
Network Anomaly Detection based on
Tensor Decomposition

Ananda Streit, Gustavo Santos, Rosa Leão, Edmundo de Souza e Silva, Daniel Menasché, Don Towsley∗
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil ∗University of Massachusetts at Amherst, USA

Abstract—The problem of detecting anomalies in time series
from network measurements has been widely studied and is
a topic of fundamental importance. Many anomaly detection
methods are based on packet inspection collected at the network
core routers, with consequent disadvantages in terms of com-
putational cost and privacy. We propose an alternative method
in which packet header inspection is not needed. The method
is based on the extraction of a normal subspace obtained by
the tensor decomposition technique considering the correlation
between different metrics. We propose a new approach for online
tensor decomposition where changes in the normal subspace can
be tracked efficiently. Another advantage of our proposal is the
interpretability of the obtained models. The flexibility of the
method is illustrated by applying it to two distinct examples,
both using actual data collected on residential routers.

Index Terms—network measurement and analysis, machine
Learning for networks, DDoS detection, tensor decomposition

I. INTRODUCTION

The problem of detecting anomalous events in computer
networks has been widely studied due to its relevance to
network operation. However, these events are in general very
hard to identify [1]. The problem is challenging due to the
wide variety of anomalies, low frequency of occurrences,
and the definition of what is considered “expected behav-
ior”. An application example among the countless existing
ones is detecting occasional changes in traffic patterns on
a communication channel caused by a distributed denial of
service (DDoS) attack. DDoS attacks represent a major threat
to proper network operation, wasting resources and creating
network outages. For instance, DDoS attacks targeted Amazon
Web Services in October 2019 and were able to disrupt
different services [2].

In general, anomaly detection is based on the analysis of
packet headers at the core of the network, with potentially
high computational cost and possible privacy issues. Our
methodology differs from others in that it does not use packet
headers; it is based on distributed data collection at home
routers, and uses only a small amount of information.

The methodology is based on tensor decomposition to detect
and diagnose anomalous events using multivariate time series.
We evaluate the approach using time series obtained from mea-
surements collected at home routers of a medium-sized ISP.
Tensor decomposition allows the extraction of normal patterns
from the metrics considered, during different time intervals,
and the identification of latent relationships between them. We
also devise a new online tensor decomposition method that
efficiently tracks changes in the normal subspace. Our results

show the effectiveness of the method to detect anomalies
in two different scenarios used as examples. Nevertheless,
we emphasize that the methodology is general and can be
employed in other scenarios.

This work shares similarities with [3], [4], where a normal
subspace is defined by applying PCA and model residuals
are used to detect anomalies in a network. In this work,
extraction of the normal subspace is performed using the
PARAFAC model [5], which naturally allows the decompo-
sition of multidimensional data and preserves relationships
among the metrics under evaluation.

The first application of our approach is to detect DDoS
attacks. Based on observations of byte and packet up-
load/download counters, which are non-intrusive and require
no packet inspection, we show that the proposed method
accurately detects attacks in both offline and online scenarios.
Our second application is the identification of time intervals
within which performance degradation occurs. (Performance
degradation is the anomaly in this case.) The process is easily
automated to identify and locate such anomalies and analyze
the quality of service in different parts of an ISP’s topology.
Contributions. Key contributions are summarized below:
• Tensor decomposition to detect network anomalies. Our
framework is based on tensor decomposition. We show that
the PARAFAC model provides an interpretable and efficient
way to extract expected normal behavior, taking into account
correlations among different metrics. We exemplify the appli-
cation in two scenarios using different input metrics.
• New online tensor decomposition method. Our method is
based on a tensor window [6]. The results show the good
accuracy and efficiency of the approach.
• Use of real data collected at home routers. We use time
series obtained from real network measurements collected
at home routers to evaluate the framework. Our method is
capable of detecting different types of anomalies based on
simple metrics and without compromising users’ privacy.

Related work is presented in Section II. The tensor de-
composition technique is discussed in Section III. Section IV
describes the proposed framework for anomaly detection and
we explain how the residuals are extracted in both offline and
online scenarios in Section V. The DDoS attack detection ex-
ample application is presented in Section VI, and Section VII
describes the second application example in which network
performance degradation intervals are detected. Section VIII
concludes our work.

II. RELATED WORK

Anomaly detection methods are based on models that cap-
ture the normal behaviour of the network [7]. Most prior work
on network anomaly detection is based on packet inspection
in the core of the network [3], [4], [8]–[10], which requires
processing privacy-sensitive information from packet headers,
such as traffic volume between source and destination IPs and
port number. Recent work also employs packet inspection, but
at home routers [11]. Our work uses measurements performed
at home routers without packet inspection, providing a simple,
efficient and privacy-preserving strategy.

Previous work by our group has also made use of mea-
surements at home routers without packet inspection [12].
Mendonça et al. [12] focus on DDoS attacks that are detected
with high accuracy using only simple byte and packet count
statistics during a time window. The current work uses another
method (tensor decomposition) and we show that it can be
used to detect different types of anomalies. In addition, the
results of our approach are easier to interpret, since PARAFAC
produces interpretable models [5], and we are able to infer the
normal daily behavior of a user, one of the main challenges
in anomaly detection [1].

