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Abstract

In this paper, we study the parameter synthesis problem for probabilistic hyperproper-
ties. A probabilistic hyperproperty stipulates quantitative dependencies among a set of
executions. In particular, we solve the following problem: given a probabilistic hyperprop-
erty ψ and discrete-time Markov chain D with parametric transition probabilities, compute
regions of parameter configurations that instantiate D to satisfy ψ, and regions that lead
to violation. We address this problem for a fragment of the temporal logic HyperPCTL that
allows expressing quantitative reachability relation among a set of computation trees. We
illustrate the application of our technique in the areas of differential privacy, probabilistic
nonintereference, and probabilistic conformance.

1 Introduction

We first motivate the problem studied in this paper through a simple example. Consider the
concept of differential privacy [16], that is, a commitment by a data holder to a data subject
that he/she will not be affected by allowing his/her data to be used in any study or analysis.
More formally, let ε be a positive real number and A be a randomized algorithm that makes
a query to an input database and produces an output. Algorithm A is called ε-differentially
private, if for all databases D1 and D2 that differ on a single element, and all subsets S of
possible outputs of A, we have:
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Figure 1: DTMC of the ran-
domized response protocol.

Pr [A(D1) ∈ S] ≤ eε · Pr [A(D2) ∈ S].

One way to guarantee differential privacy is by introduc-
ing randomized response to create noise and provide plausible
deniability. For example, let A be an embarrassing or illegal
activity. In a social study, each participant is faced with the
query, “Have you engaged in activity A in the past week?”
and is instructed to respond by the following protocol: (1)
flip a fair coin, (2) if tail, then answer truthfully, and (3) if
head, then flip the coin again and respond “Yes” if head and
“No” if tail. Thus, there are no good or bad responses and an answer cannot be incriminating.
The discrete-time Markov chain (DTMC) of this protocol conducted by a fair coin is shown in
Fig. 1, where t = y (respectively, t = n) denotes that the truth is ‘Yes’ (respectively, ‘No’) and
r = y (respectively, r = n) denotes the fact that the response is ‘Yes’ (respectively, ‘No’). It is
straightforward to show that this protocol is (ln 3)-differentially private.

Now, let us imagine that we intend to change this protocol in order to make it (ln 2)-
differentially private. To this end, one can first transform the DTMC shown in Fig. 1 into a



parametric DTMC (see Fig. 2) that allows two different types of coins to be used during the
protocol, hence, parameters p and q. Then, we solve the parameter synthesis problem by finding
a value for parameters p and q that result in an (ln 2)-differentially private protocol. Differential
privacy is a probabilistic hyperproperty, as it prescribes a probability relation between a set
of independent executions. Although the parameter synthesis problem has been extensively
studied in the context of conventional properties, to our knowledge, it has not yet been solved
in the context of hyperproperties.
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Figure 2: Parametric DTMC
of the randomized response
protocol.

In this paper, our goal is to solve the parameter synthesis
problem for a fragment of the temporal logic HyperPCTL [1].
HyperPCTL lifts the well-known probabilistic temporal logic
PCTL by allowing to express stochastic relations between com-
putations starting in different initial states. The fragment
studied in this paper, called ReachHyperPCTL, is restricted to
non-nested probability operators. For the above randomized
response protocol the following ReachHyperPCTL formula states
that whenever a computation starts in a state σ and another
computation in σ′ with a different truth value, the probabili-
ties to get the same response satisfy the (ln 3)-differential pri-
vacy condition:

ϕdp = ∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
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)
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Given a parametric DTMC D and ReachHyperPCTL formula ψ, we solve the parameter syn-
thesis problem for ReachHyperPCTL in two steps. In the first step, we compute for each possible
instantiation of the quantified (initial) states an arithmetic formula over the model parameters
that is true for exactly those parameter configurations that instantiate D to satisfy ψ. In a
second step, we use those formulas to compute not only single solutions, but whole regions
of satisfying parameter configurations: we decompose the configuration domain and identify
smaller regions in which either all or none of the configurations lead to the satisfaction of ψ.

We illustrate the application of our technique by using four case studies. Our first example
is differential privacy, as described above. The second example is probabilistic noninterfer-
ence [27], which establishes a connection between information theory and information flow by
employing probabilities to address covert channels. The third case study, is probabilistic con-
formance, where we want to find the parameter values of two systems (e.g., a model and an
implementation) such that they conform with each other with respect to a specification. The
last case study is the dining cryptographers problem [8], where we show that the anonymity of
the cryptographers is assured also when using a biased coin in the protocol proposed in [8].

Organization. The rest of the paper is organized as follows. We recall the preliminary
concepts in Section 2 and present our parameter synthesis algorithm in Section 3, followed by
illustrative examples and case studies in Section 4. We discuss related work in Section 5 and
conclude the paper in Section 6.



2 Preliminaries

As usual, R, Q, and N denote the real, rational, and natural (incl. zero) numbers, respectively.
We set n = {1, . . ., n} for n ∈ N.

2.1 Parametric Discrete-time Markov Chains

We assume our system to be modelled as a parametric discrete-time Markov chain, for which
we provide the classical definition in the following.

Definition 1. A (labeled) discrete-time Markov chain (DTMC) is a tuple M = (S,P,AP, L),
where (1) S is a finite non-empty set of states, (2) P : S×S → [0, 1] is a transition probability
function with

∑
s′∈S P(s, s′) = 1 for all states s ∈ S, (3) AP is a set of atomic propositions,

and (4) L : S → 2AP is a labeling function. �

A path of a DTMCM = (S,P,AP, L) is an infinite sequence π = s0s1s2 . . . ∈ Sω of states with
P(si, si+1) > 0 for all i ≥ 0; we write π[i] for si. Let Pathss(M) denote the set of all (infinite)
paths of M starting in s, and Pathssfin(M) denote the set of all finite prefixes of paths from
Pathss(M), which we sometimes call finite paths.

