Node Embedding via Adaptive Similarities

Dimitris Berberidis and Georgios B. Giannakis
Dept. of Electrical & Computer Engineering, University of Minnesota
{bermp001,georgios}@umn.edu

ABSTRACT

Node embedding is faced with several important challenges. Practi-
cal node embedding methods are required to cope with real-world
graphs that arise from a variety of different domains, with inher-
ently diverse underlying processes and similarity structures. On
the other hand, much like PCA in the feature domain, node embed-
ding is an inherently unsupervised task; in lack of metadata used
for validation, practical methods may require standardization and
limiting the use of tunable hyperparameters. Finally, node embed-
ding methods are faced with maintaining scalability in the face
of large-scale real-world graphs of ever-increasing sizes. In the
present work, we propose an adaptive node embedding framework
that adjusts the embedding process to a given underlying graph, in
a fully unsupervised manner. To achieve this, we adopt the notion
of a tunable node similarity matrix that assigns weights on paths of
different length. The design of the multilength similarities ensures
that the resulting embeddings also inherit interpretable spectral
properties. An algorithmic scheme is proposed for training the
model parameters effieciently and in an unsupervised manner. We
perform extensive node classification, and clustering experiments
on many real world graphs from various domains, and compare
with state-of-the-art scalable and unsupervised node embedding
alternatives. The proposed method enjoys superior performance in
many cases, while also yielding interpretable information on the
underlying structure of the graph.!
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1 INTRODUCTION

Unsupervised node embedding is an exciting field, in which a sig-
nificant ammount of progress has been made in recent years [10].
The task consists of mapping each node of a graph to a vector in
a low-dimensional Eucledian space. The main goal is to extract
features that can be utilized downstream in order to perform a va-
riety of unsupervised or semi-supervised learning tasks, i.e. node
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classification, link prediction, or clustering. In theory, the original
graph will contain at least as much information as the resulting
embedded vectors. Nevertheless, an appropriate embedding can
boost the performance of certain learning tasks by allowing us to
work with the more “friendly” and intuitive Eucledian represen-
tation, and deploy mature and widely implemented feature-based
algorithms such as SVMs, logistic regression, and K-means.

Early embedding work mostly focused on a structure-preserving
dimensionality reduction of feature vectors (instead of nodes); see
for instance [15-19]. In this context, graphs are constructed from
pairwise feature-vector relations and are treated as representations
of the manifold that data lie on; embedded vectors are then gen-
erated such that they preserve the corresponding pair-wise prox-
imities on the manifold. More recently, the task of embedding the
nodes of a graph has attracted considerable attention in different
fields, and is often posed as the factorization of a properly defined
node similarity matrix [20-27]. Efforts in this direction mostly fo-
cus on designing meaningful similarity metrics to factorize. While
some methods (e.g. [20, 22]) maintain scalability by factorizing
similarity matrices in an implicit manner (i.e., without explicitly
forming them) , others such as [23, 24] form and/or factorize dense
similarity matrices that scale poorly to large graphs. Another line
of work opts to gradually fit pairs of embedded vectors to existing
edges using stochastic optimization tools [28, 30]. Recently, stochas-
tic edge-fitting has been generalized to implicitly accommodate
long-range node similarities [29]. Meanwhile, other works have
approached node embeddings using random-walk-based tools and
concepts that originate in natural language processing [31-33]; see
also related works on embedding of knowledge graphs [34, 35].
Methods that rely on graph convolutional neural networks and
autoencoders have also been proposed for node embedding [38, 39].
Moreover, a gamut of related embedding tasks are gaining traction,
such as embedding based on structural roles of nodes [36, 37], super-
vised embeddings for classification [7], and inductive embedding
methods that utilize multiple graphs [6].

We identify the following challenges that need to be addressed in
order to design embedding methods that are applicable in practice:

¢ Diversity. Since graphs that arise from different domains are
generally characterized by a diverse set of properties, there
may not be a “one-size-fits-all” node embedding approach.