Other previous works in the literature use subspace extrac-
tion methods (like PARAFAC) to detect network anomalies. As
an example, Maruhashi et al. [8] identify suspicious activities
on the network (such as port scanning and spreading of
worms) by searching for abnormal subgraphs from the discov-
ered patterns returned by a tensor model (PARAFAC). Their
method heavily depends on a manual choice of the patterns
deemed interesting. In addition, [8] uses packet inspection,
considering a dataset with format (source IP × destination IP
× timestamp or port number). This data structure is commonly
used for network analysis with tensor models based on packet
inspection. In contrast, our work does not extract data from
packet headers and considers tensors with the format (user ×
network metrics × timestamp).

In the works of Lakhina et al. [3], [4], the authors apply
PCA to define the normal subspace. In [4] anomalies that
span multiple traffic features (metrics) are detected, similar
to our work. However, PCA is a matrix-based model and,
unlike tensor-based models like PARAFAC, it requires mul-
tidimensional data to be unfolded [13] into a single, large
matrix before its application. The PARAFAC model, on the
other hand, reveals relationships between different metrics in
multidimensional data, making it more robust to noise. It also
has the property of uniqueness, in contrast to PCA, where its
inherent rotational freedom [5] can lead to distinct interpreta-
tions concerning the structure of the normal subspace.

Xie et al. [9] proposes an anomaly detection method using
a modified PARAFAC model that accounts for nonlinear data
features. The proposed algorithm considers the similarity of
tensor slices in each mode during the training process. In addi-
tion, residual anomalies are associated with a sparse tensor and
are isolated during the optimization process. Kasai et al. [14]
also proposes a sparse tensor to account for abnormal flows.
However, both works ignore the interpretability of the model

and evaluate the method using only artificially generated attack
data taken from arbitrary probability distributions, while we
consider: (i) attack traffic generated by real malware and (ii)
real performance degradation events.

We propose an online tensor decomposition approach based
on the sliding window method of Sun et al. [6]. Our solution
incurs a lower computational cost while maintaining good
performance. Kasai et al. [14] also considers a tensor-based
online algorithm. Similar to our online algorithm, Kasai et
al. [14] uses the concept of sliding window and modifies
PARAFAC decomposition to deal with time and space com-
plexities required for online approaches. Other works also
modify PARAFAC decomposition for online application, but
without the use of windows [15], [16]. We focus on a sim-
pler online solution, with a slight adaptation in PARAFAC
decomposition. In our approach the anomalies are detected
by classifying or clustering the residuals obtained by tensor
decomposition.

III. TENSOR DECOMPOSITION

In this section we briefly present tensor decomposition and
describe our notation. For details we refer to [13]. A tensor is a
multidimensional matrix denoted by X . We usually refer to the
dimensions of X as modes. A third-order tensor X ∈ RI×J×K
can be represented by a sum of three-way outer products [13]
as follows,

X =M+ E , ar ∈ RI ,br ∈ RJ , cr ∈ RK (1)

Mi,j,k =

R∑
r=1

ar,ibr,jcr,k, (2)

where E is the residual tensor and R is the number of factors.
The factor matrices (or loadings) define model M: A =
[a1,a2, . . . ,aR] ∈ RI×R, B = [b1,b2, . . . ,bR] ∈ RJ×R,
C = [c1, c2, . . . , cR] ∈ RK×R. Following standard notation,
we let ar = A:,r, for 1 ≤ r ≤ R, and a(i) = Ai,:, for
1 ≤ i ≤ I .

The PARAFAC decomposition is obtained by minimizing
the sum of squares of the residuals, i.e., the difference between
X andM. Such difference is a nonconvex function; however,
if we fix two of the factor matrices, the problem is reduced to a
linear least squares regression for the third matrix. This is the
basis of the Alternating Least Squares (ALS) procedure [5].
ALS estimates the factor matrices one at a time, keeping the
others fixed. The process iterates until a convergence criterion
is satisfied or there is no change in estimates.

In this work we use the method of Split-Half Validation
(SV) [17] in combination with Tucker Congruence Coefficient
(TCC) [18] to estimate R and evaluate whether the solution
is unique and generalizable.

IV. FRAMEWORK

The proposed methodology consists of the following steps:
1) Preprocessing: In the first step we perform data trans-

formations needed to apply tensor decomposition, such as data
scaling and filtering.

2) Tensor Decomposition: In this step we apply tensor
decomposition to extract the normal subspace. We use the
PARAFAC method due to the uniqueness of its solution and
its capacity to deal with multivariate data [5].

3) Residual extraction: The model obtained by tensor
decomposition is used to extract the residuals and perform
anomaly detection. The idea is that anomalies are not well
modeled by the normal subspace, allowing separation between
normal and anomalous behavior through residual analysis.

4) Anomaly classification/clustering: The final step varies
depending on the application. When the dataset contains
labeled anomalies, we perform a supervised classification. On
the other hand, there are applications where the labels for
anomalies are unknown or hard to obtain. For these cases,
we consider an unsupervised approach based on clustering.

