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Abstract

Graph convolutional networks (GCNs) are vulnerable to per-
turbations of the graph structure that are either random, or,
adversarially designed. The perturbed links modify the graph
neighborhoods, which critically affects the performance of
GCNs in semi-supervised learning (SSL) tasks. Aiming at
robustifying GCNs conditioned on the perturbed graph, the
present paper generates multiple auxiliary graphs, each hav-
ing its binary 0 — 1 edge weights flip values with probabilities
designed to enhance robustness. The resultant edge-dithered
auxiliary graphs are leveraged by an adaptive (A)GCN
that performs SSL. Robustness is enabled through learnable
graph-combining weights along with suitable regularizers.
Relative to GCN, the novel AGCN achieves markedly im-
proved performance in tests with noisy inputs, graph pertur-
bations, and state-of-the-art adversarial attacks. Further ex-
periments with protein interaction networks showcase the
competitive performance of AGCN for SSL over multiple
graphs.

1 Introduction

A task of major importance at the cross-roads of machine
learning and network science is semi-supervised learning
(SSL) over graphs. SSL aims at predicting nodal labels
given: i) the graph connections; ii) feature vectors at all
nodes; and iii) labels only at a subset of nodes. This par-
tial label availability may be attributed to privacy concerns
(e.g., with medical data); energy considerations (e.g., with
wireless sensor networks); or unrated items (e.g., with rec-
ommender systems).

Standard SSL schemes typically assume that the available
labels and graph connections have certain properties such as
smoothness, which asserts that connected nodes have simi-
lar attributes (Smola and Kondor 2003). In various scenarios
however, robustness issues arise. Powerful adversaries ma-
nipulate nodal attributes and connections to bias learning,
and promote their malicious goals (Ziigner, Akbarnejad, and
Giinnemann 2018). Further, human annotators or noisy data
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introduce errors during the graph construction that leads to
perturbed edge weights (Akoglu, Tong, and Koutra 2015).
Adversarially perturbed or simply anomalous graph data
may degrade the performance of SSL algorithms with se-
vere consequences. The recent era of misinformation and
“fake” news calls for robust machine learning algorithms for
network science (Goodfellow, Shlens, and Szegedy 2014;
Aggarwal 2015; Yan et al. 2016). In this context, a novel
robust GCN framework is introduced here that utilizes edge-
dithered auxiliary graphs, which are combined using learn-
able weights.

1.1 Related work

Graph-based SSL methods typically assume that the true la-
bels are “smooth” with respect to the underlying network
structure, which naturally motivates leveraging the topology
of the network to propagate the labels and increase clas-
sification performance. Graph-induced smoothness may be
captured by kernels on graphs (Belkin, Niyogi, and Sind-
hwani 2006; Smola and Kondor 2003); or Gaussian ran-
dom fields (Zhu, Ghahramani, and Lafferty 2003). Graph
convolutional networks (GCN)s incorporate the graph struc-
ture to achieve state-of-the-art results in SSL tasks (Kipf and
Welling 2017; Bronstein et al. 2017; Velickovié et al. 2018;
Xu et al. 2019b).

With the success of GCNs on graph learning tasks
granted, recent results indicate that perturbations of the
graph topology or nodal features can severely deteriorate
their classification performance (Ziigner, Akbarnejad, and
Giinnemann 2018; Xu et al. 2019a; Dai et al. 2018). Struc-
tural attacks target a subset of nodes and modify their links
to promote miss-classification of targeted nodes (Wu et al.
2019). The designed graph perturbations are “unnoticeable”,
which is feasible so long as the degree distribution of the per-
turbed graphs are similar to the initial distribution (Ziigner,
Akbarnejad, and Giinnemann 2018). GCNs learn nodal rep-
resentations by extracting information within local neigh-
borhoods. Adversaries poison the learned features by per-
turbing the node’s neighborhood. Hence, the vulnerability
of GCNs challenges their deployment to critical applications
dealing with security or healthcare, where robust learning
is of major importance. Defending against adversaries may



