
Power System State Estimation Using Gauss-Newton
Unrolled Neural Networks with Trainable Priors

Qiuling Yang
School of Automation

Beijing Institute of Technology
Beijing 100081, China

yang6726@umn.edu

Alireza Sadeghi, Gang Wang, Georgios B. Giannakis
ECE Dept. and Digital Tech. Center

University of Minnesota
Minneapolis, MN 55455, USA

{sadeghi, gangwang, georgios}@umn.edu

Jian Sun
School of Automation

Beijing Institute of Technology
Beijing 100081, China

sunjian@bit.edu.cn

Abstract—Power system state estimation (PSSE) aims at finding
the voltage magnitudes and angles at all generation and load
buses, using meter readings and other available information. PSSE
is often formulated as a nonconvex and nonlinear least-squares
(NLS) cost function, which is traditionally solved by the Gauss-
Newton method. However, Gauss-Newton iterations for minimizing
nonconvex problems are sensitive to the initialization, and they can
diverge. In this context, we advocate a deep neural network (DNN)
based “trainable regularizer” to incorporate prior information for
accurate and reliable state estimation. The resulting regularized
NLS does not admit a neat closed form solution. To handle this, a
novel end-to-end DNN is constructed subsequently by unrolling a
Gauss-Newton-type solver which alternates between least-squares
loss and the regularization term. Our DNN architecture can
further offer a suite of advantages, e.g., accommodating network
topology via graph neural networks based prior. Numerical tests
using real load data on the IEEE 118-bus benchmark system
showcase the improved estimation performance of the proposed
scheme compared with state-of-the-art alternatives. Interestingly,
our results suggest that a simple feed forward network based prior
implicitly exploits the topology information hidden in data.

Index Terms—Regularized state estimation, trainable priors,
Gauss-Newton unrolled neural networks.

I. INTRODUCTION

Operation of power systems critically hinges on accurate
power system state estimation (PSSE), which is a prereq-
uisite for a number of tasks, such as optimal power flow,
unit commitment, economic dispatch, and contingency analysis
[1], [2]. However, contemporary power systems are being
challenged by frequent and sizable voltage fluctuations. This
is due mainly to rapid variations of renewable generation,
increasing deployment of electric vehicles, and human-in-the-
loop demand response incentives. Moreover, directly measuring
state variables is difficult. In this context, fast and accurate state
estimation (SE) is timely and of major importance to maintain
a comprehensive view of the system in real time.

The goal of PSSE is to retrieve the state variables, namely
complex voltages at all buses based on available system mea-
surements, including voltage magnitudes, power flows, and
power injections, offered by the supervisory control and data ac-
quisition (SCADA) system [2]. Traditionally, the least-squares

The work of Q. Yang and J. Sun was supported in part by the National
Natural Science Foundation of China under Grants 61522303, 61720106011,
61621063, and U1613225. Q. Yang was also supported by the China Schol-
arship Council. The work of A. Sadeghi, G. Wang, and G. B. Giannakis was
supported in part by the National Science Foundation under Grants 1711471
and 1901134.

(LS) or least-absolute-value (LAV) criterion was employed
to formulate the PSSE, yielding a nonlinear and nonconvex
optimization problem [3]–[5]. The LAV-based estimator is
known for its robustness relative to the LS one. However,
due to nonconvexity and nonsmoothness, existing LAV solvers
are typically slow and, hence, inadequate for real-time system
monitoring [6]. On the other hand, focusing on the LS-based
PSSE formulation, the Gauss-Newton iterative solver is widely
employed in practice [2]. However, due to the nonconvexity and
quadratic loss function, the Gauss-Newton method is sensitive
to initialization and may diverge [7]. Semidefinite program-
ming approaches trade off these burdens with computational
complexities to some extent [8]. Recently, efforts have been
devoted to developing data- (and model-) driven neural network
(NN) solutions to bypass the nonconvex optimization hurdles in
power system monitoring and control [9]–[12]. The main idea
is to approximate the mapping from measurements to the state
variables through a deep neural network (DNN).