V. RESIDUAL EXTRACTION

Our anomaly detection technique is based on analyzing
the PARAFAC residuals [5]. Normal behavior is captured
(modeled) by tensor decomposition and anomalies are detected
by investigating deviations from the modeled patterns.

A. Offline residual extraction

User data generally exhibits strong daily patterns over time.
This leads us to split observations from users into independent
daily series. We denote each of these series as a User-Day pair,
or UD pair.

Let I denote the number of UD pairs in our dataset. We con-
sider as inputs three-way tensors with modes UD pair (factor
matrix A), metrics of interest (factor matrix B) and time (fac-
tor matrix C), denoted by indices i, j and k, respectively.
Let Xi,:,: be the i-th horizontal slice of tensor X , i.e., Xi,:,:
is a two-dimensional matrix obtained by fixing the UD pair
mode at value i [13]. Then, for each UDi with measurements
Xi,:,: ∈ R1×J×K , we obtain a model slice Mi,:,: ∈ R1×J×K

using PARAFAC ALS procedure. Residuals are measured as
the difference between the model estimates and the input
dataset Ei,:,: = Xi,:,: −Mi,:,:, where Ei,:,: ∈ R1×J×K . As a
UD refers to a day and our dataset consists of time series of
one-minute bins, K = 1440.

Next, we determine the residuals corresponding to mea-
surements from new UDs that were not previously used to
parametrize model M. Let X̃κ,:,: denote the measurements
corresponding to a new UDκ. We use factor matrices B and
C from the previously trained model M (eq. (2)) and the
new measurements X̃κ,:,: to obtain vector ã(κ) ∈ R1×R.
Factor matrices Ã, B and C produce model M̃κ,:,:, with
corresponding error Ẽκ,:,:, where Ãκ,: = ã(κ). Vector ã(κ) is
chosen to minimize quadratic error between model estimates
and measurements. Let X̃κ,:,:(1) be the matrix unfolding of
tensor X̃κ,:,: in its first mode [13], where X̃κ,:,:(1) ∈ R1×JK .
Then,

M̃κ,:,: = X̃κ,:,: − Ẽκ,:,:⇒ã(κ)(C �B)T = X̃κ,:,:(1) − Ẽκ,:,:(1)
⇒ã(κ) = X̃κ,:,:(1)((C �B)T)†, (3)

where C � B denotes the Khatri-Rao product [13] between
matrices C and B and M† denotes the Moore-Penrose pseudo-
inverse of matrix M [13]. Note that both (C �B) ∈ RJK×R
and ((C � B)T)† ∈ RJK×R. As vector ã(κ) minimizes the
quadratic error, the corresponding error Ẽκ,:,:(1) is orthogonal
to ((C � B)T)† which implies (3). Thus, the residuals of
UDκ are obtained by Ẽκ,:,: = X̃κ,:,: − M̃κ,:,:, where model
M̃κ,:,: ∈ R1×J×K contains the new factor vector ã(κ).

Note that the measurements corresponding to UD pairs are
available by the end of a day, and residuals must be computed
at that time. In addition, as network conditions may change
over time, it is necessary to periodically check if M is still a
good model (e.g., using Split-Half validation [17]). Otherwise,
M must be retrained to compute residuals for new UD pairs.

B. Online residual extraction
The online method tracks changes in the data by continu-

ously recomputing the model using PARAFAC. In the online
scenario, time is divided into one minute slots and new data
from all home routers is processed at every slot. The online
decomposition considers USERS instead of UD pairs as one
of the tensor modes, and obtains a three-way tensor with user
(mode A), the metric of interest (mode B), and time (mode
C). As soon as a new data stream arrives (every minute), the
model is updated and residuals are extracted.

We consider two different online residual extraction
schemes. First, we describe Full Window Optimization
(FWO) [6]. Then, we propose Partial Window Optimization
(PWO), a simpler and more efficient FWO variant. Figure 1
illustrates the difference between the methods, as discussed
below. Note that both schemes allow expansion of modes A
and B throughout online decomposition, in case new users are
added or new metrics of interest are collected, respectively.
The offline model M (resp., M̃) denotes the model obtained
before (resp., after) collecting additional measurements. In
the online model, variable t already subsumes the number of
collected samples, so we drop tilde from all variables.

W

(a) FWO

W

(b) PWO

Fig. 1. Online tensor decomposition approaches (W = 4 time units). Red
time slots are used to compute factor matrices A, B and C. Blue time slots
are used to compute factor matrices A and B.

1) Full Window Optimization (FWO) [6]: A simple ap-
proach to online tensor decomposition is based on a tensor
window [6] X (t,W) ∈ RI×J×W over the time mode (mode
C), where W refers to the window size. At every minute t the
window slides and a new tensor is formed by combining the
W −1 previous slices {X:,:,t−W+1, ...,X:,:,t−1} and the newly
obtained data stream X:,:,t ∈ RI×J×1, representing a new time
slice. Since our network data presents strong daily patterns
and we consider minute time slots, we define the window size
W = 1440 mins.

To obtain models in FWO we use the same optimization
method applied in the offline scenario for each sliding window.