unleash the potential of GCNs and broaden the scope of ma-
chine learning applications altogether. Recent works robus-
tify GCNs against structural perturbations by utilizing the
nodal features (Wu et al. 2019; Zhu et al. 2019). Gaussian
regularizers are employed in (Zhu et al. 2019) to protect the
network from adversarial attacks. Jaccard similarity among
features is utilized in (Wu et al. 2019) to prune perturbed
edges. However, these methods are challenged in the ab-
sence of nodal feature vectors.

1.2 Contributions

The present paper develops a framework for robust deep
learning over perturbed graphs. Specifically, the contribution
of this work is twofold.

C1. Given the perturbed unweighted graph and aiming at ro-
bust SSL, multiple auxiliary graphs are drawn by dither-
ing (adding or removing) edges with probabilities selected
to boost robustness. The novel edge-dithering (ED) ap-
proach reconstructs the original neighborhood structure
with high probability (whp) as the number of sampled
graphs increases. ED can be applied even in the absence
of nodal features.

C2. A weighted combination of the auxiliary ED graphs is em-
ployed across GCN layers. Per layer weights are adapted
to promote those ED graphs that maximally avoid the ad-
versarially perturbed edges. Further, a residual feed of the
data is utilized to facilitate diffusion of the features across
the graph. Robust graph-based regularizers are also in-
cluded to prevent overfitting, and further account for the
underlying graph topology.

2 Modeling and problem formulation
Consider a graph G := (V,A) of N nodes, with V :=
{v1,...,un} denoting the vertex set, and A the N x N
adjacency matrix capturing edge connectivity through A,, ,,/
that is 1 if an edge connects v,, and v/, and 0 otherwise. The
neighborhood of v, is

Ny i={n' 1 Ay #0, v, €V} (1)

The perturbed graph is G := (V, A) with corresponding ad-
jacency A := A + A having entries perturbed by

1, if A, v = 0and fln’n/ =1
App =1 -1, ifA,v=1and A, =0 (2)
0, otherwise

where +1 corresponds to edge insertion, —1 to edge dele-
tion, and O to no perturbation. Evidently, these links may
drastically degrade the performance of SSL methods since
the neighborhood is either adversarially or randomly mod-
ified (Ziigner, Akbarnejad, and Giinnemann 2018). The ad-
versarial attacks aim at unnoticeable changes, a constraint
that limits the number of perturbations. Hence, the number
of perturbed links (nonzero elements in A) is small relative
to the original number of edges in G.

Associated with the n-th node can be an F' x 1 feature
vector x,,. These vectors are collected in the N x F' feature

matrix X := [x{,...,xA]", where X,,; may denote, for

example, the salary of the n-th individual in the LinkedIn so-
cial network. Let also y,, € {0,1,..., K — 1} denote the la-
bel of node n, which may represent, for example, the educa-
tion level of a person. The N x K matrix Y is the “one-hot”
representation of the nodal labels belonging to K classes,
thatis, if y,, = kthenY,, y = land Y}, » = 0,VEk' # k.
Goal. Given the perturbed topology A, the features in X,
and labels only at a subset £ of nodes {y, }ne, with £ C V,
the goal of this paper is to design robust GCN architectures
that are minimally affected by the perturbed edges.

3 Edge dithering

The ever-expanding interconnection of social, email, and
media service platforms presents an opportunity for adver-
saries manipulating networked data to launch malicious at-
tacks (Goodfellow, Shlens, and Szegedy 2014; Aggarwal
2015; Ziigner, Akbarnejad, and Giinnemann 2018). Per-
turbed edges modify the graph neighborhoods, which leads
to significant degradation in the performance of GCNs. Aim-
ing to restore a node’s initial graph neighborhood an edge-
dithering (ED) module is developed in this section, where
auxiliary graphs are created with probabilities designed to
enhance robustness. Dithering in visual and audio applica-
tions, refers to intentional injection of noise so that the quan-
tization error is converted to random noise, which can be
easily handled (Ulichney 1988).

