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Abstract

The main theme of this work is a unifying al-
gorithm, LoopLess SARAH (L2S) for problems
formulated as summation of n individual loss
functions. L2S broadens a recently developed
variance reduction method known as SARAH. To
find an ε-accurate solution, L2S enjoys a com-
plexity ofO

(
(n+κ) ln(1/ε)

)
for strongly convex

problems. For convex problems, when adopt-
ing an n-dependent step size, the complexity of
L2S is O(n+

√
n/ε); while for more frequently

adopted n-independent step size, the complexity
is O(n + n/ε). Distinct from SARAH, our the-
oretical findings support an n-independent step
size in convex problems without extra assump-
tions. For nonconvex problems, the complexity
of L2S is O(n +

√
n/ε). Our numerical tests

on neural networks suggest that L2S can have
better generalization properties than SARAH.
Along with L2S, our side results include the lin-
ear convergence of the last iteration for SARAH
in strongly convex problems.

1 INTRODUCTION

Consider the frequently encountered empirical risk mini-
mization (ERM) problem

min
x∈Rd

F (x) :=
1

n

∑
i∈[n]

fi(x) (1)

where x ∈ Rd is the parameter to be learned from data;
the set [n] := {1, 2, . . . , n} collects data indices; and, fi is
the loss function corresponding to datum i. Suppose that
the set of minimizers is non-empty and F is bounded from
below.

The standard method to solve (1) is gradient descent (GD),
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which per iteration t relies on the update

xt+1 = xt − η∇F (xt)

where η is the step size (a.k.a learning rate). For a strongly
convex F , GD convergences linearly to x∗, meaning after
T iterations it holds that ‖xT − x∗‖2 ≤ cT ‖x0 − x∗‖2
with some constant c ∈ (0, 1); while for convex F it holds
that F (xT ) − F (x∗) = O(1/T ), and for nonconvex F
one has mint ‖∇F (xt)‖ = O(1/T ); see e.g., [Nesterov,
2004, Ghadimi and Lan, 2013]. However, finding ∇F (xt)
per iteration in the big data regime, i.e., with large n, can be
computationally prohibitive. To cope with this, the stochas-
tic gradient descent (SGD) [Robbins and Monro, 1951,
Bottou et al., 2016] draws uniformly at random an index
it ∈ [n] per iteration, and updates via

xt+1 = xt − ηt∇fit(xt).

Albeit computationally light, SGD comes with a slower
convergence rate than GD [Bottou et al., 2016, Ghadimi
and Lan, 2013], which is mainly due to the variance of the
gradient estimate given by E[‖∇fit(xt)−∇F (xt)‖2].

By capitalizing on the finite sum structure of ERM, a class
of algorithms, variance reduction family, can be designed
to solve (1) more efficiently. The idea is to judiciously
(often periodically) evaluate a snapshot gradient ∇F (xs),
and use it as an anchor of the stochastic draws {∇fit(xt)}
in subsequent iterations. As a result, compared with the
simple gradient estimate ∇fit(xt) in SGD, the variance of
estimated gradients can be reduced. Members of the vari-
ance reduction family include SDCA [Shalev-Shwartz and
Zhang, 2013], SVRG [Johnson and Zhang, 2013, Reddi
et al., 2016a, Allen-Zhu and Hazan, 2016], SAG [Roux
et al., 2012], SAGA [Defazio et al., 2014, Reddi et al.,
2016b], MISO [Mairal, 2013], SCSG [Lei and Jordan,
2017, Lei et al., 2017], SNVRG [Zhou et al., 2018] and
SARAH [Nguyen et al., 2017, 2019], and their variants
[Konecnỳ and Richtárik, 2013, Kovalev et al., 2019, Qian
et al., 2019, Li et al., 2019]. Most of these rely on the up-
date xt+1 = xt−ηvt, where η is a constant step size and vt
is a carefully designed gradient estimator that takes advan-
tage of the snapshot gradient. When aiming for an accurate
solution, variance reduction methods are faster than SGD
for convex and nonconvex problems, and remarkably they
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converge linearly when F is strongly convex. The complex-
ity of algorithms such as GD, SGD, and variance reduction
families will be quantified by the number of incremental
first-order oracle (IFO) calls that counts how many (in-
cremental) gradients are computed [Agarwal and Bottou,
2015], as specified next using our notational conventions.
Definition 1. An IFO is a black box with inputs fi and
x ∈ Rd, and output the gradient∇fi(x).