Namely, for each window we compute a PARAFAC model
M(t,W) ∈ RI×J×W using X (t,W) ∈ RI×J×W as input for
the PARAFAC ALS algorithm. Residuals are measured as
the difference between the model and the input dataset
E(t,W) = X (t,W)−M(t,W). Usually we are interested in
analyzing the behavior of the most recent sample. Therefore,
we consider the residuals of the last minute t, E:,:,t ∈ RI×J×1.

A good initialization for the optimization algorithm reduces
the number of iterations needed to converge [6]. Therefore,
to speed up convergence, after we move the window forward,
we initialize the ALS algorithm with the same values used in
PWO (given by lines 1-2 in Algorithm 1).

FWO requires computation of a whole new PARAFAC
model at every window. As such, it may not be suitable
for online applications, often requiring a large and variable
number of iterations [15]. Our results indicate that this method
is too computationally expensive to be used online for our
application (see Figure 4). Hence, we propose a variation
to decrease computational cost while providing good perfor-
mance.

2) Partial Window Optimization (PWO): In order to reduce
the run time we modify FWO. Consider the factor matrix
related to the time mode C(t) ∈ RW×R used to model the
tensor window X (t,W). To obtain C(t) we keep the previous
W − 1 known loadings {c(t−W +1), ..., c(t− 1)} fixed and
compute the time mode loadings related to the last sample, i.e.,
we compute c(t). The other factor matrices A(t) and B(t) are
fully recomputed based on the tensor window X (t,W). Due
to daily patterns in our data we define W = 1440, as in FWO.

Let X:,:,t denote the measurements of a newly obtained
data stream at time t. The model is estimated by updating
the unknown variables (A(t), B(t) and c(t), see Figure 1(b))
alternately and iteratively, until a convergence criterion is
satisfied or there is no change in estimates (Algorithm 1).
As in the ALS algorithm, matrices A(t) and B(t) and vector
c(t) are calculated by minimizing the quadratic error between
model estimates and measurements. The sequence of updates
is given by lines 4-7 in Algorithm 1.

In Algorithm 1, X(1) and X(2) are the tensor unfoldings
of X in its first and second modes, respectively, X(1) ∈
RI×JK , X(2) ∈ RJ×IK . Note that c(t) ∈ R1×R, A(t) ∈
RI×R and B(t) ∈ RJ×R. As with the FWO scheme,
the factor matrices of model M(t,W) are initialized with
the model estimates M(t − 1,W) obtained for the pre-
vious window. The residuals related to t are obtained by

1 A(t)← A(t− 1), B(t)← B(t− 1)

2 C(t)← [c(t−W + 1)T , . . . , c(t− 1)T , c(t−W)T]T

3 while not converged do
4 c(t)← X:,:,t(3)((B(t)�A(t))T)†

5 C(t)W,: ← c(t)

6 A(t)← X(1)((C(t)�B(t))T)†

7 B(t)← X(2)((C(t)�A(t))T)†

8 end
9 return A(t), B(t), c(t)

Algorithm 1: Online algorithm

TABLE I
TYPES OF DDOS ATTACKS EVALUATED

Malware Attack type (payload size)
Mirai UDP flood (1400B)

Mirai TCP SYN flood (0B)

Mirai TCP ACK flood (0B)

Mirai UDP PLAIN flood (1400B)

BASHLITE UDP flood (1400B)

BASHLITE TCP SYN flood (0B)

BASHLITE TCP ACK flood (0B)

E(t,W):,:,t = X (t,W):,:,t −M(t,W):,:,t.

VI. APPLICATION I: DDOS ATTACK DETECTION

We apply our framework to detect DDoS attacks originated
from home devices. We consider a dataset with different
types of attack vectors (see Table I) obtained by combining
home users traffic and attack traffic measured in laboratory
experiments using real malware code. Then, we apply a
supervised approach to detect attacks.

A. Preprocessing

We collect per minute, per user upload and download byte
and packet rates in a given day (i.e., UD pair). From this data
we obtain a multivariate time series that is input to the tensor
decomposition method. We consider 18722 time series from
812 users between 19-August-2019 and 22-September-2019.

We obtain our attack dataset using the approach proposed
in [12]. A brief description of the methodology follows. First,
we randomly choose a fraction of infected homes q = 0.05
that participate in synchronized DDoS attacks, where q is
chosen based on the fraction of users affected by a real
attack [19]. Next, we define the attack type (Table I) uniformly
at random. The majority of attacks lasts for a few minutes [20].
Therefore, we consider attacks whose duration follows a
Gaussian distribution with mean µ = 2 minutes. We then
sample time slots where the synchronized attacks start using
a uniform distribution with one attack per day on average.
(Similar results were obtained when different attack rates were
considered.) Finally, we add the attack traffic to the measured
traffic of the infected homes.

We split our dataset into three different sets. The first set
(Tr1) contains the first week of the dataset and is used to
extract the normal subspace. We use a second set (Tr2) with the
following 19 days to fit an anomaly classifier using residuals
extracted from the tensor model. A third set (Te) with the
last 9 days of the dataset is used to evaluate the classifier
performance.

In a real-world scenario, it is often difficult to define
precisely whether a traffic dataset hides embedded network
anomalies, especially in the case of malicious anomalies [4].
Therefore, we evaluate the robustness of our method by
applying it to the dataset after the addition of some infected
users. The idea is to consider a more realistic scenario, where
some hidden anomalies may be present.