Permeating the benefits of dithering towards robustify
GCNs, we generate ED graphs {G;}/_,, where G; :=
(V, A;). Each auxiliary graph G; is a dithered version of the
perturbed graph G, where the edges in A; are selected in a
probabilistic fashion as follows

3(Ap r=1) S(A =
Ay = { L wp. Ch(_ ’ (1—q2) (An nr=0)
n,n’e 5(A,, ,,r=0) S(A =
0 wp. g, ™ (1—q1) (A nr=1)

3)

where §(-) is the indicator function, ¢; = Pr(A, . ; =
1|fln7n/ = 1) and ¢ = Pr(A, v ; = O|An7n/ =0).Ifn
and n’ are connected in G, the edge connecting n with n’ is
deleted with probability 1 — ¢;. Otherwise, if n and n’ are
not connected in G i.e. (A, ,» = 0), an edge between n and
n' is inserted with probability 1 — gs.

Hence, the ith ED graph neighborhood of v,, is

./\/'7?) = {TL, : An,n',i 7é 07 1};1 € V} (4)

The ED graphs give raise to different neighborhoods Ny(f),
and the role of ED is to ensure that the unperturbed neigh-
borhood of each node will be present with high probability
(whp) in at least one of the I graphs. The remarks asserting
formally these claims are in the supplementary material.

4 Adaptive GCN with edge dithering

The ED module generates {G;}!_,, which along with the
perturbed graph G will be judiciously combined to obtain
a robust learning architecture. Typically, deep or shallow
learning over graphs considers that the relation among the
nodal variables is represented by a single graph. This may



be inadequate in several contemporary applications, where
nodes may engage on multiple relations (Kiveld et al. 2014),
motivating the generalization of SSL approaches for single
graphs to multiple graphs'. In social networks for example,
each graph may capture a specific form of social interaction,
such as friendship, family bonds, or coworker-ties (Wasser-
man and Faust 1994). Aiming at a weighted combination of
the auxiliary ED graphs, this section develops a novel GCN
that adapts to multiple relations and enhances robustness.

Deep learning architectures typically process the input
information using L hidden layers. Each layer implements
a conveniently parametrized linear transformation, a scalar
nonlinear transformation, and oftentimes a dimensionality
reduction (pooling) operator. Through nonlinear mappings
of linearly combined local features the idea is to progres-
sively extract useful information (Goodfellow et al. 2016).
GCNs tailor these operations to the graph that supports
the data (Bronstein et al. 2017; Kipf and Welling 2017;
Cao, Lu, and Xu 2016; Li et al. 2018). Next, our AGCN
architecture and training are presented.

4.1 Per layer operation

Consider a hidden layer (say the /th one), whose output is the
N xIxPW® tensor Z(l) that holds the P()) x 1 feature vectors

Z (l) Vn, 4, with P(Y) being the number of output features at

(-1

l. Slmllarly, let Z represent the input to this /th layer.

)

The mapping from Z(l_l) to Z( can be split into two

. . (-1
steps. A linear one designed to map the tensor Z -0 to the
tensor Z("). The latter is then processed elementwise to ob-

tain ZE 31 p = U(ZZ(.QW). A common choice for o(-) is the
rectified linear unit (ReLU), for which o(¢) = max (0, ¢).

Of critical importance is the design of the linear map from

Z(l_l) toZ @) that is tailored to our ED-based setup. Convo-
Iutional (C)NNs typically consider a small number of train-
able weights, and then generate the linear output by convolv-
ing the input with these weights (Goodfellow et al. 2016).
The convolution combines values of close-by inputs (con-
secutive time instants, or neighboring pixels), and thus ex-
tracts information of local neighborhoods.