The cylinder set Cyl(π) of a finite path π ∈ Pathssfin(M) is the set of all (infinite) paths ofM
with prefix π. The probability space ofM is defined by the smallest σ-algebra that contains the
cylinder sets of all finite paths of M with probabilities Pr(Cyl(s0 . . . sk)) = Πi∈k−1P(si, si+1);
for more details see e.g. [3].

To turn DTMCs parametric, we consider an ordered set V of real-valued parameters, whose
configurations are functions u : V → R.

Definition 2. A rational function f over a finite set V={v1, . . ., vr} of parameters is a function
that can be written as f= f1

f2
for some polynomials f1 and f2 6≡ 0 using variables from V . �

Let FV be the field of real-valued rational functions. Given f ∈ FV and a configuration
u : V → R, we denote by f [V/u] the value obtained by substituting in f each occurrence of
each vi ∈ V with u(vi).

Definition 3. A parametric DTMC (PDTMC) is a tuple D = (S, V,P,AP, L), where S, AP
and L are as in Def. 1, V is a finite set of parameters and P : S × S → FV . �

A configuration u for V is valid if Du = (S,Pu,AP, L) is a DTMC with Pu(s, s′) = P(s, s′)[V/u]
and

∑
s′∈S Pu(s, s′) = 1 for all s ∈ S. We call Du the DTMC induced from D by u.

2.2 The Logic ReachHyperPCTL

In a previous work, we have introduced HyperPCTL [1] to characterize quantitative dependencies
between different independent executions of a DTMC model, and proposed a procedure for
model checking such properties. In this paper, we consider parametric DTMCs and the problem
to synthesize parameter configurations that satisfy a certain probabilistic hyperproperty. As
this problem involves symbolic encodings of reachability probabilities and the truth values of
hyperproperties, in order to provide an effective synthesis algorithm, we restrict ourselves to a
fragment called ReachHyperPCTL, which excludes nested probability operators.



Syntax. ReachHyperPCTL is syntactically defined over a set AP of atomic propositions by the
following abstract grammar:

ψ ::= ∀σ.ψ
∣∣∣ ∃σ.ψ ∣∣∣ aσ ∣∣∣ ψ ∧ ψ ∣∣∣ ¬ψ ∣∣∣ p ∼ p

p ::= P( ϕ)
∣∣∣ P(ϕU ϕ)

∣∣∣ f(p, . . . , p)

ϕ ::= aσ

∣∣∣ ϕ ∧ ϕ ∣∣∣ ¬ϕ
where a ∈ AP are atomic propositions, ∼∈ {<,≤,=,≥, >}, σ are state variables from a count-
ably infinite set V, and f : Rk → R are k-ary elementary functions to express arithmetic
operations over probabilities, where constants are viewed as 0-ary functions. We call ϕ and
ψ state formulas, aσ an indexed atomic proposition and p a probability expression. We de-
note by F the set of all ReachHyperPCTL state formulas and probability expressions (over AP).
The difference to HyperPCTL is that temporal operators may be applied to Boolean combina-
tions of atomic propositions only (operands ϕ instead of ψ). We use standard syntactic sugar
⊥= aσ∧¬aσ, > = ¬⊥, ϕ1 ∨ϕ2 = ¬(¬ϕ1∧¬ϕ2), P( ϕ) = P(>U ϕ), P( ϕ) = 1−P( ¬ϕ), etc.

An occurrence of an indexed atomic proposition aσ in a ReachHyperPCTL state formula ψ is
free if it is not in the scope of a quantifier bounding σ and otherwise bound. ReachHyperPCTL

sentences are ReachHyperPCTL state formulas in which all occurrences of all indexed atomic
propositions are bound. ReachHyperPCTL (quantified) formulas are ReachHyperPCTL sentences.

Each ReachHyperPCTL quantified formula can be transformed into an equivalent formula in
prenex normal form Q1σ1. . . .Qnσn.ψ, where each Qi ∈ {∀,∃} is a quantifier, σi is a state
variable, and ψ is a quantifier-free ReachHyperPCTL formula. In the following we assume all
ReachHyperPCTL quantified formulas to be in prenex normal form.

Example. The formula
∀σ1.∃σ2.P( aσ1

) = P( bσ2
).

holds if for each state s1 there exists another state s2, such that the probability to finally reach
a state labeled with a from s1 equals the probability of reaching b from s2.

Semantics. We present the semantics of ReachHyperPCTL based on the n-ary self-composition
of a DTMC. We emphasize that it is possible to define the semantics in terms of the non-self-
composed DTMC, but it will essentially result in a very similar setting, but more difficult to
understand.