¢ No supervision. At the same time, node embedding may
need to be performed in a fully unsupervised manner, that
is, without extra information (node attributes, labels, or
groundtruth communities) to guide the parameter tuning
process with cross-validation.

o Scalability. While some real world networks are of mod-
erate size, others may contain massive numbers of nodes
and edges. Thus, strict computational constrains need to be
incorporated into the design of node embedding methods.
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Targeting at the three aforementioned challenges, we propose a scal-
able node embedding framework that is based on jointly factorizing
and learning an adaptive node similarity matrix that places weights
on node proximities of different orders. The learning approach is
unsupervised, and uses only the graph structure. Experiments in-
dicate that the proposed similarity model is expressive enough to
effectively embed real-world graphs from diverse domains and with
different structures and properties. 2

2 PROBLEM STATEMENT AND MODELING

Given an undirected graph G := {V, E}, where V is the set of N
nodes, and & C V X V is the set of edges, the task of node em-
bedding boils down to determining f(-) : 'V — R¢, where d < N.
Thus, we seek for a functions that maps every node of the graph
to a vector in the d—dimensional Eucledian space; typically, the
embedding is low-dimensional with d being much smaller than the
number of nodes. Since the number of node on a graph is finite,
instead of finding a general f(-) (induction), one may pose the em-
bedding task in its most general form as the following minimization
problem wrt to the embedded vectors

{e]ticy =arg min > €(sg(viv))s8(ei ), (1)
€ijiev ijeV

where £(-,-) : RXR — Risaloss function; sg(-,-) : VXV — Risa
similarity metric defined over every pair of nodes of the graph; and,
sg(+) : RExR? — R is a similarity metric defined over every pair
of vectors in the d—dimensional Eucledian space. Thus, according to
(1), node embedding can be viewed as the design of vectors {e;cy}
that successfully “encode” a certain notion of pairwise similarities
between nodes.

2.1 Embedding as matrix factorization

Starting from the generalized framework in (1), one may arrive at
more concrete approaches by imposing specifications to sg(-, -),
sg(:,+), and £(, -). Thus, let us specify the node similarity metric to
be symmetric, i.e. sg (vi,vj) = Sg(vi, vj) Yv;,vj € V. Furthermore,
let the loss function be quadratic £(x, x") = (x — x”)%, and the vector
similarity be the inner product sg(e;, ej) = elTej. Using the above
specifications, (1) becomes equivalent to the following symmetric
matrix factorization problem

E* =arg min ||Sg — EET |2 )
gEeRNxd g F

RN*N js the symmetric similarity matrix with [S g]

]T

whereSg € =

[Sg]j’i = 5g(vi,vj), and matrix E = [e; ... ey ]" concatenates all
the node embeddings as rows. A well known way to obtain an ana-
lytical solution to (2) is via the singular value decomposition (SVD)
of the similarity matrix, thatis Sg = UxVT, where U and V are the
N X N unitary matrices containing the left and right singular vec-
tors, and X is diagonal with non-negative singular values sorted in
decreasing order; in our case, U = V since Sg is symmetric. Given
the SVD of Sg, it can be shown [13] that E* = Ud\/Z_, where X
contains the d largest singular values and U, the corresponding
singular vectors. Fortunately, U; and X ; can be obtained directly,
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without computing the full SVD, via a process known as the trun-
cated SVD that has reduced complexity. Moreover, if Sg is sparse,
(2) can be solved even more efficiently, with complexity that scales
with the number of edges. One example of such sparse similari-
ties is the adjacency matrix itself A, i.e., using Sg = A. In general,
embeddings can achieve computational scalability by avoiding the
explicit construction of a dense Sg. In fact, simply storing Sg into
working memory becomes prohibitive even for graphs of moder-
ate sizes (N > 10°). In the following section, we design a family
of dense similarity matrices that (among other properties) can be
decomposed implicitly, at the cost of input sparsity.

2.2 Multi-length node similarities

Having reduced the node embedding problem to the one in (2), it
remains to specify the node similarity metric that gives rise to Sg.
Towards this directions, and to maintain expressibility, we will aim
at designing a parametrized model for Sg, where each pairwise
node similarity is given as

K
sg(ui,vj;0) = Z Ors(vi,v), k), s.t. 0 € SK, 3)
k=1

where SK := {6 e RX : 0 > 0,071 = 1} is the K—th dimensional
probability simplex, and s(v;, vj, k) is a similarity function that
depends on all k—length paths (of possibly repeated nodes) that
start from v; and end in v; (or vice-versa). Thus, sg(, -; @) contains
all k—length (for k < K) interactions between two nodes, each
weighted with a non-negative importance score 6.