GCNs generalize CNNs to operate on graph data by re-
placing the convolution with a graph filter whose parame-
ters are also learned (Bronstein et al. 2017; Kipf and Welling
2017). This preserves locality, reduces the degrees of free-
dom of the map, and leverages the graph structure.
Neighborhood aggregation module. First, a neighborhood
aggregation module is considered that combines linearly
the nodal features within a graph neighborhood. Since the
neighborhood depends on the particular ED graph (4), the
combined nth feature of the ¢-th graph is

h(l . Z An n’ zi;l 11)~ (5
n E./\/;(zq)

"Many works refer to these as multi-layer graphs (Kiveli et al.
2014).

While the entries of h( ) , depend only on the one-hop neigh-
bors of n (one- hop dlffusron) successive application of this
operation will increase the diffusion range, spreading the
information across the network. Generalizing to neighbor-
hoods with larger diameter, consider the kth power of the
adjacency matrix A*. Indeed, the vector A*x holds the lin-
ear combinations of the values of x in the k-hop neighbor-
hood (Kipf and Welling 2017). After defining the matrices
Al = Al(-k) fork=1,....K,i=1,...,
following parametrized mapping

Z S dPal), w0 i (©)

k= 1n 6/\/’7(1)

I, consider the

where the learnable coefficients {cgk)}{;1 weight the effect
of the corresponding k-th hop neighbors for relation 7. At

the I-th layer, the coefficients {{c } K}, are collected

in the K x I matrix C"). The proposed map in (6) aggregates
the diffused features in the K -hop neighborhoods per :.

Graph adaptive module. The extracted feature vector h( )
captures the diffused features per ED graph . Aiming at
robustness, the learning algorithm should promote features
originating from non-perturbed graph neighborhoods. To-
wards this end, a graph adaptive module is developed that

. l .
combines hsh)i, across i’ as

gnl' ZR’LZ nhgzlz (7)

i’=1

where R( )

tribution of this paper is viewing {RZ o n}w",n as training
parameters, which allows AGCN to learn how to combine
the different relations encoded by the ED graphs. This char-
acteristic enables the novel AGCN to navigate through the
ED graphs {G,;}!_;, and assign larger weights to features
originating from non-perturbed neighborhoods.

The graph adaptive module in (7) allows for different
R; i/ », per n. Considering the same R for each n, that is
Rflz) = R( 2,, results in a design with less parameters at
the expense of reduced flexibility. On the other hand, the
flexible design in (7) allows large weights R; ;- ,, for neigh-
borhoods without corrupted edges, even if G; is perturbed.

Feature aggregation module. Next, the graph adaptive fea-
C ) ¢ )

mixes features across ED graphs. A key con-

tures g, ; are mixed using learnable vectors w,,; , to obtain
O] w)
Zl n,p _gn L n,i,p? (8)

i=1,...,1, n:l,...,N,p:l,...,P(l).

The PU=1D x N x I x PO tensor W collects the feature

}, while the I x I x P®) tensor R’
)

I’L N

}in 7Y (6)-(8) reduce to

mixing weights {Wn i

collects the graph m1x1ng weights {R, ",
all the scalars {Z

}. Upon collecting
i,n,p
20 = ;(2"7;60) ©
0 := [vec(W"): vec(RWY): vec(CW)]T. (10)



Residual GCN layer. Concatenating L GCN layers diffuses
the input X across the L-hop graph neighborhood, cf. (5).
However, the exact size of the relevant neighborhood is not
always known a priori. To endow our architecture with in-
creased flexibility, a residual GCN layer is introduced that
inputs X at each [, and thus captures multiple types of diffu-
sion?. As a result, the linear operation in (9) is replaced by
the residual linear tensor mapping

z0 = 2"V, 00) + (x:6D) (11

where Og(gl) encodes trainable parameters, cf. (10). When
viewed as a map from X to Z(l), the operator in (11) im-
plements a broader class of graph diffusions than the one in
9). If | = 3 and K = 1 for example, the first summand in
(11) is a one-hop diffusion of the input that corresponds to a
two-hop (nonlinear) diffused version of X, while the second
summand diffuses X in one-hop. At a more intuitive level,
the second summand also guarantees that the impact of X in
the output does not vanish as the number of layers grows.