Definition 4. The n-ary self-composition of a PDTMC M = (S, V,P,AP, L) is the PDTMC
Mn = (Sn, V,Pn,APn, Ln) with

• Sn = S × . . .× S is the n-ary Cartesian product of S,

• Pn
(
s, s′) = Πi∈nP(si, s

′
i) for all s = (s1, . . . , sn) ∈ Sn and s′ = (s′1, . . . , s

′
n) ∈ Sn,

• APn = ∪i∈nAPi, where APi = {ai | a ∈ AP} for i ∈ n, and

• Ln(s)= ∪i∈n Li(si) for all s=(s1, . . ., sn) ∈ Sn with Li(si)={ai | a ∈ L(si)} for i ∈ n. �

The satisfaction of a ReachHyperPCTL quantified formula (which is a sentence) by a DTMC
M=(S,P,AP, L) is defined by:

M |= ψ iff M, () |= ψ



where () is the empty sequence of states. Thus, the satisfaction relation |= defines the
values of ReachHyperPCTL quantified, state, and path formulas in the context of a DTMC
M = (S,P,AP, L) and an n-tuple s = (s1, . . . , sn) ∈ Sn of states (which is () for n = 0). Intu-
itively, the state sequence s stores instantiations for quantified state variables. The semantics
evaluates ReachHyperPCTL formulas by structural recursion. Quantifiers are instantiated and
the instantiated values for state variables are stored in the state sequence s. To maintain the
connection between a state in this sequence and the state variable which it instantiates, we
introduce the auxiliary syntax ai with a ∈ AP and i ∈ N>0, and if we instantiate σ in ∃σ.ψ or
∀σ.ψ by state s, then we append s at the end of the state sequence and replace all aσ that is
bound by the given quantifier by ai with i being the index of s in the state sequence. We will
express the meaning of path formulas based on the n-ary self-composition of M; the index i
for the instantiation of σ also fixes the component index in which we keep track of the paths
starting in σ. The semantics judgment rules to evaluate formulas in the context of a DTMC
M = (S,P,AP, L) and an n-tuple s = (s1, . . . , sn) ∈ Sn of states are the following:

M, s |= ∀σ.ψ iff M, (s1, . . . , sn, sn+1) |= ψ[APn+1/APσ] for all sn+1 ∈ S
M, s |= ∃σ.ψ iff M, (s1, . . . , sn, sn+1) |= ψ[APn+1/APσ] for some sn+1 ∈ S
M, s |= ai iff a ∈ L(si)

M, s |= ψ1 ∧ ψ2 iff M, s |= ψ1 and M, s |= ψ2

M, s |= ¬ψ iff M, s 6|= ψ

M, s |= p1 ∼ p2 iff Jp1KM,s ∼ Jp2KM,s

JP( ϕ)KM,s = Pr({π ∈ Pathss(Mn) | M, π[1] |= ϕ})
JP(ϕ1 U ϕ2)KM,s = Pr({π ∈ Pathss(Mn) | exists j ≥ 0 such that M, π[j] |= ϕ2

and π[i] |= ϕ1 for all 0 ≤ i < j})
Jf(p1, . . . , pk)KM,s = f(Jp1KM,s, . . . , JpkKM,s)

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= ¬ϕ iff M, s 6|= ϕ

where ψ, ψ1, and ψ2 are ReachHyperPCTL state formulas; the substitution
ψ[APn+1/APσ] replaces for each atomic proposition a ∈ AP each free occurrence of aσ in ψ
by an+1; a ∈ AP is an atomic proposition and 1 ≤ i ≤ n; p1 and p2 are probability expressions
and ∼∈ {<,≤,=,≥, >}; ϕ is a ReachHyperPCTL path formula.
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Figure 3: Semantics example.

Example. The ReachHyperPCTL formula

ψ = ∀σ.∀σ′.(initσ ∧ initσ′)⇒
(
P( aσ) = P( aσ′)

)
is satisfied by the DTMCM in Figure 3 if for all pairs
of init-labelled states, the probability to reach a is the
same, i.e., for each (si, sj) ∈ S2 with init ∈ L(si) and
init ∈ L(sj) it holds that M, (si, sj) |= P( a1) =
P( a2). The probability of reaching a from s0 is
0.4 + (0.2 × 0.2) = 0.44. Moreover, the probability
of reaching a from s1 is (0.7× 0.2) + (0.3× 1) = 0.44.
Hence, M |= ψ.



3 Parameter Synthesis Algorithm for ReachHyperPCTL

Algorithm 1: Main parameter synthesis algorithm

Input : D: PDTMC; ψ: ReachHyperPCTL formula;
I: a box of valid parameter configurations;
maxit: iteration limit.

Output: (Rgreen,Rwhite,Rred): a decomposition of I
into boxes from which all (Rgreen), none
(Rred) resp. some (Rwhite) configurations
make D satisfy ψ.

1 Function Main(D, ψ, I, maxit)
2 SymbolicEncoding(D, ψ, 0);
3 return checkParameterSpace(D, ψ, I, maxit);

Assume in the following a para-
metric DTMCD = (S, V,P,AP, L)
with valid parameter configura-
tion domain I and let Dn =
(Sn, V,Pn,APn, Ln) be the n-
ary self-composition of D. As-
sume furthermore a ReachHyper-

PCTL quantified formula (i.e. sen-
tence) ψ in prenex normal form
Q1σ1. . . .Qnσn.ψ′ with quanti-
fiers Qi ∈ {∀,∃} for i = 1, . . . , n,
defined over the same set of
atomic propositions as D. Our aim in this section is to provide an algorithm for the synthesis
of valid parameter configurations for D such that ψ is satisfied.

The problem to decide whether a given fixed valid parameter configuration leads to the
satisfaction of ψ is decidable. Moreover, for a box R of valid parameter configurations of D,
also the problem to decide whether all, none or some of the parameter configurations in R lead
to the satisfaction of ψ is solvable. In the following, we propose a parameter synthesis algorithm
that will use these computations to decompose a set of valid parameter configurations into a
finite set of subsets, and for each of those subsets provide information whether all, none or some

Algorithm 2: Symbolic value encoding: Main algorithm

Input : D=(S, V,P,AP, L): PDTMC; F: ReachHyperPCTL formula or expression;
i: number of already processed quantifiers.

