued to [ in Sy, 5. Tong—1 in So,q 1s glued to f —x; in Snﬁﬁ.
Top, In 50,0 is glued to y; in Sy, .

® T — Tip1,Yir1 — Yi in Sy, 5 are glued to f, fin Sio fori=1,--+ ng — 1.
® Tn, — Yn, N Sy pis glued to fin Sy, o

From this case onward, we are dropping the subscript # on sp(n)) whenever theta
angle is not physically relevant. In such cases, the gluing rules will work uniformly for
both values of ¢ and using arguments used earlier in the paper, the reader can easily
check that the combined geometries descending from different values of theta angle are
indeed isomorphic.

Gluing rules for 5p(na)" — 2 = s0(2ng + DM . We can take any geometry with

1 < v < 2ny+7—2ng for sp(n,) Y, and any geometry with 0 < v < 2ng —3—Q% —n,
for s0(2ng + 1)V, The (non-geometric) gluing rules are:

® Tny — Tngi2, Tngtl — Tyt 0 Soq are glued to f, fin Sp .

® Tyyoitl — Tng—it2, Tngritl — Tngrivz N Soq are glued to f, f in S;p for 1 =
1,---,ng—1.

o [ — 1y — Xy, w1 — T2 in Sp are glued to f, f in Sy p. Topzin 0 Sp e is glued to
Ty in Spy . Topgt1 0 So e is glued to yp in Sy .

Tiy1 — Ti, Yir1 — Yi in Sy, p are glued to f, fin S;, fori=1,--- ,n, — 1.

o f— 1y, inS,,psis glued to ¥y in Sy, 0 f — Yn, in Spyp is glued to f — z; in
St -
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Notice that the blowup z; in S, o can be used for gluing sp(ny)™M to one more neighbor,
that is in configurations of the following form

ay L 5 @
s0(2n, + 1) 5p(na) 2= 50(2ng + 1) (5.177)
o _ 1) — 95 s50(2 1D
9 sp(7a) 2= 50(2n5 +1) (5.178)
) 1 — 5 )
s0(2n,) sp(na)® — 2= s0(2ng + 1) (5.179)

but cannot be used for gluing sp(n, )" to two more neighbors.

Gluing rules for s5p(na)M — 2 = 50(2n4) . We can take any geometry with 1 <

v < 2n4 + 7 — 2ng for sp(ne)Y), and any geometry with 0 < v < 2ng — 8 — n, for
50(2n3)@. The (non-geometric) gluing rules are:

® Ty~ T2 Trgtl — Tngtd Tng — Tngil, Tng+2 — Tngt3 0 S are glued to f, f, f, f
in SO,,B'

® Ty i~ Tng—itls Tngrit2—Tngrits NS q are glued to f, fin S;gfori=1,--- ng—
2.

o f—xy—To,m1 — Ty in Sp, are glued to f, fin Sy, 15 Tonzi1 in Soq is glued to
Ty in Sy, 18 Tangt1 i Soe is glued to yp in Sy, 1.

® i1 — T, Yir1 — Yi I Snﬁ_lﬁ are glued to f, f in S;, fori=1,--- ;n, — 1.

o [ —xn, n Sy, 1pisglued to xy in Sy, 0 f — Yn, 0 Sy, s is glued to f — 2 in
Sha -

The blowup 7; in S,, o can be used to glue sp(n,)?) to exactly one more neighboring
node connected to it by an undirected edge. The neighboring node can carry so(2n., +
1D, g5 or s0(2n,)@.

The fact that ng = n, + 4 is not allowed manifests in the above gluing rules.
The total number of blowups carried by Sy, is at max 2n, + 7 but the gluing rules
require the presence of 2n, + 9 blowups on Sp,. See the discussion around (3.37) for
an explanation of this restriction.

Gluing rules for sp(na)® -2 -+ 50(7)V . We can take any geometry with 0 < v <

2n,, for sp(ne)Y), and any geometry with 0 < v < 2 — n,, for s0(7)"). The gluing rules
are:

® I3 — T5,T4 — T in Sy, are glued to f, f in Sy s.
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o f—x1 — X9, 77,23 In Sy 4 are glued to f, f — 1, y; in Si 6.

® Ty —x3,T6 — T7 in Sy, are glued to f, f in Sy s.

® T — X9, T3 — Ty, Ty — Tg, Ty — Tg i0 Sy o are glued to f, f, f, f in S 5.

® T, — Tit1,Yi+1 — Y in Sy g are glued to f, fin S; o fore=1,--- ,ny — 1.

® T, — Yn, in S1pis glued to fin S, .

Gluing rules for sp(1)) — 2 — gé” : We can take any geometry with 1 < v <3

for sp(1)M). The (non-geometric) gluing rules are:
® I3 — X5,T4 — Tg in Sy, are glued to f, f in Sy g.
® Ty —x3,T6 — T7 in Sp o are glued to f, f in Sy 4.

o f—x1 — Ty, 21 — Ty, T3 — Ty, T5 — T, L7, T7 in Sp o are glued to f, f, f, f,x1,y1 in

5173.
o f—xy,21in S, are glued to f —xq, f —y; in Sy 5.

Notice that the blowup z; in S}, can be used in gluing rules corresponding to exactly
one more neighbor of sp(1)®) carrying algebra so0(2n., + 1) or so0(2n,)®.

Gluing rules for sp(ng)V — 3 — 50(2715)(1) : We can take any geometry with 0 <

v < 2n, + 8 — 3ng for sp(n,)Y), and any geometry with 0 < v < 2ng — 8 — n, for
50(2n3)M. The gluing rules are:

® [ — X1 — T2, Tony 1 — Tongt1, Tany — Tangr2 N Soq are glued to f, f, f in So .

® Ti—Tiy1, Tong—i — Tong—it1s Tang+i — Tangit1 N So o are glued to f, f, f in S; g for
’621, ,nB—l.

® Ty 1~ Tngils Tng — Tngt2; Tang—1, Lang 1N So o are glued to f, f, f—x1,y1 in Sy, 5.
® X, — Tii1,Yir1 — Yi in Snﬁ’g are glued to f, fin S;, fore=1,--- ny — 1.

® Tn, — Yn, N Sy pis glued to fin Sy, o

Gluing rules for sp(na) — 3 = 50(2n5 + 1)V . We can take any geometry with

1 <v<2n,+7—3ng for sp(ne)!, and any geometry with 0 < v < 2ng — 7 —ny, for
50(2n5 + 1)M. The (non-geometric) gluing rules are:
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o f—u — T2, T2ng — L2ng+2; T2ng+1 — L2ng+3 in Sy, are glued to f, f, f in So 5.

® Ti — Tit1, Long—it+1 — T2ng—i+2, L2ng+it1 — L2ng4it2 in Sp, are glued to f, f, f in
Sigfori=1--- ng—1

L 'TTLB - xng+17 xn/g - xn6+17 anJrl - xn5+27 $n3+1 - xn5+27 'T3TL5+17 x3n5+1 ln SO,O[ are
glued to f, f, f, f, @1, 91 in Sy, .

® i1 — Ty Yir1 — Yi in Sy, s are glued to f, fin Si, fori=1,--+ ng — 1.

J = Tnar [ — Yno In Sy p are glued to f —xy, 21 in Sy, g

Gluing rules for sp(no) — 3 — 50(2n5)® . We can take any geometry with 1 <

v < 2n4 + 7 — 3ng for sp(ne)Y), and any geometry with 0 < v < 2ng — 8 — n, for
50(2n3)@. The (non-geometric) gluing rules are:

o f—1x1—x,x1 — T, Tang = L2ng+2; T2ng — T2ng+1; L2ng+1 — L2ng+3, Long+2 — L2ng+3

in Sy, are glued to f, f, f, f, f, f in Spp.

® Tit1 — Tit2, Tong—i — T2ng—itls L2ng+it2 — T2ngtits 1N So,a are glued to f, f, f in
Sigfori=1--- ng—2.

L Ing - xng+17 xn/g - xn@+17 anJrl - xn5+27 $n3+1 - xn5+27 'T3TLB+17 x3n5+1 ln SO,CM are
glued to f7 f7 f7 f7 X1, in Sng—l,ﬁ'

® i1 — Ty Yir1 — Y in Sy, are glued to f, fin Sj, fori=1,--+ n, — 1.
® f—Tny [ — Yn, in Spy1p are glued to f —xy, 71 in Sy, o

Again, the fact that 3ng = 2n, + 8 is not allowed manifests in the above gluing rules.
The total number of blowups carried by Sy, is at max 2n, + 7 but the gluing rules
require the presence of 2n, + 9 blowups on Sp,. See the discussion around (3.38) for
an explanation of this restriction.

Gluing rules for su(na)® — 2 — su(ng)V . We can take any geometry with 0 <

v < 2n, — 2ng for su(n,)®, and any geometry with 0 < v < 2ng — n,, for su(ng)®.
The gluing rules are:

® [ — X1, Tn; — Tpyit, Ton, 0 So are glued to f — xy, f, 2, in Spp.
® I — Tit1, Tnyti — Tpyyirt 10 S are glued to f, f in S; 5 fori=1,--- ,ng— 1.

o ;, — ;11 in Sypis glued to fin S;, fore=1,--- ny — 1.
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Gluing rules for su(ng) — 3 — su(ng) . We can take any geometry with 0 <

v < 2n, — 3ng for su(n,)®, and any geometry with 0 < v < 2ng — n, for su(ng)®.

The gluing rules are:
o f—uy, Tng = Tng+1, L2ng — L2041, T3ng 1N So,o are glued to f—aq, f, f, xp, in Sp .

® T — Tit1, Tngti — Tngtitls Long+i — Long+it1 1N So,o are glued to f, f, f in S; g for
t=1,---,ng— 1.

o 2, — ;11 in Sppis glued to fin S;, fore=1,--- ny — 1.

Gluing rules for su(2n,)® — 2 — su(ng) . We can take any geometry with 0 <

v < 2ng — 2n,, for su(ng)V. The gluing rules are:
o [ — ynﬁ,xnﬁ,f x1,Y1 in Sy, are glued to xop,—1,Ton,, f — 22, [ — 1 in Sp 5.
® T, — Tit1,Yi+1 — Y in Sy are glued to f, fin S; g fori=1,--- ,ng — 1.
® T — Tit1,Ton,—i — Tan,—i+1 i0 Sp g are glued to f, fin S;, fori=1,--- ,n, — 1.

® T, — Tp,+1 10 Sop is glued to fin S, a.

Gluing rules for s4(2n, — HN® —2 — 511(”5)(1) : We can take any geometry with

1 <v < 2ng—2n,+ 1 for su(ng)V. The (non-geometric) gluing rules are:

X — X1, [ — in S are glued to x 1, — [ — 1,01 —
k) «
L yn57 nB;f 1, ylyfyf 0,a g 2na—15 L2nq—1, Y1, 1,41
To, | — To — U1 in S()ﬁ.

® ¥, — Tit1,Yi — Yit1 in Sy are glued to f, fin S;gfori=1,--- ng— 1.
® T —Tit2, Tong—i1 — Ton,—i i Sp g are glued to f, fin S;, fori=1,--- n,—2.

® T, — Tp,4+1 10 Sop is glued to f in S, —1.4-

Gluing rules for gé” — 2 — su(2)" . We can take any geometry with 1 < v <3

for 5", and we must use the geometry with v = 1 for su(2)M. The (non-geometric)

gluing rules are:
o f—xy,y1 in Sy, are glued to f — xq, f — 1 in Sy .

e 1 — 1y in Sy, is glued to f in S g.
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® 19 —x3in Sy is glued to f in Sy ,.
® I — Xo9,T3,23 in Sy p are glued to f,x1,y; in S 4.

o f—uxy,f—uy1 in S, are glued to f — x1, 21 in S 5.

Gluing rules for ggl) — 3 — s5u(2)" ; We can take any geometry with 2 <v <3

for gi", and we must use the geometry with v = 1 for su(2)M. The (non-geometric)

gluing rules are:
o f—x1,y1,T2 — Y2 in Sy, are glued to f — xo, f — 21, f in Sy p.

® T — X2,Y2 — Y1 in Sp, are glued to f, f in Sy 5.

T9 — x3 in Sp g is glued to f in S ,.
® I — Xo9,T3,%3 in Sy g are glued to f,x1,y; in S ,.
o f—xy,f—y1 in S, are glued to f — x1, 21 in S 5.

Gluing rules for s0(7) - 2 > sp(1) and so(N)® -- 2 - su(2)V . We can
take any geometry with 1 < v < 7 — 2Q° for s0(7)"), any geometry with 0 < v < 6

for sp(1)™®), and we must use the geometry with v = 0 for su(2)(!). The gluing rules
are:

o f—xy,y1 in Sy, are glued to f — xq, f — 1 in Sy .
o 1 — 1y in Sy, is glued to f in S .

e 23,14 in Sy 5 are glued to f — xq,y; in S14.

® 9 — x5 in Sy is glued to f in Sy ,.

® T — X9, T3 — T4 in Sy p are glued to f, f in S3,.

o 11—y in Sy, is glued to f in S .

Gluing rules for s0(7) -~ 3 -= su(2)® ; We can take any geometry with 2 < v <

3 for s0(7)M), and we must use the geometry with v = 0 for su(2)(!). The gluing rules
are:

o f—x1,y1,T2 — Yo in Sy, are glued to f — zy, f — 21, f in Sy p.
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1 — T2,Y2 — Y1 in Sp, are glued to f, f in Sy g.
x3, x4 in Sp g are glued to f — z1,y; in Sy 4.

T9 — x3 in Sp g is glued to f in S ,.

1 — T2, T3 — T4 in Sp g are glued to f, f in S3,.

1 — ¥y in Sy, is glued to f in S) 5.

Gluing rules for $0(8)@ -- 2 — sp(1)™ . We can take any geometry with 0 < v <

6 for sp(1)(). The gluing rules are:

f =1,y in 51, are glued to x3, x4 in Sy s.

1 — Y1 in Sy 4 is glued to f in S 5.

f—21 — 2o, f —x3 — x4 in Sy g are glued to f, f in Sp,.
T9 — x3 in Sp g is glued to f in S ,.

1 — T2, T3 — T4 in Sp g are glued to f, f in Ss,.

Gluing rules for 50(2n,) M) — 2 — 5p(n5)(1) : We can take any geometry with ng <

v < 2n, — 4 — Q% — ng for 50(2n,)Y, and any geometry with 0 < v < 2ng + 8 — n,

for sp(nz). The gluing rules are:

f =1,y in Sp o are glued to f — 3, f — 21 in Sy .

i — Tit1, Yit1 — Y in S are glued to f, fin S;gfori=1,--- ng— 1.
Ty — Yng 1N Soq 18 glued to fin Sy, 4.

Z; — Tip1 in Sy g is glued to fin S; 4 for e =1,--+ ny — 1.

Tny—1,Tn, N S g are glued to f — x1,y; in Sy, -

i — Tit1,Yir1 — Y in Sy, o are glued to f, fin S;gfori=1,--- ,ng— 1.
Ty — Yng N Sp, o 18 glued to fin Sy, 4.

Gluing rules for $0(2n, + 1) —2 — sp(ng)™ . We can take any geometry with

ng < v < 2, — 3 — Q% —ng for s0(2n, + 1)M, and any geometry with 1 < v <

2ng + 8 — n, for sp(ng)M. The gluing rules are:
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o f—xy,y1 in Sy, are glued to f — xg, f — 1 in Sp .
® X, — Tit1,Yir1 — Y in Sy are glued to f, fin S; g fori=1,--- ,ng — 1.

o T,

5 = Yng 0 Spq is glued to fin Sy, .

o ;, — ;1 in Sy is glued to fin S; 4 fore=1,--+ ny — 1.

® T, %y, in Spp are glued to x1,y; in Sy, .

® i1 — X, Yir1 — Y in Sy, o are glued to f, fin S;gfori=1,--- ,ng—1.
® [ —Tny, [ = Yny In Sy, 0 are glued to f —xy, 71 in Sy 5.

The blowup z; in S, s can be used to glue 5p(n5)(1) to exactly one more neighboring
node connected to it by an undirected edge. The neighboring node can carry so(2n., +
1D, g5 or s0(2n,)@.

Gluing rules for 50(2n,)? —2 — ﬁp(nﬁ)(” : We can take any geometry with ng <
2)

v < 2n, — 8 — ng for s0(2n,)?, and any geometry with 1 < v < 2ng + 8 — n, for

sp(ng)M. The gluing rules are:
o f—xy,y1,f in Sy, are glued to f — xo, f — 1,21 — 22 in Sy g.
® T — Tit1,Yit1 — Y in Sy are glued to f, fin S; g fori =1,--- ,ng — 1.
® T, — Yn, N Spq is glued to fin S, 5.
® 21 — Tiyo in Sppis glued to fin S fori=1,--- ,n, — 2.
® 2, ,%y,, in Syp are glued to z1,y; in Sy, 1.4
® Ty — X, Yir1 — Yi in Sy, 14 are glued to f, fin S;gfori=1,--- ,ng—1.
® [ —Tng, [ = Yny In Sp,1,0 are glued to f —xy, 21 in Sy 5.