Different from existing methods and motivated by recent
advancements in challenging inverse imaging problems [13]–
[15], in this work we develop a judiciously regularized state
estimation problem. Specifically, we regularize the conventional
LS-based PSSE formulation with a data-driven prior [13]–[16].
Deep (D) NN is advocated as prior to promote accurate, reli-
able, and physically meaningful PSSE solutions using historical
data. Despite its advantages, the resulting regularized nonlinear
LS does not admit a neat closed form solution. To handle this,
an alternating minimization-based solver with Gauss-Newton
iterations being as a critical algorithmic component is first
developed. Unfortunately, this solver incurs a heavy compu-
tational load since it requires performing matrix inversion
per iteration. To accommodate real-time monitoring of large
networks and building on our previous work [11], we unroll
the proposed alternating minimization solver to construct a
new DNN architecture. Our developed Gauss-Newton unrolled
neural network (GNU-NN) with deep priors consists of a
Gauss-Newton iteration as a basic building block, followed
by a proximal step to account for the regularization term.
Interestingly, upon incorporating a graph (G) NN-based prior,
the proposed method exploits the structure of the underlying
smart grid. Different from [11], our proposed method provides
a systematic and flexible framework for incorporating prior
information into standard PSSE problems.

The rest of this paper is structured as follows. Section II
outlines the LS-based PSSE formulation. Section III presents a
general framework for incorporating data-driven and topology-
aware priors into PSSE task through trainable regularizers,
followed by an alternating minimization solver for the resultant
problem. Simulated tests are presented in Section IV, with
concluding remarks drawn in Section V.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices), with the exception of vectors V , P
and Q, and normal letters represent scalars. The (i, j)th entry,
i-th row, and j-th column of matrix X are [X]i,j , [X]i:, and
[X]:j , respectively. Calligraphic letters are reserved for sets
except operators I and P . Symbol > stands for transposition;
0 denotes all-zero vectors of suitable dimensions; and ‖xxx‖ is
the l2-norm of vector xxx.

II. PROBLEM FORMULATION

Consider a distribution grid comprising N buses (nodes)
with E lines (edges) that can be modeled as a graph G :=
(N , E ,W), where N := {1, . . . , N} collects all buses, E :=
{(n, n′)} ⊆ N × N all lines, and W ∈ RN×N is a weight
adjacency matrix. If (n, n′) ∈ E for buses n and n′, then
[W]nn′ = wnn′ ; and [W]nn′ = 0 otherwise, with wnn′ denot-
ing the impedance between the two buses. Let Vn := vrn + jvin
be the complex voltage with magnitude denoted by |Vn|, and
Pn + jQn the complex power injection, for ∀n ∈ N . For
notational brevity, column vectors |V | ∈ RN , P ∈ RN , and
Q ∈ RN collect the voltage magnitudes, active and reactive
power injections across all buses, respectively.

System state variables v := [vr1 vi1 . . . vrN viN]> ∈ R2N

are difficult to measure directly, however typically in practice
they are to be estimated using the abundant other available
measurements provided by the SCADA system, including
voltage magnitudes, active and reactive power injections, as
well as active and reactive power flows. Let SV , SP , SQ,
EP , and EQ represent the sets of buses or lines where in-
stall corresponding type meters. For a compact representation,
we collect the measurements from all meters into vector
z := [{|Vn|2}n∈SV , {Pn}n∈SP , {Qn}n∈SQ , {Pnn′}(n,n′)∈EP ,
{Qnn′}(n,n′)∈EQ ,]> ∈ RM . The m-th measurement is modeled
using the following model

zm = hm(v) + εm, m = 1, . . . ,M. (1)

where, non-linear function hm(v) := v>Hmv, maps the
real-valued state vectors to the m-th SACADA measurements
using a symmetric and network dependent measurement matrix
Hm ∈ R2N×2N , finally εm captures the modeling error as well
as the measurement noise.

