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ABSTRACT

The present work introduces PERDIF; a novel framework for learn-
ing personalized diffusions over item-to-item graphs for top-n rec-
ommendation. PERDIF learns the teleportation probabilities of a
time-inhomogeneous random walk with restarts capturing a user-
specific underlying item exploration process. Such approach can
lead to significant improvements in recommendation accuracy,
while also providing useful information about the users in the
system. Per-user fitting can be performed in parallel and very ef-
ficiently even in large-scale settings. A comprehensive set of ex-
periments on real-world datasets demonstrate the scalability as
well as the qualitative merits of the proposed framework. PERDIF
achieves high recommendation accuracy, outperforming state-of-
the-art competing approaches—including several recently proposed
methods relying on deep neural networks.
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1 INTRODUCTION

Top-n recommendation algorithms have become an indispensable
component of most e-commerce applications as well as content
delivery platforms. They work by providing ordered lists of items
attuned to the particular tastes of the users, as depicted by their past
interactions within the system. Item-based methods are among the
most popular approaches for top-n recommendation. Such methods
work by building a model that depicts the relations between the
items, which is then used to recommend new items that are related
to the ones each user has consumed in the past. Item-based methods
are known to achieve high top-n recommendation accuracy while
being scalable and easy to interpret [23]. The fact, however, that
they typically rely only on direct item-to-item relations can impose
limitations to their quality and make them brittle to the presence of
sparsity—leading to poor itemspace coverage and substantial decay
in performance [22]. A promising direction towards ameliorating
such problems involves treating item models as graphs onto which
random-walk-based techniques can then be applied to diffuse each
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user’s historic preferences across the itemspace [21]. Combining
random walks and item models allows for more effective use of
the information captured in the item model; considering direct as
well as transitive relations between the items, and also alleviating
sparsity related problems. However, the adopted mechanism for
propagating users’ preferences along the edges of the item graph
in existing approaches (i.e., the diffusion function, or the specific
landing probability distribution to be used) is the same for all users
in the system. This disregards potential variability in user behavior
and can impose limitations in recommendation accuracy.

To address such limitations, we introduce PERDIF; a novel
framework for learning Personalized Diffusions over item models
for top-n recommendation. PERDIF introduces an item exploration
stochastic process defined as a time-inhomogeneous random walk
with step-specific teleportation probabilities adapted to each user
directly from data. We show that by leveraging the properties of
multidamping processes [17] the original formulation of the core
optimization problem can be transformed to an equivalent form
amenable to efficient solutions. Per-user fitting can be done in par-
allel and very efficiently even for large datasets, thereby enabling
such task to be performed in real-time in practical settings'. A com-
prehensive set of experiments on real-world datasets illustrate the
potential of the proposed methodology in providing a framework
for improving the performance of item models. PERDIF achieves
high recommendation accuracy outperforming state-of-the-art com-
peting approaches—including several recently proposed methods
relying on deep neural networks. Besides its merits in terms of
recommendation quality, the diffusions learned by PERDIF can also
facilitate further analysis of the system. As an example we show
how one can use the learned diffusion coefficients to identify users
for which the model will most likely lead to poor predictions, at
training-time—thereby affording preemptive handling and inter-
ventions.

2 PERSONALIZED DIFFUSIONS

Definitions.Let U = {1,...,U}beasetof usersand I = {1,...,I}
a set of items. Let R € RUX! be the user-item interaction matrix;
i.e., the matrix whose ui-th element is 1 if user u has interacted
with item i, and 0 otherwise. Each user u € U is modeled by a
vector r}; e R! ie, the corresponding row of R; similarly, each
item i € 7 is modeled by a vector r; € RV which coincides with
the corresponding column of matrix R. We use the term item model
to refer to a matrix W € %1%/ whose ij-th element gives a measure
of proximity between items i and j. Finally, we use the term item
graph to refer to a graph G = (I, &) with adjacency matrix W.