For example, the IFO complexity to compute ∇F (x) is
n. For a prescribed ε, a desirable algorithm obtains an ε-
accurate solution (defined as follows) with minimal com-
plexity1.
Definition 2. Let x be a solution returned by certain algo-
rithm. If E[‖∇F (x)‖2] ≤ ε is satisfied, x is termed as an
ε-accurate solution to (1).

Variance reduction algorithms outperform GD in terms of
complexity. And when high accuracy (ε small) is desired,
the complexity of variance reduction methods is also lower
than that of SGD. Among variance reduction algorithms,
the distinct feature of SARAH [Nguyen et al., 2017, 2019]
and its variants [Fang et al., 2018, Zhang et al., 2018, Wang
et al., 2018, Nguyen et al., 2018a, Pham et al., 2019] is
that they rely on a biased gradient estimator vt formed by
recursively using stochastic gradients. SARAH performs
comparably to SVRG/SAGA on strongly convex problems,
but reduces the complexity of SVRG/SAGA for nonconvex
losses. In addition, no duality (as in SDCA) or gradient
table (for SAGA) is required. With SARAH’s analytical
and practical merits granted, there are unexplored issues.
For example, guarantees on SARAH with n-independent
step size for convex problems are missing since analysis in
[Nguyen et al., 2017] requires an extra presumption. The
last iteration convergence of SARAH is also not well un-
derstood yet. In this context, our contributions are summa-
rized next.

• Unifying algorithm and novel analysis: A new al-
gorithm, LoopLess SARAH (L2S) is developed. It
offers a unified algorithmic framework with prov-
able convergence properties through a novel analyzing
technique. To find an ε-accurate solution, L2S enjoys
a complexity O

(
(n+ κ) ln(1/ε)

)
for strongly convex

problems with condition number κ. For convex prob-
lems, the complexity of L2S is O(n +

√
n/ε) when

an n-related step size is used; or O(n + n/ε) for an
n-independent step size. The complexity of L2S for
nonconvex problems is O(n+

√
n/ε).

• Tale of generalization: Supported by experimental
evidence, we find that L2S can have generalization
merits compared with SARAH for nonconvex tasks
such as training neural networks.

1Complexity is the abbreviation for IFO complexity through-
out this work.

• Last iteration convergence of SARAH: Linear con-
vergence of the last iteration for SARAH on µ-
strongly convex problems is established. Distinct
from [Liu et al.] with step size O(µ/L2), our analy-
sis enables a much larger step size, i.e., η = O(1/L).
In addition, we find that if each fi is strongly convex,
the complexity of adopting last iteration in SARAH is
lower than that of SVRG.

Notation. Bold lowercase letters denote column vectors;
E(P) represents expectation (probability); ‖x‖ stands for
the `2-norm of a vector x; and 〈x,y〉 denotes the inner
product between vectors x and y.

2 PRELIMINARIES

This section reviews SARAH [Nguyen et al., 2017, 2019]
with emphases on the quality of gradient estimates. Before
diving into SARAH, we first state the assumptions posed
on F and fi.
Assumption 1. Each fi : Rd → R has L-Lipchitz gradi-
ent, that is, ‖∇fi(x)−∇fi(y)‖ ≤ L‖x−y‖, ∀x,y ∈ Rd.
Assumption 2. Each fi : Rd → R is convex.
Assumption 3. F : Rd → R is µ-strongly convex, mean-
ing there exists µ > 0, so thatF (x)−F (y) ≥ 〈∇F (y),x−
y〉+ µ

2 ‖x− y‖2, ∀x,y ∈ Rd.
Assumption 4. Each fi : Rd → R is µ-strongly con-
vex, meaning there exists µ > 0, so that fi(x) − fi(y) ≥
〈∇fi(y),x− y〉+ µ

2 ‖x− y‖2, ∀x,y ∈ Rd.

Assumptions 1 – 4 are standard in the analysis of vari-
ance reduction algorithms. Assumption 1 requires each
loss function to be sufficiently smooth. In fact one can dis-
tinguish the smoothness of individual loss function and re-
fine Assumption 1 as fi has Li-Lipchitz gradient. Clearly
L = maxi Li. With slight modifications on SARAH, such
refinement can tighten the complexity bounds slightly. The
detailed discussions can be found in Appendix E. In the
main text, we will keep using the simpler Assumption 1 for
clarity. Assumption 2 implies that F is also convex. As-
sumption 3 only requires F to be strongly convex, which
is slightly weaker than Assumption 4. And it is clear when
Assumption 4 is true, both Assumptions 2 and 3 hold auto-
matically. Under Assumptions 1 and 3 (or 4), the condition
number of F is defined as κ := L/µ.