To recap, aiming at a robust GCN architecture, we intro-
duce a novel edge-dithering module that generates proba-
bilistically auxiliary graphs. These graphs are processed by
a robust AGCN architecture that: combines features within
neighborhoods originating from the different graphs; adapts
to each graph by aggregating the learned features with R;
uses a simple but versatile residual tensor mapping (11); and
employs smoothness and sparsity promoting graph-based
regularizers. Additional details on the regularize and the ob-
jective are in the supplementary material.

S Experiments

The AGCN is tested with L = 3, PV = 64, P(?) = 8,
and P("") = K. The regularization parameters {11, ji2, \}
are chosen based on the performance of the AGCN in the
validation set for each experiment. For the training stage,
an ADAM optimizer with learning rate 0.005 was employed
(Kingma and Ba 2015), for 300 epochs with early stopping
at 60 epochs. The goal here is to provide tangible answers to
the following research questions. The supplementary mate-
rial includes comparison of AGCN to state-of-the-art meth-
ods for SSL over multi-relational graphs.

RQ1. How robust is AGCN compared to GCN under noisy fea-

tures, noisy edge weights, and random as well as adver-
sarial edge perturbations?

RQ2. How sensitive is AGCN to the parameters of the ED mod-

ule g1, g2 and I)?

5.1 Robustness to additive Gaussian input noise

This section reports the performance of the proposed ED-
AGCN architecture under noisy graphs or features. For this
experiment, the ionosphere dataset is considered, which con-
tains N = 351 data points with ' = 34 features that belong
to K = 2 classes (Dheeru and Karra Taniskidou 2017). In
this case, the graphs G; are formed using x-nearest neigh-
bors graphs for different values of « (i.e., different number of

2This is also known as a skip connection (He et al. 2016)

Table 1: Classification accuracy in percent for nodes in 7
for different numbers of attacked nodes.

Number of attacked nodes | 7|
Dataset Method

20 30 40 50 60

GCN 6049 56.00 6149 5639 58.99

Citeseer

AGCN 7099 56.00 6149 61.20 58.66

GCN  76.00 74.66 76.00 6239 73.66
AGCN 78.00 82.00 84.00 73.59 74.99

Cora

GCN  74.00 7133 68.99 6640 69.66
AGCN 7200 7536 71.44 68.50 74.43

Pubmed

GCN  85.03 86.00 8499 7879 8691
Polblogs

AGCN 84.00 88.00 91.99 78.79 92.00

neighbors). This method computes the link between n and n’
based on the Euclidean distance of their features ||x, —x/,||3.

Oftentimes, the available topology and feature vectors
might be corrupted with noise. Capturing this noise, A and
X are obtained as A = A, + O, , X = Xy, + Ox, where
A, and X, represent the true multi-relational topology and
features and O, and Ox denote the corresponding addi-
tive perturbations. We draw O 4 and Ox from a zero mean
white Gaussian distribution with specified signal to noise ra-
tio (SNR). Since random additive noise is considered here,
the ED module is not employed.

Fig. 3 reports the SSL classification performance for the
ionosphere dataset of AGCNs. The AGCN is tested with dif-
ferent values of x, where x = 5, 10 corresponds to a two re-
lational graph, i.e. I = 2. We deduce that multiple x-nearest
neighbors graphs lead to learning more robust representa-
tions of the data, which testifies to the merits of proposed
multi-relational architecture.