!Parallel implementation of the method in C can be found here.
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2.1 Motivation

Imagine of a random walker “jumping” from node to node on an
item graph G with transition probabilities arising by the proximity
scores of an underlying item model. If the initial distribution of
this walker reflects the items consumed by a user u in the past,
the probability the walker “lands” on different nodes after K steps
provide an intuitive measure of proximity that can be used to rank
the nodes and recommend new items to user u accordingly. Specif-
ically, if P denotes the transition probability matrix of the walk,
personalized recommendations for each user u can be produced
e.g., by leveraging the K-step landing probability distributions of a
walk rooted on the items consumed by u:

r

w2 o P,y = e m
ulll
or by computing the limiting distribution of a random walk with
restarts on P, using wl as the restarting distribution. The latter
approach gives rise to the well-known personalized PageRank [24]
diffusion with teleportation vector wl and teleportation probability
1 — p. Its limiting distribution can be expressed as

my = lim wp (pP + (1 - play)”. @)

Such approaches were recently shown to increase recommendation
accuracy with respect to simply using the item model directly [21].
Personalization of the recommendation vectors in both schemes
comes from the use of wy; either as the ‘root’ distribution in (1), or
as the restarting distribution in (2). However, the underlying mech-
anism for propagating user preferences, wy,, across the itemspace
(i.e., the adopted diffusion function, or the choice of the K-step dis-
tribution) is fixed for every user in the system. From a user modeling
point of view this translates to the implicit assumption that every
user explores the itemspace in exactly the same way—overlooking
the fact that different users can have different behavioral patterns.

The fundamental premise behind this work is that the latent
item exploration behavior of the users can be captured better by
user-specific preference propagation mechanisms; thus, leading to
better recommendations. Motivated by this, we introduce PERDIF.

2.2 The PerDIF Item Discovery Process

Consider a random walker carrying a bag of K biased coins. The
coins are labeled with consecutive integers from 1 to K. Initially,
the random walker occupies the nodes of graph G according to
distribution . She then flips the 1st coin: if it turns heads (with
probability y), she jumps to a different node in the graph abid-
ing by the probability matrix P; if it turns tails (with probability
1 — p11), she jumps to a node according to the probability distribu-
tion w. She then flips the 2nd coin and she either follows P with
probability ps or ‘restarts’ to w with probability (1 — p2). The walk
continues until she has used all her K coins. At the k-th step the
transitions of the random walker are completely determined by the
probability the k-th coin turning heads (uj), the transition matrix
P, and the restarting distribution w. Thus, the stochastic process
that governs the position of the random walker over time is a time-
inhomogeneous Markov chain with state space the nodes of the
graph, and transition matrix at time k given by

G(ug) 2 P+ (1 - pp)ie’. ©)
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The node occupation distribution of the random walker after the
last transition can therefore be expressed as

' 2 w'G(u)G(kz) - Glyk). )
The above stochastic process aims to provide a simple model of
the item exploration procedure taking place when users interact
with a real system. At each step the users might either decide to
go forth and discover items related to the ones they are currently
considering, or return to their base and possibly go down alternative
paths. Different users, might explore the itemspace in different
ways; and their behavior might change throughout the exploration
session.

Given an item transition probability matrix P and a user-specific
restarting distribution wy,, our goal is to find a set of probabilities
Uy = [,ul, cees pK] so that the outcome of the aforementioned item
exploration process yields a meaningful distribution over the items
that can be used for recommendation.

2.3 Learning the diffusions

For each user u we randomly sample one item she has interacted
with (henceforth referred to as the ‘target’ item) alongside 7eg
unseen items, and we fit g;, so that the node occupancy distribution
after a K-step item exploration process rooted on wy, (cf (4)) yields
high probability to the target item while keeping the probabilities
of the negative items low. Concretely, upon defining a vector h,, €
Rt which contains the value 1 for the target item and zeros for
the negative items, we learn p, by solving

minimize [l G(u1) - - Gy )Ey — hy||2
py €RK

subject to  p; € (0,1), Vie [K]

where p; = [py];, Vi, and Ey, is a (I X (tpeg + 1)) matrix designed to
select and rearrange the elements of the vector . G(u1) - - - G(ug)

according to the sequence of items comprising h,,. Upon obtaining
Uy, personalized recommendations for user u can be computed as

7y = w3 Gln) + Glk). ©
Due to the multiplicative dependencies among the optimization
variables, problem (5) appears to be difficult to tackle—especially as
the value of K gets larger. Nevertheless, by leveraging the properties
of G the above non-linear optimization problem can be solved
efficiently.