2.1 Recap of SARAH

SARAH for Strongly Convex Problems: The detailed
steps of SARAH are listed under Alg. 1. In a particular
outer loop (lines 3 - 11) indexed by s, a snapshot gradient
vs0 = ∇F (xs0) is computed first to serve as an anchor of
gradient estimates vst in the ensuing inner loop (lines 6 -
10). Then xs0 is updated m+ 1 times based on vst

vst = ∇fit(xst )−∇fit(xst−1) + vst−1. (2)



Bingcong Li, Meng Ma, Georgios B. Giannakis

Algorithm 1 SARAH

1: Initialize: x̃0, η, m, S
2: for s = 1, 2, . . . , S do
3: xs0 = x̃s−1

4: vs0 = ∇F (xs0)
5: xs1 = xs0 − ηvs0
6: for t = 1, 2, . . . ,m do
7: uniformly sample it ∈ [n]
8: vst = ∇fit(xst )−∇fit(xst−1) + vst−1

9: xst+1 = xst − ηvst
10: end for
11: choose x̃s uniformly rnd. from {xst}mt=0

12: end for
13: Output: x̃S

SARAH’s gradient estimator vst is biased, since
E
[
vst |Ft−1

]
= ∇F (xst )−∇F (xst−1) +vst−1 6= ∇F (xst ),

where Ft−1 := σ(xs0, i1, i2, . . . , it−1) denotes the σ-
algebra generated by xs0, i1, i2, . . . , it−1. Albeit biased,
vst is carefully designed to ensure the mean square error
(MSE) relative to ∇F (xst ) is bounded above, and stays
proportional to E[‖∇F (x̃s−1)‖2].
Lemma 1. [Nguyen et al., 2017, Lemma 2] If Assumptions
1 and 2 hold and η < 2/L, SARAH guarantees that

E
[
‖∇F (xst )− vst‖2

]
≤ ηL

2− ηL
E
[
‖∇F (x̃s−1)‖2

]
, ∀t.

This MSE bound of Lemma 1 is critical for analyzing
SARAH, and instrumental in establishing its linear conver-
gence for strongly convex F . It is worth stressing that the
step size of SARAH should be chosen by η < 1/L to en-
sure convergence, which can be larger than that of SVRG,
whose step size should be less than 1/(4L).

SARAH for Convex Problems: Establishing the conver-
gence rate of SARAH with an n-independent step size re-
mains open for convex problems. Regarding complexity,
the only analysis implicitly assumes SARAH to be non-
divergent, as confirmed by the following claim used to de-
rive the complexity.

Claim: [Nguyen et al., 2017, Theorem 3] If δs :=
2

η(m+1)E
[
F (x̃s)−F (x∗)

]
, δ := maxs δs, ∆ := δ+ δηL

2−2ηL ,

and α = ηL
2−ηL , it holds that E[‖∇F (x̃s)‖2] − ∆ ≤

αs(‖F (x̃0)‖2 −∆).

The missing piece of this claim is that for a finite δs or
δ, E[F (x̃s) − F (x∗)] must be bounded; or equivalently,
the algorithm must be assumed non-divergent. Even if
E[F (x̃s) − F (x∗)] is finite, assuming it to be O(1) as in
[Nguyen et al., 2017] is not reasonable. Another variant of
SARAH in [Nguyen et al., 2018b] also relies on a similar
assumption to guarantee convergence. We will show that
the proposed algorithm can bypass this extra non-divergent
assumption.

Algorithm 2 L2S

1: Initialize: x0, η, m, T
2: compute v0 = ∇F (x0)
3: x1 = x0 − ηv0

4: for t = 1, 2, . . . , T do
5: choose vt via (3).
6: xt+1 = xt − ηvt
7: end for
8: Output: xa that is uniformly chosen from {xt}Tt=1

SARAH for Nonconvex Problems. SARAH also works
for nonconvex problems if line 11 in Alg. 1 is modified to
x̃s = xsm+1. The key to convergence again lies in the MSE
of vst .
Lemma 2. [Fang et al., 2018, Lemma 1] If Assumption 1
holds, the MSE of vst is bounded by

E
[
‖∇F (xst )− vst‖2

]
≤ η2L2

t−1∑
τ=0

E
[
‖vsτ‖2

]
.

Lemma 2 states that the upper bound of MSE of vst is i)
proportional to η2; and, ii) larger when t is larger. Leverag-
ing the MSE bound, it was established that the complexity
to find an ε-accurate solution is O(n +

√
n/ε) [Nguyen

et al., 2019]. Compared with SARAH, the proposed algo-
rithm has its own merits for tasks such as training neural
network, which will be clear in Section 4.