1 Function SymbolicEncoding(D, F, i)
2 if F is ∀σ. ψ1 then i := i+ 1; SymbolicEncoding(D, ψ1[APi/APσ], i);
3 else if F is ∃σ. ψ1 then i := i+ 1; SymbolicEncoding(D, ψ1[APi/APσ], i);
4 else if F is aj then
5 foreach s = (s1, . . . , sn) ∈ Sn do
6 if a ∈ L(sj) then Symb(F, s) := true else Symb(F, s) := false;

7 else if F is ψ1 ∧ ψ2 then
8 SymbolicEncoding(D, ψ1, i); SymbolicEncoding(D, ψ2, i);
9 foreach s = (s1, . . . , sn) ∈ Sn do Symb(F, s) := Symb(ψ1, s) ∧ Symb(ψ2, s);

10 else if F is ¬ψ1 then
11 SymbolicEncoding(D, ψ1, i);
12 foreach s = (s1, . . . , sn) ∈ Sn do Symb(F, s) := ¬Symb(ψ1, s);

13 else if F is P( ϕ1) then SymbolicEncodingNext(D, F);
14 else if F is P(ϕ1 U ϕ2) then SymbolicEncodingUntil(D, F);
15 else if F is p1 ∼ p2 then
16 SymbolicEncoding(D, p1, i); SymbolicEncoding(D, p2, i);
17 foreach s = (s1, . . . , sn) ∈ Sn do Symb(F, s) := Symb(p1, s) ∼ Symb(p2, s);

18 else if F is c then foreach s = (s1, . . . , sn) ∈ Sn do Symb(F, s) := c;
19 else if F is p1 op p2 with op ∈ {+,−, ∗} then
20 SymbolicEncoding(D, p1, i); SymbolicEncoding(D, p2, i);
21 foreach s = (s1, . . . , sn) ∈ Sn do Symb(F, s) := Symb(p1, s) op Symb(p2, s);



Algorithm 3: Symbolic value encoding: Computation for next

Input : D = (S, V,P,AP, L): PDTMC; ReachHyperPCTL expression P( ϕ)
1 Function SymbolicEncodingNext(D, P( ϕ))
2 K = { s ∈ Sn | Dn, s |= ϕ };
3 foreach s ∈ Sn do Symb(P( ϕ), s) :=

∑
s′∈K P(s, s′);

Algorithm 4: Symbolic value encoding: Computation for until

Input : D = (S, V,P,AP, L): PDTMC; ReachHyperPCTL expression P(ϕ1 U ϕ2)
1 Function SymbolicEncodingUntil(D, P(ϕ1 U ϕ2))
2 S1 := {s ∈ Sn | Dn, s |= ϕ2};
3 S0 := {s ∈ Sn | Dn, s |= ¬ϕ1 ∧ ¬ϕ2};
4 S? := Sn \ (S1 ∪ S0);
5 foreach s ∈ S1 do
6 Symb(P(ϕ1 U ϕ2), s) := 1; Pn(s, s) := 1;
7 foreach successor s2 ∈ Sn \ {s} of s do Pn(s, s2) := 0;

8 foreach s ∈ S0 do
9 Symb(P(ϕ1 U ϕ2), s) := 0; Pn(s, s) := 1;

10 foreach successor s2 ∈ Sn \ {s} of s do Pn(s, s2) := 0;

11 foreach s ∈ S? do
12 if P(s, s) 6∈ {0, 1} then
13 foreach successor s2 ∈ Sn \ {s} of s do Pn(s, s2) *= 1

1−Pn(s,s) ;

14 Pn(s, s) := 0;

15 foreach predecessor s1 ∈ Sn \ {s} of s do
16 foreach successor s2 ∈ Sn \ {s} of s do
17 Pn(s1, s2) += Pn(s1, s) ·Pn(s, s2);

18 Pn(s1, s) := 0;

19 foreach s ∈ S? do Symb(P(ϕ1 U ϕ2), s) :=
∑
s2∈S1

P(s, s2);

configuration in it leads to the satisfaction of the formula. This way we provide not only single
configurations that satisfy the requirements but even sets of them, and point also to regions
that contain no satisfying configurations.

The main method is shown in Algorithm 1. In line 2 we first compute for each state
s = (s1, . . . , sn) ∈ Sn of the n-ary self-composition Dn a real-arithmetic formula Symb(ψ′, s)
over the model parameters that is true for exactly those parameter configurations under which
ψ′ holds in state s of Dn. Given a set description R of parameter configurations, unsatisfiability
of the formula R ∧ Symb(ψ′, s) will thus mean that there is no satisfying configuration in R,
whereas unsatisfiability of R ∧ ¬Symb(ψ′, s) means that all configurations in R are satisfying
for ψ′.

Once the symbolic truth values of the input formula are constructed, in line 3 of Algorithm 1
we try to determine regions in the parameter space such that the input formula either evaluates
to true under all parameter values in the region or it evaluates to false for all of them. We will
use the constants green = 1 respectively red = −1 to encode these properties, and we will
use white = 0 to express that none of these properties hold.

Next we explain the two above-mentioned computations. The symbolic values for ψ′ and all
of its subformulas are computed by Algorithm 2. Besides the PDTMC model and a probability
expression of a ReachHyperPCTL formula F whose value needs to be computed, the algorithm



receives as a third input how many quantifiers we have already processed; this is needed to
be able to determine the position of quantifiers during recursive calls on sub-formulas. If F is
atomic then we can compute its value in a given state by looking at the state labelling. If F is
non-atomic then it is the application of an operator to some operands; the interesting case is
when F is the application of a probability operator, in all other cases we call the same method
recursively to compute symbolic values for the operands and subsequently syntactically connect
those by the respective operator.