Let S be any similarity matrix that is characterized by the same
sparsity pattern as the adjacency matrix, that is

Si, js
Sij= { o

where s; ;’s denote the generic non-negative values of entries that
correspond to edges of G. Maintaining the same sparsity pattern
as A allows for the (i, j) the k—th power S to be interpreted as
a measure of influence between v; and v; that depends on all

k—length paths that connect them; that is, [Sk] - = s(v1, 09, k).
L]

(i.j))eé&

()E& )

For instance, selecting S = A is equivalent to u;ing the k—step
similarity s(v;, v, k) = |[{k —length paths connecting v; to vj}| [8].
Similarly, if S = AD~! where D = diag(lTA), then s(v;, vj, k) can
be interpreted as the probability that a random walk starting from
v;j lands on v; after exactly k steps, e.g., [24]. Thus, for an appro-
priately selected S that follows (4), tunable multi-length similarity
metrics in (3) can be collected as matrix entries in the form of a
power series, that is

K
Sg(0)= > O;S*, s.t. 0 e SK (5)
k=1

Upon, substituting (5) into (2) yields the tunable embeddings E*(0)
that depend on the choice of parameters 6. Moreover, from the SVD
S = UxU7, and given that UTU = I, it readily follows that

sk = uzkuT, (6)
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and by using (6) in (5) we obtain

K
> oz
k=1

Furthermore, the truncated singular pairs of Sg(6) conveniently
follows from that of S and thus only needs to be computed once.
Specifically, the truncated singular vectors and singular values are
given as Uy(0) = Uy and X 4(0) = Zle QkZZ respectively. Thus,
if § € Sym; the solution to (2) with S parametrized by 0 is simply
given as

Sg(0)=U U7, s.t. 6 € SK. )

E*(0) = UgvZ4(0) ®
Note that this holds only for non-negative parameters, i.e. 0y >
0V k.If 6 < 0foratleastone k € [1, K], then the diagonal elements
of X ;(0) cannot be guaranteed to be non-negative and sorted in
decreasing order, which would cause (Uy(0),Z;(0)) to not be a
valid SVD pair. Finally, having narrowed down Sg to belong to the
parametrized family in (5), we arrive at selecting an appropriate
sparsity-preserving S in order to obtain a solid model.

2.3 Spectral multi-length embeddings

While any symmetric S that obeys (4) can be used for constructing
multi-length similarities (cf. (5)), certain desirable properties may
materialize by properly designing S. We begin by recalling the
following identity

seP}, = s=usu’ =uauU’, )

where P;\'[ denotes the space of N X N symmetric positive definite
(SPD) matrices, and A is the diagonal matrix that contains the
eigenvalues of S sorted in decreasing order. According to (9), for
SPD matrices, the SVD is identical to the eigenvalue decomposition
(EVD). Thus, if S € P, the solution to (2) is also given as (cf.(8))

E*(0) = UgyA4(0), (10)

where Uy are also the first d eigenvectors of S,and A4(6) = ZIk(:l QkAZ
is the K—order polynomial of its eigenvalues defined by 6.
Consider now that we specify S to be

_1 ~1/2 xTy-1/2
S—2(1+D AD ) (11)

Clearly, (11) is SPD; this follows upon recalling that A; (D_I/ZAD_I/Z) €

[-1,1] V i, and from identity shifting and scaling, it readily follows
that 4;(S) € [0,1] V i. More importantly, it can easily be verified
that the first d eigenvectors of S are the same as the eigenvectors
that correspond to the d smallest eigenvalues of the symmetric
normalized Laplacian matrix

Loym := 1-D™/2AD™V/2, (12)

The latter are known to contain useful information on cluster struc-
tures of different resolution levels, a key property that has been
succesfully used by spectral clustering [11]. Intuitively, assigning
weight 0 to k—length paths in the node similarity in (5), is equiva-
lent (10) to shrinking the d—dimensional spectral node embeddings
(rows of Uy) coordinates according to A;4(0). Interestingly, assign-
ing large weights to longer paths (K > 1) is equivalent to fast
shrinking of the coordinates that correspond to small eigenvalues
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and capture the fine-grained structures and local relations, and
leads to a coarse, high-level cluster description of the graph.