Again, the blowup z; in S,,, 5 can be used to glue sp(ng)(l) to exactly one more neigh-

boring node carrying so(2n, + 1)@, gi" or so(2n,)®.

Gluing rules for 50(2nq)" — 3 — sp(ng)Y . We can take any geometry with 2ng <

v < 2n, — 8 —ng for 50(2n,)Y, and any geometry with 0 < v < 2ng + 8 — n, for
sp(ng)M. The gluing rules are:

® [ — 1, %2, — Yony, Y1 in So o are glued to f — xo, f, f — 1 in Spp.
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® L —Tit1, Yit1 — Yis Lang—i — L2ng—it1; Y2ng—i+1 — Yony—i 1N So,0 are glued to f, f, f, f
inS;gfori=1,--- ,ng—1.

® Ty — Tngi1s Yng+1 — Yng i S are glued to f, f in Snﬁ,g.

o ;, — ;1 in Sy is glued to fin S; o fore=1,--- ,ny — 1.

® T, _1,Ty, in Syp are glued to f —x1,y1 in S, 4.

® T, — Tit1,Yit1 — Y in Sy, o are glued to f, fin S;gfori=1,--- ,ng—1.

® Tng — YUng in Sna,a is glued to f in S”B:B’

B

Gluing rules for $0(2n, + M — 35— 5p(nﬁ)(1) : We can take any geometry with

2ng < v < 2n,—7—mng for s0(2n, + 1)(1), and any geometry with 1 < v <2ng+8—n,
for sp(ng). The (non-geometric) gluing rules are:

® [ — X1, Tan, — Y2ng, Y1 I Spo are glued to f —x, f, f — 1 in Spp.

® Ti—Tit1, Yit1 — Yis Tang—i — Long—i+1s Y2ng—i+1 — Yang—i 1 So,a are glued to f, f, f, f
in S;pgfori=1,--- ,ng—1.

® Tny — Tngi1s Yng+1 — Yng 1N Soq are glued to f, f in Sy, 4.
o 2, — ;11 in Sypis glued to fin S;, fore=1,--- ny — 1.
® T, ,%y,, in Syp are glued to z1,y; in Sy, .

® i1 — X, Yir1 — Y in Sy, o are glued to f, fin S;gfori=1,--- ,ng—1.

J = Tngy | — Yny I Sp, o are glued to f —xy, 21 in Sy, 4.

Gluing rules for 50(2n4)® — 3 — sp(ns)" . We can take any geometry with 2ng <

v < 2n, — 8 — ng for s0(2n,)?, and any geometry with 1 < v < 2ng + 8 — n, for
sp(ng)M. The (non-geometric) gluing rules are:

® [ — &1, %0, — Yons, Y1, [ In So o are glued to f — xo, f, f — 21,71 — X3 in Sp .

® T —Tit1, Yir1 — Yir Tng—i — T2ng—it1, Yons—i+1 — Yons—i i Soq are glued to f, f, f, f
in S;gfori=1,--- ,ng—1.

L xng - Ing—&-l?ynﬁ-l-l - ynﬁ in SO,a are glued to f7 f in Sng,ﬁ'

® Ty — Tiyo in Sppis glued to fin S, fori=1,--- n, — 2.
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® T, ,%y,, in Sz are glued to z1,y; in Sy, 1.4
® i1 — Ty, Yir1 — Y in Sy 1,4 are glued to f, fin S;gfori=1,--- ng— 1.
® [ —Tny [ = Yny In Sp,1,0 are glued to f —xy, 71 in Sy 5.

5.4 Gluing rules involving non-gauge-theoretic nodes

There are only three such nodes which are listed below

5p(0)5”
1 (5.180)

su(1)
2 (5.181)

su(1)W
2

- (5.182)

The theta angle for sp(0)™") is physically irrelevant as long as there is no neighboring
su(8).
First consider the edges shown as last two entries of Table 4. The gluing rules for
these cases are as follows.
su(D)® sp(1)® su(1)®  su(2)®
Gluing rules for 2—1 and 2———2 : We can choose any

geometry with 1 < v < 10 for sp(1)(!) and any geometry with 1 < v < 4 for su(2)(.
The (non-geometric) gluing rules are:

o f—x—1yin Sy, is glued to f in Sps.
e 2,y in Sy, are glued to f — x1, 21 in S .

As in cases discussed in last subsection, the blowup z; in S; 3 can be used for gluing
sp(1)® or su(2)) with another neighbor such that the gluing rules for sp(1)® or
su(2) with that neighbor allow a blowup on S 4 to be used for more than once.

The gluing rules for the edges shown in Table 5 are as follows.

sp(0)) su(1)W
Gluing rules for 1——2 :

e 3l —3 x;in Sy, is glued to f in Sps.
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See Appendix (B.2) for a derivation of the above gluing rules.

su(H)® sy
Gluing rules for 2——2 :

o f—x,xin Sy, are glued to f —z,x in Sy g.

The blowups z in Sy, and z in Sy g can be used for gluing to other su(1)M neighbors.
See Appendix (B.2) for a derivation of the above gluing rules.

Now consider the edges shown in the last entry of Table 9:

su(2)®M  su(1)™

Gluing rules for é 2

o f—xy,21 in Sy, are glued to x,y in S g.

e fin S, is glued to f — 2 —y in Spp.

su(1)®  su(1)W

Gluing rules for i) 2

e 2h —x -2y, f —xin Sy, are glued to f — z,x in Sy 5.

The blowup « in Sp 3 can be used for gluing to other su(1)™® neighbors. See Appendix
(B.2) for a derivation of the above gluing rules. We remind the reader that this gluing
rule involves the non-geometric node (5.161) and hence the above gluing rules should
be viewed only as an algebraic description and not as a geometric description. See the
discussion after equation (5.160) for more details.

Now consider the last entry of Table 11:

su(2)®M  su(1)®W
Gluing rules for 2—2—72 : We can use any geometry with 1 < v < 3 for

su(2)M). The gluing rules are:
o f—xy,x1 in Sy, are glued to x,y in S g.

o f—xy,21in 51, are glued to f —z, f —y in Sy s.
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The blowups z; in Sy, and z; in S}, can also be used for gluing to other neighboring
nodes of su(2)® that carry some su(n)™®).

su(2)®  su(1)W
Gluing rules for 2—3—2 : We can use any geometry with 1 < v < 3 for

su(2)M). The gluing rules are:
o f—xy,x1 in Sy, are glued to x,y in Sy g.
o f—xy,21in S, are glued to 2f —x, f —y in Sy g.

The blowups z; in Sy, and z; in S; , can also be used for gluing to other neighboring
nodes of su(2)® that carry some su(n)®.

su(H)®  su(1)®
Gluing rules for 2—2—2 :

o f—x,2in Sy, are glued to 2f — z,x in Sy g.

(Note that the gluing rules proposed above are non-geometric.) The blowups  in Sp
and x in Sy g can be used to further glue to other neighboring su(1)M. See Appendix
(B.2) for a derivation of the above gluing rules.

su(1)®  su(1)®
Gluing rules for 2—3—2 :

o f—x,xzin Sy, are glued to 3f — z,z in Sy g.

(Note that the gluing rules proposed above are non-geometric.) The blowups z in Sp
and z in Sp 3 can be used to further glue to other neighboring su(1)®.

5.4.1 sp(0)) gluings: untwisted, without non-simply-laced

At this point, we are only left with gluings of sp(0)") to other nodes carrying non-trivial
gauge algebras. In this case, we also have to provide gluing rules for two neighbors at
a time. This is because the torus fiber for dPy is 3l — > x; which involves all of the
blowups. So all of the blowups must appear in the gluing rules associated to each edge.
This is in stark contrast to the gluing rules for non-trivial algebras g? where (typically)
the blowups used for gluing rules associated to different edges are different. Thus in
the case of g9, the gluing rules for different edges naturally decouple. However, in the
case of sp(0)1), we have to provide gluing rules for multiple neighbors at a time and
show explicitly that the curves inside dPy involved in gluing rules for different edges
do not intersect. It turns out that in the context of 6d SCFTs, sp(0)(") can only have
a maximum of two neighbors carrying non-trivial algebras.
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In the case when all the neighbors are untwisted, sp(0)*) gluings were first studied
in [4]. For the completeness of our presentation, we reproduce their results in this sub-
section (providing enhanced explanations while we do so) before moving onto sp(0)(")
gluings arising in the twisted case. Following [4], we will represent these sp(0)!) gluing
rules in a graphical notation that we review as we review the results of [4].

To start with, let us consider the gluing rules for

5p(0)) — cf!

(5.183)
which are displayed below
sp(0)) ey
|l —x1 —x2 — 3
T8 — T9 7 — T8 T — T7 5 — Tg T4 — T5 1 — T4 To — T T3 — T2
(5.184)

where each node denotes a curve in dPy whose genus is zero and self-intersection is —2.
If there are n edges between two nodes, it denotes that the two corresponding curves
intersect in n number of points. Each curve C, shown above is glued to the fiber f of
a Hirzebruch surface S, in the geometry associated to eél). Which curve glues to the
fiber of which S, can be figured out from the position of the curve in the graph above,
because the graph takes the form of the corresponding Dynkin diagram, which in this
case is eél). Notice that

Z daCa :(ZE8 — l‘g) + 2(I7 — I’g) + 3(?E6 — 1L'7> + 4(1’5 — IL‘G) + 5(1’4 — IE5) + 6(1‘1 — I4)

+ 4(1]2 — I1> + 2(1’3 — .TQ) + 3(l — 1 — T2 — Ig)
—3-Y (5.185)

and thus the torus fibers on both nodes are glued to each other, satisfying (5.60) for
the untwisted case.

Now, we can use the above gluing rules to obtain gluing rules for regular maximal
subalgebras of eg as follows. For example, to obtain the gluing rules for

(1)

W
su(2) e (5.186)

sp(0))

we first delete the second curve from the left 27 — xg in (5.184). After this deletion, the
graph takes the form of Dynkin diagram for finite algebra su(2) @ e;. To obtain the
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gluing rules for (5.186), we simply need to add two extra —2 curves to the graph such
that the finite Dynkin diagram of su(2) is converted to the affine Dynkin diagram of
su(2)M) and similarly the finite Dynkin diagram of e; is converted to the affine Dynkin

diagram of e(71) :

This is easy to do since we know that a weighted sum of the —2
curves participating in gluing to each affine Dynkin diagram must be 3/ — > x;. This

requirement uniquely fixes the extra —2 curves that need to be added. We thus obtain

l—x1 — 22 — 3

Te — X7

r5 — X6 T4 — X5

1 — T4 T2 — T1 r3 —x2 — | —x3 —x8 — 9

g — T9

3l —x1 —x2 — X3 — X4 — X5 — T — T7 — 228

(5.187)
as the gluing rules for (5.186). | — x3 — xg — x9 glues to the fiber of affine surface for
" and x5 — 29 glues to the fiber of affine surface for su(2)M. Notice that the curves
in each sub-Dynkin diagram sum up to 3l — 3 z; if the sum is weighted by the Coxeter
labels of the corresponding affine Dynkin diagram. Also notice that the curves forming
the Dynkin diagram for 2(71) do not intersect the curves forming the Dynkin diagram for
su(2)M| which explicitly shows that the gluing rules for the two neighbors of sp(0)™)
decouple from each other as required.

Incidentally, (5.187) allows us to determined gluing rules for

(1)

1)
5p(0) er (5.188)

and
sp(0)™M)

su(2)® (5.189)

without any other second neighbor for sp(0)™"). This is done by only keeping the curves

spanning the Dynkin diagram of egl) or the Dynkin diagram of su(2)™"), while omitting
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the rest of the curves from (5.187). Thus, we obtain

(1)

5]3(0)(1) er

l—x1 — 220 — 3

Te — X7 T5 — Tg T4 — T5 T — T4 To — T T3 —x2 — | —x3 —x8 — X9
(5.190)
with the fiber in affine surface glued to | — x3 — rg — 9 and
T8 — X9 3l — 11 — 12 — T3 — T4 — x5 — Tg — T7 — 2T8 (5191)

with the fiber in affine surface glued to xg — xg.
Deleting other nodes from (5.184), we can obtain the following gluing rules

sp(0)M — s0(16)™M)

20 — 11 — X9 — X4 — T5 — T — LT l—x1 —x2 — 23

T8 — Tg Tr7 — X8 T6 — T7 T5 — Tg T4 — T 1 — x4

e (5192)

where xg — xg glues to the fiber of affine surface for 50(16)(1).

sp(0)) —— su(9)W

3l—xy —x2 — 203 — T4 —T5 — T — X7 — Y

g — T9 7 — I8 6 — L7 T5 — T6 T4 — T5 1 — T4 2 — T1 T3 — T2

(5.193)
where x5 — 9 glues to the fiber of affine surface for su(9)™.
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|l —x7 —x8 — X9

l— 21 — 22 — 3

T5 — Tg 1 — x4

T4 — T

T2 — T

T3 — T2

3l —x1 —x2 —x3 — x4 — x5 — T — 2T7 — T8

N

T rT s (5.194)

where | — x7 — 23 — xg glues to the fiber of affine surface for eél) and xg — xg glues to
the fiber of affine surface for su(3)®). Incidentally, this also allows us to obtain the
following individual gluing rules

sp(0)® ey

|l —x7 —x8 — X9

l—xy —x2 — 23

T5 — Tg 1 — T4

T4 — T5

2 — X1

73— @3 (5.195)

with the fiber in affine surface glued to [ — z7 — xg — x9, and

3l —x1 —xo2 —x3 — x4 — x5 — T — 2T7 — T8

T

7 = o7~ (5.196)

with the fiber in affine surface glued to xg — .

Now we can delete some nodes from the above set of gluing rules to obtain gluing
rules for other algebras that arise as regular maximal subalgebras of the above algebras.
For example, by deleting nodes from (5.192), we can obtain the gluing rules for

s0(8)1 sp(0))

so(8)" (5.197)
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since s0(8) @ s0(8) is a regular maximal subalgebra of s0(16). The gluing rules are

20 —x1 — T2 — x4 — x5 — XTg — X7

r8g —r9g — L7 — XLy — Tg — X7

|l —x3 —x — x7

l—x1 —x2 — 3

Xy — 5 ——— L] — X4 — T2 — X1

2l —x1 — 2 — 6 — X7 — T — X9 (5198)

where the fibers in affine surfaces glue to zs — z9 and 2l — 1 — o — x4 — 7 — x5 — X9.
Tha bove gluing rules imply that the gluing rules for a single s0(8)() are obtained by
amputating one of the s0(8)™® sub-graph from (5.198).

5p(0))) —— so(8)"

20 —x1 — x93 — Xy —T5 — T — X7

rg —r9g —— L7 — XL — T — X7

e (5.199)

with the fiber in affine surface glued to xg —x9. The reader might wonder what happens
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if amputate the other s0(8)(") sub-graph from (5.198) to obtain the gluing rules as

l—x1 —x2 — 3

Ty —T5E —————————— T] — Ty ——————————— T2 — T

2l —x1 — 2 — 6 — X7 — XY — X9 (5200)

It turns out that (5.199) and (5.200) are related by an automorphism of dPy. To see
this, let’s first relabel the blowups as

Ty &> X7 (5.201)
To <> Tg (5.202)
T3 <> x5 (5.203)
Ty 4> Tg (5.204)

so that (5.199) is converted to

2l —x1 —x9 — X3 —Tg — T7 — X8

X4 — 9 — ] — T4 — T2 — X1

L—a1— 22— s (5.205)

Now we perform two basic automorphisms of dPy. The basic automorphisms are de-
scribed in Appendix A.2 and involve a choice of three blowups. For the first basic
automorphism we choose the blowups z1, x5 and x4, and after performing this opera-
tion the gluing rules (5.205) are transformed to

20—y — 12 — T3 —xTg — X7 — X8

l—21 — 29 — 29 Tl — Ty —————————— To — T

w4 = (5.206)
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For the second basic automorphism we choose zg, 7 and g thus transforming (5.206)

to
|l —x1 — 29 — T3

20— x) —x9 —Tg —T7 —X8g —Xx9g —————— T1 — Ty ————— T2 — T

7= (5.207)

which precisely matches (5.200), thus demonstrating that (5.199) and (5.200) are iso-
morphic gluing rules.

This will hold true in general in what follows. Whenever we will find two seemingly
different gluing rules, they will always turn out to be related by an automorphism,
except for two cases. These two cases are the gluing rules for su(8)® and su(8)®,
where we find two possible gluing rules in each case. The two possibilities correspond
to different choices of theta angle for sp(0) in the 6d theory.

Let us collect all of the remaining gluing rules below

|l —x1 — 220 — 23 2l —x9 — X3 —Xg — T7 — T — X9

1 — 24 2 — T1

T4 — T5

xr3 — T2
3l —x1 —x2 —x3 — x4 — x5 — 2T — T7 — T8

T8 — Tg T — T7

/ \
\ /
@1~ o8 (5.208)

where the fibers in affine surfaces glue to zs — 9 and 21 — x5 — x5 — x5 — 7 — g — X9.