Given z, the objective is to recover the state vector v. Upon
vectorizing (1) and adopting the least-squares criterion, PSSE
can be formulated as minimizing the following nonlinear least-
squares (NLS)

v∗ := arg min
v∈R2N

‖z − h(v)‖22. (2)

Numerous iterative algorithms are proposed to solve the non-
convex objective in (2), including e.g., Gauss-Newton iterations

[2], and semidefinite programming-based solvers [8]. These
iterative algorithms typically generate a sequence {vi} by
implementing a mapping from vi to vi+1 with an initial v0.
Hopefully the sequence {vi} finally will converge to an optimal
solution v∗ or at worst a locally optimal point. In this paper, we
will focus on the most commonly used scheme for minimizing
this objective, that is the ‘workhorse’ Gauss-Newton PSSE
iterative solver.

The Gauss-Newton method relies on Taylor’s expansion to
linearize the function h(v) and iteratively updates the state
variables until convergence [17, Sec. 1.5.1]. Specifically, at a
given point vi, the linear approximation of h(v) is given by

h̃(v,vi) ≈ h(vi) + Ji(v − vi) (3)

where Ji := ∇h (vi) is the M×2N Jacobian of h evaluated at
vi, with [Ji]m,n := ∂hm/∂vn. Therefore, after approximating
the nonlinear function h(v) in (2), using (3) per iteration, the
Gauss-Newton method finds the next iterate by solving

vi+1 = arg min
v
‖z − h(vi)− Ji(v − vi)‖2 . (4)

Clearly, the subproblem (4) is convex quadratic. If matrix J>i Ji
is invertible, the closed-form solution is readily available as

vi+1 = vi +
(
J>i Ji

)−1
J>i (z − h(vi)). (5)

In practice however, per iteration matrix inversion (J>i Ji)
−1

leads to a high computational complexity. More importantly,
sensitivity to initialization limits its reliability in practice.
These challenges inhibit its use for real-time monitoring and
control, especially in large-scale networks. To bypass these
hurdles, first we will incorporate prior information into the
PSSE task through judiciously designed regularization, and then
will develop an end-to-end DNN to solve the regularized PSSE
problem, circumventing the need for iteratively solving the
nonconvex and regularized PSSE problem.

III. REGULARIZED PSSE WITH DEEP PRIORS

In this section, we first put forth a framework to incorporate
flexible regularizer in the PSSE problems formulated in (2).
Then an alternating minimization-based solver is developed
to solve the resultant regularized PSSE. Subsequently, we
construct an end-to-end DNN architecture by unrolling the
alternating minimization solver. Such a novel DNN consists
several layers of unrolled Gauss-Newton iterations followed by
proximal steps accounting the regularization term.

A. Deep NN based regularizer

As mentioned earlier, in practice, recovering v from z can
be ill posed due to e.g., lack of observability, for instance when
Ji is a rectangular matrix. To cope with such a challenge, we
regularize the PSSE loss (2) with a trainable prior as follows

min
v∈R2N

‖z − h(v)‖22︸ ︷︷ ︸
data consistency

+λ ‖v −Dθθθ(v)‖22︸ ︷︷ ︸
regularizer

(6)

where λ > 0 is a hyper-parameter to tune the regularizer term
promoting states v to reside close to Dθθθ(v). The latter could
be considered as nonlinear v̂ := Dθθθ(v) estimator (obtained

1-st iteration 2-nd iteration0-th iteration

Fig. 1: The structure of the proposed GNU-NN.

i-th iteration

Fig. 2: Plain-vanilla FNN based regularizer.

possibly offline); For instance one may employ a quadratic-
linear function of the form Dθθθ(v) = 1

2θθθ
>v θθθ+θθθ>v as the prior.

In this paper, for the sake of expressibility and to encompass
a large family of priors, we advocate a DNN-based estimator
Dθθθ(v), where θθθ collects all weights of the NN, that can be
learned offline using historical data. This is stemmed from data-
driven deep priors advocated in image denoising [13]–[15].