3 UNSUPERVISED SIMILARITY LEARNING

For a given graph, we must select a specific 8 € SK without super-
vision. Let us begin by assuming that for a given set of nodes, an
adjacency matrix A is generated according to a distribution f4(A)
defined over the space of all possible adjacency matrices. We define
the “true” underlying similarity between nodes v; and v; to be

s*(vi,vj) :=Pr{(i,j) € &} = EfA [Ai‘j] R

which is the probability that the two nodes are connected. The
“true” similarity matrix is thus given as the expected adjacency
matrix $* := Ef, [A]. Since Sg(6) = Sg(A; 0) essentially acts as an
estimate of S* from one graph realization (A), one is motivated to
fit the parameters 0, ideally by minimizing an expected cost as

0" = in Er, [€(S*,Sg(A;0 13
arg min Ey, [¢(S".3¢(A;0))] (13)

Unfortunately, we only have one realization A of f4(-) which means
that, in the absence of some prior knowledge, the best approxima-
tion of S* that we can obtain is the adjacency matrix itself, that is
S* ~ A. Using this approximation yields

enggan (A,Sg(A;0)). (14)

While straightforward, (14) yields embeddings with limited gen-
eralization capability. Simply put, regardless of the choice of £(-),
solving (14) amounts to predicting a set of edges by tuning a simi-
larity metric that is generated by the same set of edges.

To mitigate overfitting and promote generalization of the similar-
ity metric, and of the resulting embeddings, we explore the folowing
idea. Assume that we are given a pair Ay, Ay of adjacency matrices
both drawn independently from f4(-). In that case, we would be
able to use one as approximation of S* ~ A1, and the other to form
the multilength similarity matrix Sg(Az; 0); parameters 6 can then
be learned by solving

min ¢ (A1,Sg(A2;0)) . 15
OESK(lg(Z)) (15)

Since separate samples are not available, we approximate the above
process by randomly extracting part of A and approaching (15) as

min £g (A,Sg(A *S€;0)), 16
Jin £s (A, Sg( ) (16)
where S € {1,...,N}? is a subset of all possible pairs of nodes

with |S| = Ns, and S€ is an N X N binary section matrix with
Sl.c’j =0if{i,j} € S and Sl.c’j = 1 otherwise; furthermore, £5(:, ) in
(16) denotes cost (-, -) applied selectively only for the entries of the
matrix variables that belong to S. Here, such that S = St U S™,
withS*T € & being as subset of the edgesand S~ € {1, ..., N}2 \&E
a subset of node index tuples that are not connected (non-edges).
To balance the influence of existing and non-existing edges, we use
subsets of equal cardinality, that is |S*| = |[S™| = Ny /2.

To arrive from the unsupervised similarity learning framework
(16) to an applicable method, it remains to specify two modular sub-
systems: one responsible for sampling edges, and one that specifies

{(-,-) and finds 6" by solving (16).
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3.1 Edge sampling

The choice of sampling scheme for S plays an important role in the
overall performance of the proposed adaptive embedding frame-
work. Ideally, edge sampling should satisfy the following criteria

e Sample S™ should be representative of the graph.

e Edge removal should inflict minimal perturbation.

o Edge removal should avoid isolating nodes.

o Simplicity and scalability.