2l —xy —x2 — Ty — T5 — Tg — T7 l—x1 —x3 — x4

x7 — X8 Te — T7 T5 — Tg T4 — T5

g — 9

7~ (5.209)
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where the fiber in affine surface glues to xg — xg.

|l —x7 —x8 — X9

l—x1 —x2 — 3

1 — T4

T5 — Tg T4 — T5 T2 — T1 T3 — T2

g — 9

3l—x1 — w2 — T3 — T4 — Ts — Tg — TT — 278 (5210)

where the fibers in affine surfaces glue to xg — x9 and [ — z7 — x5 — 9.

20 —xy — X2 — Ty — x5 — T — X9 l—x1 —x2 — 3

e — X7 T5 — T6 T4 — T T1 — X4 T2 — 1

T8 — X9

3l —xy — 12 — X3 — X4 —T5 — T — T7 — 228 (5211)

where the fibers in affine surfaces glue to xg — x9 and 2l — x1 — x9 — x4 — 5 — T3 — 9.

l—x1 — 220 — 23 20 — 19 — X3 — Xg — T7 — T — X9

Tl — T4 T2 — 1

T4 — Ts T3 — T2

3l —x1 —x2 —x3 — x4 — x5 — T — 2T7 — T8

N

g —T9g ——————————— L7 — T (5.212)
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where the fibers in affine surfaces glue to zs — 9 and 21 — xy — x5 — x4 — 7 — x5 — Xy.

2l —x9 —x3 — X6 — T7 — T — X9

1 — x4

xr3 — X2
|l —x90 —x3 — 5
3l —x1 —x2 —x3 — x4 — x5 — 2T — T7 — T8

T8 — T9 xT6 — X7

/ \
~_
©7 — o8 (5.213)

where the fibers in affine surfaces glue to xs — 9 and 21 — o — x5 — x5 — 7 — g — Xy.

20 —x1 — T2 — x4 — X5 — T8 — T9 |l —x1 — 22 — 3

T5 — Tg T4 — T T] — T4

Te — T7

w2 = (5.214)

where the fiber in affine surface glues to 2l — x1 — x9 — x4 — x5 — g — T9.

3l —2x1 — X9 — X3 — T4 — T5 — Tg — X7 — IT§

T8 — X9

T7 — T8

Tg — T7

T5 — Tg

T4 — T

1= (5.215)
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where the fiber in affine surface glues to xg — xg.

l—x1 — 220 — 23 20 — 190 — X3 — Xg — T7T — T — X9

T4 — T T — T4 T2 — T T3 — T2

g — 9

3l—x1 —T2 — %3 — T4 — T5 — Tg — T7 — 2T8 (5216)

where the fibers in affine surfaces glue to xg — x9 and 21 — x9 — x3 — 1 — T7 — T3 — 9.

2l —x9 — X3 —Xg — T7 — T — X9

Tl — T4 T3 — T2

|l —x0 —x3 — 5

3l —x1 —x2 —x3 — x4 — T5 — Te — 207 — X8

T

28 = 9 w7 = s (5.217)

where the fibers in affine surfaces glue to zs — z9 and 21 — x9 — x5 — x4 — 7 — x5 — X9.

|l —x1 —x9 — T3 2l —x9 — T3 —Tg — T7 — T8 — X9

T4 — X5 1 — T4 T2 — X1

w3 =2 (5.218)

- 113 —



where the fiber in affine surface glues to 21 — xy — x3 — x4 — v7 — x5 — T9.

3l—x1 —x2 —x3 —2x4 — T5 — Te — T7 — T

g — T9 7 — I8 T — T7 T5 — Tg T4 — T (5219)
where the fiber in affine surface glues to g — xg.
20 —xo — x3 — X6 — X7 — T8 — T9
T] — X4 T2 —T1 T3 — T2
| — 2 7‘ T3 — 5
T8 — Tg 3l —x1 —x2 —x3 — X4 — x5 — T — T7 — 278 (5220)

where the fibers in affine surfaces glue to xg — x9 and 2] — x9 — x3 — 1 — T7 — X3 — 9.

3l —xy —x2 — 213 — T4y — Ty — T7 — T8 — T9

P

xT5 — Te T4 — T5 Tl — T4 T2 — X1 xr3 — X2
3l —x1 — T2 — X3 — X4 — T5 — Tg — 207 — I8
8o s (5.221)
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where the fibers in affine surfaces glue to g — x9 and 3] — z; — 9 — 2203 — x4 — x5 —
T7 — g — Xg.

3l —x1 — 12 — 203 — T4 — T35 — T7 — T — L9

T4 —Te ——— T1 — T4 xr2 — X1 xr3 — X2
3l —x1 —x2 —x3 — Xy — X5 — T — 207 — T8
% =29 27 = 2 (5.222)

where the fibers in affine surfaces glue to xg — g and 3] — x1 — x9 — 223 — x4 — T5 —
Ty — g — Xg.

3l —x1 —x2 —2x3 — T4y — T5 — T7 — T — T9

T

1 — Te6 T2 — 1 T3 — T2

3l —xy —x2 — X3 — X4 —T5 — T — 207 — XY

T

e s (5.223)

where the fibers in affine surfaces glue to g — x9 and 3] — z1 — 9 — 223 — x4 — x5 —
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T7 — g — Xg.

3l —x1 —x2 — 213 — T4y —T5 — T7 — T — T9

T

T2 — Tg T3 — T2

3l —x1 —x2 —x3 — X4 — x5 — T — 207 — T8

T

T8 — Tg T7 — a8 (5.224)

where the fibers in affine surfaces glue to xg — xg and 31 — x1 — x9 — 223 — x4 — T5 —
Ty —Ig — Xg.

r3 — g ———— 3| —x] — X9 — 23 — X4 — T5 — T7T — T — X9

3l —x1 —x2 — X3 — T4 —T5 — T — 27 — Y

T

R s (5.225)

where the fibers in affine surfaces glue to g3 — x9 and 3] — 1 — 9 — 223 — x4 — x5 —

3l —x1 —x2 —x3 — x4 — 205 — Tg — T7 — I8

T

T7 — T8 e — T7

T7 — Tg — Tg.

T8 — Tg

5~ % (5.226)
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where the fiber in affine surface glues to xg — xg.
5p(0)H) —— su(4)

3l —x1 —x2 —x3 — x4 — x5 — 2T — T7 — T8

T8 — L9 e — L7

/ \
\ /

s (5.227)
where the fiber in affine surface glues to g — xg.

Finally, we come to the gluing rules for su(8)(") for which we have two versions
depending on the choice of theta angle for sp(0). The adjoint of eg decomposes into
the adjoint plus an irreducible spinor of s0(16). In our study, this spinor corresponds
to the node of s0(16) Dynkin diagram whose corresponding fiber is glued to z5 — 7 in
(5.192). This is visible from the gluing rules (5.184) for e{") since the extra particles
in adjoint of eg come from the curve x3 — x5 which indeed transform in the spinor of
50(16) associated to xg — x since x3 — x5 intersects T — 7.

Now, to obtain the gluing rules for 5u(8)(1), we delete 2l —x1 —x9 — x4 — 5 — x5 — X7
from (5.192), and we have the choice to either delete | — x; — x5 — 23 or x9 — x;. This
latter choice leads to another choice of spinor of so(16). If we delete x5 — 24, then this
matches the previous choice of spinor we had, and leads to the gluing rules for 6§ = 0.
If we delete [ — x1 — 9 — x3, then this does not match the previous choice of spinor
we had, and leads to the gluing rules for § = 7. In the latter case, su(8) gauges the
spinor of s0(16) in the adjoint of eg, and in the former case it does not. Thus the latter
case has less global symmetry compared to former. We refer the reader to [38] for more
details. The two gluing rules are thus as follows:

3l —xy —2x9 — 3 — T4 —T5 — T — T7 — T§

g — 9

T7 — T8

Te — X7

T5 — T6

T4 — T

X1 — T4

T2oT (5 998)
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sp(0)y) —— su(8)™

20 —xy — x4 — X5 — XTg — T7 — T8

1 — T4 — | —x1 — 22 — T3

(5.229)

xrg — X9 T7 — T8 T — T7 T5 — Tg T4 — x5

In both the cases, the fiber in affine surface glues to xg — xy.

5.4.2 sp(0)) gluings: untwisted, with non-simply-laced

Until now, we have only considered simply laced subalgebras of es. To generalize
our gluing rules to non-simply laced subalgebras of eg, we use the folding of Dynkin
diagrams. The Dynkin diagrams for untwisted affine non-simply laced algebras can be
produced by folding the Dynkin diagrams for untwisted affine simply laced algebras.
The foldings relevant in our analysis are:

s0(2n)M — so(2n — 1) (5.230)
e — 5 (5.231)
50(8)) — s0(7)V) — gb (5.232)

For example, to obtain the gluing rules for

(1 (1)
sp(0) s0(15) (5.233)
we simply fold the graph (5.192) to obtain
sp(0)) — s0(15)M)
20— 11 — X2 — X4 — Ty — T — TT
T3 — Tg T7 — I8 Te — X7 T5 — Tg T4 — T5 ] — Ty =—— x2 —T1, | —T] — T2 — T3
(5.234)

where the fiber in affine surface glues to xgs — x9 and the rightmost node denotes two
—2 curves x5 — x1 and [ — xy — x9 — x3. Both of these curves glue to a copy of the
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fiber of the corresponding surface in the geometry for so(15)"). We can check that the
weighted sum of fibers equals 31 — > x;.

Since we can now have multiple gluing curves associated to the gluing of dFy to
some other surface, we have to make sure that all of the gluing curves are on an equal
footing. More precisely, we have to make sure that the condition (5.17) is satisfied,
which translates to the following condition. Let S, be the different surfaces dPy is
glued to, and let C? be the different gluing curves in dPy for the gluing to S,. The total
gluing curve for the gluing to .S, is

Co:=> C: (5.235)

Then (5.17) translates to the condition that
Cl-Cy=0CI.C (5.236)

for all 7,7,a,b. It can be easily verified that (5.234) satisfies this condition. This
condition (5.236) will be an important consistency condition in what follows and the
reader can verify that all of the geometries that follow satisfy (5.236).

By folding other gluing rules presented above, we can obtain the following gluing
rules

2l —x9 — X3 — X6 — L7 — T8 — X9

l—x1 —x2 — X3, T4 —T5 —— T1] — T4

2 — T1 T3 — T2

3l —x1 —x2 —x3 — x4 — X5 — 2T — T7 — X8

/ \
\ /
77— @ (5.237)

where the fibers in affine surfaces glue to zs — z9 and 21 — x9 — 3 — x4 — x7 — x5 — X9.

g — T9 Te — I7

sp(0)1) — s0(13)M)

20 —x1 —x2 — x4 —T5 — X6 — T7

g — X9 L7 — T8 6 — L7 I5 — T6

Ty —T5 == 1 — T4, | —x1 — T3 — 24 (5238)
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where the fiber in affine surface glues to xg — xg.

l—xz7—2x8—29 — | — X1 — T2 — T3

T1 — X4

2 — 1, T4 — T5 =— T3 — T2, T5 — T6

3l —x1 —x2 —x3 — T4 — x5 — g — 2T7 — T8

T

78— o7~ (5.239)

where the fibers in affine surfaces glue to xg — xg and | — x7 — x5 — 9.

l—x1 —x2 — 3

Ty —Ty ——— T] — Ly ——————————— T2 — I

2l —x1 —x9 —Xg — T7 — T — X9

20 —x1 — X9 — X4 — T5 — T — XT7

xr8 — 9 — X7 — I8

—_— 1 — 27, l—x3 —x6 — 7 (5240)
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where the fibers in affine surfaces glue to zs — 9 and 21l — 1 — x5 — x4 — 7 — x5 — Xy.

20 —x1 —x2 — x4 — X5 — Te — X7

r8g —xr9g — T7 — I8 167x7,l7137x67:1:7

2l —x1 — x93 —Xg — T7 — T — X9

X4 — 5 — T1 — T4

xro —x1, |l — 1 — T2 — T3 (5241)

where the fibers in affine surfaces glue to zs — z9 and 2l — 1 — x5 — x4 — 7 — x5 — X9.

Ty —T5 —————— L1 — Ty —————————— T2 — T

2l —x1 — T2 — e — X7 — XY — X9

T8 — T9

Tr7 — I8

x6 — a7, |l —®3 — w6 — @7, 2l —TL — T2 — T4 — T5s — T — T7 (5 242)
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where the fibers in affine surfaces glue to zs — 9 and 21l — 1 — x5 — x4 — 7 — x5 — Xy.

2l —x1 —x2 — x4 — X5 — T — T9

6 — X7 5 — T6 T4 — T5 T] — x4 == w2 — @1, |l — X1 — T2 — T3

T8 — L9

3l—x — a2 — @3 — &4 — X5 — Lo — T7 — 278 (5243)

where the fibers in affine surfaces glue to xg — x9 and 2] — x1 — x9 — x4 — 5 — T3 — 9.

20 —x9 —x3 — X6 — L7 — T8 — X9

xro2 — X1

l—x1 —x2 — X3, T4 —T5 —— T1 — T4 T3 — T2

3l —x1 —x2 — 13 — T4 —T5 — Tg — 2T7 — T8

T

T8 — X9 T7 — T8 (5.244)

where the fibers in affine surfaces glue to xg — x9 and 2] — x9 — x3 — g — T7 — T3 — 9.

2l —xo —x3 — X6 — L7 — T8 — T9

T2 —x] =—— 3 —x2, |l —x2 —T3 — 25

Tr1 — T4

3l —xy —xo —x3 — Xy — x5 — 2T6 — T7 — T8

™~

/ T — T
~_

@7 — s (5.245)

g — T9
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where the fibers in affine surfaces glue to zs — 9 and 21 — xy — x5 — x4 — 7 — x5 — Xy.

2l —x1 —x2 — x4 — X5 — T — T9

e — X7 T5 — T6

T4 — T

Tl — T4 = 22— 1, | —21 — T2 — 23 (5246)

where the fiber in affine surface glues to 2l — x1 — x9 — x4 — x5 — g — T9.

l—x7—28 —29 —— | — 21 — T2 — T3

T — T4

T2 — 1, T4 — T5 =— T3 — T2, T5 — T6

g — 9

3l—x1 —T2— 23— T4 — 25 — Te — T7 — 228 (5247)

where the fibers in affine surfaces glue to xs — x9 and [ — 7 — x5 — 9.

20 —x1 — 12 — X6 — X7 — I8 — T9

Ty — Ty ————————— X1 — T4 T2 —x1, |l — 21 — 22 — T3

T8 — Tg T7 — T8 T6 —x7, | —®3 —®6 — X7, 2l —T1 — T2 — Ty — T5 — T6 — X7 (5248)
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where the fibers in affine surfaces glue to zs — 9 and 21l — 1 — x5 — x4 — 7 — x5 — Xy.

3l —x1 —2x2 — T3 — T4 — Tg — T7 — T — T9

T

T4 — T5 T2 — 1

\/

X1 — T4

g — T9

7 — X8

6 — 27, | —x3 — %6 — 27, 20l — X1 — T2 — T4 — T5 — Te — X7 (5 249)

where the fibers in affine surfaces glue to xg — xg and 31 — xy — 209 — 3 — x4 — T6 —
Ty — g — Xg.

20 — 19 — X3 —Xg — T7T — TY — T9

l—2z] —x2 — X3, Ty —T5 —— X1 — T4 T2 — T T3 — X2

rg — g =——— 3l — X1 — X2 — X3 — T4 — T — Tg — T7 — 2§ (5250)
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where the fibers in affine surfaces glue to zs — 9 and 21 — xy — x5 — x4 — 7 — x5 — Xy.

2l —xo —x3 — X6 — L7 — T8 — T9

1 — T4 To —T] =—— x3 — T2, | — T2 — 3 — T3

3l —x1 —x2 — X3 — Xy — x5 — Tg — 2T7 — T8

T

B s (5.251)

where the fibers in affine surfaces glue to xg — x9 and 21 — xy — x3 — 1 — T7 — X3 — 9.

2l —xg —x3 —x6 —T7 — T8 — X9

l—x1 —22— T3, T4 — 25 —— T1 — T4

T2 — 1

o5 o2 (5.252)

where the fiber in affine surface glues to 21 — x9 — x3 — x4 — v7 — x5 — T9.

l—x7—28 — 19 —— | — 21 — T2 — T3 T — T4

X2 — 1, T4 — X5 == T3 — T2, T5 — L6 (5 253)

where the fiber in affine surface glues to [ — z7 — xg — 9.

2l —x1 —x2 —Tg —T7 — X8 —Tg —— T1 — T4 Tro — 1, Ty — X5, | — X1 — X2 — X3

T8 — T9 T7 — T8 z6 — o7, |l —w3 — w6 — 27, 2l — 21 — T2 — T4 — T5 — T6 — T7 (5254)
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where the fibers in affine surfaces glue to zs — 9 and 21l — 1 — x5 — x4 — 7 — x5 — Xy.