3 LOOPLESS SARAH

This section presents the LoopLess SARAH (L2S) al-
gorithmic framework, which is capable of dealing with
(strongly) convex and nonconcex ERM problems.

L2S is summarized in Alg. 2. Besides the single loop struc-
ture, the most distinct feature of L2S is that vt is a proba-
bilistically computed snapshot gradient given by

vt =

{
∇F (xt) w.p. 1/m
∇fit(xt)−∇fit(xt−1) + vt−1 w.p. 1−1/m

(3)
where it ∈ [n] is again uniformly sampled. The gradient
estimator vt is still biased, since E[vt|Ft−1] = ∇F (xt)−
(1− 1

m )
[
∇F (xt−1)− vst−1

]
6= ∇F (xt). In L2S, the snap-

shot gradient is computed everym iterations in expectation,
while SARAH computes the snapshot gradient once every
m + 1 updates. The emergent challenge is that one has to
ensure a small MSE of vt to guarantee convergence, where
the difficulty arises from the randomness of when a snap-
shot gradient is computed.

An equivalent manner to describe (3) is through a sequence
of i.i.d. Bernoulli random variables {Bt} with pmf

P(Bt = 1) =
1

m
; P(Bt = 0) = 1− 1

m
. (4)
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If Bt = 1, a snapshot gradient vt = ∇F (xt) is com-
puted; otherwise, the estimated gradient vt = ∇fit(xt) −
∇fit(xt−1) + vt−1 is used for the update. Let Nt1:t de-
note the event that at iteration t the last evaluated snapshot
gradient was at t1. In other words, Nt1:t is equivalent to
Bt1 = 1, Bt1+1 = 0, . . . , Bt = 0. Note that t1 can take
values from 0 (no snapshot gradient computed) to t (corre-
sponding to vt = ∇F (xt)).

The key lemma enabling our analysis is a simple proba-
bilistic observation.

Lemma 3. For a given t, i) events Nt1:t and Nt2:t are dis-
joint when t1 6= t2; and, ii)

∑t
t1=0 P(Nt1:t) = 1.

The general idea is to exploit these properties of Nt1:t to
obtain the MSE of vst , which is further leveraged to derive
the convergence of L2S. Note that our idea for establish-
ing the convergence of L2S is general enough to provide a
parallel analysis for a loopless version of SVRG [Kovalev
et al., 2019, Qian et al., 2019], without relying on the com-
plicated Lyapunov function.

3.1 L2S for Convex Problems

The subject of this subsection is problems with smooth
and convex losses such as those obeying Assumptions 1
and 2. We find that SARAH is challenged analytically
because x̃s 6= xsm+1 in Line 11 of Alg. 1, which ne-
cessitates SARAH’s ‘non-divergent’ assumption. A few
works have identified this issue [Nguyen et al., 2019, Wang
et al., 2018, Pham et al., 2019], but require an n-dependent
step size (e.g., η = O( 1

L
√
n

)) to address it2. However, n-
independent step sizes are also widely adopted in practice.
The key to bypassing this n-dependence in step size, is re-
moving the inner loop of SARAH and computing snapshot
gradients following a random schedule as (3).

The analysis starts with the MSE of vt in L2S. All proofs
are relegated to Appendix due to space limitations.

Lemma 4. Under Assumptions 1 and 2, the following in-
equality holds for a given t when η < 2/L

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
≤ ηL

2− ηL
E
[
‖∇F (xt1)‖2

]
. (5)

Furthermore, we have

E
[
‖∇F (xt)− vt‖2

]
≤ ηL

2− ηL

(
1− 1

m

)t
‖∇F (x0)‖2

+
ηL

2− ηL
1

m

t−1∑
τ=1

(
1− 1

m

)t−τ
E
[
‖∇F (xτ )‖2

]
.

2These algorithms are designed for nonconvex problems, how-
ever, even assuming convexity we are unable to show the conver-
gence with a step size independent with n.

Comparing (5) with Lemma 1 reveals that conditioning on
Nt1:t, xt1 in L2S is similar to the starting point of an outer
loop in SARAH (i.e., xs0), while the following iterations
{xτ}tτ=t1+1 mimic the behavior of SARAH’s inner loop.
Taking expectation w.r.t. Nt1:t in (5), Lemma 4 further
asserts that the MSE of vt depends on the exponentially
moving average of the norm square of past gradients.