There are two cases for the probability operator, one for the probability of a next-expression
and one for the until. The symbolic encodings for them are computed by the Algorithms 3 and
4, respectively. The former is quite straightforward: to encode the value of F = P( ϕ) we
first determine the set K of those states of Dn that satisfy ϕ and then for each s ∈ Sn the
value of F can be encoded by summing up for each direct successor of s that is included in K
the probability to move there (in one step). Note that ϕ is a Boolean combination of atomic
propositions, therefore its truth can be easily determined for each state.

The case for F being a probability expression P(ϕ1 U ϕ2) is a bit more involved. We use
state elimination, similarly to the method used in [14] to symbolically express reachability
probabilities by arithmetic expressions (rational functions). However, whereas in [14] such a
reachability probability needs to be computed for a single initial state, for ReachHyperPCTL

properties we need it for all states of a parametric DTMC. An algorithm that computes these
probability expressions independently, repeatedly applying the method from [14] to each state,
would work but it would re-do a lot of computations.

Algorithm 5: checkParameterSpace

Input : D: PDTMC; ψ: ReachHyperPCTL formula;
I: a box of valid parameter configurations;
maxit: upper iteration limit.

Output: (Rgreen,Rwhite,Rred): three sets of boxes
decomposing I, such that each box from Rgreen,
Rred resp. Rwhite contains configurations from
which all, none resp. some make D satisfy ψ.

1 Function checkParameterSpace(D, ψ, I, maxit)
2 Rgreen := ∅; Rred := ∅; Rwhite := ∅; R := {I}; l := 1;
3 while R 6= ∅ do
4 let R ∈ R; R := R\{R};
5 color := checkRegion(D, ψ, R, ());
6 if color= green then Rgreen := Rgreen ∪ {R}
7 else if color= red then Rred := Rred ∪ {R}
8 else
9 if l < maxit then

10 S := split(R); l += |S|; R := R∪ S;

11 else Rwhite := Rwhite ∪ {R};

12 return (Rgreen,Rwhite,Rred);

In the following we pro-
pose an approach in Algo-
rithm 4 with less compu-
tational effort. We first
identify states for which the
probability is known to be
one (state set S1) resp. zero
(S0), and make them absorb-
ing (lines 2–10). Then for
each remaining state s, we
remove self-loops, connect
pairs of predecessors and suc-
cessors by direct transitions
without visiting s inbetween,
and then remove the incom-
ing edges of s. The differ-
ence to the approach in [14]
is that we do not eliminate
s but keep it with its out-
going transitions, such that
after having iterated over all
states (lines 11–18), direct
transitions from all states to the absorbing ones will remain that allow to express the reachability
properties for all states similarly as it was done for the next operator (lines 19–19).

Once we have for all states s ∈ Sn a symbolic description of the satisfaction of ψ′ in s, we
can start to search for satisfying and violating parameter configurations using Algorithm 5. It
maintains three sets, each of which contains zero or more boxes. Boxes from Rgreen contain only



satisfying parameter configurations, boxes fromRred only unsatisfying ones, whereas boxes from
Rwhite are mixed and contain both configuration types. We call the boxes from the respective
sets accordingly green, red or white.

A queue R contains at start the initial box. Iteratively, we take a box R from R and
determine with Algorithm 6 its color. If the color is green or red then we put the box into
the corresponding set Rgreen resp. Rred. Otherwise, if the color is white then we split R into
smaller boxes which are then added to R for further processing. For the split any heuristics
can be used, in the hope that the smaller boxes will become conclusive in their color. To
assure termination, after an upper limit of maxit boxes have been scheduled for processing in
R, we finish by checking the remaining boxes in the queue without splitting and collect the
inconclusive ones in Rwhite.

Finally, the last module to discuss is Algorithm 6 which determines the color of a box R, i.e.
the truth value of ψ = Q1x1. . . . Qnxn.ψ

′ under configurations from R. Let us first have a look
at the lines 11-13, where the truth value of ψ′ is checked for a fixed state (s1, . . . , sn) of the n-ary
self-composition. Here, for a box R = [l1, u1] × . . . × [ln, un] we overload notation and use R
also to denote its logical description

∧n
i=1 li ≤ xi∧xi ≤ ui. Since Symb(ψ, (s1, . . . , sn)) encodes

the value of ψ in (s1, . . . , sn), the formula R∧Symb(ψ, (s1, . . . , sn)) is true for all configurations
in R that satisfy ψ. If this formula is unsatisfiable then we know that no configuration in R
satisfies ψ and return the color red. In contrary, if R ∧ ¬Symb(ψ, (s1, . . . , sn)) is unsatisfiable
then we know that none of the configurations in R violate ψ and the color of the box is green.
Otherwise, if both formulas are satisfiable then some configurations in R satisfy ψ and some
others not, therefore the color of the box is white.

It depends on the quantifiers for which states we need to execute this check, as implemented
in lines 2-9. For each existential quantifier Qi = ∃ we need to find just a single state that makes
the box green in order to make the formula true, whereas for universal quantifiers Qi = ∀ it
needs to hold for each state. For the latter case it means also that if the box is red for one state
than we know that According to this, quantifiers are instantiated from left to right and the
previously described code in lines 11-13 is applied to check the color of the box for the chosen
n-ary state vector.

As a result of the satisfiability checks in line 11 of Algorithm 6, for purely existentially
quantified formulas we can also provide a satisfying configuration for each white box.