THEOREM 2.1. The optimization problem (5) is equivalent to
minimize [|¢(pu) SuEu ~ hy |3
¢(Pu)EA++ﬂ

where AKF! = {x:x"1 = 1,x > 0} and

ol 1—-pk
Uu —
wlP pux(1 = pg-1)

Tp2 prpK-1(1 — pig—2)
Su = w“P ,¢u = ¢(Ilu) 2 . .

y cee 1-—
wZP K BK o p2(1 = )
T
Proor. We will make use of the following identity the proof of
which can be found in the Appendix. To simplify the notation we

exploit that [T @ = 1 by definition.
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LEMMA 2.2. Forall N € Z, and for {u;};en € (0,1) it holds
N N N
Z((l_ﬂi)( ]_[ Ilt’))+(l_[/1f) =1 )
i=1 l=i+1 £=1

First we show that Hle G(y;) can be expressed as

Term A Term B

il Sfenl )

This can be proved by induction. Indeed, for K = 1 the statement
is trivially true. Assuming it is true for K = M — 1, multiplication
with G(upr)

Term C Term D
—_—

(AB)(upP +(1 - pa)1wh)

can be computed as

M
AXC:(H/J[)PM (8)
=1

M-1
o1 0

=1
M-1
=(1- HM)( llf) 1o, 9
=1
M-1 M
BxC =lw, Z ((1—;11 ( ﬂ W)PM ’) (10)
i= £=i+1
M-1

M-1
B><D:1w Z((l_l’ll (

1

o
=i+1

M-1
=101 - i) Z ((1 ~ ) ( [ llt)) (1)

{=i+1
where (9) and (11) follow from the stochasticity of P. Adding (9)
and (11) (also using Lemma 2.2) yields
(9)+ (1) = (1 - um)1e;,. (12)
Then adding (12), (8) and (10) establishes the induction step?

il fi)

Therefore by carefully rearranging the terms we can express the
minimization objective of problem (5) as

19pu) T SuBw ~ hy I3
with S;, and ¢(pu,,) defined as in the statement of the theorem. To
formally establish the equivalence of the two problems it suffices
to show that ¢ : “R(o n" AK+1 is one-to-one and onto [4].

One-to-one: Let p, p’ € R | It suffices to show that if ¢(u) =

i+

(0,2)°

¢(p') then p = p’. When ¢(p) = ¢(pt’), we have that ¢; = ¢] from
which we directly establish that
1-pg =1-pp = g = p. (13)

For an alternative induction-based proof of this the reader can see [17].
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From ¢, = ¢} together with (13) we get

HK >0
pr(1 = pg—1) = pp (1= ) == pK-1 = g _q-

Following similar arguments we establish ux_» = pp_,, -3 =

,u;(_3, -+, pi1 = py. Therefore, p = p’ as needed.
Onto: It suffices to show that for every y € AKF1 there exists a

ue TR(O N such that ¢(p) = x. Let x = [le)(zvu-s)(Kﬂ] be an

arbitrary vector in AK}1. We have

x1€(0,1)

(1-pg)=xy1 == px =1- 1 €(0,1).

Now
(1= px—1) = x2

x#l 1-x1—x2
(1= x)(A = px- 1)—X2==>,UK P ¢ €
l—){l
K+1

Since y € A}, we know that y; + y2 < 1. Therefore y2 < 1— x1,
which means that pg_1 € (0,1) as needed. Similarly

prcpr-1(1 = pig-2) = x3

. l-x1—-x-x
=
1-xy1—x
1—y1—— YK
p= —% X (14)
1—x1— " — XK-1

with p; € (0,1),Vi. Thus, startlng from an arbitrary y € AK+1
©.1) such that ¢(u) = y. Hence, both
properties of the map ¢ have been established and the proof is
complete. O

we can always get a p € RK

Theorem 2.1 simplifies learning u,, significantly. Indeed, by ex-
ploiting the intrinsic connections between functional rankings [1]
and multidamping processes [17], the task reduces to finding diffu-
sion coefficients ¢, over the space of the first K landing probabili-
ties of a walk rooted on w,, (see definition of S;,). Afterwards p,
can be obtained in linear time from ¢, upon solving the forward
recurrence (14). Taking into account the fact that in recommenda-
tion settings K will typically be small® and w,,, P sparse, building
‘on-the-fly’ S,,E,, row-by-row, and solving the (K + 1)-dimensional
convex quadratic problem

minimize ||¢]S,E, — h! |2

PerDIF***F L eAKs ully (15)

can be performed very efficiently (typically in a matter of millisec-
onds even in large scale settings).