Theorem 1. If Assumptions 1 and 2 hold, and the step size
is chosen such that η < 1/L and 1− ηL

2−ηL ≥ Cη , whereCη
is a positive constant, the output of L2S, xa, is guaranteed
to satisfy

E
[
‖∇F (xa)‖2

]
= O

(
F (x0)− F (x∗)

ηTCη
+
mηL‖∇F (x0)‖2

TCη

)
.

The constantCη depends on the choice of η, e.g.,Cη = 2/3
for η = 0.5/L. Based on Theorem 1, the convergence rates
as well as the complexities under different choices of η and
m are specified in the following corollaries. Let us start
with a constant step size that is irrelevant with n.

Corollary 1. Choose a constant η < 1/L. Ifm = Θ(
√
n),

then L2S has convergence rate O(
√
n/T ) and requires

O(n+ n/ε) IFO calls to find an ε-accurate solution.

Corollary 2. Choose a constant η < 1/L. If m = Θ(n),
the convergence rate of L2S is O(n/T ). The complexity to
ensure an ε-accurate solution is O(n+ n/ε).

In Corollaries 1 and 2, the choice of η does not depend
on n. Thus, relative to SARAH, L2S eliminates the non-
divergence assumption and establishes the convergence
rate as well. On the other hand, an n-dependent step size
is also supported by L2S, whose complexity is specified in
the following corollary.

Corollary 3. If we select η = O
(

1
L
√
m

)
, and m = Θ(n),

then L2S has convergence rate O(
√
n/T ), and the com-

plexity to find an ε-accurate solution is O(n+
√
n/ε).

When to Adopt n-dependent Step Sizes? An interesting
observation is that though the complexity of using an n-
dependent step size is lower than those of an n-independent
step size in both L2S and SVRG [Reddi et al., 2016a], the
numerical performances on modern datasets such as rcv1
and a9a suggest that n-independent step sizes boost the
convergence speed. We argue that an n-dependent step
size only reveals its numerical merits when n is extremely
large. Intuitively, a large n positively correlates with the
larger MSE of the gradient estimate, which in turn calls for
a smaller (n-dependent) step size. Our numerical results in
Appendix D.3 also support this argument. We subsample
aforementioned datasets with different values of n. SVRG
and L2S are tested on these subsampled datasets. Besides
the faster convergence when using an n-independent step
size, it is also observed that as n increases, i) the gradient
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norm of solutions obtained by n-dependent step sizes be-
comes smaller; and ii) the difference on the performance
gap between n-dependent and n-independent step sizes re-
duces.

3.2 L2S for Nonconvex Problems

The scope of L2S can also be broadened to nonconvex
problems under Assumption 1, that is, L2S with a proper
step size is guaranteed to use O(n +

√
n/ε) IFO calls to

find an ε-accurate solution. Compared with SARAH, the
merit of L2S is that the extra MSE introduced by the ran-
domized scheduling of snapshot gradient computation can
be helpful for exploring the landscape of the loss function,
which will be discussed in detail in Section 4. Here we
focus on the convergence properties only, starting with the
MSE in nonconvex settings.

Lemma 5. If Assumption 1 holds, L2S guarantees that for
a given Nt1:t

E
[
‖∇F (xt)− vt‖2|Nt1:t

]
≤ η2L2

t∑
τ=t1+1

E
[
‖vτ−1‖2|Nt1:t

]
. (6)

In addition, the following inequality is true

E
[
‖∇F (xt)− vt‖2

]
≤ η2L2

t−1∑
τ=0

(
1− 1

m

)t−τ
E
[
‖vτ‖2

]
.

Conditioning on Nt1:t, iterations {xτ}tτ=t1 are comparable
to an outer loop of SARAH. Similar to Lemma 2, the MSE
upper bound of vt in (6) is large when t− t1 is large. If we
take expectation w.r.t. the randomness of Nt1:t, the MSE
of vt then depends on the exponentially moving average
of the norm square of all past gradient estimates {vτ}t−1

τ=0,
which is different from Lemma 4 (for convex problems)
where the MSE involves the past gradients {∇F (xτ )}t−1

τ=0.
It turns out that such a past-estimate-based MSE is diffi-
cult to cope with using only the exponentially deceasing
sequence {(1− 1/m)t−τ}t−1

τ=0, prompting a cautiously de-
signed (m-dependent) η.

Theorem 2. With Assumption 1 holding, and choosing
η ∈ (0,

√
4m+1−1
2mL ] = O

(
1

L
√
m

)
, the final L2S output xa

satisfies

E
[
‖∇F (xa)‖2

]
= O

(
L
√
m
[
F (x0)− F (x∗)

]
T

+
‖∇F (x0)‖2

T

)
.