Before applying tensor decomposition, we convert our data
to logarithmic scale. Then, we apply Min-Max normalization

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ad

in
g

Download bytes

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Upload bytes

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Download packets

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Upload packets

(d)

Fig. 2. Offline: Factors obtained by PARAFAC.

to each traffic metric, where the minimum and maximum
values are taken from the training set Tr1 and applied to the
entire dataset. By keeping traffic metrics within a controlled
range, we capture the correlations between them and ensure
that they have the same impact on the optimization process.

B. Tensor decomposition

We consider different tensor structures for offline and online
scenarios. In the offline approach our tensor is composed of
three modes: (UD × traffic metric × minute). We obtain model
M ∈ R3412×4×1440 from the training set Tr1 with a total
number of UDs equal to 3412. The application of Split-Half
Validation validates up to R = 6 factors. (Except as otherwise
noted, we use R = 6.) In the online approach we consider
as modes (user × traffic metrics × minute), so the models
M(t,W) ∈ R812×4×1440 are obtained with a window size
W = 1440 over the whole dataset, that has a total of 812 users.
We consider four metrics: download and upload bytes/packets
at every minute by home users.

We analyze the factors obtained in the offline scenario
(model M) to understand model behavior. Figures 2(a)
and 2(b) present the time mode (mode C) factors weighted
by the loadings associated with download and upload byte
rate measurements (mode B), respectively, while Figures 2(c)
and 2(d) show the factors weighted by download and upload
packet rate loadings. One factor (represented in gray) is nearly
constant throughout the day. The remaining factors identify
higher network usage at different periods of the day. Moreover,
the difference in scale between the number of downloaded
and uploaded bytes is larger than the difference between the
number of downloaded and uploaded packets. This indicates
that connections exchange a similar number of download and
upload packets, but upload packets usually carry less data.

C. Residual extraction

We extract residuals for sets Tr2 and Te using the residual
extraction techniques described in Section V. These resid-
uals consist of all traffic metrics for each minute and for
each UD/user (offline/online) and are used as inputs to the
classifiers. The relationship between upload and download
traffic can also be an important feature to detect attacks [12].
Therefore, we also consider two additional features that ex-
press the residual difference between upload and download
packets and bytes, totaling six features: (i) download bytes,
(ii) upload bytes, (iii) download packets, (iv) upload packets,
(v) difference between upload and download bytes and (vi)
difference between upload and download packets. Figures 3(a)

0.
50

0.
25

0.
00

0.
25

0.
50

0.
75

1.
00

Residual Values

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

 F
re

qu
en

cy

Upload Packets

with attack
without attack

(a)

0.
75

0.
50

0.
25

0.
00

0.
25

0.
50

0.
75

1.
00

Difference of Residual Values

0.0

0.1

0.2

0.3

0.4

Upload Packets - Download Packets

(b)

Fig. 3. Offline: Histograms of residuals.

and 3(b) present the histograms of the residuals Ẽ retrieved
from the offline method for the features (iv) upload packets
and (vi) difference between upload and download packets.
The histograms show that the selected features satisfactorily
separate residuals with and without attacks.

Figure 4 shows the run time for both PWO and FWO
online methods for each minute of a day. The red dotted
line indicates when a DDoS attack occurred in that period.
We compute both models using a PowerEdge R230 server
with a Intel Xeon E3-1220 v6 of 3Ghz with 4 cores and 64
GB of RAM. Since FWO recomputes all loadings of factor
matrix C(t) (time) at every slide of the window (at every
minute), the time in seconds needed to recompute M(t,W)
varies depending on data X (t,W), and can be large enough
such as to be inadequate for an online approach. On the other
hand, PWO consistenly requires smaller computational times
than FWO.

D. Anomaly classification

After extracting the residuals we train a classifier to detect
when an attack occurs. To estimate the method’s ability to
detect attacks we consider five different classifiers, leverag-
ing features extracted using PARAFAC: Logistic Regression,
Decision Tree, Random Forest, Gaussian Naive Bayes and
Multi-layer Perceptron. We select the classifier with the best
weighted F1 score in a 5-fold cross validation on the residuals
obtained from the training set Tr2. We also consider PCA

0 200 400 600 800 1000 1200 1400
Minute

0

25

50

75

100

125

150

Se
co

nd
s

DDoS attack
PWO
FWO

Fig. 4. Run time for FWO and PWO online methods.

TABLE II
DETECTION ACCURACY AND

PRECISION WITH RANDOM FOREST
CLASSIFIER

Model Precision Detection
Accuracy

PARAFAC 0.9891 0.9396

PCA 0.9709 0.9121

PWO 0.9718 0.9396

PWO +
Likelihood

0.9978 0.9725

TABLE III
FEATURE IMPORTANCE OF RANDOM

FOREST

Residual Feature Gini index
Difference up and
down packets

0.5207

Up packets 0.1489

Down packets 0.1348

Difference up and
down bytes

0.1150

Down bytes 0.0450

Up bytes 0.0356

as an alternative to PARAFAC for comparison purposes. As
expected, for the five classifiers considered PARAFAC outper-
forms PCA as the latter loses structural information present in
the data after converting tensors into matrices. The Random
Forest classifier achieves better results for both methods.
Moreover, preliminary evaluations indicate that models with
two factors (R = 2) perform well, while increasing the number
of factors does not improve the results. Therefore, the results in
the sequel are obtained with Random Forest and with R = 2.