Moreover, working on the space of landing probabilities can also
facilitate parametrising the diffusion coefficients within a family
of known diffusions. This motivates the parameterized variant of
PERDIF

minimize ||yuDSuEu - hT”g (16)

PERDIF™® :
YVu €A

3Note that as K gets large the usefulness of these vectors in terms of recommendation
will start to decay since more and more probability mass will get concentrated to the
popular items in the system.
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with AL £ {y : yT1 = 1,y > 0} and D € REXE+D defined
such that its rows contain preselected diffusion coefficients per
step, normalized to sum to one. Upon obtaining y;,, vector ¢, can
be computed as ¢, = yID. For the definition of matrix D here
we consider two well-known diffusions, namely the personalized
PageRank [24] and the heat kernel [6] and we build D using {pg
values for pagerank’s damping factor (a1, . .., ap,,) and {ux values
for heat kernel’s temperature (t1, . . ., tz, ), equally spaced in [0,1]
and [1,10] respectively. Concretely, matrix D is defined as

A CPR
D= 17
o] 17
where Cpg € R*(K+D) ig the row-normalized version of matrix

Xpr defined by
[Xprlij = (1- ai)a{_l, i=1,....08 (18)

and Cyy € RExX(EK+1) i the row-normalized version of matrix Xyx
defined such that
1
[Xax]ij =e‘ffm, i=1,..., 0. (19)
While PERDIFFR® learns ¢, by weighing the contributions of
the landing probabilities directly, PERDIF*® constrains ¢, to com-
prise a user-specific mixture of predetermined such weights (i.e.,
the rows of D), thus allowing one to endow ¢, with desired prop-
erties, relevant to the specific recommendation task at hand. We
also note that the use of matrix D can improve the robustness of
the personalized diffusions in settings where the recommendation
quality of the individual landing distributions comprising S, is
uneven across the K steps considered (we will report such case in
the experimental section of this paper).

2.4 The Item Transition Matrix P

Our discussion so far, applies to any item transition probability
matrix P € RIXT
the construction of W and P can be approached in several different
ways depending on the available information and the underlying
recommendation task at hand. Here, aiming to promote sparsity
to P, we construct W using a locally restricted variant of the well-
known SLIM method [23] that is forced to consider only fixed-
size neighborhoods when learning relations between the items.
Specifically, for each item i we consider its C nearest neighbors
(in terms of cosine similarity between their vector representations)
and we form a matrix N; € R1¥C, by selecting the corresponding
columns of R. We then solve for each item the optimization problem

arising by an underlying item model W. In practice,

minimize 3lIri = NixllZ + yallxlly + gyallx|f (20)

subjectto x>0
and we obtain the corresponding proximity scores for the i-th
column of matrix W. We then define P as

P2 L W4 Diag(1— ——W1) 21)
[Wlleo [Wlleo

in order to prevent items that are loosely related to the rest of the
itemspace to disproportionately influence the item-to-item transi-
tions, as well as to promote slow mixing properties to the random
walk [21].
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The overall procedure for constructing P and obtaining p,, for
every user in the system is given in Algorithm 1.

Algorithm 1 PErDIF

Input: Matrix R, [item model W]

Parameters: K, y1, y2, C, L, mode € {Par, Free}
Output: User-personalized parameters: {py }y,cq/
if W is not provided then

Obtain W by solving (20)
end if
_1 i I
P o W+ Diag(1 - - W1)

parfor u € U do
Collect Sy, E, on the fly, row-by-row by
successive matvecs with P starting from wy,
if mode == Par then
Build D
Obtain y,, by solving (16)
i, < yuD
else
Obtain ¢, by solving (15) (since Afffl is open in practice
we constrain ¢, to be larger than or equal to eps X 1)
end if
Obtain py from ¢, by the forward recurrence (14)
end parfor

3 PRIOR ART

Over the past decade a vast number of algorithms have been pro-
posed to tackle the top-n recommendation task. These include
neighborhood-based methods [15, 22, 23]; latent-space methods [8,
13, 18, 20, 28]; graph-based methods [5, 7, 9, 10, 16, 21]; and more
recently methods relying on deep neural networks [12, 19, 29].
PERDIF brings together item-models with random walks, and thus
lies at the intersection between neighborhood- and graph-based
methods; the item transition component captures neighborhood
information of the items which is then integrated in a random-
walk-based framework to learn personalized diffusions for top-n
recommendations.