An intuitive explanation of the m-dependent η is that with
a small m, L2S evaluates a snapshot gradient more fre-
quently [cf. (3)], which translates to a relatively small MSE
bound in Lemma 5. Given an accurate gradient estimate, it
is thus reasonable to adopt a larger step size.

Algorithm 3 L2S-SC

1: Initialize: x0, η, m, S, and s = 0
2: compute v0 = ∇F (x0)
3: x1 = x0 − ηv0

4: while s 6= S do
5: randomly generate Bt as (4)
6: if Bt = 1 then
7: xt = xt−1

8: vt = ∇F (xt), s = s+ 1
9: else

10: vt = ∇fit(xt)−∇fit(xt−1) + vt−1

11: end if
12: xt+1 = xt − ηvt, t = t+ 1
13: end while
14: T = t
15: Output: xT

Corollary 4. Selecting η = O
(

1
L
√
m

)
andm = Θ(n), L2S

converges with rate O(
√
n/T ), and the complexity to find

an ε-accurate solution is O(n+
√
n/ε).

Almost matching the lower bound Ω(
√
n/ε) of nonconvex

ERM problems [Fang et al., 2018], the complexity of L2S
is similar to other SARAH type algorithms [Fang et al.,
2018, Wang et al., 2018, Nguyen et al., 2019]. The slight
suboptimality is due to the n extra IFO calls involved in
computing v0.

3.3 L2S for Strongly Convex Problems

In addition to convex and nonconvex problems, a modi-
fied version of L2S that we term L2S for Strongly Convex
problems (L2S-SC), converges linearly under Assumptions
1 – 3. As we have seen previously, L2S is closely related
to SARAH, especially when conditioned on a given Nt1:t.
Hence, we will first state a useful property of SARAH that
will guide the design and analysis of L2S-SC.
Lemma 6. Consider SARAH (Alg. 1) with Line 11 re-
placed by x̃s = xsm. Choosing η < 2/(3L) and m large
enough such that

λm :=
2ηL

2− ηL
+
(
2 + 2ηL

)
(θ)m < 1,

where θ is defined as

θ =

{
1−

(
2
ηL − 1

)
µ2η2 with As. 1 – 3

1− 2ηL
1+κ with As. 1 and 4

. (7)

The modified SARAH is guaranteed to converge linearly;
that is,

E
[
‖∇F (x̃s)‖2

]
≤ λmE

[
‖∇F (x̃s−1)‖2

]
.

As opposed to the random draw of x̃s (Line 11 of Alg. 1),
Lemma 6 asserts that by properly choosing η and m, set-
ting x̃s = xsm preserves the linear convergence of SARAH.
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Note that the convergence with last iteration of SARAH
was also studied by [Liu et al.] under Assumptions 1 – 3.
However, their analysis requires an undesirably small step
size, i.e., η = O(µ/L2), while ours enables a much larger
one η = O(1/L).

Remark 1. Through Lemma 6 one can establish the com-
plexity of SARAH with x̃s = xsm. When Assumptions 1 -
3 hold, the complexity isO

(
(n+κ2) ln 1

ε

)
, which is on the

same order of SVRG with last iteration [Tan et al., 2016, Hu
et al., 2018]. However, when Assumptions 1 and 4 are true,
the complexity of SARAH decreases to O

(
(n + κ) ln 1

ε

)
.

This is the property SVRG does not exhibit.

L2S-SC is summarized in Alg. 3, where vt obtained in
Lines 5 - 11 is a rewrite of (3) using Bt introduced in (4)
for the ease of presentation and analysis. L2S-SC differs
from L2S in that when Bt = 1, xt steps back slightly as in
Line 7. This "step back" is to allow for a rigorous analysis,
and can be viewed as the counterpart of choosing x̃s =
xsm instead of xsm+1 as in Lemma 6. Omitting Line 7 in
practice does not deteriorate performance. In addition, the
parameter S required to initialize L2S is comparable to the
number of outer loops of SARAH, as one can also validate
through the S dependence in the linear convergence rate.

Theorem 3. Choose η < 2/(3L) andm large enough such
that

λ :=
2ηL

2− ηL
+

2 + 2ηL

m− 1

θ(1− 1
m )

1− θ(1− 1
m )

< 1

where θ is defined in (7). L2S-SC in Alg. 3 guarantees

E
[
‖∇F (xT )‖2

]
≤ λS‖∇F (x0)‖2.

The complexities of L2S-SC under different assumptions
are established in the next corollaries.

Corollary 5. Choose η < 2/(3L) and m = Θ(κ2). When
Assumptions 1 – 3 hold, the complexity of L2S to find an
ε-accurate solution is O

(
(n+ κ2) ln 1

ε

)
.