4 Case Studies and Evaluation

We developed a prototypical implementation of our algorithm in python, with the help of several
libraries that facilitate the handling of complex mathematical equations involved. There is an
extensive use of STORMPY [35], which is a set of python bindings for the probabilistic model
checker STORM [15]. It has provided efficient solution to parsing, building, and storage of
parametric DTMC models. Internally, STORMPY uses pycarl [32], the python binding of CARL,
an Open Source C++ Library for Computer Arithmetic and Logic. Several data structures and
datatypes have been used from pycarl and STORMPY to handle complex polynomials, equations,
and rational numbers. Finally, we have used the SMT solver Z3 [13] to implement line 5 of
Algorithm 6. All of our experiments are run on a MacBook Pro laptop with a 2.7Ghz i7
processor with 8GB of RAM. We set maxit = 1500 in Algorithm 5, process always the oldest
inconclusive box inR (FIFO) and split inconclusive d-dimensional white boxes into 2d new boxes
by splitting in the middle in each dimension. We start with two smaller examples (randomized
response and probabilistic conformance) and then switch to larger cases studies (probabilistic
noninterference and information leakage).



Algorithm 6: checkRegion

Input : D = (S, V,P,AP, L): PDTMC; ψ: ReachHyperPCTL formula;
R: a box of valid parameter configurations; (s1, . . . , si−1) ∈ Si−1.

Output: color : one of the colors green=1, white=0 or red=-1 encoding whether ψ
is satisfied by D under all, some respectively none of the configurations in R.

1 Function checkRegion(D, ψ, R, (s1, . . . , si−1))
2 if ψ is Qixi. . . . Qnxn.ψ

′ then
3 if Qi = ∃ then color := red else color := green;
4 foreach si ∈ S do
5 color′ := checkRegion(D, Qi+1xi+1. . . . Qnxn.ψ

′, R, (s1, . . . , si−1, si));
6 if Qi = ∃ then color := max{color, color′};
7 else if Qi = ∀ then color := min{color, color′};
8 if (Qi = ∃ ∧ color = green) or (Qi = ∀ and color = red) then break

9 return color

10 else
11 if R ∧ Symb(ψ, (s1, . . . , sn)) is unsatisfiable then return red
12 else if R ∧ ¬Symb(ψ, (s1, . . . , sn)) is unsatisfiable then return green
13 else return white

4.1 Randomized Response

We first synthesize configurations for the randomized response protocol described in Section 1.
We experimented with the following scenarios. First, we turned the inequalities between the
probabilites in formula ϕdp (Eq. (1)) into equalities, as inequality will result in too many
solutions for the parameters. In the first scenario, we synthesized parameters to achieve ln 3
differential privacy with parameters p and q as shown in Fig 2. This results in values p = 0.75
and q = 0.25. When we employ only one parameter p, i.e., the protocol uses the same coin
in the two rounds, we synthesized value p = 0.5, as suggested in the original protocol. In the
second scenario, our goal is to achieve ln 2 differential privacy. In case of two parameters, we
obtain p = 2

3 and q = 0.25 and for single parameter, we synthesize p = 0.3819. The time spent
to synthesize parameters in all the above scenarios was 0.1s.

4.2 Probabilistic Conformance

The notion of conformance describes how well a system implements correctly a given specifi-
cation in terms of observable behaviors, or, whether two systems (e.g., a model and an imple-
mentation) conform with each other with respect to a specification. In our setting, we model
both specification and implementation as PDTMCs.

As an example, let us consider the specification of a protocol, where a 6-sided die is rolled as
long as we get the number six (state d6). Figure 4 (left) illustrates graphically our example. Our
specification states also that the die, after behaving fairly the first time, can be bias only once
according to a parameter p. Now, our goal is to implement this protocol using an adaptation
of the Knuth-Yao algorithm [29] that was designed originally for simulating a 6-sided die by
repeatedly tossing a fair coin, illustrated in Figure 4 (right). In the considered adaptation, we
allow to bias the tossing of the coin according to the same parameter p, only when the state d′6
(this state represents the number six in the simulated die) is encountered.

In this experiment, we are interested to find the value of p, such that the implementation
of the protocol conforms with its specification according to the probability of terminating in
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Figure 4: Left: a 5-sided die simulated by a 6-sided die that is re-rolled for face number six.
Right: a parametric adaptation of the Knuth-Yao algorithm [29] for obtaining the behavior of
a fair 5-sided die from fair coin tosses.

each one of the five possible states that represent the numbers of the die from one to five. This
property can be formally expressed using the following ReachHyperPCTL formula:

ϕpc = ∀σ.∃σ′.
(
s0σ ∧ s′0σ′

)
⇒

5∧
i=1

(
P( diσ ) = P( d′iσ′ )

)
We could synthesized the parameter value p = 0.5, meaning that applying a fair coin ensures

conformance of the implementation (the right model in Figure 4) with the specification (the
left PDTMC in Figure 4). The synthesis for this experiment was 28s, where 27s was spent in
Algorithms 2-4 and 1s in Algorithms 5-6. The imbalance is mainly due to the fact that the
PDTMCs have multiple nested cycles.

4.3 Probabilistic Noninterference in Randomized Schedulers

Noninterference is an information-flow security policy that enforces that a low-privileged user
(e.g., an attacker) should not be able to distinguish two computations from their publicly ob-
servable outputs if they only vary in their inputs by a high-privileged user (e.g., a secret).
Probabilistic noninterference [27] establishes connection between information theory and infor-
mation flow by employing probabilities to address covert channels. Intuitively, it requires that
the probability of every low-observable trace pattern is the same for every low-equivalent initial
state.