Mathematically, the per-user item exploration processes pro-
duced by PerDIF are members of the family of multidamping pro-
cesses introduced by Kollias et al. in [17]. Their paper explores
meticulously how different damping weighing schemes can be cho-
sen to approximate known functional rankings, such as linear rank
and generalized hyperbolic rank [1]. Here, instead of fixing the
damping weights to abide by target functional rankings, we pro-
vide a framework for learning user-specific and item-model-aware
multidamping mechanisms. In this sense, PERDIF undertakes sta-
tistical learning in the space of multidamping processes, tailored
to the underlying top-n recommendation task. Related adaptive-
diffusion models have recently been considered for other learning
tasks over graphs, most notably for graph-signal filtering [27], semi-
supervised node classification [2, 3], community detection [11], as
well as protein function prediction in biological networks [14].
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4 EXPERIMENTAL SETTING
4.1 Datasets

Our experimental evaluation is based on five real-world publicly
available datasets. Namely the widely-used benchmark movielens
dataset; the song recommendation dataset yahoo; the Amazon
datasets movies&tv and books; as well as the netflix prize dataset.
Basic characteristics of the datasets can be found in Table 1. For all
datasets we consider only implicit feedback.

Table 1: Dataset characteristics.

Name #users #items #interactions density

movielens 6,040 3,706 1,000,029  0.0447

yahoo 7,307 3,312 404,745  0.0167
movies&tv 10,039 5,400 437,763  0.0081
books 43,550 24,811 1,777,072 0.0016
netflix 480,189 17,770 100,480,507  0.0118

4.2 Evaluation Methodology and Metrics

To evaluate the top-n recommendation performance, we adopted
the widely used leave-one-out evaluation protocol [8, 12, 20, 25]. In
particular, for each user we randomly select one liked* item and
we create a test set 7. The rest of the dataset is used for training
the models. For model selection we repeat the same procedure on
the training data and we create a validation set V; and for each
method considered we explore the hyperparameter space to find
the model that yields the best performance in recommending the
items in V, and then we evaluate its out-of-sample performance
based on the held-out items in 7. For the evaluation we consider
for each user her corresponding test item alongside 999 randomly
selected unseen items and we rank the item lists based on the
recommendation scores produced by each method.

The evaluation of the top-n recommendation performance is
based on three widely used ranking-based metrics; namely the hit
ratio (HR@n), the average reciprocal hit rank (ARHR@n), and the
truncated normalized discounted cumulative gain (NDCG@n) over
the set of users (due to space constraints we refer the reader to
eg. [26] for a detailed definition). While HR@n gives a perfect score
if the held-out item is ranked within the first n, ARHR@n and
NDCG@n use a monotonically decreasing reward to emphasize the
importance of the actual position of the held-out item in the top-n
recommendation list.

5 EXPERIMENTAL RESULTS

5.1 Personalized Diffusions as a Framework

In the definition of the item transition probability matrix P we
adopted a particular strategy for constructing matrix W designed
to promote locality on the direct item-to-item transitions. Instead of
this particular matrix W one could use any model that captures item-
to-item relations. But does the proposed approach offer any benefit

*When the original data contain ratings, the per-user target item is randomly sampled
among the highest rated items of each particular user in order to ensure that it indeed
denotes an item that the user liked. When no such information is available every
user-item interaction is considered a ‘like’.
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with respect to using the underlying item models directly? Can
user-specific diffusions boost recommendation accuracy beyond
the levels reached by using the same assumptions for all users?

In order to explore these questions here we empirically evaluate
PERDIF’s performance on the movielens data using the proposed
item model W (cf. (20)) as well as other two commonly used item
models. Namely:

(1) COS: a cosine similarity model defined such that its ij—th

element is given by rlTrj/(||r,~|| [Ix11);

(2) SLIM: which learns a sparse item model by solving an {1, {2

regularized optimization problem (see [23] for details).