Corollary 6. Choose η < 2/(3L) with m = Θ(κ). When
Assumptions 1 and 4 hold, the complexity of L2S to find an
ε-accurate solution is O

(
(n+ κ) ln 1

ε

)
.

4 DISCUSSIONS

4.1 Comparison with SCSG

L2S can be viewed as SARAH with variable inner loop
length. A variant of SVRG (abbreviated as SCSG) with
randomized inner loop length has been also developed in
[Lei and Jordan, 2017, 2019]. A close relative of SCSG is a
loopless version of SVRG [Kovalev et al., 2019, Qian et al.,
2019]. Unfortunately, the analysis in [Kovalev et al., 2019]
is confined to strongly convex problems, while [Qian et al.,
2019] relies on different analyzing schemes that are more

F
(x
)

flat min sharp 
min

Figure 1: An illustration of sharp and flat minima [Keskar et al.,
2016]. The black line is the loss curvature associated with train-
ing data; and the red line represents the loss for testing data which
slightly deviates from the training loss. The sensitivity of the
training function at a sharp minimum degrades its generalization
performance.

involved. The key differences between L2S and SCSG are
as follows.

d1) The random inner loop length of SCSG is assumed ge-
ometrically distributed (at least for the analysis) that could
be even infinite. Thus, its total number of iterations is also
random. In contrast, the total number of L2S iterations
is fixed to T + 1. This is accomplished through a non-
geometrically distributed equivalent inner loop length.

d2) The analyses are also different. From a high level,
SCSG employs a “forward” analysis, where an iteration t
that computes a snapshot gradient is fixed first, and then
future iterations t+ 1, t+ 2 till the computation of the next
snapshot gradient are checked; while our analysis takes the
“backward” route, that is, after fixing an iteration t the past
iterations t − 1, t − 2, . . . , 0 are checked for a snapshot
gradient computation. As a consequence, our “backward”
analysis leads to an exponentially moving average structure
in the MSE (Lemmas 4 and 5), which is insightful, and is
not provided by SCSG.

4.2 Generalization Merits of L2S

SARAH has well-documented merits for its complexity for
nonconvex problems, but similar to other variance reduc-
tion algorithms, it is not as successful as expected for train-
ing neural networks. We conjecture this is related with
the reduced MSE of the gradient estimates. To see this,
although there is no consensus on analytical justification
for this, empirical evidence points out that SGD with large
mini-batch size (needed to reduce the variance of the gradi-
ent estimates) tends to converge to a sharp minimum. Sharp
minima are believed to have worse generalization proper-
ties compared with flat ones [Keskar et al., 2016]. Fig. 1
shows that gradient estimators with pronounced variabil-
ity are more agile to explore the space and escape from
a sharp minimum, while flat minima are more tolerant to
larger variability. This suggests that the gradient estimator
could be designed to control its exploration ability, which
can in turn improve generalization. Being able to explore
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Figure 2: (a) Training loss of L2S; (b) Test accuracy of L2S.

the loss function landscape is critical because deepening
and widening a neural network does not always endow the
stochastic gradient estimator with controllable exploration
ability [Defazio and Bottou, 2018].

These empirical results shed light on the important role
of exploration ability in the gradient estimates. A natu-
ral means of controlling this exploration in algorithms with
variance reduction, is to add zero-mean noise in the gradi-
ent estimates. However, the issue is that even for convex
problems, the convergence rate slows down if the noise
is not carefully calibrated; see e.g. [Kulunchakov and
Mairal, 2019]. Carefully designed noises for escaping sad-
dle points rather than generalization merits were studied in
e.g., [Jin et al., 2017, Fang et al., 2019]. But even for sad-
dle point escaping, extra information of the loss landscape,
e.g., Hessian Lipchitz constant is required for obtaining the
variance of injected noise. Unfortunately, the Hessian Lip-
chitz constant is not always available in advance. To con-
trol the exploration ability of algorithms with variance re-
duction, L2S resorts to randomized snapshot gradient com-
putation that is free of extra knowledge for the loss land-
scape.

With SARAH as a reference, we can see how our random-
ized snapshot gradient computation in L2S can benefit vari-
ability for exploration. Let t2 − t1 denote the equivalent
length of a L2S inner loop, where t1 and t2 are the in-
dices of two consecutive iterations when snapshot gradients
are computed. Recall from Lemma 2 that the MSE of vt
tends to be larger as t approaches t2. Relative to SARAH,
this means that the randomized computation of the snap-
shot gradient increases the MSE when it so happens that
t1 +m < t < t2.