Next, we train the Random Forest classifier with the resid-
uals obtained from set Tr2 and evaluate the results using the
residuals of set Te. Table II presents results for two evaluation
metrics: Detection Accuracy and Precision. Detection Accu-
racy measures the percentage of anomalies detected, defined
as nd

n , where nd is the number of detected attacks, and n is the
total number of attacks in the set Te. We assume that an attack
is detected if an anomaly is identified in at least one of the
time slots that contain the traffic from that attack. Precision
is calculated as follows: TP

TP+FP , where TP (True Positives) is
the time (in minutes) where an attack occurs and is detected,
while FP (False Positives) is defined as the time (in minutes)
where an attack is wrongly detected. Therefore, Precision
decreases when the number of False Positives increases. A
model with a better detection rate (higher Detection Accuracy)
is critical in scenarios where attacks have a major impact
on the network. At the same time, a lower number of false
positives (higher Precision) decreases the number of users
incorrectly classified as attackers, reducing the chance of a user
being wrongly affected by a countermeasure. For example, a
legitimate customer might have its connection blocked if the
classifier falsely reports an attack.

We compare the performance of PARAFAC and PCA mod-
els in the offline approach. Table II shows that PARAFAC
achieves larger performance for both metrics. PARAFAC not
only detects a higher percentage of attacks but also achieves
higher precision, with a lower number of false positives.
Moreover, although not reported, our results using PARAFAC
show that all types of DDoS attacks evaluated have similar
Detection Accuracy.

To evaluate the relevance of the six features retrieved from
PARAFAC residuals we look at the Gini index-based impor-
tance metric from the Random Forest classifier, as shown in
Table III. The most important residual feature is the difference
between upload and download packets (Gini 0.5207) followed

by upload packets (Gini 0.1489) and download packets (Gini
0.1348). We evaluate the classifier using only packet-rate
based features and compare the results against those obtained
with PARAFAC for all the features. The results show that
the number of false positives is larger in the first case, with
Precision decreasing to 0.9780 using only packet features
compared against 0.9891 using all features.

Table II shows that PWO preserves the same Detection
Accuracy for online decomposition in comparison to the of-
fline method, while Precision decays from 0.9891 (PARAFAC)
to 0.9718 (PWO). A small decrease in performance is not
surprising taking into account that PWO is an online approach
where the model is constantly updated as soon as a new data
stream arrives. Nevertheless, PWO still achieves better results
for both metrics in comparison to PCA. We also consider the
time to detect an attack in the online scenario. The detection
time of the PWO model is one minute for 86.55% of the
detected attacks, while 99.41% of the attacks are detected
within two minutes. A short detection time is essential to adopt
fast countermeasures and mitigate the impact of an attack.

The histograms shown in Figure 3 suggest the use of
gaussian mixtures (GMM) to model the residual distribution.
To leverage this observation we fit two gaussian mixtures with
two components and six dimensions, where each dimension is
given by one of the features described in Section VI-C. The
first GMM is trained using only minutes with attacks while
the other mixture is trained using minutes without attacks.
Then, for each time slice we compute the likelihood of each
gaussian mixture for the observed residuals. Finally, those
two likelihoods are taken as two additional features to the
online PWO classifier, totaling eight input features. The results
reported in the last line of Table II indicate that those two
additional features can significantly increase precision and
accuracy.

E. Spatio-temporal correlation

It is possible to further improve attack detection rates by
correlating the classifier results for each home, since DDoS
attacks are synchronized by nature. Mendonça et al. [12]
propose a Bayesian decision problem using MAP criterion
to detect synchronized attacks with high probability. Using
the model parameterized with our results for the PWO online
method (|H| = 812, PD ≈ 0.0014, pfp ≈ 2.64 · 10−6, prc ≈
0.8266, q = 0.05) yields m0 ≈ 4.21. Therefore, the spatio-
temporal correlation model assumes that a synchronized attack
occurs if at least 5 users report an attack. It presents a great
performance with the probability of false alarms (Type I
error) equals 3.73 · 10−16 and the probability of missing a
synchronized attack (Type II error) equals 9.11 · 10−11.

VII. APPLICATION II: DETECTING NETWORK
DEGRADATION INTERVALS

We apply our methodology to the detection of degradation
intervals in the ISP network. In the absence of reliable labels
to identify anomalies and evaluate the results quantitatively,
we rely on unsupervised clustering over residuals extracted
by the offline method to group events with similar behavior.

An application example of the method is to automatically
identify potential network problems affecting multiple users
and to show the regions with poor performance.