5.2 Robustness to Bernoulli noise on edges

This experiment tests our architecture with four network
datasets (Sen et al. 2008): “Cora” (N = 2708, K =7, |L| =
140), “Citeseer” (N = 3327,K = 6,|£] = 120) and
“Pubmed” (N = 19717, K = 3,|L| = 30) are citation
graphs, while “Polblogs” (N = 1224, K = 2, |L] = 24) is
a political blog network. To facilitate comparison, we repro-
duce the same experimental setup than in (Kipf and Welling
2017), i.e., the same split of the data in train, validation, and
test sets. To study the effect of graph perturbations on the
neural network architecture, the feature vectors of the cita-
tion datasets are not used. Notice that our robust GCN archi-
tecture can be applied even in the absence of nodal features,
whereas existing approaches are not directly applicable (Wu
et al. 2019). For this experiment, the perturbed graph A is
generated by inserting new edges in the original graphs be-
tween a random pair of nodes n,n’ that are not connected
in A, i.e. A, = 0. The added edges can be regarded as
drawn from Bernoulli distribution. AGCN utilizes the mul-
tiple graphs generated via the ED module with / = 10 sam-
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Figure 1: Classification accuracy for increasing number of perturbed edges. (Left) Cora, (Middle left) Pubmed, (Middle right)

Citeseer, (Right Polblogs).

ples, g1 = 0.9, and g5 = 1 since no edge is deleted in A.

Fig. 1 demonstrates the classification accuracy of the
GCN (Kipf and Welling 2017) compared to the proposed
AGCN as the number of perturbed edges is increasing. Ev-
idently, AGCN utilizes the novel ED module, and achieves
robust SSL compared to GCN. Surprisingly, even when no
edges are perturbed, AGCN outperforms GCN. This obser-
vation may be attributed to noisy links in the original graphs,
which hinder classification perfomance. Furthermore, SSL
performance of GCN significantly degrades as the number
of perturbed edges increases, which suggests that GCN is
challenged even by “random attacks”.

5.3 Robustness to adversarial attacks on edges

The original graphs in Cora, Citeseer, Pubmed, and Polblogs
were perturbed using the adversarial setup in (Ziigner, Ak-
barnejad, and Giinnemann 2018), where structural attacks
are effected on attributed graphs. These attacks perturb con-
nections adjacent to 7 a set of targeted nodes by adding or
deleting edges (Ziigner, Akbarnejad, and Giinnemann 2018).
Our ED module uses I = 10 sampled graphs with ¢; = 0.9,
and g2 = 0.999. For this experiment, 30% of the nodes are
used for training, 30% for validation and 40% for testing.3
Table 1 reports the classification accuracy of GCN and
AGCN for different number of attacked nodes (|7). Dif-
ferent from Fig. 1 where the classification accuracy over the
test set is reported, Table 1 reports the classification accuracy
over the set of attacked nodes 7. It is observed that the pro-
posed AGCN is more robust relative to GCN under adver-
sarial attacks (Ziigner, Akbarnejad, and Gilinnemann 2018).
This finding justifies the use of the novel ED in conjunction
with the AGCN that judiciously selects extracted features
originating from non-corrupted neighborhoods.
Parameter sensitivity analysis. Fig. 2 includes sensitivity
of the AGCN to varying parameters of the ED module for
the experiment in Table 1 with the Cora and |7| = 30. It
is observed that the AGCN’s performance is relative smooth
for certain ranges of the parameters. In accordance with Re-
mark 2, notice that even for small / AGCN’s performance is
increased significantly.

3The nodes in 7 are in the testing set.
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Figure 2: SSL classification accuracy of AGCN under vary-
ing edge creation prob. q;, edge deletion prob. g2, and num-
ber of samples 1.