Consider the following classical example [34] of a program with two threads th1 and th2:

th1 : while h > 0 do {h := h− 1}; l := 2 || th2 : l := 1

where h is a secret input by a high-privileged user and l is an output observable by low-privileged
users. Figure 5 depicts PDTMC models of this program for secret input h = 0 (left) and h = 1
(right). The parameter configuration p = 0.5 resp. q = 0.5 models a fair scheduler that chooses
each of the threads with equal probability for the execution of the next atomic statement.
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Figure 5: Parametric DTMC models for the probabilistic noninterference example program
with two threads th1 and th2, and secret input h = 0 (left) and h = 1 (right); solid (resp.,
dotted) transitions correspond to thread th1 (resp., th2), i labels initial states, proposition w
denotes execution of the while-loop condition checking, and f denotes the terminating state

Probabilistic noninterference requires that l obtains values of 1 and 2 with equal probabilities,
regardless of the initial value of h:

ϕpni = ∀σ.∀σ′.
(
iσ ∧ (h=0)σ ∧ iσ′ ∧ (h=1)σ′

)
⇒

((
P
(

(fσ ∧ (l=1)σ)
)

= P
(

(fσ′ ∧ (l=1)σ′)
))
∧(

P
(

(fσ ∧ (l=2)σ)
)

= P
(

(fσ′ ∧ (l=2)σ′)
)))

.

However, when using a fair scheduler, the likely outcome of the race between the two as-
signments l := 1 and l := 2 depends on the initial value of h: the larger the initial value of h,
the greater the probability that the final value of l is 2. For example, it is easy to recognize in
Fig. 5 that for the secret input h = 0 the final value is l = 1 with probability 1/4 and l = 2
with probability 3/4, but for the input h = 1 the final value is l = 1 with probability 1/16 and
l = 2 with probability 15/16. Thus, it holds that for two independent executions with initial h
values 0 resp. 1 the larger h value leads to a lower probability for l = 1 upon termination. I.e.,
this program does not satisfy ϕpni.

Now, let us repair this system by allowing the scheduler to use biased coins for different secret
input values h. Table 1 shows experimental results for different input value combinations, for
which we want to determine parameters that assure probabilistic noninterference. The table
shows for each considered pair of h-values the time spent in Algorithms 1-4 and Algorithms 5-
6, the total running time, the number of returned white and red boxes (no green boxes have
been detected), the percentage of the configuration domain covered by red boxes (i.e. provably
non-satisfying area), and the number of satisfying configurations (samples) detected. Figure 6
shows the 2-dimensional plot of synthesized valid values of parameters p and q for h = (0, 1).
With increasing h-values we observe increasing synthesis time, which is expected, since the size
of the PDTMCs increase.



Figure 6: Values of p, q for h = (0, 1).

Input Running time (s) #white #red red #samples
h Alg.2-4 Alg.5-6 Total boxes boxes area

(0, 1) 2.90 100.03 102.93 378 748 0.79 477
(0, 5) 15.61 143.58 159.2 374 752 0.815 421
(0, 10) 55.73 259.3 315.06 374 752 0.8164 480
(0, 15) 113.58 459.60 573.18 377 749 0.711 413
(1, 2) 8.33 114.55 122.88 368 758 0.706 425
(3, 5) 31.95 204.42 236.38 411 715 0.831 496
(4, 8) 72.23 397.91 470.14 371 755 0.6622 481
(8, 14) 213.96 2924.61 3138.07 378 748 0.825 496

Table 1: Experimental results for thread scheduling.

4.4 Information Leakage in Dining Cryptographers

Three cryptographers gather around a table for dinner. The waiter informs them that the
meal has been paid for by someone, who could be either one of the three cryptographers or
the master. The cryptographers respect each other’s privacy, but want to find out whether the
master paid. In order to decide this, they execute the following two-stage protocol [8]:

• Each cryptographer flips a coin and informs only the cryptographer on the right about
the outcome.

• Each cryptographer who did not pay for the dinner announces whether the two coins that
it can see (the own flipped one and the one the left-hand neighbour flipped) are the same
(“agree”) or different (“disagree”).

• However, if a cryptographer actually paid for dinner, then it instead states the opposite
(“disagree” if the coins are the same and “agree” if the coins are different).

A parametric DTMC model of the protocol is illustrated in Figure 7. We are interested in
deciding which parts of the valid parameter domain [0, 1]3 ⊆ R3 satisfy the following ReachHy-

perPCTL formula (⊕ denotes the exclusive-or operator):

ϕdc = ∀σ. ∀σ′.
(

(
∨
i∈3

payiσ) ∧ (
∨
i∈3

payiσ′)
)
⇒ (2)

P
(

(doneσ ∧ (a1σ ⊕ a2σ ⊕ a3σ))
)

︸ ︷︷ ︸
F1

= P
(

(doneσ′ ∧ (a1σ′ ⊕ a2σ′ ⊕ a3σ′))
)

︸ ︷︷ ︸
F2

In other words, if it was not the master who has paid, then the different outcomes are
observed with the same probabilities independently of the fact which cryptographer has paid.
A careful reader might have recognized that the above property holds for all parameters. Intu-
itively, independently of the flip outcomes, when ordered in a circle, the number of changes in
the outcomes will be always even. Thus the number of “agree”s will be even iff an even number
of cryptographers lie. Therefore, when the master paid (zero lies) we have an even number of
“agree”s, and when one of the cryptographers paid then one lies and we have an odd number.