To strike a good balance between the above objectives, we popu-
late S* by sampling edges according to the following procedure:
first, a node v; is sampled uniformly at random from V; then, a
second node vy is sampled uniformly from the neighborhood set
Ng(v1) of v1. The selected edge is removed only if both adjacent
nodes have degree larger than one. Non-edges S~ are obtained by
uniform sampling without replacement over {1,...,N}?\ &. The
overall procedure is summarized in Algorithm 2. For Ny < N, sam-
pling probabilities remain approximately unchanged despite the re-
movals, since the probability of selecting the same node is relatively
small. Thus, one may approximate Pr{e; = (i,j)} ~ Pr{ey = (i,))},
and assuming for simplicity that d; > 1Vi, it follows that

Priep = (i./)} = Pr{v1 = i,vz = j} + Pr{vy = j, vz = i}

= Pr{vz = ilvy = j} Pr{v = j}

+ Pr{vy = jlvg = i} Pr{vy =i}

:li+ilxu, (17)

diN d;i N did;

meaning that edge e = (i, j) is removed with probability that is
proportional to the harmonic mean of the degrees of the nodes
that it connects. As shown in [9], the perturbation that the removal
of edge e = (i, ) inflicts on the spectrum of an undirected graph
is proportional to d;dj; that is, removing edges that connect high-
degree nodes leads to higher perturbation. Thus, Algorithm 2 tends
to inflict minimal perturbation by sampling with probability that
is inversely proportional to d;d; for d;, d; > 1; this follows the
fact that the denominator of (17) dominates its numerator for large
degrees. On the other hand, for smaller d; and d;, the numerator
ensures relatively high probabilities for moderate-degree nodes.
The combination of the two effects produces edge samples that are
fairly representative of the graph, while inflicting low perturbation
when removed.

3.2 Parameter training

Subsequently, for a given sample S, we can obtain the correspond-
ing optimal parameters as (cf. (16))

02 = arg emirk Z £ (Ai’j,sg—(ui,vj;e)) (18)
€St Tes

where G~ = (V, &\ 8*) is the original graph with the randomly
sampled subset ST of edges removed.

Instead, we will rely on the fact that the proposed embeddings
are smooth and differentiable wrt to 0 (cf. (10)), to develop a solution
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Algorithm 1 ADAPTIVE SIMILARITY EMBEDDING

Input: G Output: E

// Training phase
=0
while |©] < Ty do
G, 8", 8™ =SampLE EDGES( G )
0’3 = TRAIN PARAMETERS( G, ST, 87)

©=0Ub%
end while
0" =T Yoco 0
// Embedding phase
$=1(1+D/2AD1/2)
S =UgZqU}
240" = $K_ 63k

return E = U +/24(0%)

Algorithm 2 SampPLE EDGEs

Input: G Output: G~,S*, S~

// Sample edges
St=0,6" =6
while |ST| < Ng/2 do
Sample v; ~ Unif (V)
if [Ng-(v1)| > 1 then
Sample vy ~ Unif (Ng-(v1))
if |[Ng-(v2)| > 1 then
St=8%tu (’(Jl, ’Uz)
G =G \(v1,v2)
end if
end if
end while

// Sample non-edges
S =0
while |S7| < Ns/2 do
Sample (v1, v2) ~ Unif (V X V)
if (v1,v2) ¢ & then
S™ =8 U (v1,02)
end if
end while
return G, S*, S™

Algorithm 3 TRAIN PARAMETERS

Input: G, S*, S~ Output: 0

S =1 (1+D1/2AD"12)

$ =UgxaU)

S=8tus~

Form Xg = {X(i,j)}(i,j)eS as in (20)
return Og = SiMPLEXSVM( Xg,S*,87)
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that allows for selecting arbitrarily large N, using the approxima-
tion

sg-(ui,vj;0) = sg(e; (0, e]T(G)) = (ei_(e))T eJT(G)

-_ —_— T - —
- (\/zd(e) u,.) \/zd(o) u;
T e _
= (uj) Zd(O)uj = xlTJ 0 (19)
where
- AT K
xi,jz(ui *uj) i (20)
and
o1 012 O'IK
K _ :
X4 = o 2 K
d-1 944 %d_1
oy ot ... o

Conveniently, x; j’s act as features over every possible pair of nodes,
which when linearly combined with weights € to produce similari-
ties; this allows us to approach (18) using well-understood learning
and optimization tools. For instance, let us define £(-) to be the
Hinge loss {(y, f) := max(0, e — yf), and, upon defining targets
yi,j = 2* Ajj — 1 such that y; ; € {1, 1}, (18) can be equivalently
expressed as

0 = arg min Z max(0, e —y; jx; ; ) + A6 (21)
0eS" es

where A > 0 is the regularization parameter of the {3 regularization
typically used to improve the generalization of SVMs. To solve
our variant of simplex-constrained SVM’s (cf. (21)), we employ
the projected-gradient descent [3] approach where projection onto
SK is performed with O(K log K) complexity as described in [14].
The overall parameter learning procedure for a given sample is
summarized in Algorithm 3.