3l —2x1 —x2 — T3 — T4 —Te — T7 — XY — X9

T

T4 — T T1 — T4

T8 — T9 T7 — 8 xz6 — a7, |l —w3 —®6 — a7, 2l —T1 — W2 — Ty —T5 — T6 — X7 (5255)
where the fibers in affine surfaces glue to xg — x9 and 31 — 221 — x9 — 3 — x4 — Tg —

Ty — Tg — Xg.

20 — 190 — X3 — Xg — T7 — T — X9

T2 —T1 =—— 23 — T2, | — T2 — T3 — T3

1 — x4

T8 — T9 3l -z — @2 — 23 — 24 — @5 — T — 27 — 228 (5256)

where the fibers in affine surfaces glue to xg — x9 and 2] — x5 — x3 — g — T7 — T3 — 9.

2l —x9 —x3 — T — X7 — T8 — X9

T2 — a1 —— 3 — @2, | — T2 — T3 — T5 (5.257)

1 — 24
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where the fiber in affine surface glues to 21 — xo — 23 — x4 — 17 — x5 — x9.

T4 — X5

3l—xy — 12 —x3 —2T4 — T — T7 — T — X9

T8 — Tg T7 — g =——=x6 — X7, |l — T3 — 26 — 7, 2l —T1 — T2 — T4 —T5 — T6 — X7 (5258)
where the fibers in affine surfaces glue to xg — xg and 3] — z; — 9 — 3 — 224 — 26 —

T7 — g — Xg.

g — T9

T7 — T8

= a6 —27, l — T3 —x6 —x7, 2l —T] — X2 — T4 — T5 — T — X7 (5 259)

where the fiber in affine surface glues to g — .
The above cases do not completely exhaust all the possible non-simply laced sub-
algebras of eg. Some of these subalgebras cannot be thought of as foldings of simply

laced subalgebras of eg. One such example is §4, & go. Notice that unfolding ffll) &) gél)

leads to e\ @ 50(8)M), but es @ s0(8) is not a subalgebra of eg. To obtain the gluing

rules for this example, we find a collection of curves giving rise to ggl) not intersecting

(5.253) and satisfying (5.236):

1 — T4

l—x7—28 —29 — | — 21 — T2 — T3 T2 —T1, T4 — T =— XT3 — T2, T5 — T6

8 — Tg X7 — T8 l—x1 —x4 —x7, l — 220 — 5 — 27, |l — 3 — X6 — X7 (5260)
where the fibers in affine surfaces glue to xs — x9 and [ — 7 — xg — x9. Notice that
even though, by the virtue of (5.236), the total gluing curves see different component
gluing curves equally, the different components do not. For example, even though the

gluing curve x3 — x5 has different intersections with the gluing curves | — xo — x5 — x7
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and | — x; — x4 — x7, the total gluing curve (x3 — z3) + (5 — x6) equal intersections
with the two gluing curves | — x9 — x5 — x7 and | — x1 — x4 — x7, as required by (5.236).
Similar remarks apply to many of the gluing rules that follow.

To obtain the gluing rules for s0(9) @ s0(7), we start from (5.241) and extend the
chains for one of the s0(7):

20—y — X2 — Ty — T5 — T — X7

r§—T9 —— T7 — Ty ———————— T — LT T2 — g, | — T2 — T3 — Tg

20 —x1 —x9 —xg — T7 — T — X9

Ty —T5 ———————— T] — Ty ———— X2 — X1, |l — X1 — T2 — X3 (5261)

where the fibers in affine surfaces glue to zs — z9 and 2l — 1 — x5 — x4 — x7 — x5 — X9.

(1)

By folding s0(7)(") we can obtain 921 , so folding the above gluing rules we obtain

the following gluing rules

20 —x] —x2 — x4 — X5 — X6 — X7

rg —x9 ————————— Ty — X8 ———————————— T — L7 r9 — xg, | — T2 — X3 — T6

2l — 1 — T3 — TG — T7 — Ty — Tg T -y ——= x2 — X1, l —x1 — X2 — X3, T4 — T5 (5262)

where the fibers in affine surfaces glue to xg — x9 and 2] — x1 — x5 — g — T7 — T3 — 9.

- 128 —



5.4.3 sp(0)) gluings: twisted algebras, undirected edges

Now we provide gluing rules for the cases involving twisted gauge algebras and undi-
rected edges, that is gluing rules of the form

glae) () — g@)

(5.263)

Most of these gluing rules can be understood as foldings of gluing rules of the form
o) — =p(0)V —f (5.264)

provided above. The relevant foldings are

s0(4n)V — su(2n)® — su(2n — 1)@
s0(7)V = su(4)® — su(3)@
s0(2n + 1)(1) — 50(2n)?
— su(3)?
)

(2

(1) — e

(1) 3)

— 50(8)(

For example, for s0(14)® we fold (5.234) to obtain

sp(0)1) — s0(14)@

g — T9,

7 — X8 e — X7 T5 — T6 T4 — X T1 — X4

xr2 — I,
20 —x1 — X2 — x4 l—x1 — 220 — 3
—T5 —Te — X7

(5.271)
where two copies of fibers in affine surface glue to xg— g, 2l — X1 — X9 — X4 — T5 — g — T7.
Let d, be the dual Coxeter labels for so(14)) and f, be the fibers in the Hirzebruch
surfaces corresponding to s0(14)®. Then,

2d, f, =(xg — xg) + (2l — 27 — 29 — T4 — x5 — x5 — x7) + 2(w7 — x8) + 2(x6 — 27) + 2(x5 — x6)
+2(xy — 5) + 2(21 — 24) + (22 — 21) + (I — 71 — T2 — T3)
31—z (5.272)

Thus, (5.60) holds true in this case. Same holds true for all the following examples in
this subsection, as the reader can verify.
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To obtain other s0(2n)® of lower rank, we add the curves lying in the middle of
the chain in (5.271). Adding x4 — x5 to z;‘ — 4, we obtain the gluing rules for so(12)®:

T2 — T1,

g — T9, 1 — X5

5 — Z6

7 — T8 Te — X7

20 —x1 —x2 — x4 l—xy —x2 — 23

a5 — w5 — a7 (5.273)

where xg — xg, 2l — x1 — x9 — x4 — T5 — xg — X7 glue to fibers in affine surface.

Continuing in this fashion, we obtain

T2 — T1,

xrg — T9,
2l —x] —x2 — x4 — X5 — T — T7 l—ay — @2 — 23 (5274)

X7 — T8

Te — X7

1 — Z6

where xg — xg, 2l — x1 — x5 — x4 — x5 — xg — X7 glue to fibers in affine surface.

T8 — Tg,
2l —x1 —x2 — x4 —T5 — T6 — T7 -z —x2 a3 (5275)

7 — X8

1 —x7

T2 — T1,

where xg — 19, 2l — 11 — x9 — x4 — x5 — xg — X7 glue to fibers in affine surface.

g — I9,

20 —x1 —x2 — x4 — T5 — X6 — T7 =21 —w2 — 3 (5276)

T — X8

T2 — T1,

where xg — xg, 2l — x1 — X9 — 4 — T5 — Tg — o7 glue to fibers in affine surface.
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By folding (5.192), we obtain the following two gluing rules

rg — I9, T7 — I8, L6 — IT, T5 — X6
Tro — 1 r] — T4 T4 — 5 (5 277)
2l —x1 —x2 — T4 — X5 — Te — T7, T2 — T1
xrg — X9, =—— T7 — I8, X6 — X7, T5 — T6
l—xy —22 —x3 T1— T4 T4 — T3 (5 278)

where xg — xg, [ — x1 — x5 — x3 glue to fibers in the affine surface.
Combining xg — x7, 5 — 26 and x4 — x5 in (5.277), we obtain the gluing rules for
su(6)):

20— xy —x2 — Ty —T5 — X6 —x7, | — 21 — T2 — T3

Ty — L9, =——— T7 — I8, T4 — X7

B o (5.279)

where xg — xg, o — x1 glue to fibers in the affine surface.

Folding (5.277), we obtain

Ty — X9, =—=1T7 — I3, Te — X7, T5 — Tg
T2 — I, T1 — T4 T4 — X5
l—x1 — 22 — 23,
20— 11 — T2 — X4 — X5 — Tg — T7 (5280)
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where xg — g, To —x1, | — 21 — 9 — x3 and2l — x1 — x9 — x4 — 5 — g — 7 glue to four
copies of fiber in the affine surface.
By adding the curves in the previous configuration, we obtain the following two:

xrg — I9, xT7 — X8, T4 — X7
T2 — T1, Tl — T4
l—z1 — 22 — a3,
2l —x1 — x93 — Xy — T5 — T — X7 (5281)

where xg — xg, o — 21, | — 1 — x5 — x3 and 2] — x1 — x5 — x4 — T5 — g — 7 glue to
four copies of fiber in the affine surface.

xg — To,
T2 — T,
l—z1 — 22 — 23,

2l —x1 — w2 — x4 — X5 — T6 — X7 (5.282)

1 — X8

where xg — xg, To — 21, | — 1 — 19 — x3 and 2] — x1 — x5 — x4 — T5 — x5 — 7 glue to
four copies of fiber in the affine surface.
Folding (5.253), we obtain

T1 — X4 T2 — I, xr3 — X2,
T4 — Ts, T5 — X6,
|l —x1 —x20 — 23 |l —x7 —x8 — X9 (5283)

where x3 — x9, 5 — g and | — x7 — x3 — x9 glue to three copies of fiber in the affine
surface.
By folding (5.190) and (5.187) we obtain:

xre — X7, 1 —x4 — | — 21 — T2 — T3

T5 — T6,

T4 — T,

l—2x3 —x8—x9 T3— T2 T2 —T1 (5284)
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where [ — 3 — x3 — 9 and zg — x7 glue to two copies of fiber in the affine surface.

Te — X7, =—— Ty — T6, —— T4 — T3, 21— 24 — l—x1 — 22 — 23
|l —x3 —x8 — X9 T3 — T2 xro — T1
xg—wg:3l71171'27ng1479657:1:67:1:772$8 (5285)

where xg — g, | — v3 — 3 — 9 and xg — x7 glue to fibers inside corresponding affine
surfaces.

In a similar fashion, by folding other configurations and sometimes adding some of
the curves in them, we can obtain the following configurations:

T3 — T2,

T2 — 1 T1 — T4

T4 — Ts,

20 —xo —x3 — X6 — L7 — T8 — X9 l—x1 —x20 — X3

3l—x1 —x2 — 3 — x4 — x5 — 216 — T7T — XY

T8 — T9 Tre — T7

v s (5.286)
where xg — xg, 21 — 9 — ¥3 — x5 — T7 — X3 — T9 and x3 — x9 glue to fibers inside
corresponding affine surfaces.

3 — T2,

2 — 1 Tl — T4

T4 — T5,

20 — 1o — 13 — X6 — T7 — T8 — T9 |l —x1 —x9 — 3

3l —x1 — 12 — 13 — X4 — T5 — 2T — 7T — X

T

w5 — o9 7o — o (5.287)
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where xg — x9, 21 — x9 — 3 — x5 — T7 — X3 — T9 and x3 — x9 glue to fibers inside

corresponding affine surfaces.

20 —xy — X2 — X4 — X5 — Tg — T7

rg —T9g ————————— T7 — X8 T6 — T7
| —x3 — 16 — 27
T] — Xy ———— X2 — T1, T4 — T5
20 —x1 —x9 —Tg — X7 — T8 —T9, | —T] — T2 — X3 (5288)

where xg — g, 2l — 11 — x5 — xg — x7 — rg — Tg and [ — x1 — x9 — w3 glue to fibers inside

corresponding affine surfaces.

20 —x1 —x2 — 4 —T5 — X6 — X7

T8 —r9g ————— T7 — T8 Te — T7

|l —x3 — 26 — X7

Ty — T, === T — T4
T2 — T,
l—x1 —x2 — 23,

2l —x1 — T2 — 6 — T7 — T8 — T9 (5289)
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where x3 — xg, 2l — 11 — 19 — g — T7 — Ty — Tg, To — T1, Ty — X5 and | — x1 — 19 — X3
glue to fibers inside corresponding affine surfaces.

20 —xy — X2 — X4 — X5 — Tg — T7

r§g —T9g ———————— Ty — Ty ——— Tg — L7, | — T3 —T6 — T7
Tl — T4 =————— T2 —T1, T4 — 5
20 —x1 —x2 — T — X7 — T8 —T9, | —xT] — T2 — X3 (5290)

where xg — xg, 2l — 11 — o — g — X7 — g — Tg and | — x1 — x5 — x3 glue to fibers inside
corresponding affine surfaces.

20 —x1 — X9 — X4 — T5 — Tg — XT7

T4 — T35, T1 — T4
T2 — X1,
l—x1 — 2 — 23,
20 —x1 —x9 — X6 — T7 — T — X9 (5291)

where 13 — xg, 2l — 11 — X9 — g — T7 — Ty — Tg, To — T1, T4 — X5 and | — xq1 — x5 — X3
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glue to fibers inside corresponding affine surfaces.

T8 — T9 Tr7 — I8 re —x7, |l —x3 —x6 — 7, 2l — X1 — T2 — T4 — X5 — T — T7
Tl — T4 =———— T2 —T1, T4 — 5
20 —x1 —x2 — T —x7 — T8 —T9, | —xT] — T2 — X3 (5292)

where xg — xg, 2l — 11 — X9 — g — X7 — x5 — Tg and | — x1 — x5 — x3 glue to fibers inside
corresponding affine surfaces.

T8 — T9 Tr7 — I8 re —x7, |l —x3 —x6 — X7, 2l — X1 — T2 — T4 — X5 — T — T7
T4 — TH, == T1 — T4
T2 — 1,
l—z1 — 22 — 23,
2l —x1 — w2 — X6 — T7 — T8 — T9 (5293)

where 13 — 19, 2l — 11 — 19 — g — T7 — Ty — Tg, To — X1, T4 — X5 and [ — x1 — x5 — X3
glue to fibers inside corresponding affine surfaces.

T6 — T7,

5 — X6 T4 — T5 Tl — T4 2 — x1,

20 — 11 — X2 — X4 — T5 — T8 — T9 |l —x1 — 220 — 23

3l—m1 — @y — X3 — T4 — X5 — Te — T7 — 208 ——————— Ty — L9 (5.294)
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where g — x9 and 2l — x; — x9 — 4 — x5 — 8 — X9, g — T7 glue to fibers inside
corresponding affine surfaces.

L6 — IT7, T5 — X6 xr1 — X5 T2 — T1,
20 —x1 — X2 — X4 — Ty — T8 — X9 l—x1 — 220 — 23
3l—x1 —22 —x3 — T4 — T5 — X6 — T7 — 208 =———— T8 — X9 (5295)

where xg — xg, 2l — 1 — 9 — x4 — x5 — g — x7 and x5 — x9 glue to fibers inside
corresponding affine surfaces.

g — 9,

Tr7 — X8 Tre — X7

2 — Te,

20 —x1 — X2 — X4 — 5 — Tg — T7 |l —xo —x3 — X6
20— 11 — 12 — X6 — T7T — T — T9
T4 — T ———————— T] — Ty ——— T2 —T1, | —T1 —T2— T3 (5296)

where xg — xg, 2l — 11 — X9 — x4y — x5 — x5 — x7 and 2] — x| — X9 — g — T7 — Ty — Xy
glue to fibers inside corresponding affine surfaces.