We build the respective item models and we create the corre-
sponding item transition matrices P as in (21). We then run both
variations of our method for K € [1,...,10] and in Figure 1 we
report recommendation accuracy per K in terms of NDCG@n as
well as the accuracy achieved by applying the base item model
directly.

NDCG@10
35.00 — +26.6%
B
30.00 —
| | | | |
2 4 6 8 10
35.00 —
= +15.4%
3
30.00 —
| | | | |
2 4 6 8 10
22.00 - +22.13%
o]
S 20.00 -
18.00 —
| | | | |
2 4 6 8 10
K

Figure 1: Recommendation accuracy of PERDIF™*® (

line) and PERDIFFREE ( line) applied to W as well as
two other item models. For reference we also report the per-
formance achieved by using the base item-models directly
(dashed line).

We see that PERDIF increases the accuracy of all item mod-
els significantly with PERDIF™® performing relatively better than
PERDIF™®EE for all models. Furthermore, note that the difference
between the two variants of PERDIF is considerably larger in case
of COS. To gain more insight of this behavior we also report the
NDCG@n yielded by using the individual k—step landing probabil-
ity distributions each item model (for up to 10 steps), along with
the spectra of the corresponding transition probability matrices
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Figure 2: Recommendation accuracy per step (1st row) and plots of the spectrum of P (2nd row) for all item models.

(Figure 2). Observe that in case of COS after the first few steps of the
walk there is a rapid decay in performance; with NDCG@n plum-
meting below the levels of the base item model. Examination of
the spectra of the transition matrices reveals that the subdominant
eigenvalues in case of COS cause the walks to mix quickly; thereby
forcing the k—step distributions to rapidly ‘forget’ the user-specific
starting distribution and succumb to the ‘pull’ of the popular items
in the system. Therefore, freely learning personalized diffusions
using these landing probabilities as features (as is the case for
PERDIFFREE) together with the sparsity promoting properties of the
simplex constraint, carries the risk of ‘trapping’ the diffusions in
exploiting suboptimal landing distributions for recommendation.
PErRDIF™® on the other hand, by s the mixtures proves more robust
to such problems.

On the contrary, for the other two models recommendation ac-
curacy remains high throughout the range of k—step landing prob-
abilities considered; this is directly reflected on the performance
of PERDIF**E which follows closely that of PERD1F*®. For both
item models there appears to be a large number of eigenvalues
clustered around the value 1, which delay the convergence of the
successive landing probability distributions towards equilibrium,
thereby increasing the number of features that are still useful for
recommendation.

Table 2 reports the performance of PERDIF with 2, 4, 6, 8 steps
compared to the best fixed diffusion (cf (2)) or the best fixed step
(cf (1)) per item model. Even though adopting the same preference
propagation mechanism for all users can too provide significant
benefits over using the respective item models directly, person-
alizing the diffusions to each user can improve recommendation
accuracy even further, by 5.64% for our base model, 6.50% for SLIM,
and 4.85% for COS.

5.2 Performance vs Competing Approaches

We evaluate the top-n recommendation accuracy of PERDIFFREE

and PERDIF™® against competing approaches.
Competing Baselines. We compare against six state-of-the-art
baselines; namely (i) the well-known PURESVD method [8], which

Table 2: Performance comparison between personalized and
fixed preference propagation strategies.

Method A\ SLIM  COS
Base Model 27.07 2728 17.35
FIxepDIr 32.47  29.70  20.19
FixepK 3273  27.28 17.85
PERDIF 2-steps 30.63 29.18 21.17
PERDIF 4-steps 33.82 31.10 19.27
PERDIF 6-steps 34.30 31.53 19.76
PERDIF 8-steps 34.02 31.63 20.02
Hyperparameters: FixeoDir: p € {0.5,0.55, ..., 0.9}; FixeoK: K €

{1,..., 10}

produces recommendations based on the truncated SVD of R; (ii) the
item-based method SLIM [23] which learns a sparse item model by
solving an {1, {3-regularized optimization problem; (iii) the EIGEN-
REc method [20], which builds a factored item model based on a
scaled cosine similarity matrix; as well as the recently proposed
deep learning methods (iv - v) MuLT-VAE and MuLT-DAE [19]
which extend variational and denoising autoencoders to collabo-
rative filtering using a multinomial likelihood; and (vi) NAIS [12],
which generalizes factored item similarity models [15] employing
an attention mechanism.