Although this innovative regularized formulation tackles the
ill conditioning, the nonconvexity of PSSE objective (6) still
remains a challenge. Moreover, the nested structure of Dθ(·)
brings further challenges, since still one needs to find∇vvvDθθθ(vvv),
which is not readily available specifically when Dθθθ is a DNN.

To overcome this limitation, we use an alternating minimiza-
tion algorithm to iteratively approximate the solution of (6),
which mimics the Gauss-Newton method for NLS in (2). In
particular, starting with an initial guess v0, a linearized data
consistency term is introduced at each iteration i to obtain the
state at next iteration vi+1; that is,

vi+1 = arg min
v
‖z − h(vi)− Ji(v − vi)‖2+ λ‖v −Dθθθ(vi)‖2

= Aiz +Biui + bi

where we define

Ai := (J>i Ji + λI)−1J>i

Bi := λ(J>i Ji + λI)−1

bi := (J>i Ji + λI)−1J>i (Jivi − h(vi)).

Alternating between ensuing two steps

ui = Dθθθ(vi) (8a)
vi+1 = Aiz +Biui + bi (8b)

until some convergence criterion is met, and a solution of (6) is
reached. For instance, given measurement z, and initialization
v0 = 0, the i = 0 iteration yields v1 = A0z+B0u0 +b0. The

DNN Dθ(·) takes as input the v1, to generate u1 = Dθθθ(v1)
according to (8a), which is also the input to i = 1 iteration.
Hence, by repeating these alternating iterations whenever a new
system measurement z becomes available, the state estimates
can be obtained. Notice that every iteration i must evaluate the
Jacobian matrix Ji, followed by matrix inversions to form Ai,
Bi, and bi. These steps are computationally expensive.

Encouraged by results reported in our preceding work [18],
we pursue an unrolling method that builds a DNN architecture,
as depicted in Fig. 1. The constructed DNN is obtained by
unrolling I iterations of the proposed alternating minimizer in
(8). Recall that the DNN prior information Dθθθ(·) in (8a) is
considered pre-trained, with weight parameters θθθ being fixed.
In the constructed DNN in Fig. 1 however, all the coefficients
{Ai}Ii=0, {Bi}Ii=0, {bi}Ii=0, as well as the DNN weights
{θi}Ii=0 are considered learnable during a single training phase.
We call this architecture as GNU-NN, since it is obtained
unrolling Gauss-Newton like iterations.

During training, our GNU-NN takes as input the
measurements-state pairs {(zt,v∗t)}Tt=1, where v∗t is the
ground-truth state vector. For notational brevity, we concatenate
all trainable parameters of the GNU-NN in vector ω :=
[{Ai}Ii=0, {Bi}Ii=0, {b1i }Ii=0]. After specifying a certain loss
`(v∗,vI+1) to measure how accurate GNU-NN predicts are,
the GNU-NN weights ω can be updated using backpropagation
to minimize this loss. The proposed method is tabulated in
Algorithm 1.

During testing phase, one just feeds the real-time measure-
ment zt into the learned GNU-NN, after only a few matrix-
vector multiplications, the estimated voltage vt can be obtained.
Our GNU-NN enjoys competitive estimation performance com-
pared with other iterative algorithms, e.g., the Gauss-Newton
method. Furthermore, due to skipping connections from the
input layer to intermediate and output layers, our GNU-NN
can avoid vanishing and exploding gradients.

Interestingly, by judiciously choosing model for Dθθθ(·), de-
sired merits can further be attained. For instance, we can use
plain-vanilla feed forward (F) NNs as Dθθθ(·), which is referred
to GNU-FNN. The i-th iteration structure of GNU-FNN is
illustrated in Fig. 2. The main advantage of FNN structure is
simplicity and computational efficiency. However, it is difficult
to design a decentralized algorithm using FNN. Fortunately,
upon utilizing recent DNN architectures as priors, such as graph
neural networks (GNNs), one can easily design decentralized
algorithms and enjoy scalability. Using GNNs as priors for

Algorithm 1 PSSE Solver with NN Priors.
Training phase:
1: Input: Training samples {(zt,v∗t)}Tt=1

2: Initialize:
ω := [{θ1i }Ii=0, {A1

i }Ii=0, {B1
i }Ii=0, {b1i }Ii=0], v0 = 0.