T8 — 9,

Tr7 — X8 Te — T7

T2 — T6,

20— 11 — X2 — X4 — T5 — T — TT | —x9 —x3 — X6

20 —x1 —x9 —Xg — T7 — T — X9 Tr1 — T4

T4 — x5, | — 11 — X2 — X3, T2 — T (5297)
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where xg — 19, 2l — 21 — X9 — x4 — x5 — x5 — x7 and 2] — x1 — X9 — Tg — T7 — Ty — Xy

glue to fibers inside corresponding affine surfaces.

g — Z9, T7 — X8 Te — X7 T2 — I6,
20—y — X2 — Ty — x5 — TG — X7 l—x9 —x3 — X6

Ty — T, =——— T] — T4 =——— T2 — 21, | —T1 — T2 — 3
2l7m17x27:r67177x87:p9 (5298)

where g — g, 2l —x1 — X9 — x4 — X5 — X6 — X7, Ty — x5 and 2l —x1 — X9 — x5 — X7 — Ty — Ty
glue to fibers inside corresponding affine surfaces.

g8 — T9, 7 — X8 Te — X7 2 — Te,
20— x1 —x2 — x4 — Ty — T — T7 |l —x2 —x3 — T8
T4 — Th,===0T1 — 24
T2 — T1,
l—x1 —x2 — 23,
2[*1‘17x27$671‘77187x9 (5299)

where 2]l — 11 — 19 — x4 — X5 — Tg — X7, Tg — Tg, Ty — Ty, To — X1, | — 1 — Tg — x3 and
2l — x1 — 19 — xg — T7 — X3 — Tg glue to fibers inside corresponding affine surfaces.

rg — 9, =———— T — L8 ———— T2 — T6,

2l — 11 — T2 — T4 — T5 — Tg — T7 | —x9 —x3 — T

T4 — Ts, 1 — T4
2 — 21,
l—x1 —x2 — 23,

2l —x1 —x2 — 6 — T7 — T — T9 (5300)
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where 2l — 11 — 19 — x4 — x5 — Tg — T7, Xy — Tg, T4 — T, o — L1, [ — 1 — T9 — x3 and
2l — x1 — 19 — xg — T7 — X3 — Tg glue to fibers inside corresponding affine surfaces.

g — Z9,

Te6 — T
T2 — T6,
Il —x2 — 3 — 6,
20 —x1 — X9 — X4 — T5 — Tg — XT7

T4 — T5,
T2 — 21,
l—x1 — 22 — T3,

20 —x1 — w2 —x6 — XT7 — T8 — X9 (5301)

T — T4

where 2] — 21 — 19 — x4 — x5 — x5 — X7, Ty — Tg, Ty — T, | — Xy — T3 — Xg, Ty — Ty, Ty — T1,
l—x1—x9—x3and 2] — x1 — x9 — xg — x7 — T3 — T9 glue to fibers inside corresponding
affine surfaces.

l—xz7—x8—2x9g — |l — 21 — 22 — T3 T1 — T4 T2 — 1, T4 — T5 =—— T3 — T2, T5 — T6
T8 — X9, T7 — X8
l—x1 — x4 — 27,
l—x2 — x5 — 27,
|l —x3 — 26 — X7 (5 302)

where 23 — 29, | — 21 — x4 — 27, | — X9 — x5 — 27, | — 23 — g — x7 and | — x7 — g — X9
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glue to fibers inside corresponding affine surfaces.

T1 — X4 T2 — T1, xr3 — X2,
T4 — T5, T5 — T6,
l—x1 —x2 — 23 |l —x7 — 28 — X9
T8 — T9, == X7 — T8
l—21 — 4 — 27,
l—z9 — x5 — 27,
l—1‘3—x6—$7 (5 303)

where xg — 29, | —x1 — x4 — X7, l — 9 — x5 — X7, | — X3 — g — X7, T3 — X9, T5 — Tg, and
| — x7 — xg — x9 glue to fibers inside corresponding affine surfaces.

Tr1 — T4 T2 — T, xr3 — T2,
T4 — T, T5 — L6,
| —x1 — 29 — T3 | —x7 —x8 — X9

3l — 11 — 12 — 13 — Ty — x5 — Tg — 227 — T

T

T T s (5.304)

where xg — 9, T3 — X9, x5 — T, and | — x7; — xg — xg glue to fibers inside corresponding
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affine surfaces.

T1 — T4 xr2 — X1, T3 — T2,
T4 — Tp, T5 — T6,
l—x1 —x2 — 3 | —x7 —x8 — X9
g — T9 3l —xy —x2 —x3 — x4 — x5 — T — T7 — 278 (5305)

where xg — g, 3 — g, T5 — xg, and | — x7 — x5 — Tg glue to fibers inside corresponding

affine surfaces.

1 — 24,

T2 — X1 T3 — T2,

|l —xo0 —x3 — x5 20 — 1o — 13 — X6 — T7T — T8 — T9

3l —x1 —x2 —x3 — x4 — T5 — T — 207 — X8

T

e s (5.306)

where xg — x9, v3 — 29 and 2] — xy — x3 — x4 — T7 — X3 — T9 glue to fibers inside
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corresponding affine surfaces.

Tl — T4,

T2 — 1

T3 — T2,
l—x2 — 23 — x5,
2l —xo — X3 — X6 — X7 — T8 — T9

3l —xy —x2 —x3 — 14 — x5 — 226 — T7 — T
T8 — T9 Te — X7

o7~ o (5.307)

where x3 — xg, T3 — X9, 1 — 4, | — 19 — x3 — x5 and 2] — x9 — 3 — Tg — T7 — Ty — Xy
glue to fibers inside corresponding affine surfaces.

T — Ty, =SS T2 — X1
T3 — X2,
l—x2 —x3 — 5,
2l —xo —x3 — X6 — X7 — T8 — T9

3l —x1 —x2 —x3 — T4 — X5 — Te — 207 — Ty

T

B s (5.308)

where x3 — xg, T3 — T9, 1 — 4, | — X9 — x3 — x5 and 2] — x9 — 3 — Tg — T7 — Ty — Xy
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glue to fibers inside corresponding affine surfaces.

2l —x1 —x2 — T4 — 5 — X6 — T7

rg —r9g ————————— T7 — X8 —————————— T — X7 T2 —xg, | — 12 — T3 — Tg

T4 — Ts,

1 — T4 r9 —x1, | — 11 —x2 — T3

2l — 1 — x2 — T — X7 — Ty — Tg (5.309)

where xg — xg, T4 — x5 and 2] — x1 — x9 — x5 — X7 — X3 — X9 glue to fibers inside
corresponding affine surfaces.

T2 — T1,

T1 — T4
T4 — X5,
l—z1 — 22 — 23,

2l —x1 —x9 — T — X7 — T8 — T9

20— 11 — T2 — T4 — X5 — Tg — TT

Tg—T9g ————————— T7 — X ——————————— T — L7 = o — T, | — T2 — T3 — T (5310)

where 13 — xg, 9 — x1, T4 — 5, | — X1 — 9 — w3 and 2] — x1 — 9 — g — Ty — Ty — Xy
glue to fibers inside corresponding affine surfaces.

Now, we are left with some possibilities that do not arise as foldings. For example,
the unfolding of eéQ) @ su(3)M is el @ su(3)) which cannot be embedded into eél). To
obtain the gluing rules for this case, we notice that folding of (5.190) has zero mutual
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intersection with (5.196).

| —x1 —x2 — 3

6 — Ty, —— T5 — T, —— T4 — T, 71— T4
| —x3 —x8 — X9 xr3 — T2 xTo — T1
T8 — T9, == T7 — T8
6 — T7,
l—z3 —x6 — 27,
20 —x1 — X9 — T4 — T5 — T — T7 (5311)

where xg — g, g — X7, | — 3 — g — X7, 2l — X1 — X9 — Ty — T5 — Tg — X7, Tg — T7 and
I —x7 — xg — x9 glue to fibers inside corresponding affine surfaces.

In a similar fashion, by folding, adding curves or by guessing a correct configuration
of curves, we can obtain all the other following gluing rules:

g — Z9, L7 — T8, L6 — 7, T5 — T6, T4 — T5
l—rl—x4—x5, r1 — X2 xro — X3 T3 — T4
l— 1 —z3 — ws,
l—x1 —x2 — 27 (5 312)

where 23 — 19, | — 11 — x4 — 5, | — 1 — 3 — g and [ — x1 — x5 — x7 glue to four copies
of fiber in the affine surface.

T5 — X2, r2 — I 1 — T4 T4 — X5,
|l —x9 —x3 — 5 20— xy — T2 —Tg — T7 — T8 — X9
T5 — T6, re — X7 T7 — T8 xrg8 — X9,
| — 23 — x5 — a6 2l —x1 — T2 — x4 — T5 — Te — Ty (5313)
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where xg — g, 2l — 11 — 29— T4 — X5 — Tg— X7, T4 — x5 and 2l — x| — Ty — Tg — T7 — Ty — Xy

glue to fibers inside corresponding affine surfaces.

x4 — 5, 1 — X4 To — X1 xT7 — T2 L5 — 7,
2l —z1 — T2 — g — Ty — Tg — Tg I—m3—as —ar
T8 — x9, T — T8 T5 — T6,
20—z —z2 — T4 —T5 — T — T7 L=z — @5 — 26 (5314)

where xg —xg, 2l — 11 — 2o — X4 — X5 — T — X7, T4 — x5 and 2l — x| — X9 — g — T7 — Ty — Xy

glue to fibers inside corresponding affine surfaces.

T4 — T5, 1 — T4 T2 —T1 7 — X2 T5 — X7,
20— 11 — X2 — X6 — T7T — T8 — T9 |l —x3 — x5 — X7
xg — T9,=—= xg — T3
T5 — X6,
l —z3 — x5 — 6,
20—y — T2 — T4 — T5 — Tg — T7 (5315)

where g — xg, x5 — xg, | — x3 — x5 — T, 2l — X1 — X9 — T4 — T5 — X — T7, T4 — T and
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2l — x1 — 19 — xg — T7 — X3 — Tg glue to fibers inside corresponding affine surfaces.

T] — x4

l—x1 —x2 — x4y, ——— T4 — T5, ——— T5 — X9,

|l — 20 — 23 — X6 T2 — T | —x9 —x7 — T8
I8 — 9, === T7 — T8

l—x1 — 24 — 27,
l—z2 — x5 — 27,
| —x3 —x6 — x7

(5.316)

where xs —xg, | — 11— 24— 27, | — 20— 25— 27, [ —x3— 26— T7, T5— 9 and [ —xo —x7 — X3

glue to fibers inside corresponding affine surfaces.

l— 21 — 22 — 1y, =——— T4 — Ts,

1 — T4
l — x5 — 3 — ws, T2 — X1
l—z2 — 7 — x5,
x5 — X9
T8 — T9,=——= T7 — T3

l—x1 — x4 — 7,
l—22 — x5 — 27,
|l —x3 — 16 — X7

(5.317)

where xg —x9, |l — 21 — x4 — 27, |l — X9 — X5 — 7, | — 23 — X6 — X7, T5 — Tg, | — 15 — X3 — X,
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l—x1— 29— x4 and | — x9 — x7 — x5 glue to fibers inside corresponding affine surfaces.

l—x1 — X9 — 33 =———= T1 — T4, = T4 — 7,
T2 — Ts, T5 — X8,
xr3 — Te Te — L9
-z —24 — 27 == 1 — T2, == T2 — I3,
T4 — Ts, T5 — X6,
27 — s za = a9 (5.318)

where xg — X9, T5 — xg, To — T3, Tg — Tg, T5 — x8 and x4 — x7 glue to fibers inside
corresponding affine surfaces.

5.4.4 sp(0)V) gluings: Directed edges

Finally we consider cases in which one or both the neighbors of sp(0)™") are connected
to it via directed edges. Our main constraint comes from (5.60) which states that the
torus fibers must be glued appropriately. Let us define Cj o, be a —2 curve in dFy which
glues to the affine surface for g&qa) in the gluing rule associated to an undirected edge,
that is gluing rule for

sp(0) ——— g (5.319)

If go = 1, then there is a unique Cy,. If ¢, > 1, then there can be multiple such
—2 curves. In this case, we pick the curve containing the blowup z9 as Cy,. This
uniquely fixes the —2 curve Cy,. The reason for the prominence of the blowup zg in
this definition is that the KK mass % enters into the volume of xg, and the volume
of any other curve in dP, that does not involve xg is independent of %. We refer the
reader to [4] for more details.

To obtain the gluing rules for

(Ga) — 1D ey — glav)

o s (0) % (5.320)
we start from the gluing rules for

Qo) — M 4l

o sp(0) % (5.321)
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and simply replace the curve Cy ., in dPy by the curve Cy., + e, (3l — > z;). Similarly,
to obtain the gluing rules for

(qa) eq — (1) —— ey — (‘h)

“ sp(0) % (5.322)
we start from the gluing rules for

Qo) — n _— 4lay)

o s(0) & (5.323)

and simply replace the curves Cj ., and Cy, in dPy by the curves Cy, + e, (31 — X ;)
and Co o + €4 (31 — X x;) respectively. It is trivial to see that this replacement satisfies
(5.60).

Now we only need to consider gluing rules of the form

sp(0)d)

ey —s g’(y‘h)

(5.324)
since in the context of 6d SCFTs, it is not possible for any other node to attach to

sp(0)) in (5.324).
We first work out the following gluing rules by hand:

5p(0)(V) — 2 — so(3) Y

l—x1 —x2 — 23,
20 —x1 — X9 — X4 — T5 — T — XT7

g — 19, = L7 — TR, = T4 — T5,
T2 — T1 L1 — T4 e — 7
T4 — Te,
e (5.325)

where xg — xg, o9 — x1 glue to two copies of fiber in the affine surface. Indeed we can
check that twice the torus fiber for so(8)(") is glued to 31 — 3" x;.
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By folding the above gluing rules, we obtain:

5p(0)) — 2 = s0(7)()

l—x1 — 2 — 23,
20 —x1 — X9 — X4 — T5 — T — XT7

Ty — T, = L7 — Ty, —VF—amc==—"="L4 — T5;
xTr5 — X7 Tl — T4 xT6 — X7,
T2 — X1,
75 = 9 (5.326)

where xg — x9, o — 1, Tg — X7, T4 — T5 glue to four copies of fiber in the affine surface.
Treating su(3)(!) as a subalgebra of s0(7)"), we can obtain the following gluing
rules

l—x1 —x2 — 23,
20 —xy — X2 — X4 — X5 — Tg — T7

>~

T7 — T8, 2 — 7,

e T (5.327)

where x4 — x9, 2 — x7 glue to two copies of fiber in the affine surface.
Finally, folding (5.326), we obtain

T7 — I8, e—m—m—m———=1T4 — T5,
1 —T4a=—T6 — I7,
xr2 — X1,
rg — X9,
T4 — Te6,
T5 — X7
l—z1 — 22 — 3,
2l —x1 —x9 — T4 — X5 — Te — T7 (5328)

where xg — 9, xo — 1, Tg — T7, Ty — T5, Ty — Tg, T5 — L7, | — 1 — X9 — X3, 2l — 21 —
Ty — Ty — Ty — Tg — T7 glue to eight copies of fiber in the affine surface.
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6 Conclusions and future directions

In this paper, we have associated a genus-one fibered Calabi-Yau threefold to every 5d
KK theory, except a few cases for which we provide an algebraic description mimicking
the properties of genus-one fibered Calabi-Yau threefolds. Compactifying M-theory
on the threefold constructs the KK theory on its Coulomb branch. The threefold is
presented as a local neighborhood of a collection of surfaces intersecting with each other.
We explicitly identify all the surfaces and their intersections for every KK theory. Such
a description of the threefold allows an easy determination of the set of all compact
holomorphic curves (known as the Mori cone) inside the threefold along with their
intersection numbers with other cycles in the threefold. The Mori cone encodes crucial
non-perturbative data needed to perform RG flows on the KK theory which lead to 5d
SCFTs. For the cases without a completely geometric description we propose an analog
of Mori cone using which one can perform RG flows on these outlying KK theories as
well.

According to a conjecture (see [2-4]) for which substantial evidence was provided
in [2], all the 5d SCFTs sit at the end points of such RG flows emanating from 5d KK
theories. Thus, this work can be viewed as providing a preliminary step towards an
explicit classification of 5d SCFTs. In principle, the Coulomb branch data of all 5d
SCFTs is encoded in the properties of Calabi-Yau threefolds presented in this paper
(see Section 5). Explicitly, such RG flows are performed by performing sequences of
flops and blowdowns on the Calabi-Yau threefolds associated to 5d KK theories. See
[2-4] for a general discussion and [10] for the explicit classification of 5d SCFTs upto
rank three using the results of this paper. Extending the classification to higher ranks,
perhaps using a computer program, would be of significant interest.

The Calabi-Yau threefold associated to a 5d KK theory is determined by combin-
ing the data of the prepotential of the KK theory with certain geometric consistency
conditions. We provide a concrete proposal for the computation of this prepotential
based on the definition of the 5d KK theory in terms of a 6d SCFT on a circle and
twisted by a discrete global symmetry around the circle. See Section 4 for more details.

Along the way, we provide a graphical classification scheme for 5d KK theories
which mimics the graphical classification scheme used to classify 6d SCFTs. In fact
the graphs associated to 5d KK theories generalize the graphs associated to 6d SCFTs
just as Dynkin graphs associated to general Lie algebras generalize the Dynkin graphs
associated to simply laced Lie algebras. We provide a full list of all the possible vertices
and edges that can appear in graphs associated to 5d KK theories. See Section 3 for
more details. We leave an explicit classification of 5d KK theories to a future work. Such
a classification can be performed in a straightforward fashion starting from the explicit
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classification of 6d SCFTs presented in [33, 36] and applying the folding operations
discussed in Section 3.

A noteworthy point deserving a special mention is that our work applies uniformly
to all 6d SCFTs irrespective of whether they are constructed in the frozen phase of
F-theory or in the unfrozen phase of F-theory. In other words, the dictionary relating
M-theory and 5d KK theories applies uniformly to all 5d KK theories irrespective of
the F-theory origin of the associated 6d SCF'T. This is in stark contrast with the case
of 6d SCFTs for which the dictionary relating F-theory and the resulting 6d theory is
modified depending on the presence (called the frozen phase) or absence (called the
unfrozen phase) of O7" planes in the base of the elliptic Calabi-Yau threefold used for
compactification of F-theory. See [32] for more details.