In general, if the runtime or computational budget allows, the
sampling and training process described in the last two sections
can be repeated for T times to obtain different Gg’s, which can
then be averaged in order to reduce their variance. In practice,
this may not be necessary if N; is large enough, which will yield
a near-deterministic 6. The overall proposed adaptive-similarity
embedding (ASE) framework is summarized in Algorithm 1.

Complexity. The computational complexity of ASE is dominated
by the cost of performing the truncated SVD of S in the training
as well as testing phaze of Algorithm 1. Relying on the sparsity
(|&] < N?) and symmetricity of S, the Lanczos algorithm followed
by EVD of a tridiagonal matrix yield the truncated SVD in a very
efficient manner. Provided that d < N, the decomposition can
be achieved in O(|E|d) time and using O(Nd) memory. Therefore,
for the Ty > 1 training rounds and single embedding round in
Algorithm 1, the total complexity is O((Ts + 1)|E|d).

4 EXPERIMENTAL EVALUATION

The present section reports extensive experimental results on a
variety of real-world networks 3. The aim of the experimentation
was twofold. First, to determine and quantify the quality of the

3https://snap.stanford.edu/data/index.html
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Table 1: Network Characteristics

Graph |V] |E] |Y|  Density
PPI (H. Sapiens) 3,890 76,584 50 1072

Wikipedia 4,733 184,182 40 1.6X 1072
BlogCatalog 10,312 333,983 39 6.2x 1073
ca-CondMat 23,133 93,497 - 3.5%x 1074
email-Enron 36,692 183,331 - 2.7%x 1074

CoCit 44,312 195,362 15 2x1074
com-Amazon 334,863 925,872 - 1.7x107°

proposed ASE embeddings for different downstream learning tasks.
Second, to analyze and interpret the resulting embedding parame-
ters for different networks.

Methods. Experiments were run using the following unsupervised
and scalable embedding methods: a) ASE. Our proposed adaptive
similarity embedding. Based on observations made in Sections 3,
and to retain optimization stability, we set the maximum number
of steps to K = 10. We also use the default SVM regularizer A = 1,
and sampling Ns/2 = 1000 allowed for a single learning round

s = 1 since parameters are learned with small enough variance.
We made our implementation of ASE freely available 4. b) VERSE
[29]. This is a scalable framework for generating node embeddings
according to a similarity function by minimizing s KL-divergence-
objective via stochastic optimization. We used the default version
with similarity (PPR with & = 0.85), as implemented by the code °
provided by the authors. ¢) Deepwalk [32]. This approach learns
an embedding by sampling random walks from each node, apply-
ing word2vec-based learning on those walks. We use the default
parameters described in the paper, i.e., walk length t = 80, number
of walks per node y = 80, and window size w = 10, and the scalable
C++ implementation ® provided in [29]. d) HOPE [22]. This SVD-
based approach approximates high-order proximities and leverages
directed edges. We report the results obtained with the default
parameters, i.e, Katz similarity as the similarity measure with f
inversely proportional to the spectral radius. e) LINE [28]. This ap-
proach learns a d—dimensional embedding in two steps, both using
adjacency similarity. First, it learns d /2 dimensions using first-order
proximity; then, it learns another d/2 features using second-order
proximity. Last, the two halves are normalized and concatenated.
We obtained a copy of the code 7 and run experiments with total
T = 1010 (although T = 10° yielded the same accuracy for smaller
graphs) samples and s = 5 negative samples, as described in the
paper. f) Spectral. This the first d eigenvectors of D~ 1/2AD"1/2,
This baseline was developed for clustering [11], and has also been
run as a benchmark for node embeddings [33]. In our case, spec-
tral embedding is of particular interest since it can be obtained by
column-wise normalization of the embeddings generated by the pro-
posed method. We excluded comparisons with Node2vec [33] and
AROPE [8] because they use cross-validation for hyper-parameter