3: for t = 1, 2, . . . , T do
4: Feed zt and v0 as input into GNU-NN.
5: for i = 0, 1, . . . , I do1

6: Obtain ui using (8a).
7: Obtain vi+1 ∈ R2N via (8b).
8: end for
9: Obtain vtI+1 from the GNU-NN output.

10: Minimize the loss `(v∗t,vtI+1) and update ωt.
11: end for
12: Output: ωT

Inference phase:
1: for t = T + 1, . . . , T ′ do
2: Feed real-time zt to the trained GNU-NN.
3: Obtain the estimated voltage vt.
4: end for

PSSE will be elaborated in ensuing subsection.

B. Graph NN based deep prior
In order to use expressive state estimators in our regular-

ization term, we model Dθθθ(·) by a GNN, which is a careful
choice due to having a networked data. Recently, GNNs have
demonstrated remarkable performance in several tasks specifi-
cally semi-supervised learning [19], [20]. By directly operating
over the graph, GNN can explicitly utilize the power system
topology information. Therefore, it is an attractive choice for
parameterization in our application domain, where the data
follows the power network graph structure [19].

From the graph signal processing perspective, the measure-
mentsX ∈ RN×F can be seen as a signal on the power network
graph. Its n-th row denoted by x>n := [X]n: represents an F×1
feature vector per node n, where for the PSSE problem, the
feature vector is vrn and vin, i.e., F = 2. By pre-multiplying the
graph signal X from left with weighted adjacency W , features
are propagated over the underlying graph, yielding a diffused
version Y̌ ∈ RN×F obtained as follows

Y̌ = WX. (9)

Interestingly, one can replace the weighted adjacency matrix
with any matrix that preserves the structure of the power
network (i.e. Wnn′ = 0 if (n, n′) /∈ E), such as the graph
Laplacian, the random walk Laplacian matrix, and their nor-
malized versions.

The transformation in (9) is a feature propagation transfor-
mation. It gives the f -th feature at every node by linearly
combining f -th features of neighboring nodes. For instance,
the shifted f -th feature [Y̌]nf for bus n, is given by

[Y̌]nf =
N∑
i=1

[W]ni[X]if =
∑
i∈Nn

wnix
f
i (10)

1For brevity the superscript t is removed from inner iteration i.

Fig. 3: The signal diffuses from layer l − 1 to l with K = 3.

where Nn = {i ∈ N : (i, n) ∈ E} represents the set of neigh-
boring buses for bus n. Clearly, this interpretation generates a
diffused X over the graph. The ‘graph convolution’ operation
in GNNs exploits network topology to linearly combine K hop
neighborhood information, as follows

[Y]nd := [H ?X;W]nd :=
K−1∑
k=0

[W kX]n:[Hk]:d (11)

where H := [H0 · · · HK−1] with Hk ∈ RF×D concatenates
the filter coefficient parameters; Y ∈ RN×D is the intermediate
(hidden) matrix with D features each bus; and, W kX linearly
combines features of buses within the k-hop neighborhood by
recursively applying the shift operator W .