In the future, it will be interesting to use the geometries presented in this paper
to derive 5d gauge theory descriptions associated to 6d SCF'Ts compactified on a cir-
cle (possibly with a twist). This can be done by performing local S-dualities on the
geometries associated to 5d KK theories. See the recent work [54] for more details on
the methodology.
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A Geometric background

In this section, we recall some background useful for this paper. We refer the reader
to Section 2 of [4] for a more detailed background on various points discussed below in
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this appendix.

A.1 Hirzebruch surfaces

A Hirzebruch surface is a P! fibration over P'. We denote a Hirzebruch surface with a
degree —n fibration as F,. We refer to the fiber P! as f and the base P! as e. Their
intersection numbers are

e =-n (A.1)
=0 (A.2)
e-f=1
Another very important curve in F,, is
h:=e+nf (A.4)

whose genus is zero and intersection numbers are

h:=n (A.5)
h-e=0 (A.6)
h-f=1 (A.7)

Note that e = h for IFy. The set of holomorphic curves, often referred to as Mori cone,
for F,, with n > 0 is generated by e and f. For F, with n < 0, the Mori cone is
generated by h and f.

The canonical class K of IF,, is an antiholomorphic curve which can be determined
by the virtue of adjunction formula which states that for a surface S and a curve C'
inside S, the canonical class Kg of S satisfies

(Kg+C)-C =2g(C) —2 (A.8)

where g(C') is the genus of C. Demanding that K satisfies (A.8) for e, f determines it
to be

K =—(e+ h+2f) (A.9)
from which we can compute that
K*=8 (A.10)
Notice that IF,, and F_,, are isomorphic to each other via the map
e+ h (A.11)
fef (A.12)
h < e (A.13)
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Thus, we will restrict our attention to Hirzebruch surfaces with n > 0 in what follows.
However, at various points in the main body of the paper we find it useful to include
Hirzebruch surfaces with negative degrees since they allow us to express answers in a
more uniform way.

We also deal with surfaces which arise by performing b number of blowups on F,,.
The blowups will often be non-generic. We can obtain different surfaces by performing
b blowups in different fashions on IF,,. In this paper, we refer to all the different surfaces
arising via b blowups of F,, as F?. The curves inside F® can be described by adding the
curves x; with ¢ = 1,--- /b which are the exceptional divisors created by the blowups.
We will use the convention that the total transforms?! of the curves e, f and h are
denoted by the same names e, f and h in F®. Thus, the intersection numbers between
e, f and h are those mentioned above, and their intersections with z; are

T Tj = —0; (A.14)
e-x; =0 (A.15)
f-xz;=0 (A.16)
h-x;=0 (A.17)

The blowup procedure creates curves that can be written as

ae+ Bf = vixs (A.18)

with «a, 5,7; > 0. The important point is that the blowups x; can appear with negative
sign.
Again, using the adjunction formula (A.8) we can find the canonical class K for
F® to be
K=—(e+h+2f)+> (A.19)
from which we compute
K*=8-b (A.20)

An important isomorphism exists between F§ and Fi with the blowup on both
surfaces being performed at a generic point. In fact, a single blowup of Fy is always
generic. The map from F} to F} is

e—e—zx (A.21)
f—x—x (A.22)
r— f—uz (A.23)

211t B : § — S is a blowup of a surface S, then the total transform of a curve C' in S is the curve

f~YC)in S.
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It is easy to see that the above isomorphism only works when the blowups are generic.

For, the non-generic one point blowup of F; contains the curve e — x, which would

be sent to e — f inside F}. But e — f is not a holomorphic curve in F}. The above

isomorphism is responsible for the equivalence of geometries corresponding to
5D (1) (e

1 (A.24)

and
sp(n)S)

nm

1 (A.25)

whenever the theta angle is physically irrelevant. In the situations where theta angle
is physically relevant, the above isomorphism is broken by the presence of neighboring
surfaces.

To differentiate between the different surfaces F? for fixed n and b, we have to track
the data of their Mori cone. One important point is that the gluing curves inside the
surfaces must be the generators of Mori cone. In the paper, we find many instances
in which a surface F® appearing in different contexts carries different kinds of gluing
curves, thus demonstrating that the two F® are different surfaces. For example, the
geometry with v = 0 for

su(n + 4)M)
2 (A.26)

and the geometry with v = 0 for
5p(n)(s) 1y
1 (A.27)

both contain a surface ]Fg”JFS with different gluing curves e — > x; and 2e + f — > x;

respectively. Thus the F2"*® appearing in the two theories are different blowups of Fy.

The final point we want to address is that Fy and Fy are same up to decoupled
states. This can be seen by noticing that the Mori cone of latter embeds into the Mori
cone of former. This embedding Fy — Fs is

e—e+f (A.28)
f—=f (A.29)

This means that Fy equals Fy plus some decoupled states. Decoupling these states
corresponds to performing a complex structure deformation Fy — Fy. When Fy and Fy
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carry blowups, this conclusion might be changed or unchanged depending on how the
blowups are done. See the discussion after (B.17) for an example where this conclusion
still holds true even in the presence of blowups.

A.2 del Pezzo surfaces

The discussion of del Pezzo surfaces starts with the discussion of complex projective
plane P? which contains a single curve [ whose genus is zero and intersection number is

=1 (A.30)
(A.8) determines the canonical class to be
K = -3l (A.31)

from which we compute

K*=9 (A.32)

Performing n blowups on P? at generic locations leads to the del Pezzo surface dP,.
It can be described in terms of curve [ and x; with intersection numbers

-2, =0 (A.34)

Again, the blowups create new holomorphic curves which can be written as

al = v (A.35)

with a,v; > 0. In the paper, we abuse the notation and call a non-generic n point
blowup of P? as dP, too. The canonical class for dP, is

K==-31+) uz (A.36)

with
K*=9-n (A.37)
del Pezzo surfaces and Hirzebruch surfaces are related to each other by virtue of
an isomorphism dP; — F; which acts as

r—e (A.38)
l—z— f (A.39)
l—h (A.40)
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A one point blowup of IP? is always generic and thus there is a unique dP; which appears
in the above isomorphism.

A special example of del Pezzo surfaces for us in this paper will be dFP, which is
the geometry associated to

sp(0))
1 (A.41)
The curve
has the properties that
F?=0 (A.43)
and
K-F=0 (A.44)

Thus, F' is a fiber of genus one, or in other words a torus fiber inside dFP.
dP, for n > 3 admits the following basic automorphism. We first choose three
distinct blowups z;, ; and x, and then implement

T, =l —x; — (A.45)
rj =1l —x; —xp (A.46)
xp =l —2; — (A.47)

| =2l —x; —x; — xp (A.48)

Combining this automorphism with permutations of blowups, we can obtain more gen-
eral automorphisms of dP, (with n > 3) which can be decomposed as a sequence
comprising of above mentioned basic automorphisms and permutations of blowups.
Notice that for dPy, any such automorphism leaves the torus fiber (A.42) invariant.

A.3 Arithmetic genus for curves in a self-glued surface

When a surface has no self-gluings, then the arithmetic genus?? of curves living inside
the surface can be computed using the adjunction formula (A.8).

However, when the surface has self-gluings, the genus of the curve is modified. For
example, consider gluing the exceptional curves x and y in a generic two point blowup
of F;. The curve h — x — y looks like an elliptic fiber with nodal singularity, so its
arithmetic genus should be one instead of zero, which is what would be suggested by
(A.8). This example suggests that the intersection numbers of a curve C' with the

22Throughout this paper, we never use the geometric genus. Whenever the word “genus” appears
in this paper, it always refers to arithmetic genus.
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curves C and Csy participating in a self-gluing should be used to modify (A.8) in order
to obtain the correct arithmetic genus. However, not all such intersection numbers
participate in such a modification. To see this, consider the curve f — x in the above
example. Even though it intersects x, its genus is correctly captured by (A.8).

What we learn from the examples of h — 2 — y and f — z is that the genus of a
curve C' is only modified whenever an intersection with C has a partner intersection
with C5. Thus our proposal for the computation of genus of an arbitrary curve C'is as
follows: Let n; and ny be the intersections of C' with C; and C5 respectively, and let
n = min(ny, ny). Then, our proposal for computation of genus is

29(C) — 2= (Ks+C)-C +2n (A.49)

(A.49) allows certain curves to have a non-negative genus even though they did
not have a non-negative genus before self-gluing. For example, consider

e A surface F?, with z glued to y. The curve e — z — 2y has g = 0 according to
(A.49) while it has g = —1 according to (A.8) which is the formula we would use
in the absence of self-gluing. e — x — 2y appears as a gluing curve in some of our
geometries, for example (5.107), (5.108), (5.156) and (5.158).

e A surface F2 with e — = glued to e — y. The curve 2f — z has g = 0 according to
(A.49) while it has g = —1 according to (A.8). 2f — x appears as a gluing curve
in the gluing rules for

su(H)®  su(1)®
2—2—2 (A.50)

B Exceptional cases

In this Appendix we study some of the exceptional cases where the methods used in
the paper are not applicable in a straightforward manner.

B.1 Geometries for non-gauge theoretic nodes

The following non-gauge theoretic nodes arise in our analysis

sp(0)™

1 (B.1)
su(1)W

2 (B.2)
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su(1)W
2

- (B.3)

According to our proposal the prepotential 6F for each case must be zero. So the
geometry cannot be directly guessed from the prepotential. One can try to take corre-
sponding limits of the geometries for the following gauge theoretic nodes

sp(n)™
1 (B.4)

su(n)®
2 (B.5)

su(n)W
2

- (B.6)

But this procedure is unreliable. For example, taking the limit of the geometry (5.112)
would suggest that there should exist a phase of (B.2) governed by the geometry

e-T-y

01+1
(B.7)

However, even though the self-gluing here satisfies the Calabi-Yau condition (5.18), it
does not satisfy the condition (5.17). So, this is not a consistent geometry, and there
should be no such phase for (B.2).

Fortunately, a gauge theory description of the KK theories (B.1), (B.2) and (B.3)
is known, which allows us to reliably compute the corresponding geometries. In terms
of the language used throughout this paper, this gauge theory description is a “non-
canonical” gauge theory description of these KK theories, since it does not correspond
to the 6d gauge theory description on the tensor branch of the corresponding 6d SCF'T.

To start with, it is known that (B.1) can be described by the gauge theory su(2)
with eight fundamental hypers. We can compute the prepotential via

6.F = ; (Z lr-¢]® — Z Z w(Ry) - ¢+ mf|3) (B.8)

I w(Ry)
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and convert it into a geometry as described in Section 5.1. When all mass parameters
are turned off, we obtain the geometry

03 (B.9)
which equals dPy. See the discussion that follows (5.102).

Next, it is known that (B.2) can be described by the gauge theory sp(1) with an
adjoint hyper and 6§ = 0. Moreover, it is known that upon integrating out the adjoint
matter of sp(n), the theta angle remains unchanged. We know that the geometry
corresponding to pure sp(1) with 6 = 0 is

Oo (B.10)
where we adopt the convention that f is the W-boson of sp(1) and e is an instanton.
So, we just have to integrate the adjoint matter into (B.10) to figure out the geometry
for (B.2). We can write the weights of the adjoint as w; = (2), we = (0) and w3 = (—2)
in terms of their Dynkin coefficient. When mass parameter for adjoint is very large,
then according to the discussion in Section 5.1, we should be able to find a —1 curve
C living inside a non-compact surface N such that C' intersects Sy = Fy transversely
at two points. We can consistently choose the gluing curve for N inside Sy to be f
since N - f must be zero as the mass of the W-boson must be independent of the mass
parameter associated to N which is the mass parameter associated to adjoint hyper.
As we bring the mass of adjoint to zero, C' undergoes a flop transition. If a —1 curve
living outside a surface S intersects S at two points transversely, then flopping the —1
curve leads to the emergence of self-gluing on the surface S. Thus, the geometry for
(B.2) is

w

Y

(B.11)

with the gluing curve to N being the genus one curve f —x —y. We can write the
geometry in an isomorphic way by first exchanging e with f, which keeps the descrip-
tion (B.11) while changing the gluing curve to N as e — x — y. Now we perform the
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isomorphism F% — F2 such that

e—xr—y—e (B.12)
f—-xz—=x (B.13)
f—y—y (B.14)
r— f—x (B.15)
y—>f-vy (B.16)
which changes (B.11) to
f-x
ol
I (B.17)

with the gluing curve to N being e. As discussed at the end of Appendix A.1, this
geometry gives rise to some decoupled states which can be decoupled by doing a complex
structure deformation to

f-z

o

I (B.18)

Performing an exchange of e and f again leads to the geometry

(B.19)

which is what is displayed in (5.113) because the fiber f becomes an elliptic fiber in this
frame (with a nodal singularity). This is as we would expect from the fact that (B.2)
arises from an untwisted unfrozen 6d SCF'T and hence it must be possible to feed the
geometry (B.19) into F-theory, which requires the presence of an elliptic fibration. The
gluing curves for the non-compact surface responsible for mass parameter of adjoint
are r and y in this frame.

Finally, it is known that (B.3) can be described by the gauge theory sp(1) with an
adjoint hyper and § = 7. The geometry corresponding to pure sp(1) with 6 = 7 is

01 (B.20)
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In a similar fashion as above, integrating in the adjoint leads to

T

o

Y

(B.21)

which is indeed the “geometry” presented in (5.160). We write the word geometry
in quotation marks because it is only to be understood as an algebraic description
mimicking the properties of the geometric description available for other KK theories.
See the discussion after equation (5.160) for more details.

B.2 Gluing rules between non-gauge theoretic nodes

As we combine non-gauge theoretic nodes via edges, the prepotential 6F still remains

zero. Thus, another method to compute the gluing rules presented in the main body of

this paper is desirable. The goal of this section is to provide this alternative derivation.
su(1)®  sp(0)®

Gluing rules for 2——1 : It is known that this KK theory is equivalent

to a 5d sp(2) gauge theory with eight fundamentals and an antisymmetric. The theta

angle for sp(2) is irrelevant due to the presence of fundamentals. So we can start with
geometry corresponding to any theta angle for pure sp(2) and then integrate in the
matter. The geometry with theta angle zero is
e 2h
le ——— 2 (B.22)
where we have labeled the surfaces according to the labeling of the corresponding simple
co-roots of sp(2). Notice that this is different than a similar labeling of the surfaces

in terms of simple co-roots of affine algebras used in the main body of the text. The
weights for fundamental are

(1,07

where we have arranged the weights in a spindle shape according to their level and the
superscripts on top of the weights denotes the sign of virtual volume of the weights
in the totally integrated out phase (B.22). The last weight (—1,0) can be recognized
as a —1 curve living in a non-compact surface and intersecting S; once. Since there
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are eight fundamentals, there are eight copies of the above weight system. Making the
virtual volume of (—1,0) negative for all eight copies leads to the phase

8 ¢ 2h
ls = (B.23)

The weights system in this phase can be written as eight copies of

(1,07

The blowups z; corresponding to eight copies of the weight (—1,0). Indeed, the volume
of z; is ¢ which is negative of the virtual volume of the weight (—1,0) in this phase.
The other weights are obtained by adding the fibers f; of the two surfaces 5;. For
example, f; —z; are eight copies of the weight (1, —1) and indeed vol(f; —x;) = ¢1 — ¢
which matches the virtual volume of (1, —1). Now making the virtual volume of all the
eight copies of the weight (1, —1) negative corresponds to flopping the curves f; — z;
in (B.23) where f; is the fiber of S;. The resulting geometry is

h 2h—z Ti o8
12 2 (B.24)

with the weight system being eight copies of

(1,0)*
(-1,1)*
(1,-1)"
(~1,0)"

The curves z; in the phase (B.24) correspond to eight copies of the weight (1,—1).
Notice that we can take mass parameter for all eight fundamentals to be zero in this
phase since weights which are negatives of each other have virtual volumes of opposite
signs. Thus, we have completely integrated in the eight fundamentals. Now we move
onto the integration of antisymmetric.
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The weight system for antisymmetric of sp(2) in phase (B.24) is

(0,1)*
(2,-1)"
(0,0)*
(~2,1)"
(0,~1)"

Flipping the sign for (0, —1), we obtain

e 2h—z T 8+1
12 2 (B.25)

with the ninth blowup y on Sy not participating in the gluing curve for Sy inside S,.
Now, flipping the sign for (—2, 1) corresponds to flopping fo —y. Since it intersects the
gluing curve 2h — Y z; twice, this results in a self-gluing on Sy

xT

h-z- 2h+f-> x;
C o sy
v (B.26)

The reader can check that both (5.17) and (5.18) are satisfied here. The weight system
of antisymmetric corresponding to this phase is

(0,1)*
(2,-1)"
(0,0)*
(~2,1)"
(0,-1)"

with = ~ y being identified with the weight (—2,1). After performing an isomorphism
on 57 can be rewritten as

/ 2h+f-) zi
C 16—{-1 Z 2?
& (B.27)

leading to the same gluing rules as those presented in the main text.
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su(1)M  su(1)®
Gluing rules for 22— 2 : It is known that this KK theory is equivalent

to a bd su(3) gauge theory with an adjoint and Chern-Simons level zero. The geometry
for su(3) with CS level zero is

L 2 (B.28)

The weight system for adjoint in this phase is

(1,17
(—1,2)* (2,-1)*
(0,0)" (0,0)
(1,-2)* (-2, 1)*
(—1,-1)*
The weight (—1, —1) can be identified with a —1 curve living in a non-compact surface

and intersecting both S; and S, at one point each. Flipping the sign of this weight
leads to the appearance of a blowup on both S; and Sy

1 &% e,r

17 2

1
% (B.29)

Notice that both the blowups are glued to each other. This can be understood as a
consequence of the fact that they both correspond to the same weight i.e. (—1,—1)7,
but since there is a single such weight, these two curves must be identified with each
other. In this flop frame, the weight system is

(L,1)"
(-1,2) (2,-1)*
(0,0)" (0,0)"
(1L, =27 (=2,1)"
(—1,-1)"
and the curves corresponding (—1,2)% and (—2,1)" can be identified as (f — x)s, and

(f —x)s, respectively. Flopping both of these, flips the sign of both the weights (—1, 2)
and (—2,1) and leads to the geometry

T

xX
1+1 ey, f-z ey, f[-T 5141
Yy Yy

(B.30)
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which after performing an isomorphism of both the surfaces can be written as

e-xr

1+1 f-z@ [z 5141
( e )
ey

y (B.31)

leading to the same gluing rules as those presented in the main text.

su(1)®M  su(1)®
Gluing rules for 2—2—72 : It is known that this KK theory is equivalent
to a bd sp(2) gauge theory with an adjoint and theta angle zero. The geometry for
pure sp(2) with zero theta angle is known to be

e 2h
le ! (B.32)

The weight system for adjoint in this phase is

(2,0)"
(0,1)*
(=2,2)" (2,-1)7
(0,0)" (0,0)"
(2,-2)" (-2,1)7
(0,-1)"
(=2,0)"

Flipping the sign for (—2,0) leads to the geometry

x
e 2h
Y

In this phase, the weight (0, —1)* can be identified with curves f; — 2 and f; —y, along
with a —1 curve z living in a non-compact surface and intersecting S5 at one point. z is
glued to f; —x but not to f; —y. Since if it glues also to f; —y, then it would mean that
f1 — x is glued to f; — y resulting in another self-gluing of Sy, namely f; —x ~ f; —y.
After this self-gluing, the volumes of f; — x and f; — y will be ¢; — ¢ leading to a
contradiction with our starting step that their volume is —¢,.