Results. Table 3 reports top-n recommendation performance of the
competing approaches. The performance was measured in terms
of HR@n, ARHR@n and NDCG@n, focusing on n = 10. Model
selection was performed for each dataset following the procedure
detailed in Section 4.2 and considering for each method the hy-
perparameters reported on Table 3. We see that both variants of
PERDIF outperform all other methods considered on every metric
and for all datasets®.

SNetflix dataset is not included in Table 3 because due to the computational require-
ments of certain of the competing approaches we were unable to search the hy-
perparameter space for cross-validation and train them in a reasonable amount of
time. Testing the performance of PERDIF, against the efficient methods MurT-VAE
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Table 3: Top-n recommendation quality of the competing approaches in terms of HR@10, ARHR@10 and NDCG@10.
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movielens yahoo movies&tv books
Method HR ARHR NDCG HR ARHR NDCG HR ARHR NDCG HR ARHR NDCG
PureSVD 44.14 1933 25.36 38.68 18.30 22.62 22.58  09.88 12.86 46.84 25.84 30.81
SLIM 46.34  21.39 27.28 52.24  23.21 30.03 27.26 12.95 16.37 56.72  34.50 39.67
E1GENREC 45.21 20.44 26.35 48.12  23.30 29.23 25.22 11.44 14.66 52.89  29.36 34.93
MuLt-DAE  44.06 18.97 24.83 4537  21.46 27.07 27.10 11.96 15.50 54.66  29.75 35.60
MuLTt-VAE = 44.35 19.50 25.31 45.09 21.22 26.80 26.72 12.05 15.40 53.85  29.24 35.08
NAIS 46.36  20.65 26.68 50.53  23.64 29.91 24.35 10.87 13.99 51.18  28.36 33.65
PerDIF™*R  53.13 28.56 34.30 55.29 29.01 35.21 28.17 13.04 16.58 57.30 34.73 40.10
PERDIF™REE 5252 27.74 33.57 54.78  28.71 34.87 27.96 12.98 16.49 57.20  34.66 40.02
Hyperparameters: PERDIF: C = {2.5%, 5%, 7.5%, 10%, 20%} of | T |, y1 € {1, 3, 5, 10}, y2 € {0.1,0.5,1,3,5,7,9,11, 15} and K € {1, ..., 10}; Tpey Was
set to 999; for building the diffusion dictionary, £yx, €pr Were set to 15; PURESVD: f € {10, 20, . . ., 1000}. SLIM: A, § € {0.1, 0.5, 1, 3, 5, 10, 20 }. EIGENREC:
f e{10,20,...,1000}, d € {-2, —1.95, . . ., 2}. MULT-DAE- MULT-VAE: we used the hyperparameter tuning approach provided by the authors in their

publicly available implementation; we considered both architectures proposed in [19]; namely [I — 200 — I] and [I — 600 — 200 — 600 — I]. NAIS: We used
the implementation provided by [12], considering the parametric ranges discussed in the paper, namely «, k € {8, 16, 32, 64}, f = 0.5 and regularization

parameters A € {107, ..., 1}.

5.3 Apriori Identification of Users that will
Tend to Receive Poor Recommendations

Personalizing the diffusions within the proposed framework can
also provide useful information arising from the analysis of the
learned diffusion coefficients. Here we showcase a particular such
example. Consider a user u for whom the learned diffusion coef-
ficient ¢ has a large value. From a modeling point of view, this
translates to a somewhat ‘uneventful’ itemspace exploration path:
regardless of where the user is after K — 1 steps, his last coin with
high probability takes him back exactly where he started. Due to the
form of our optimization objective, such outcome would indicate
that it was not possible to find suitable diffusion coefficients yielding
high recommendation score for the target item i while keeping the
scores of the negative samples low®. This renders ¢ a potentially
informative indicator of user/model mismatch at training-time. To
test this idea we run PERDIF on every dataset and we compare the
average hit rate of the problematic users (i.e., users with ¢; > 7)
with the rest of the users in the system.

Table 4: Percentage drop in hit rate of the problematic users
(¢1 > 7) with respect to the rest of the users in the system.