To obtain a GNN with L hidden layers, let Xl−1 denote the
output of the (l− 1)-th layer, which is also the l-th layer input
for l = 1, . . . , L, and X0 = X is the input matrix. The hidden
signal Yl ∈ RN×Dl with Dl features is obtained by applying
the graph convolution operation (11) at layer l, namely

[Yl]nd =

Kl−1∑
k=0

[W kXl−1]n:[Hlk]:g (12)

where Hlk ∈ RFl−1×Fl are the graph convolution coefficients
for k = 0, . . . ,Kl − 1. The output Xl at layer l is found
by applying a graph convolution followed by a point-wise
nonlinear operation σl(·), such as the rectified linear unit
(ReLu) σl(t) := max{0, t} for t ∈ R; see Fig. 3 for an
illustration. Upon rewriting (12) in a compact form, one can
arrives at

Xl = σl(Yl) = σl

(
Kl−1∑
k=0

W kXl−1Hlk

)
. (13)

The GNN-based PSSE provides a nonlinear functional mapping
XL = Φ(X0; Θ,W) that maps the GNN input X0 to voltage
estimates by taking into account the graph structure, that is

Φ(X0; Θ,W) = (14)

σL

(
KL−1∑
k=0

W k

(
. . .

(
σ1

(
K1−1∑
k=0

W kX0H1k

)
. . .

))
HLk

)
where the parameter set Θ collects all the filter weights, i.e.,
Θ := {Hlk, ∀l, k}, and also recall that the input X0 = X .

To accommodate the GNN implementation over the
proposed unrolled architecture, we concatenate all train-
able parameters of the GNU-GNN in vector ω′ :=
[{Θi}Ii=0, {Ai}Ii=0, {Bi}Ii=0, {b1i }Ii=0], which can be updated

Algorithm 2 Reshaping the inputs and outputs of GNNs.

1: for i = 0, 1, . . . , I do
2: Reshape vi ∈ R2N to get Xi

0 ∈ RN×2.
3: Feed Xi

0 into GNN.
4: Vectorize the GNN output Xi

L ∈ RN×2 to get ui.
5: Obtain vi+1 ∈ R2N using (8b).
6: end for

70 72 74 76 78 80 82 84 86 88 90

0.97

0.98

0.99

1.00

1.01

Vo
lta

ge
 m

ag
. (

p.
u.

)

Voltages for bus50

70 72 74 76 78 80 82 84 86 88 90
Iteration

50

60

70

80

Vo
lta

ge
 a

ng
le

 (d
eg

re
e)

Ground truth
GNU-GNN
GNU-FNN
Prox-linear net
6-layer FNN
8-layer FNN

Fig. 4: The estimated voltage profiles at bus 50 from slot 70 to 90.

using backpropagation. The whole process is the same with
Algorithm 1 except steps 5-8. Specifically, at the i-th iteration,
we reshape the states vi ∈ R2N to form the N × 2 GNN input
matrix Xi

0 ∈ RN×2. Next, to obtain the vector ui ∈ R2N ,
we vectorize the GNN output Xi

L ∈ RN×2 (cf. (8a)). This
difference is depicted in Algorithm 2.

IV. NUMERICAL TESTS

In this section, we used the IEEE 118-bus system to assess
the performance of our proposed PSSE solver. The simulations
were executed on an NVIDIA Titan X GPU with a 12GB RAM.
For numerical tests, we used real load consumption data from
the 2012 Global Energy Forecasting Competition (GEFC) [21],
using which training and testing data were created as follows.
To match the scale of power demands, we first normalized the
load data. Next, we fed it into MATPOWER, to generate 1, 000
pairs of measurements and ground-truth voltages, by solving the
exact AC power flow equations. Finally, we randomly selected
80% of the measurement-state pairs to be the training set and
the remaining 20% to be the test set, the algorithm was then
trained and tested on these sets.

Note that our GNU-GNN architecture explicitly captures the
topology and the physics of the smart grid, while our GNU-
FNN leverages the network topology only indirectly through

70 72 74 76 78 80 82 84 86 88 90

0.99

1.00

1.01

1.02

Vo
lta

ge
 m

ag
. (

p.
u.