Test of L2S on Neural Networks. We perform classifi-
cation on MNIST dataset3 using a 784 × 128 × 10 feed-
forward neural network with sigmoid activation function.

3Online available at http://yann.lecun.com/exdb/
mnist/

The network is trained for 200 epochs and the training loss
and test accuracy are plotted in Fig. 2. The bound of gray
shadowed area indicates the smallest training loss (highest
test accuracy) of SGD, while the bound of green shadowed
area represents the best performances for SARAH. Figs. 2
(a) and (b) share some common patterns: i) SGD converges
much faster in the initial phase compared with variance re-
duced algorithms; ii) the fluctuate of L2S is larger than that
of SARAH, implying the randomized full gradient compu-
tation indeed introduces extra chances for exploration; and,
iii) when x-axis is around 140, L2S begins to outperform
SARAH while in previous epochs their performances are
comparable. Note that before L2S outperforms SARAH,
there is a deep drop on its accuracy. This can be explained
as that L2S explores for a local minimum with general-
ization merits thanks to the randomized snapshot gradient
computation and the deep drop in Fig. 2 (b) indicates the
transition from a local min to another.

5 NUMERICAL TESTS

Besides training neural networks, we also apply L2S to lo-
gistic regression to showcase the performances in strongly
convex and convex cases. Specifically, consider the loss
function

F (x) =
1

n

∑
i∈[n]

ln
[
1 + exp(−bi〈ai,x〉)

]
+
λ

2
‖x‖2 (8)

where (ai, bi) is the (feature, label) pair of datum i. Prob-
lem (8) can be rewritten in the format of (1) with fi(x) =
ln
[
1 + exp(−bi〈ai,x〉)

]
+ λ

2 ‖x‖
2. One can verify that in

this case Assumptions 1 and 4 are satisfied. Datasets a9a,
w7a and rcv1.binary4 are used in numerical tests presented.
Details regarding the datasets and implementation are de-
ferred to Appendix F.

4All datasets are from LIBSVM, which is online avail-
able at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html.
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Figure 3: Tests of L2S on strongly convex problems (first row) and convex ones (second row) on different datasets.

Test of L2S-SC on Strongly Convex Problems. The
performance of L2S-SC is shown in the first row of Fig.
3. SVRG, SARAH and SGD are chosen as benchmarks,
where SGD is with modified step size ηk = 1/

(
L(k + 1)

)
on the k-th effective sample pass. For both SARAH and
SVRG, the length of inner loop is chosen as m = n.
We tune step size and only report the best performance.
For a fair comparison we set η and m for L2S the same
as SARAH. It can be seen that on datasets w7a and rcv1
L2S-SC has comparable performances with SARAH, while
on dataset a9a, L2S-SC has similar performance with
SARAH. The simulations validate the theoretical results of
L2S-SC.

Test of L2S on Convex Problems. The performances of
L2S for convex problems (λ = 0) is listed in the second
row of Fig. 3. Again SVRG, SARAH and SGD are adopted
as benchmarks. We choose m = n for SVRG, SARAH
and L2S. It can be seen that on datasets w7a and rcv1 L2S
performs almost the same as SARAH, while outperforms
SARAH on dataset a9a. Note that the performance of
SVRG improves over SARAH on certain datasets. This is
because a theoretically unsupported step size (η > 1/(4L))
is used in SVRG for best empirical performance.

6 CONCLUSIONS AND FUTURE WORK

A unifying framework, L2S, was introduced to efficiently
solve (strongly) convex and nonconvex ERM problems.
The complexities to find an ε-accurate solution were estab-
lished. Numerical tests validated our theoretical findings.

An interesting question is how to extend L2S and SARAH

to stochastic optimization, i.e., solving minx Eξ[f(x, ξ)],
where ξ is a random variable whose distribution is un-
known. Such problems can be addressed using SVRG or
SCSG; see e.g., [Lei et al., 2017]. Works such as [Nguyen
et al., 2018b] is the first attempt for solving stochastic op-
timization via SARAH. Though addressing certain chal-
lenges, the remaining issue is that the gradient estimate
is in general not implementable on problems other than
ERM. To see this, recall the SARAH based gradient es-
timate for stochastic optimization is vt = ∇f(xt, ξt) −
∇f(xt−1, ξt) + vt−1, where ξt is the t-th realization of
ξ. Obtaining ∇f(xt−1, ξt) via a stochastic first order or-
acle can be impossible especially when ξ comes from an
unknown continuous probability space. To overcome this
challenge is included in our research agenda.
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