Now, to flip the sign of the weight (0,—1), we have to flop f; — & ~ z which
automatically flops fi — y since its volume is same. The flop of f; — x creates a new

(B.33)
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blowup on S; that we call z’. Similarly, the flop of f; — y creates a new blowup on S
that we call 3y/. Moreover the flop of z creates a blowup on S, that we call 2’.

After the flop S; = F% with f; — 2’ glued to f; — ¢’ and Sy = F}. The total gluing
curve for S in Sy is ey + 2’ + 4/, and the total gluing curve for S; in Sy is 2h. The
gluing f; — x ~ z transforms into the gluing 2’ ~ 2’ in the new frame. Thus, the total
gluing curve splits into two gluing curves:

e1 +y ~2h—2 (B.34)
'~ (B.35)

The reader can check that the curves involved on both sides in both of these gluings
have same genus, and moreover (5.17) and (5.18) are satisfied for both gluings. Notice
that if we would have tried to split the total gluing curve into three gluing curves
e, 2,y glued respectively to 2h — 22/, 2,2, we would have run into two problems.
First is the same problem that we noted before the flop was performed, that this would
imply a second self gluing 2’ ~ ¢y’ of S; and the weight system won’t match with the
system of curves in the geometry anymore. Second, the genus of 2hy — 22’ is —1 and
the genus of ey is +1, so the first gluing curve wouldn’t make sense.
Thus at this step of the integration process, the geometry is

f-z
1+1 ety @ 2h-z, z 1
C 1 2 27
fy

where we have dropped the primes on the blowups. The corresponding weight system
is

(B.36)

(2,0)"
(0,1)*
(=2,2)7 (2,-1)7
(0,0)" (0,0)"
(2,-2)" (=2,1)7
(0,-1)"
(=2,0)"

By performing an isomorphism, we can write the geometry as

T
e+ f-x-2y, f-x 2h-z, z
C 1%+1 f-z-2y, f 5 21
Yy

(B.37)
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The weight (2, —2)" corresponds to the curve = ~ y, and the weight (—2,1)" corre-
sponds to the curve f; — z. Upon flopping them, we obtain the geometry with adjoint
matter completely integrated in

T

xX
141 etf-y, fx 2e+f-2-2y, f-r 5141
)

v (B.38)

After an isomorphism, we obtain

€e-T

e-x
f-x, x 2f-x, x
11+1 2 21+1
0 0
ey

< (B.39)

which shows that gluing rules are precisely those quoted in the main text.

su(D)® su(1)W

Gluing rules for 2 i) : It is known that this KK theory is equivalent

to a 5d sp(2) gauge theory with an adjoint and theta angle w. Thus, the analysis for
this case is similar to that of the last case which was

su(D)® su(1)®
2—2—2 (B.40)

since only the theta angle is different for these two cases. Following similar steps as

923

above, the final “geometry”*® analogous to (B.38) is found to be

xT

T
141 etfy, fz 2h-x-2y, f-x 1+1
Y

v (B.41)

which after an isomorphism becomes

T

e-x
fz, x 2h-x-2y, f-x
C 1(1)+1 2 214—1
ey

v (B.42)

which matches the gluing rules claimed in the text.

23We remind the reader that it should only be viewed as an algebraic description since the KK
theory involves the non-geometric node.
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B.3 Theta angle for sp(n)

Notice that there are two inequivalent geometries which give rise to a 5d pure sp(n)
gauge theory:

lopyz S — 2 (n—2)g " (n—1)g =2 ng

(B.43)

and
lonyo & ...J(n_z)se h(n—l)gei%nl

(B.44)

These two geometries correspond to two different possible values of theta angle. The
only difference between (B.43) and (B.44) is whether S,, = Fy or S,, = Fy. It is well-
known that (see for instance [2]) for sp(1), 8 = 0 has S; = Fy and § = 7 has S; = Fy,
while for sp(2), € = 0 has Sy = F; and 6 = 7 has Sy = F,.

We claim that for higher n, the same pattern continues to hold and the theta angle
corresponding to Fy (or F;) changes by 7 (mod 27) every time one increases the rank
n by one unit. To see this, one can start from the statement [55] that the KK theory

su(1)W su(D)®  su(H)®  su(1)®
2 2 2 2

- (B.45)

with a total of n nodes is equivalent to a 5d sp(n) gauge theory with an adjoint hyper
and § = m. We can build the geometry corresponding to (B.45) by using the data
presented in this paper and derived in Appendix (B.2). Now the key point is that
integrating out the adjoint matter does not change the theta angle. So, we can simply
integrate out the adjoint matter from the geometry corresponding to (B.45) to land on
to pure sp(n) theory with 6 = m. This process is inverse of the process of integrating
in of matter discussed in Appendices (B.1) and (B.2) and corresponds to making the
virtual volumes of all the weights of adjoint of sp(n) to have the same sign. Once this
is done, it is found that the geometry for § = 7 is (B.43) whenever n is even, and the
geometry (B.44) whenever n is odd. From this we conclude that the geometry (B.43)
corresponds to § = 6 and the geometry (B.44) corresponds to 6 = 0; where

¢, = nm (mod 27) (B.46)
0o = 01 + 7 (mod 27) (B.47)
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C A concrete non-trivial check of our proposal

We devote this section to a concrete and non-trivial check of our proposal. It is known
that [24] the KK theory

su(2)®  su(2)®
2—2—2 (C.1)

is equivalent to the 5d gauge theory with gauge algebra su(2) @ su(4) with a hyper
transforming in F ® A2, More precisely, the gauge-theoretic phase diagram for the
su(2) @ su(4) embeds into the phase diagram for the KK theory (C.1). In this section
we will show this explicitly.

Let us start with the geometry assigned to (C.1) in the draft with v chosen to be
zero for both su(2)W:

f-z1, x2-x3, T4 f-z1, f, z2

4 4
0 3 0g
e, e—E T;

(C.2)

where the surfaces Sy and S; correspond to the left su(2)") in (C.1), and the surfaces
S, and S correspond to the right su(2)™® in (C.1). As visible in the above diagram,
x4 in Sy is glued to 5 in S. Flopping this curve, we obtain

f-x1, x2-x3 f-z1, f

03 2 0g

T1-T2,
e, e—z T;
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Now flopping f — x in S; which is glued to z; in Sj), we obtain

f-z1-y, x2-23 i f

’
Ongl 2 002
r1-22,
€Y, G'Z T; & e, e-Z T;
2 3 2
fuf'fch
e, h 2 e, h—z T;
/
2
11 f Tr1-To 12 (C 4)

which after performing an isomorphism on Sy can be written as

T4-T1, T2-T3 i f
4 2
07 2 0Og
xr1-T2,
e, h-y_ i Wx; e e i
2 3 2
f’f_zl7
e, h 2 e, h—z T;
!/
2
11 f xr1-T9 12 (C 5)

Now, flopping the e curves inside Sy and S; (which are glued to each other), we obtain

T4-T1, T2-T3 i
/
04 9 002
T1-T2,
l—z zi le e, e—z T;
3 2
f’f‘xl )
To-
. 2 e, h—z T;
!
1 122+1
l T1-T2-Y (C 6)

where a surface without a subscript denotes that the surface is a del Pezzo surface
rather than a Hirzebruch surface. That is, Sy = dP, and S; = P? = dP,. Let us use
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the blowup x4 on Sy to write Sy in terms of the Hirzebruch surface Iy

€1, T2-T3 r
0% N 2 0g’
1-2,
f-z Z5 w3, f e, e—z x;
3 2
f?f'x17
; Sl e, h—z T;
1 122+1
! srezy (C.7)
Flopping x3 in Sy glued to f — x1 in S gives rise to
e-r1, T2 Iy
2 /
f—z z; v f27 e-y, e—z z;
2

l-z f-z-y (C.S)

(C.9)
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Flop z2 in Sy glued to f —y in S} to obtain

03
f-x

f-x
1
(C.10)
Now flopping f — x in Sy glued to f — = in S}, we obtain
0, —° L o2
(C.11)
Flopping f — x9 in S| we obtain
0, —© L op
2
2 f-z2-y2,
\901'3/1 e-z, h—z z;
1, 9 124241
5 f f-z1-y1, T2-y2 (0.12)
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Now flopping z in S, we get

0, 0o
e, e
2
2 f-w2-y2,
\961-3/1 e-z, h—z T;
1, ) 1’13+2+1
fi f f-z1-y1, T2-y2 (C.13)
Performing the automorphism on S|, that exchanges e and f, we obtain
0, —* 0,
£ f
2
2 f-w2-y2,
\961-3/1 e-z, h—z T;
1, 2 132+
fi f f-z1-y1, T2-y2 (C.14)

Now let us write S} as a del Pezzo surface. This rewrites the e curve as a blowup which

we denote by w

0,

l-w-z2-y2,
\l‘l‘yl

13+

l-w-z1-y1, T2-Y2

w-z, I'Z T;

2+1+1

(C.15)

We can now perform a basic automorphism (of del Pezzo surfaces) on S involving the
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three blowups x1, 9 and y; to obtain

0, —< 0,

l-w-z2-y2,
T1-y1 | w-z, Yy1-T3

1, 9 1/3+2+1+1
£ f x2-w, I-T1-y1-Y2 (C.16)

Converting S} back into [F; using the blowup y,, we obtain

02 € € 0/0

f-w-z2,
z1-y | w-z, y-x3

1, 2 1’13+1+1+1
5f wo-w, f-z1-y (C.17)

This is the final form of the geometry that we wanted to obtain.

It is clear that Sy, Sj and S; describe an su(4) and S} describes an su(2) in
(C.17). This can be checked by intersecting the fibers of the corresponding Hirzebruch
surfaces with these surfaces. The intersection matrix yields the Cartan matrix for
su(4) @ su(2). Now, let us show that the configuration of blowups indeed describes
A? @ F of su(4) @ su(2). For this we relabel the surfaces as

So = 51 (C.18)
Sp — Sy (C.19)
S1— 53 (C.20)
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thus rewriting the geometry as

f-w-z2,
xr1-y w-z, Yy-x3

32 2 1’13+1+1+1
£ f wo-w, f-T1-y (C.21)

The weight system for A> ® F can be written as

(0,1,0[1)

(1,—1,1/1) (0,1,0] — 1)
(=1,0,1]1) (1,0, —1]1) (1,—1,1] — 1)
(=1,1,-1|1) (=1,0,1] — 1) (1,0,—1| — 1)
(0,—1,0[1) (=1,1,=1| = 1)
(0,—1,0] = 1)

where the three entries on the left hand side of slash denote the weights with respect to
su(4) comprised by Sy, Sy and S3, and the entry on the right hand side of slash denotes
the weight with respect to su(2) comprised by 5.

From the geometry (C.21) we see that the holomorphic curves

vol(z1) = (1,0, —1]1) (C.22)
vol(zy) = (—1,0,1|1) (C.23)
vol(z3) = (0, —1 0\1) (C.24)
vol(y) = (~1,1,~1]1) (C.25)
vol(f — z) = (0,1,0|1) (C.26)
vol(f —w) = (1,—1,1|1) (C.27)

match weights of the form (z,y, z|1), and the antiholomorphic curves x1 — f, 29— f, x3—
f,y — f, —z, —w match weights of the form (z,y, z| — 1), where f denotes the fiber of
Hirzebruch surface S; = F¢. Thus we have reproduced the full weight system for A>®F,
justifying our claim. More precisely, the geometry (C.21) describes the su(4) @& su(2)
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gauge theory in the gauge-theoretic phase given by the following virtual volumes

(0,1,0/1)*

(1,—1,1|1)* (0,1,0] — 1)~
(=1,0,1/1)* (1,0, —1|1)* (1,—1,1| — 1)~
(=1,1,=1|1)* (=1,0,1| — 1)~ (1,0,=1| = 1)~
(0,—1,0/1)* (—1,1, 1| — 1)~
(0,—1,0| — 1)~

D Comparisons with known cases in the literature

In this section we present evidence strongly suggesting that our results recover all 5d
KK theories associated to compactifications of 6d SCFTs on a circle with (or without)
outer automorphism twists along the fiber obtained previously via other methods. In
particular, we show that the geometries we obtain admit 5d gauge theory descriptions
already proposed in the literature.

D.1 Untwisted

Let us start with an example of untwisted compactification. It has been proposed [28]
that
sp(n)t
1 (D.1)

can be described by the 5d gauge theory having gauge algebra su(n + 2) with 2n + 8
hypers in fundamental. To see this consider the ¥ = 1 phase of (5.101)

0%n+7 2h- sz h 12n+1 e . h (n . 2)7 e h (n . 1)5 e 2h-x ni
(D.2)
which after an isomorphism can be written as
n e e e e e+2f-x
03] " 1onp o m—2)p P (n—1)s )
(D.3)
Now flopping the blowup sitting on S,, back to Sy, we obtain
n e e e e e+2
Ogniz h 12n+2 PPN (1’1 - 2)8 S (1’1 — 1)6 e ef2f o
(D.4)
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where we can see that the associated Cartan matrix is that of su(n +2) and the 2n+8
blowups sitting on Sy can be identified with the fundamentals. This identification is
done by noticing that the volume for a blowup matches the absolute value of virtual
volume of a weight for the fundamental of su(n + 2).

D.2 Twisted

Now, let us consider an example when we twist by an outer automorphism. It has been
proposed in [24] that
su(n)®
2 (D.5)
can be described by 5d gauge theory with gauge algebra so(n 4 2) and n fundamental

hypers. First let us consider the case when n = 2m. In this case the geometry is
displayed in (5.142). Flopping all the y;, we obtain

e 13mi2
/ f-z;
mlu(m_l)(i h oo e 221‘[1 om
h
f-zi
Now flopping all the f — x;, we obtain
e 12
HZ/
my 2 (1)  am
hZ\
e 02
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Now we can carry the 2m blowups onto 5, to obtain the geometry

m2m 2h-Y"z;  h (0 — 1) 6 ° /
\
(D.8)
which after an isomorphism on S, can be rewritten as
/
man , — g (M — 1) ¢ - :
\
(D.9)

The Cartan matrix associated to this geometry is indeed that for so(2m + 2) and the
2m blowups can be identified as 2m hypers in fundamental of so(2m + 2).