)

Voltages for bus 100

70 72 74 76 78 80 82 84 86 88 90
Iteration

70

80

90

100

Vo
lta

ge
 a

ng
le

 (d
eg

re
e)

Ground truth
GNU-GNN
GNU-FNN
Prox-linear net
6-layer FNN
8-layer FNN

Fig. 5: The estimated voltage profiles at bus 100 from slot 70 to 90.

simulated data. It is therefore natural to ask how much gain
will be obtained using topology information explicitly? Fur-
thermore, what are the gains of using trainable regularizer for
PSSE compared with alternatives? To answer these questions,
we have carried out numerical tests, where three PSSE solvers
are employed as baselines, namely: i) the prox-linear network
in [11]; ii) a 6-layer vanilla feed-forward (F)NN; and iii) an 8-
layer FNN. The weights of all these NNs were updated using
the ‘Adam’ optimizer [22] to minimize the Hüber loss with
learning rate fixed to 10−3. The training phase was carried out
with 500 epochs, and the batch size was set to 32.

Our GNU-GNN and GNU-FNN were implemented by un-
rolling I = 6 iterations of the proposed alternating minimizing
solver, respectively. Per unrolled iteration, a GNN with K = 2
hops, and D = 8 hidden units with ReLU activation functions
was used as the deep prior of GNU-GNN, while a FNN with
one hidden layer and 8 hidden units with ReLU activation
was employed as the deep prior for GNU-FNN. The GNU-
GNN, GNU-FNN, and prox-linear network architectures were
designed to have roughly the same number of weight parame-
ters.

The estimated voltage profiles obtained at buses 50 and
100 from test slots 70 to 90 are reported in Figs. 4 and
5, respectively. The ground-truth and estimated voltages for
the first 20 buses at slot 80 are presented in Fig. 6. These
plots corroborate the improved PSSE performance using our
GNU-GNN and GNU-FNN relative to alternative approaches.
Furthermore, based on the results in Figs. 4-6, the GNU-
FNN and GNU-GNN perform similarly. This implies that
explicitly incorporating topology information through GNNs
does not provide any performance gain compared with im-
plicitly exploiting it through FNNs. This suggests that a GNN

2 4 6 8 10 12 14 16 18 20

0.96

0.98

1.00

1.02

1.04

1.06

Vo
lta

ge
 m

ag
. (

p.
u.

)

Voltages for test slot 80

2 4 6 8 10 12 14 16 18 20
Bus number

80

90

100

110

Vo
lta

ge
 a

ng
le

 (d
eg

re
e)

Ground truth
GNU-GNN
GNU-FNN
Prox-linear net
6-layer FNN
8-layer FNN

Fig. 6: The estimated voltage profiles for the first 20 buses at slot 80.

architecture may inherit unnecessary complexity and redundant
computation, while a FNN offers the same performance without
any need for topology information. Recently, it has been shown
that successively removing nonlinearities and collapsing weight
matrices between consecutive layers of a GNN architecture
does not influence its performance in practice [23]. These
observations suggest that measurements already contain the
required information about the network topology, thus there is
no need to employ a GNN to explicitly use network topology.

V. CONCLUSIONS

PSSE is an important task for monitoring and control of
current smart grids, which is typically formulated as a least-
absolute-value or a least-square problem, both of which are
nonlinear and nonconvex. In this work, DNN-based trainable
regularizers were adopted to promote accurate, reliable, and
physically meaningful PSSE solutions using historical data. To
obtain the solution of the regularized PSSE problem, an alter-
nating minimization solver using Gauss-Newton iterations was
introduced. This slover however, requires performing matrix
inversion per iteration, thus incurring a heavy computational
burden that may discourage its use for real-time monitoring
of large networks. To accommodate realtime operations, we
construted a new DNN architecture by unrolling the Gauss-
Newton iterations, followed by a proximal step. The proposed
architecture provides a principled framework for designing
deep neural networks that can incorporate prior information
into solving inverse problems. The merits of our proposed
scheme relative to existing methods were corroborated through
numerical tests using real data. This work also opens up
interesting directions for future research, including using data-
driven and topology-aware regularizer for optimal power flow
and unit commitment problems.