A. Preprocessing

We use both latency and loss time series measured at one-
minute intervals as the main performance metrics of interest.
These metrics were collected on 2964 home routers between
19-August-2019 and 22-September-2019. Both metrics are
obtained by sending a train of 100 ICMP packets at 10
millisecond intervals to a server located in the ISP network.
Latency and loss measurements can be affected by home net-
work user traffic (which we call cross-traffic) [21]. Therefore,
we do not consider the value of minute samples when cross-
traffic is greater than a threshold θ. Based on the users with the
lowest nominal capacity in our dataset we set this threshold
as θ = 2.5 Mbps. After filtering out cross-traffic, we only
consider time series with at least η = 1000 samples.

For some network failures, e.g. link failures, the commu-
nication between a client and the measurement server can be
disrupted and no measurement sample recorded. Therefore, it
is possible to infer periods of network unavailability from the
lack of measurement samples, especially when multiple users
do not simultaneously report measurement results. Hence, we
encode each minute bin for which loss measurements are
missing as having packet loss rate equal to 1. For analysis,
we remove samples with cross-traffic above the threshold θ
and periods when the measurement server is offline. This
introduces missing samples that PARAFAC can easily handle.
Finally, we use the log of each sample as input for the tensor
decomposition. We considered 50282 multivariate time series
with latency and loss values of one-minute granularity.

B. Tensor decomposition and residual extraction

We model the measurement data as a tensor with three
modes: (UD × network metric × minute). Since we use daily
time series of latency/loss measurements as inputs, we get a
third-order tensor X ∈ R50282×2×1440. We use the Split-Half
Validation method to set the number of factors R = 4.

We use metrics obtained from three different residual time
series: latency residuals, loss residuals filtering samples with
packet loss fraction equal to 1 and loss residuals without
filtering. Each metric can be used to detect a different type of
anomaly, such as network congestion and link or equipment
failures. We extract three statistics for each residual time
series: mean, standard deviation and 95th percentile, totaling
nine features.

We use metrics obtained from three different residual time
series: latency residuals, loss residuals filtering samples with
packet loss fraction equal to 1 and loss residuals without
filtering

C. Anomaly clustering

1) Clustering results: We use K-Means for clustering the
residuals due to its simplicity and interpretability. To select
the number of clusters, we use the Elbow Method [4]. Five
clusters are chosen. Before clustering the data we apply the

0 2 4 6 8 10 12 14 16 18 20 22

Hour

0

5

10

95
th

 la
te

nc
y

pe
rc

en
til

e

C1
C2
C3
C4
C5

(a) Latency

0 2 4 6 8 10 12 14 16 18 20 22

Hour

0.0

0.2

0.4

0.6

Fr
ac

tio
n

of
 m

is
si

ng
 s

am
pl

es

C1
C2
C3
C4
C5

(b) Fraction of missing samples

0 2 4 6 8 10 12 14 16 18 20 22

Hour

0

5

10

15

20

95
th

 lo
ss

 p
er

ce
nt

ile C1
C2
C3
C4
C5

(c) Loss

Fig. 5. Summarized time series for each cluster

z-score normalization to avoid that any feature dominates the
analysis due to scaling.

To investigate the meaning of each cluster we summarize all
time series assigned to each cluster considering three metrics:
latency, loss and amount of missing samples. To evaluate
the latency per cluster we apply a normalization obtained by
subtracting out the lowest value from each daily time series in
order to infer packet queuing times during congestion periods.

Figures 5(a), 5(b) and 5(c) show summaries of each metric
in all clusters. Users of cluster C1 experience good quality of
service (low latency, low loss, low unavailability). Cluster C2
contains time series with moderate losses but low unavailabil-
ity and low latency. Cluster C3 contains time series with high
latency and moderate losses. The time series of cluster C4 are
from users that experience high unavailability periods, while
cluster C5 contains time series with both high unavailability
and loss rates. Note that we cluster UD pairs, i.e., daily
measurement time series of different users. Therefore, a user
can be assigned to different clusters at different days, as we
show in the next section.

2) Spatial correlation: To identify periods experiencing
performance degradation affecting multiple geographically
“close” users, we spatially correlate the clustering results
and ISP topology information. The spatio-temporal correlation
algorithm assumes that the routes between home-routers and
the measurement server are static during each measurement
interval. Consequently, the network topology can be repre-
sented by a tree structure at each measurement interval. We
expect clients that share the same ISP network paths should
exhibit similar performance inside the ISP network in terms
of congestion and failures. We analyze the fraction of users
assigned to each cluster at each day of the dataset.

We exemplify the results of the spatial correlation for a
specific region of the network. Similar results are obtained for
other network regions. Figure 6 shows the daily fraction of UD
pairs per cluster. Usually the majority of users are associated
with cluster C1 and few losses are observed. However a large
number of users are associated with cluster C4 at day 10, when

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Day

0.0

0.5

1.0

Fr
ac

tio
n

of
 U

D
s

C1
C2
C3
C4
C5

Fig. 6. Spatial correlation example

multiple time series have missing samples between 1 P.M. and
5 P.M. Another type of event detected by the spatial correlation
occurs on day 17, when periods with missing samples between
6 A.M. and 8 A.M. and high losses between 7 P.M. and 9 P.M.
were observed and several users are assigned to cluster C5.