6 Conclusions

This work advocates a novel deep learning approach to
robust SSL over perturbed graphs. It relies on random
dithering applied to edges with probabilities selected to re-
store a node’s original neighborhood with high probabil-
ity. The auxiliary edge-dithered graphs are combined and
jointly exploited by an adaptive GCN. The latter assigns
larger combining weights to learned features extracted from
graph neighborhoods without perturbed edges. Experiments
demonstrate the performance gains of AGCN in the pres-
ence of noisy features, noisy edge weights, and random as
well as adversarial edge perturbations.
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Table 2: Protein-to-protein interaction datasets

Dataset Nodes N Features F' Relations [
Generic cells 4,487 502 144
Brain cells 2,702 81 9
Circulation cells 3,385 62 4

Edge Dithering for Robust Adaptive Graph Convolutional Networks
Supplementary material

A Training with graph-smooth regularizers
The output of our graph architecture is

Y =g(2";0,) (12)

where g(-) is the normalized exponential function (softmax), Y isan N x K matrix, f/n,k represents the probability that y, = k, and 6, are
trainable parameters.
The AGCN weights are estimated by minimizing the discrepancy between estimated labels and the given ones as

I
min L, (Y, Y) 4+ > Tr(YTAY)
0"3.06{" 3.0, ;

L
+u2p({073, {6971 + A IRV (13)

=1

where Ly (Y, Y)=->, cr Zi;l Yyi In Yy is the cross-entropy loss function over the labeled examples.

The first regularizer in (13) promotes smooth label estimates over the graphs (Smola and Kondor 2003), and p(+) is an L2 norm over
the AGCN parameters that is used to avoid overfitting (Goodfellow et al. 2016). Finally, the £; norm in the third regularizer encourages
learning sparse mixing coefficients, and hence it promotes activating only a subset of edge-dithered graphs per [. ED graphs with a large
number of perturbed edges will result to a higher cost function in (13). Hence, the learning algorithm will assign larger combining weights to
non-perturbed topologies. The backpropagation algorithm is employed to minimize (13).

B Predicting multi-relational protein functions

This section assesses the performance of the proposed AGCN when predicting protein functions over multiple graphs. For this experiment,
the given network is multi-relational and no perturbations were considered, hence the ED module is not used. Protein-to-protein interaction
networks relate two proteins via multiple cell-dependent relations and protein classification seeks the unknown function of some proteins
based on the functionality of a (small) subset of them (Zitnik and Leskovec 2017). Given a target function ¥,, that is known on a subset of
proteins n € £, known functions on all proteins summarized in X, and the multi-relational protein networks A, the goal is to predict whether
proteins in the unlabeled set n € {V\ L} are associated with the target function or not. Hence, the number of target classes in this application
is simply K = 2. In this setting, A; represents the protein connectivity in the ¢-th cell type. Examples of such cells include cerebellum,
midbrain, or frontal lobe. Table 2 summarizes the dimensions of the three datasets used in our experiments.

Next, AGCN is compared with the GCN (Kipf and Welling 2017) that is the single-relational alternative, and the Mune (Ye and Akoglu
2018) that is a state-of-the-art diffusion-based approach for SSL over multi-relational graphs. Since GCN only accounts for a single graph,
GCN employs the graph ¢ that achieves the best results in the validation set. Furthermore, Mune does not account for feature vectors in the
nodes of the graph. Hence, to facilitate fair comparison, we also employ our AGCN without using the feature vectors, i.e. X = Iy. Finally,
since the classes are heavily unbalanced, we evaluate the performance of the various approaches using the macro F1 score for predicting the
protein functions.*

Table 3: Macro F1 for the brain cells dataset.

Z] 440 220 110 55
AGCN 0.86 0.79 0.71 0.69
GCN 049 048 048 047

AGCN (No feat.) 0.41 043 041 0.35
Mune (No feat.) 0.27 0.27 032 0.14

Tables 3-5 report macro F1 values for the aforementioned approaches for varying number of observed (labeled) nodes |£|. The results for
all datasets demonstrate that: i) the macro F1 score improves as |£| increases; ii) AGCN, that judiciously combines the multiple-relations,
outperforms the GCN by a large margin; and iii) for the case where nodal features are not used (bottom two rows of each table), AGCN
outperforms the state-of-the-art Mune.