REFERENCES

[1] F. C. Schweppe, J. Wildes, and D. Rom, “Power system static-state
estimation: Parts I, II, III,” IEEE Trans. Power App. Syst., vol. PAS-89,
pp. 120–135, Jan. 1970.

[2] A. Abur and A. G. Exposito, Power System State Estimation: Theory and
Implementation. New York, USA: CRC Press, 2004.

[3] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, “Distribution system state
estimation: An overview of recent developments,” Front. Inform. Technol.
Electron. Eng., vol. 20, no. 1, pp. 4–17, Jan. 2019.

[4] A. S. Zamzam, Y. Liu, and A. Bernstein, “Model-free state estimation
using low-rank canonical polyadic decomposition,” arXiv:2004.05741,
2020.

[5] G. Wang, A. S. Zamzam, G. B. Giannakis, and N. D. Sidiropoulos, “Power
system state estimation via feasible point pursuit: Algorithms and cramér-
Rao bound,” IEEE Trans. Signal Process., vol. 66, no. 6, pp. 1649–1658,
Mar. 2018.

[6] G. Wang, G. B. Giannakis, and J. Chen, “Robust and scalable power
system state estimation via composite optimization,” IEEE Trans. Smart
Grid, vol. 10, no. 6, pp. 6137–6147, Nov. 2019.

[7] B. Blaschke, A. Neubauer, and O. Scherzer, “On convergence rates for
the iteratively regularized Gauss-Newton method,” IMA J. Numer. Anal.,
vol. 17, no. 3, pp. 421–436, 1997.

[8] H. Zhu and G. B. Giannakis, “Power system nonlinear state estimation
using distributed semidefinite programming,” IEEE J. Sel. Topics Signal
Process., vol. 8, no. 6, pp. 1039–1050, Jun. 2014.

[9] E. Manitsas, R. Singh, B. C. Pal, and G. Strbac, “Distribution system
state estimation using an artificial neural network approach for pseudo
measurement modeling,” IEEE Trans. Power Syst., vol. 27, no. 4, pp.
1888–1896, Nov. 2012.

[10] P. P. Barbeiro, J. Krstulovic, H. Teixeira, J. Pereira, F. J. Soares, and J. P.
Iria, “State estimation in distribution smart grids using autoencoders,” in
IEEE Intl. Power Eng. and Opt. Conf., 2014, pp. 358–363.

[11] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system
state estimation and forecasting via deep unrolled neural networks,” IEEE
Trans. Signal Process., vol. 67, no. 15, pp. 4069–4077, Aug. 2019.

[12] A. S. Zamzam and N. D. Sidiropoulos, “Physics-aware neural networks
for distribution system state estimation,” IEEE Trans. Power Syst., pp.
1–1, 2020.

[13] S. G. Lingala and M. Jacob, “Blind compressive sensing dynamic MRI,”
IEEE Trans. Med. Imag., vol. 32, no. 6, pp. 1132–1145, Mar. 2013.

[14] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, “A
deep cascade of convolutional neural networks for dynamic MR image
reconstruction,” IEEE Trans. Med. Imag., vol. 37, no. 2, pp. 491–503,
Oct. 2017.

[15] H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep
learning architecture for inverse problems,” IEEE Trans. Med. Imag.,
vol. 38, no. 2, pp. 394–405, Aug. 2018.

[16] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259–268, Nov. 1992.

[17] D. P. Bertsekas, Nonlinear Programming. 2nd ed. Belmont, MA, USA:
Athena Sci., 1999.

[18] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system
state estimation and forecasting via deep unrolled neural networks,” IEEE
Trans. Signal Process., vol. 67, no. 15, pp. 4069–4077, Aug. 2019.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv:1609.02907, 2016.

[20] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis, “Tensor
graph convolutional networks for multi-relational and robust learning,”
arXiv:2003.07729, 2020.

[21] [Online]. Available: https://www.kaggle.com/c/global-energy-forecasting-
competition-2012- load-forecasting/data.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[23] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” arXiv:1902.07153, 2019.