To check this property, we follow Algorithm 1 and call first the SymbolicEncoding method
from Algorithm 2 on the 2-ary self-composition of the PDTMC in Figure 7. The states of this
self-composition are pairs (siT1

, sjT2
) with i, j ∈ 22 and T1, T2 ∈ {M,C1, C2, C3}. Note that the

self-composition is synchronous, i.e., each non-absorbing state has four successors; for example,
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Figure 7: A parametric DTMC model for the dining cryptographers protocol with three cryp-
tographers and three biased coins (with parameters p1, p2, and p3, respectively) consists of
four independent sub-PDTMCS, staying for the four cases who payed: the master (M), the
first (C1), second (C2) resp. third (C3) cryptographer. We depict all four PDTMCS in one
illustration as they differ only in their state labeling. The labels payM and payi, i ∈ 3 encode
that the master resp. cryptographer i payed; ti resp. hi encode tail resp. head flipped by
cryptographer i; the labels ai resp. di encode that cryptographer i announced “agree” resp.
“disagree”; finally, done stays for a terminated protocol. In the text, the above state identifiers
si are lower indexed with the cases to distinguish between siM , siC1

, siC2
, siC3

.

state (s0C1
, s0C2

) has the successors (1) (s1C1
, s1C2

) with probability p1 · p1, (2) (s1C1
, s2C2

) with
probability p1 · (1 − p1), (3) (s2C1

, s1C2
) with probability (1 − p1) · p1, and (4) (s2C1

, s2C2
) with

probability (1− p1) · (1− p1).

Formula 2 is trivially satisfied by all states where the left-hand-side of the implication is
false, i.e., the only relevant initial states (instantiating σ and σ′) are (s0T1

, s0T2
) with T1, T2 ∈

{C1, C2, C3}. Due to the synchronous nature of the self-composition, both runs starting in σ
resp. σ′ will execute the same number of steps, i.e. stay at the same “depth” in Figure 7. For
all such state pairs, the probability expressions F1 and F2 in Formula 2 both simplify to 1,
therefore the equality F1 = F2 holds independently from the parameter configuration.

Starting with the parameter domain [0, 1]3, our implementation reports that the whole box
[0, 1]3 is green, without any splits. However, the (symbolic) transition matrix is quite large
(we have 7744 states in the 2-ary self-composition and our implementation does not detect
non-reachable states), it takes about 40 minutes running time to get this answer.

5 Related Work

The notion of hyperproperties was first introduced in [10] and temporal logics HyperLTL

and HyperCTL∗ [9] have been proposed to capture particular classes of hyperproperties.
There has been a lot of recent progress in automatically verifying [11, 22–24] and monitor-
ing [2,6,7,20,21,25,36] HyperLTL specifications. HyperLTL is also supported by a growing set of
tools, including the model checker MCHyper [11, 24], the satisfiability checkers EAHyper [19]



and MGHyper [17], and the runtime monitoring tool RVHyper [20]. Synthesis techniques for
HyperLTL has been studied in [18] and in [5]. HyperPCTL [1] is the first temporal logic proposed
to express probabilistic hyperproperties. The logic adds explicit and simultaneous quantifi-
cation over multiple traces to PCTL. Statistical model checking techniques for probabilistic
hyperproperties were proposed in [38].

While the work in [1] provides a model checking algorithm for HyperPCTL properties over
DTMCs, here, we focus on parametric DTMCs and the parameter synthesis problem. A para-
metric DTMC [12,30] is a special class of Markov models, where some the transition probabilities
(or rates) are not known a-priori and are parameter-dependent. These models can be adopted
to analyze systems with stochastic uncertainty due to the impossibility to measure certain quan-
tities (e.g., fault rates, packet loss ratios, etc.). In [12], Daws proposed an approach to express
the probability to reach the target state as a rational function with the domain in the param-
eter space. This symbolic approach has been exploited in several model checking algorithms
for parametric probabilistic Markov chains [4, 14, 26, 28, 31, 33] and efficiently implemented in
PARAM1 and PARAM2 tools [26].

The parameter synthesis problem consists in exploiting the generated rational function to
find the parameter values that would maximize or minimize the probability to reach the target
state [4]. The price to pay for these techniques is the increasing complexity of the rational
functions in the presence of large models [30], causing the parameter synthesis to be also very
computationally expensive. However, the introduction of new efficient heuristics [14, 28, 31, 33]
has helped to alleviate this problem by supporting the parameter synthesis for quite large
models. For example, PROPhESY [14] supports incremental automatic parameter synthesis
for parametric Markov chains w.r.t. reachability properties expressed in PCTL and it exploits
SMT techniques to determine safe and unsafe regions of the parameter space. In contrast
with PROPhESY, our approach enables the parameter synthesis for the richer class of formal
specifications defined by ReachHyperPCTL, a fragment of HyperPCTL.

6 Conclusion and Future Work

In this paper, we focused on probabilistic hyperproperties, which express stochastic relations
between multiple execution traces of a probabilistic model. The parameter synthesis problem
takes as input a parametric discrete-time Markov-chain and a probabilistic hyperproperty, and
asks for valid parameter values for which the induced discrete-time Markov chain satisfies
the probabilistic hyperproperty. Our synthesis algorithm works in two steps. In the first, it
computes symbolic conditions for satisfying the formula, involving rational functions on the set
of parameters. In the second step, identify regions of satisfying parameter configurations by
decomposing the domain of parameter configurations and identify smaller regions in which either
all or none of the configurations lead to the satisfaction of the input formula. We demonstrated
how our algorithm works on several examples: randomized response, probabilistic conformance,
probabilistic noninterference, and the dining cryptographers.

As for future work, making our prototypical implementation more efficient would clearly lead
to better scalability. Further improvements could be achieved by e.g. exploiting the existence
of symmetries. Another natural extension is to consider more expressive logics such as full
HyperPCTL and HyperPCTL∗ [37].
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