The framework results suggests a measure of quality for
each region of the network based on the number of UD
pairs assigned to the cluster representing good performance
(cluster C1). Figure 7 presents the clustering results in two
different portions of the network. It can be seen that one
region consistently presents a high fraction of users associated
with better performance (Figure 7(a)), although performance
degradation periods can be identified on days 10 and 33. At
the same time, Figure 7(b) shows a region where no users are
assigned to cluster C1.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Day

0.0

0.5

1.0

Fr
ac

tio
n

of
 U

D
s

C1
C2
C3
C4
C5

(a) Region A

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Day

0.0

0.5

1.0

Fr
ac

tio
n

of
 U

D
s

C2
C3
C4
C5

(b) Region B

Fig. 7. Network performance obtained from residual clustering

VIII. CONCLUSION

In this work, we propose a method based on tensor decom-
position to detect network anomalies. We apply the PARAFAC
method and extract the residuals obtained by the model in
order to detect abnormal behavior. We also propose a new
online tensor decomposition method that efficiently extracts
the normal subspace and detects anomalies with good per-
formance. We show the flexibility of our method, using two
different applications as examples. First, we consider DDoS
attack detection using supervised techniques. The results show
that we can obtain high values for Detection Accuracy and
Precision using different classifiers. In addition, our method
has better performance and robustness when compared to
PCA. Then, we employ the proposed methodology with unsu-
pervised techniques to identify periods within which network
performance deteriorates and show how QoS problems can be
detected on different parts of an ISP’s topology.

Ackowledgments: This work was partially supported
by grants from CNPq, CAPES, FAPERJ and by
international cooperative grants from MCTIC-FAPESP,
NSF EAGER 1740895/MCTIC-RNP and Army Research
Labs (ARL) No.W̃911NF-17-2-0196.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[2] S. Fadilpašić. (2019) AWS hit by DDoS attack. [Online]. Available:
https://tinyurl.com/itpronews

[3] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in Comp. Comm. Review, vol. 34, no. 4, 2004, pp. 219–230.

[4] ——, “Mining anomalies using traffic feature distributions,” in ACM
computer communication review, vol. 35, no. 4, 2005, pp. 217–228.

[5] R. Bro, “Parafac. tutorial and applications,” Chemometrics and intelli-
gent laboratory systems, vol. 38, no. 2, pp. 149–171, 1997.

[6] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incre-
mental tensor analysis: Theory and applications,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 2, no. 3, p. 11, 2008.

[7] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Trans. Net. and Service Manag., vol. 16, no. 3, pp. 800–813, 2019.

[8] K. Maruhashi, F. Guo, and C. Faloutsos, “Multiaspectforensics: Pattern
mining on large-scale heterogeneous networks with tensor analysis,” in
Advances in Social Networks Analysis & Mining, 2011, pp. 203–210.

[9] K. Xie, X. Li, X. Wang, G. Xie, J. Wen, and D. Zhang, “Graph
based tensor recovery for accurate internet anomaly detection,” in IEEE
INFOCOM 2018, 2018, pp. 1502–1510.

[10] F. Silveira, C. Diot, N. Taft, and R. Govindan, “Astute: Detecting a
different class of traffic anomalies,” ACM SIGCOMM CCR, vol. 41,
no. 4, pp. 267–278, 2011.

[11] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS
detection for consumer IoT devices,” IEEE Security and Privacy Work-
shops, pp. 29–35, 2018.

[12] G. Mendonça, G. H. A. Santos, E. d. S. e Silva, R. M. Leão, D. S.
Menasché, and D. Towsley, “An extremely lightweight approach for ddos
detection at home gateways,” in 2019 IEEE International Conference on
Big Data (Big Data). IEEE, 2019, pp. 5012–5021.

[13] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[14] H. Kasai, W. Kellerer, and M. Kleinsteuber, “Network volume anomaly
detection and identification in large-scale networks based on online time-
structured traffic tensor tracking,” IEEE Transactions on Network and
Service Management, vol. 13, no. 3, pp. 636–650, 2016.

[15] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the
parafac decomposition of a third-order tensor,” IEEE Transactions on
Signal Processing, vol. 57, no. 6, pp. 2299–2310, 2009.

[16] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online cp decompositions for higher order tensors,” in ACM SIGKDD
Knowledge Discovery and Data Mining, 2016, pp. 1375–1384.

[17] R. A. Harshman, “”How can i know if it’s real?” a catalogue of
diagnostics for use with three-mode factor analysis,” Research methods
for multimode data analysis, pp. 566–591, 1984.

[18] U. Lorenzo-Seva and J. M. Ten Berge, “Tucker’s congruence coefficient
as a meaningful index of factor similarity,” Methodology, vol. 2, no. 2,
pp. 57–64, 2006.

[19] E. Auchard, “German Internet outage was failed botnet attempt: report,”
https://tinyurl.com/reutersoutage, Reuters.

[20] N. Blenn, V. Ghiëtte, and C. Doerr, “Quantifying the spectrum of
denial-of-service attacks through Internet backscatter,” in Conference on
Availability, Reliability and Security, 2017, p. 21.

[21] S. Sundaresan, W. de Donato, N.Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband internet performance: A view from the
gateway,” in ACM SIGCOMM 2011, 2011.