$1 > 0.10 $1>0.15
Dataset # users drop # users drop
movielens 237 19.18% 117 20.29%
yahoo 530 19.24% 472 20.60%
movies&tv 1362 14.11% 1296 13.92%
books 1614 12.94% 1533  12.62%
netflix 1059 5.65% 985 5.63%

MuLt-DAE, produces the same relative ordering in performance, verifying the same
performance trends observed in the rest of the datasets.

Notice that in such case, ‘falling-back’ to concentrating probability mass on ¢; is
aligned with the goal of minimizing our loss since by definition w,, has zero values in
every position corresponding to negative samples.

The out-of-sample performance of the problematic users is in-
deed lower for every dataset considered, with the results being
statistically significant for all reported cases. Note that this inter-
esting side information of PERDIF can prove particularly useful in
practical settings; e.g., allow for preemptive interventions to handle
such cases appropriately.

5.4 Runtimes

Table 5 reports the wall-clock timings for computing the item
transition matrix P as well as learning personalized diffusions
with PERDIFF*** and PERDIF™® (average runtimes over 10 runs).
PErRDIF™*E typically runs faster than PERD1F™F. When the num-
ber of steps of the underlying random walk is small, fitting-time
differences between the two variants are minor (as was the case for
books and netflix); when more steps are needed such differences
become more pronounced (e.g., for movielens and yahoo). For the
larger datasets the computational bottleneck of the method is the
construction of matrix P. In practice updates of P will be typically
performed periodically and offline. On the contrary, notice that the
per-user fitting costs are of the order of milliseconds for all datasets.
Taking into account the fact that given P, PERDIF can be performed
separately for each user, the modest computational requirements
for personalizing the diffusions can enable in real applications on-
line fitting as well as ‘on-the-fly’ adaptation, to track the current
user session in the system.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this work we introduce PERDIF. Starting from an intuitive time-
inhomogeneous random-walk-with-restarts over an item-to-item
graph, PERDIF learns user-specific teleportation probabilities across
time, that translate to an interpretable exploration process of the un-
derlying itemspace, particular to each user. Personalization can be
performed in parallel and very efficiently, making PERDIF applica-
ble even in large scale settings. A comprehensive set of experiments
on several real-world datasets against state-of-the-art competing



MLG’19, August 2019, Alaska, USA

Table 5: Runtimes for building P as well as fitting the diffu-
sions with both variants of our model.

PERDIFFREE PERDIFPAR
Dataset P All Peruser All Per user
movielens  1.4s 0.6s 0.1ms 14s 2.4ms
yahoo 13s 04s 0.lms  25s 3.4ms
movies&tv  2.0s 1.3s 0.1ms 15s 1.5ms
books 40s  55s 1.3ms 1.1m 1.5ms
netflix 87m 5m 0.9ms 6.1m 1.1ms

All experiments are ran on a single Intel Xeon Gold 6148 CPU @ 2.40GHz
Machine with 20 cores and 64Gb DDR4 RAM. Column P reports the average
runtimes over all base item models built during cross-validation.

baselines, showcase the potential of the proposed methodology in
achieving high top-n recommendation accuracy.

A very interesting direction we are currently exploring, includes
expanding our optimization objective to consider more than one
target items per user, or averaging the per-user diffusions over mul-
tiple single-target runs, in order to further improve the robustness
of the learned diffusions. Here, opting for simplicity and clarity of
exposition, we adopted the single-target formulation, which was
empirically shown to perform very well for all datasets. Another
interesting path that remains to be explored involves extending our
framework to tackle sequential as well as session-based recommen-
dation settings.

A PROOF OF LEMMA 2.2

Proor. For N = 1 the identity holds trivially. Let us assume that
it holds for n. We will show that it holds for n + 1 as well. We have

n+1 n+1 n+1
Z (1—pi) ]_[ pel|+ l_[uf =
i=1 £=i+1 =1
n n+1 n+1
:1_Iln+l+z (1= pi) ]_[ He +l_[uf
i=1 f=i+1 (=1
n n n
=1—finy1 + fn+1 Z(l—ﬂi) l_[ ,U(?+l_[ﬂ£
i=1 £=i+1 (=1

=1-ppt1+pn+1 =1

Therefore, the induction step is established and the proof is com-
plete. O
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