*https://github.com/DimBer/ASE-project
Shttps://github.com/xgfs/verse
®https://github.com/xgfs/deepwalk-c
https://github.com/tangjianpku/LINE
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Table 2: Inferred parameters and interpretation

Graph 01 0 03 04 05 Os 67 Os Oy 610 range strength
PPI (H. Sapiens) 0.00 0.14 0.31 0.29 0.21 0.04 0.00 000 0.00 000 medium medium
Wikipedia 0.00 0.00 0.00 0.00 0.00 000 0.00 0.01 037 0.62 long strong
BlogCatalog 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short very strong
ca-CondMat 0.55 0.33 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong
email-Enron 0.24 0.25 0.18 0.14 0.1 0.06 0.02 0.00 000 0.00 medium weak
CoCit 0.61 0.33 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong
com-Amazon 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 short very weak
PPI (H. Sapiens) BlogCatalog Wikipedia CoCit
—o—o oo 00— * :
18 NN N
40 - ~
77 — - V.\E«o—k,,/&f+71/+71
. 35 -| o/./’
8:7: —
15 | .
6
14 |
5 |
7 s 10 2 4 s s oo ! 2 4 6 3 10 2 4 6 8 10
Order (k) Order (k) Order (k) Order (k)

Figure 1: Micro (blue) and Macro (

) Fy scores for the four labeled graphs, when the “pure” k—order S is used for embed-

ding, given as a function of k. Red shade denotes the k’s where ASE assigned non-zero 0;’s; see also Table 2.

selection. Thus comparing Node2vec and AROPE to methods such
as LINE, Deepwalk, HOPE, VERSE, and EMB that all operate with
fixed hyperparameters in a fully unsupervised manner would be
unfair. We also excluded comparisons with GraRep [24] and M-
NMF [23] due to their limited scalability ( O(N?d) computational
and O(N?) memory complexity). Our experiment setting follows
the one in [29]. All methods are set to embed nodes to dimension
d = 100. Using the resulting embeddings as feature vectors, we
evaluated their performance in terms of node classification and link
prediction accuracy, and clustering quality. All experiments were
repeated 10 times and reported are the averaged results.

Interpretation of results. One interesting aspect of the proposed
ASE method, is that the inferred parameters 0" from the first phase
of Algorithm 1 can be used to characterise the underlying similarity
structure of the graph, and the way that nodes “interact” over dif-
ferent path lengths (short, medium and long range). The “strength”
of interactions is inferred by how uniform the coefficients of * are
and depend on the value of 1. Since the default value was A = 1
for all graphs, the results can be interepreted as relative interac-
tion strengths between them. The resulting 8*’s for all graphs are
collected in Table 2. It can immediatly be observed that the type
of node interactions varies significantly among different graphs,
with similar behavior for graphs that belong to the same domain.
Specifically, ca-CondMat, and CoCit that belong to the citation/co-
authorship domain all show relatively strong interactions of short
range. BlogCatalog shows very strong short-range similarities of
only one-hop neighborhood interactions among bloggers. On the
other hand,the Wikipedia word cooccurrence network shows a

strong tendency for long-range interactions; other graphs, such as
the PPI protein interaction network stay on the medium range.
Node classification. Graphs with labeled nodes are frequently
used to measure the ability of embedding methods to produce
features suitable for classification. For each experiment, nodes were
randomly split to a training set and a test set. Similar to other works,
and to cope with multi-label targets, we fed the training features and
labels into the one-vs-the-rest configuration of logistic regression
classifier provided by the sklearn Python library. In the testing
phase, we sorted the predicted class probabilities for each node in
decreasing order, and extracted the top-k; ranking labels, were k; is
the true number of labels of node v;. We then computed the Micro-
and Macro-averaged F; scores of the predicted labels. Apart from
comparisons to alternative embedding methods, node classification
can reveal whether available node labels (metadata) are distributed
in a manner that matches the node relations - interactions that are
inferred by ASE. To reveal this information, we obtain embeddings
for every length k € [1, 10] by ignoring the training phase and
“forcing” 6" = ey, in Algorithm 1, and then using each embedding
for classification with 10% labeling rate. Figure 1 plots Micro and
Macro F; for all labeled graphs as a function of k, while red shade
is placed on the lengths where the unsupervised ASE parameters
0" are non-zero (cf. Table 1). As seen in Fig. 1, the accuracy on the
four labeled graphs evolves with k in a markedly different manner.
Nevertheless, ASE identifies the trends and tends to assign non-
zero weights to lengths that yield a good trade-off between Micro
and Macro Fj. This is rather remarkable considering the fact that
0" depends only on the graph, since ASE does not use labels for
training or validation.
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Figure 2: Micro (upper row) and Macro (lower row) F; scores that different embeddings + logistic regression yield on labeled
graphs, as a function of the labeling rated (percentage of training data)
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Figure 3: Average conductance of different embeddings used
by kmeans for clustering, w.r.t number of clusters.