* Accurate classifiers achieve macro F1 values close to 1.



Table 4: Macro F1 for the circulation cells dataset.

Z] 440 220 110 55
AGCN 077 0.76 0.70 0.69
GCN 048 048 048 047

AGCN (No feat.) 0.41 042 040 0.35
Mune (No feat.) 0.28 0.27 026 0.13

Table 5: Macro F1 for the generic cells dataset.

IZ] 440 220 110 55
AGCN 0.70 0.66 0.60 0.58
GCN 049 048 048 047

AGCN (No feat.) 040 044 041 043
Mune (No feat.) 0.28 0.25 0.24 0.13

C High probability remarks
The ensuing remarks assert that this will happen whp as I increases.

Remark 1 With high probability, there exists G; such that a perturbed edge will be restored to its initial value. This means that there exists
an ED graph i such that A,, v ; = A, . Since, each G; is independently drawn, it holds that

(
(

Remark 2 Whp there exists G; which will recover the original neighborhood structure of a node, i.e. /\/T(Li) = Ny. The proof of this remark
is included in the Appendix.

I
Pr U(An,n’,i = O)‘An,n’ = 17 An,n’ = 0) =1- q{
i=1
I
Pr U(A
i=1

n,n’i = 1)‘An,n’ = 07 An,n’ = 1) =1- qg

The high probability claims asserted in Remarks 1 and 2 hold as I increases. Nevertheless, experiments with adversarial attacks demonstrate
that even with a small I the use of ED significantly boosts classification performance. The operation of the ED module is detailed in Fig. 4.
Note that the proposed ED does not require availability of nodal feature vectors. The generated graphs have to be processed by a dedicated
architecture that promotes the learned features from unperturbed nodal neighborhoods.

Remark 3 With high probability there exists G; such that a perturbed edge will be restored to its initial value. This means that there exist a
graph i such that A, v ; = Ay, . Since, each G; is independently drawn, it holds that 3

(

I
U(An,n’,i = O)‘An,n’ = ]-7 An,n’ = 0) =1- q{ (14)
=1
I
<U(An,n’,i = 1)‘An,n’ = 07 An,n’ = 1) =1- qg (15)
=1

Pr
Pr
Remark 4 With high probability there exists G; which will recover the original neighborhood structure of a node, i.e. /\/;(Li) = N,

Proof. The two neighborhood structures will be the same N,(f) = N, if and only if A,, v ; = A s, Vn'. For any edge A,, ., ; there are
4 scenarios

1) Ay =1and A, . =1
2) Ay =1land A, =0
3) A, =0and A4,/ =1

4) A, =0and A, . =0

Equations (k) with k < 13 correspond to the orginal manuscript while (k) with k > 13 correspond to the supplementary material).
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Figure 3: SSL classification accuracy of AGCN with |£| = 50 for noisy features (left) and noisy graphs (right).
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Figure 4: ED in operation on a perturbed social network among voters. Black solid edges are the true links and dashed red edges
represent adversarially perturbed links.

It further holds that
I
PI‘< U(AN,n’,i = 0)‘An,n’ = ]-7 An,n’ = O) =1- q{ (16)
=1
I
PI‘< U(An,n’,i - 1)‘An,n’ - 07 An,n’ = 1) =1- qg (17)
1=1
I
Pr< Ui = 0)‘An,n, =1,A, . = 1) =1-(1-q) (18)
=1
I
Pr( Ui = 1)‘An,n, =0, A = o) —1-(1—q) (19)
1=1

Without loss of generality assume for the N connections {A,, ,,/ 1NV _, the events 1)-4) appear with the following frequency &, \, u, v. Since
sampling each edge of the graph is done independently across edges and across draws we arrive to the following

Pr( LIJ(ME” = Nn)) =(-0-a) (1-a) (1) (1- - a)")" 0)