Similarly, the geometry for n = 2m + 1 is given in (5.143). Flopping z; ~ y; living
on Sy, we obtain

e

2m+-2 06 (D].O)

After performing an isomorphism we can write the above geometry as

m; 2 (m—1)g .. CXTqIm1 2 € g (D.11)
Now moving the blowups onto S,, we obtain
m3m i B (= 1)g e 1y P 0g (D.12)
which can be rewritten as
minty " (m - g 5 — - —— 1 — = 0 (D.13)

which precisely describes so(2m + 3) with 2m + 1 hypers in fundamental of so(2m + 3).
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E Instructions for using the attached Mathematica notebook

A Mathematica notebook is included as an ancillary file with the arXiv submission of
this paper. The use of this notebook requires installation of the Mathematica package
LieArt.nb which can be found online at. In particular, the notebook provides the
evaluation of two functions GeometrybdKK and SignsKK. The former can be used to
compute the shifted prepotential 6F (defined in Section 4.2) for 5d KK theories whose
associated graph contains either one or two nodes; see Tables 1-5 and Tables 8-11.
The latter function can be used for the evaluation of all possible signs associated to
different phases of the above prepotential.
The Mathematica notebook is built around the use of the function

GeometrybdKK[. . .]

The above function outputs a graphical representation of the shifted prepotential
6F associated to the input 5d KK theory. The graphical output is naturally organized
in the form of triple intersection numbers for the associated geometry. See Section 5.1.1
for the map between triple intersection numbers and the shifted prepotential.

Input
Let us now describe possible inputs for the function Geometry5dKK:

e For a single node
g(Q)

k (E.1)

the first input is the number k as shown below

Geometry5dKK [{k, .. .7}]

g° 935)

e For two nodes av and f3, the first input is the matrix 2 = ( an Qgﬁ

GeometrybdKK [{Q, .. .}]

See Section 3.3 for the definition of Q% etc.

e When there is a single node, the second and final input captures the data of g(9.
When there are two nodes, the second input captures the data of g{4), and the
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third and final input captures the data of géqﬁ ). The data of an affine algebra is

captured by dividing it into the “algebra part” and the “twist part”. For example,
the algebra part of g@ is g which is a finite Lie algebra, and the twist part of g(@
is ¢. The algebra part can be inserted in LieArt format. For example, A-type can
be inserted as

A1, A2, ..., An

B-type can be inserted as

B2, B3, ..., Bn

C-type can be inserted as

c2, C3, ..., Cn

D-type can be inserted as

D3, D4, ..., Dn

E-type can be inserted as

E6, E7, E8

And other types can be inserted as
G2, F4

The twist part can be inserted as
U, T2, T3

where U means ‘untwisted’ (corresponding to ¢ = 1), T2 means ‘Z, twisted
(corresponding to ¢ = 2) and T3 means ‘Z3 twisted’ (corresponding to ¢ = 3).

The full input thus is as follows:

e For a single node, the following format is used:

Geometry5dKK [{k,{Algebra,Twist}}]
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For example,

Geometryb5dKK [{2,{A4,T2}}]

For two nodes, the format is:

Geometryb5dKK [{Q, {Algebral,Twist1},{Algebra2,Twist2}}]

For example,

Geometry5dKK [{Q,{C3,U},{D6,T2}}]

In order to consider trivial gauge algebras of type su(1), sp(0), one needs to
insert a zero in the place of the algebra and twist input: that is we perform the
replacement {Algebra, Twist} — 0. For example, if g, is trivial, but gg is not,
then the input takes the form

Geometry5dKK [{Q,0,{Algebra2, Twist2}}]

Some of the nodes contain extra decorations. Such nodes can be inserted by using extra

identifiers as follows:

To incorporate the second case, we replace Twist with {Twist, Frozen}. For

example,
Geometryb5dKK [{2,{A8,U}}]
becomes
Geometryb5dKK [{2,{A8,{U,Frozen}}}]
su(6)) su(6)W
1 VS. 1

To incorporate the second case, we replace Twist with {Twist, Three}, so that
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Geometry5dKK [{2,{A5,U}}]

becomes
Geometry5dKK [{2,{A5,{U,Three}}}]
su(n)W su(n)
2 Vs 2

-

To incorporate the second case, we replace Twist with {Twist, Loop}, so that

Geometry5dKK [{2,{A5,U}}]

becomes

Geometryb5dKK [{2,{A5,{U,Loop}}}]

To incorporate the second case, we replace Twist with {Twist, Cospinor}, so
that

Geometryb5dKK [{2,{D6,U}}]

becomes

Geometry5dKK [{2,{D6,{U,Cospinor}}}]

50(8)®  sp(1))
3---2— 1

To incorporate this case we use the usual input without any extra identifiers.

GeometrybdKK [{Q,{D4,T2},{A1,U}}]
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sp(ng)D so(7)) sp(ng)D so(7)

. 11—k VS. 1------- k and
5p(nz)(1) 50(8)((]) 5p(nl)(1) 50(8)(‘1)
11—k vs.  Lle---e-- k

To incorporate these cases, we replace Twist with {Twist, S}. For example, one
would use the following formats:

Geometry5dKK [{Q,{C2,U},{B3,{U,S}}}]

and

Geometry5dKK [{Q,{C2,U},{D4,{U,S}}}]

Choice of Phase

For each input, the output (i.e. the prepotential) depends on a particular choice of
gauge-theoretic phase for the theory. The different gauge-theoretic phases correspond
to different choices of signs for the virtual volumes of the weights of the representations
associated to the matter content for the input KK theory. See Sections 4 and 5.1.3
along with Appendix B for more details.

After the input is inserted, the notebook will request as additional input the signs
of virtual volumes for all the weights corresponding to matter hypermultiplets. A pop-
up window appears containing the information needed to make a consistent choice of

su(5)M
signs. For example, consider 1 . After inputting the correct data associated to
this theory, a window appears as depicted in Figure 1. The information indicated in
the window can be understood as follows:

(D This labels the difference choices of irreducible representaitons of the invariant
subalgebra (under the twist) in which the hypers of the canonical 5d gauge theory as-
sociated to the KK theory transform. In this particular case we have two distinct rep-
resentations, namely the fundamental and the antisymmetric representations of su(5),
as can be seen from Table 1. The slider on top can be used to slide between the two
irreps. For example in Figure 1, we see data associated to fundamental representation
and in 2 we see the data associated to antisymmetric representation.
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@®
Please Input the Signs for the weights of group A, with highest weight

Matter

Matter: 1 / 2 <+ @

1,0, ‘; ) and Ne= 1;‘ Wi, - Wg - Wy - Wy o~ W
® ® @

{{s[1l1~>1, s[1]2> 1, s[1]3 > 1, s[1]a> 1, s[1]5 > 1},
{s[2]1-1, s[2]2>1,s[2]3> 1, s[2]4>1, s[2]s > 1, s[2]e > 1, S[2]7 > 1, s[2]s > 1, S[2]9 > 1, S[2]10 > 1}}

k

® R
Cancel “

Figure 1. An illustration of the various features of the initial (sign input) pop-up window of
the function Geometry5dKK. The various aspects, numbered 1 through 5, are explained in
the body of this appendix.

(2 This indicates the highest weight of the representation.

©) Here, Ny represents the number full hypermultiplets transforming in the given rep-
resentation. In Figure 1 there are 13 hypermultiplets transforming in the fundamental
representation, while in Figure 2 there is one hypermultiplet transforming in the anti-
symmetric representation.

@ shows the Hasse diagram of the weight system of the representation. The Hasse
diagram is a graphical representation of the partial order of the weight system. Recall,
that given a highest weight w;, one can construct the entire weight system by subtracting
positive simple roots, w; = w;_1 — n;a; (o; denote the simple roots). For example,
the fundamental representation of su(5), which is comprised of weights w;—1 5, is
characterized by the partial order wy; > wy > --- > ws, where w; > w; means that
w; — w; = n;o; where n; > 0. This information is important when determining the
possible choices of signs for the virtual volumes of weights lying in this weight system.
For example, if we choose w3 to be have a positive virtual volume, then w, needs to
also have a positive virtual volume since ws > w3 according to the Hasse diagram.

The red superscript indicates whether a weight is positive or negative. A positive

(resp. negative) weight is defined as the positive (resp. negative) linear combination
of simple roots. When no mass parameters are turned on, then the signs of virtual
volumes for positive and negative weights are fixed to be positive and negative, respec-
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[ J
Please Input the Signs for the weights of group A, with highest weight

Matter

Matter: 2 / 2
Wiy
W
Wy  Wga
(0, 1, 0, 0) and N¢= 1 @ w{s) W(5)
oy W

Wio

W0y

{{s(1]1>1, s[1]2>1, s[1]3> 1, s[1]4> 1, s[1]5 > 1},
{s[2]1 -1, s[2]2> 1, s[2]3> 1, s[2]4> 1, s[2]5s > 1, S[2]g > 1, S[2]7> 1, s[2]g > 1, S[2]9 > 1, S[2]10 > 1}}

cancel | (OKIN

Figure 2. The slider moves between different representations; in the example depicted above,
the slider moves from the first to the second representation.

tively (assuming the dual of the irreducible Weyl chamber is defined as the region in
which the virtual volumes of all positive simple roots are positive.) The signs of the
rest of the weights are undetermined by the signs of simple roots and hence can be
chosen freely as long as the ordering described by the Hasse diagram is satisfied. When
mass parameters are turned on, then it is possible for positive weights to have negative
virtual volume and negative weights to have positive virtual volume, for some values
of the mass parameters. For a generic choice of mass parameters, the only constraint
for any of the signs of the weights is that the ordering provided by the Hasse diagram
is respected.

(® This is the area in which a choice of signs should be specified. A default input is
given where all the signs are positive, that is “+1”. The notation s[i]; is explained
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as follows: i labels each different representation (in this case, i runs over two two
representations) and j labels the different of weights (in this case, for the fundamental
representation, j runs from 1 to 5, while for the antisymmetric representation, j runs
from 1 to 10). For example, based on the Hasse diagram presented in Figure 1 and
assuming we do not turn on any mass parameters, we can make a list of all the allowed
choices of signs for the fundamental representation of su(5):

S 1)1—> 1,s5(1)y — 1,8(]. 3—>1,S(1)4—>1,8(1)5—>—1

(E.2)

( (1) )
s(1)1 = 1,5(1)s = 1,5(1)3 — 1,s(1)y — —1,5(1)5 — —1
8(1)1 — 1,8(1)2 — 1,8(1)3 — —1,8(1)4 — —1,8(1)5 — —1
(1) (

8(1 1—~>1,8(1)g > —1,s 1)3 — —]_,8(]_>4 — —178(1)5 — —1.

If we choose to turn mass parameters on then we can also have the following sign
choices:

s(1); = 1,8(1)2 = 1,s(1)3 = 1,s(1)y — 1,5(1)5 — 1

(E.3)
8(1)1 — —1,8(1)2 — —1,8(1>3 — —1,8(1)4 — —1,8(1)5 — —1.

In the case of two nodes, the code first asks for the signs of the weights associated
to the first algebra. The pop-up window is exactly as discussed above, with the sole
difference being that the notation for the signs is modified to s[i];1, where in addition
to the subscripts 7, j that respectively label the different representations and weights,
there is another subscript 1 that indicates the representation is charged under the first
algebra. After the signs associated to the representations of the first algebra have
been specified, a second window appears requesting the signs associated to the second
algebra. The format is identical, with the distinction that the signs are denoted by
s[i]; 2, with the subscript 2 labeling the second algebra. Finally, a third window appears
requesting signs for the weights of tensor product representations charged under both
the first and second algebras.
su(2)  su(2)

2 2

For example consider , for which the input is:

GeometrybdKK [{{{2,-1},{-1,2}},{A1,U},{A1,U}}]

An example of the third window is displayed in Figure 3. In this case, on the upper
left side of the window instead of a slider one can find the number of hypermultiplets
transforming in a mixed representation. In Figure 3 there is one such hypermultiplet,
but in other cases there can be a half-integer number of hypermultiplets. This infor-
mation is necessary to determine a consistent choice of signs, since for example mass
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[ ]

Please Input the Signs for the weights of the Tensor Representation with highest weight :

Tensor Representation 1

+
Wi,y
Wir,1p = ~W2,2)
w w Wii,2y = ~Wi2,1y
{12} 2,1} Wip 1y = -W(y 2
Wi2,2y = ~Wii,1y
W2y

{{{pl211,1> 1, b[1]5,1 > 1}, {b[1]1,> > 1, b[1]5,5 > 1}}}

cancel  (OKIN

Figure 3. Signs for the tensor product representation.

parameters cannot be switched on for half-hypermultiplets. The Hasse diagram in this
case is that of the tensor product representation Ry ® Ry, where Ry = Ry = 2 of su(2).
Let v; denote the weights associated to the first su(2) and let w; denote the weights
associated to the second su(2). The weight system of the tensor product of these two
representations is

w{m} =V; EB (,LJj. (E4)

The Hasse diagram of this weight system can now be determined based on the ordering
of the weights v; and w;. For example,

w1y = U1 w2 v +wp = wigy (E.5)

The Hasse diagram and the number of hypermultiplets is enough to determine a con-
sistent choice of signs. The signs follow a similar notation as above, namely

b[1];, (E.6)
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where the bracketed ‘1’ indicates that there is only one mixed representation and the
subscripts 7, j are the same as the subscripts for wy; j;, referring to weights of the first
and second algebras respectively.

Allowed signs for the representations

As mentioned above the choice of signs depends on the Hasse diagrams, the values
of mass parameters, and on which combinations of representations are chosen. The
function

SignsKK[]

determines all the possible allowed signs for each hypermultplet of a specific theory. A
word of caution: the computational expensive of this function increases very quickly
with the dimensions of the representations.

The input of for this function is of the same format described in the previous
section:

SignsKK[{k,{Algebra,Twist}}]

OR

SignsKK[{Q,{Algebral,Twistl},{Algebra2,Twist2}}]

The output of this function is the appropriate number of hypermultiplets and the
type of representation, together with the Hasse diagrams of the weight systems. As
described above, the Hasse diagram includes superscripts indicating whether a weight
is positive, negative, or indeterminate sign. In the absence of mass parameters the only
signs that need to be determined are those of the indeterminate weights. Note that
zero weights have superscript ‘0. The output, namely all consistent gauge-theoretic
phases of the theory, is presented both as a collection of Hasse diagrams and as a list of
sign choices. The Hasse diagrams for the allowed signs includes superscripts indicating
when the signs are taken to be positive (blue) or negative (red). This function is useful
for determining all allowed phases and corresponding sign choices when computing the
geometry.

It is important to note that in some cases the signs associated to different hyper-
multiplets are not independent. For example, consider
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Ny 5p(na)  so(ng)@ Ny
2 +8— 21 11—k ng —8— g (E7)

3(na ® (ng — 1))

where the extra labels indicate the number of hypermultiplets included in the
theory. In particular, note that there are 2n, +8 — =2 full hypermultiplets of sp(ng )W
and one half-hyper in a mixed representation. This half-hypermultiplet comes from the
branching of the bifundamental n, ®ng — n,® ((ng—1)®1) after performing the twist
of s0(ng)?, which leaves invariant the algebra so(ng — 1). This implies that the signs
associated to the half-hypermultiplet are not independent but rather depend on the
signs chosen for the bifundamental representation. In this case the function SignsKK
returns all possible sign choices consistent with these branching rules.

For example, consider n, = 1 , k = 3 and ng = 4. The Hasse diagram for the
bifundamental combined with the half-hypermultiplet of sp(1) is displayed in Figure 4.
The possible sign choices are displayed in Figure 5.

+
Wi,y

Wiz W
Wia Wez
Wae [V1] Wea
)Wc1,s> W24y
Wae Wes
Wan Wee
Wany
Figure 4. Hasse diagram for the case n, = 1,k = 3,n3 = 4 of the theory displayed in

(E.7). Note that wy; ;3 are the weights of the bifundamental and vy, vz are the weights of the
half-hypermultiplet.

Output
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Once the signs have been specified in GeometrybdKK, the following output is returned
(see an example shown in Figure 6), and is comprised of the following elements:

1. The triple intersection numbers for the corresponding geometry are presented in
a graphical form similar to the graphs presented in Section 5 of this paper. The
vertices of the graph are surfaces and edges between the vertices indicate the
intersections between the corresponding surfaces. The superscript on a vertex ¢
denotes 8 — S?. If the superscript is zero, then it is not displayed. Every edge
carries two yellow boxes at either ends. Consider an edge going between vertices
1 and j. The number in the yellow box near the vertex ¢ denotes the triple
intersection number SiSJ?, and the number in the yellow box near the vertex j
denotes the triple intersection number S7.S;. If the number carried by some yellow
box is zero, then that box is not displayed. There is a purple box placed in the
middle of every face formed by three edges joining three vertices, say ¢, j and k.
The number in the purple box denotes the triple intersection number S5;5;S. If
the number carried by purple box is zero, then it is not displayed.

2. The choice of signs made by the user.

3. The the shifted prepotential 6F. In the case of a KK theory with a single node,
@ is the Coulomb branch parameter associated to the affine node of the Dynkin
diagram and ¢; with i = 1,... Rank[Algebra] are the Coulomb branch parameters
associated to the finite part of the diagram. In the case of a KK theory with
two nodes, ¢o.1,¢;1 are the Coulomb branch parameters associated to the first
(affine) algebra and ¢ 2, ¢; 2 are the Coulomb branch parameters associated to
the second (affine) algebra.
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