We also compared the classification accuracy of ASE embed-
dings with those of the alternative embedding approaches, with
results plotted in Fig. 2. The plots for some method-graph pairs are
not visible due to values being too low. While performance varies
among graphs, ASE adapts to each graph and yields consistently
reliable embeddings, with accuracy that in most cases reaches or
surpasses that of state-of-the-art methods, especially in terms of
Macro F;. The two exceptions are the Macro F; in CoCit, and Micro
F; in Wikipedia, where VERSE and HOPE being more accurate
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Figure 4: Runtime of various embedding methods across dif-
ferent graphs

respectively. Interestingly, HOPE achieving high Micro F; and low
Macro Fy in Wikipedia is in agreement with the findings in Fig. 1,
combined with the fact that HOPE focuses on longer paths.

Node clustering. Finally, the embedded vectors were used to clus-
ter the nodes into different communities, using the sklearn library
K-means with the default K-means++ initialization [12]. We evalu-
ate the quality of node clustering with conductance, a well-known
metric for measuring the goodness of a community [5]; conduc-
tance is minimized for large, well connected communities that are
also well separated from the rest of the graph. Each plot in Fig. 3
gives the average conductance across communities, as a function
of the total number of clusters. Results indicate that the proposed
ASE as well as the spectral clustering benchmark yield much lower
conductance compared to other embeddings. Apparently, since ASE
builds on the same basis of eigenvectors used by normalized spec-
tral clustering, it inherits the property of the latter to approximately
minimize the normalized-cut metric [11], which is very similar to
conductance. A closer look at the resulting clusters, reveals that
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clustering beased on VERSE, Deepwalk, LINE, and HOPE splits
graphs into very large communities of roughly equal size, cutting
a large number of edges in the process. This is an indication that
these methods are subject to a resolution limit, which is the inabil-
ity to detect well-separated communities that are bellow a certain
size [1]. On the other hand, Spectral (and the proposed ASE) sep-
arate the graph into a large-core component, and many smaller
well-separated communities, a structure that many large-scale in-
formation networks have been observed to have [5]. Indeed, the
conductance gap is smaller for BlogCatalog which is relatively
small and with less pronounced communities.

Runtime. Finally, we compared different embedding methods in
terms of runtime. Results for all graphs are reported in Fig. 4. All
experiments were run on a personal workstation with a quad-core
i5 processor, and 16 GB of RAM. For our proposed ASE, we provide
a light-weight yet highly portable implementation that uses the
SVDLIBC [41] library for sparse SVD. We also developed a more
scalable implementation that relies on (and requires installation of)
the SLEPc package [40]; this scalable version can perform large-
scale sparse SVD on multiple processes and distributed memory
environments using the message-passing interface (MPI). We used
the high-performance implementation for the five larger graphs,
and the portable-one for the five smallest ones. Evidently, ASE
and HOPE that are SVD-based are orders of magnitudes faster
than VERSE, Deepwalk, and LINE. The main factor that seems to
slow the latter down seems to be the large number of stochastic-
optimization iterations that these methods need to perform in order
to reach accurate embeddings. Nevertheless, it should be noted that
sampling based methods enjoy nearly-full parallelization and could
thus benefit more from highly multi-threaded environments. On the
other hand, methods that rely on SVD (and EVD) can benefit from
decades of research on efficiently performing the decomposition,
and a suite of stable and highly optimized software tools.
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